Regulation of Ribosomal Protein Operons rplM-rpsI , rpmB-rpmG , and rplU-rpmA at the Transcriptional and Translational Levels
It is widely assumed that in the best-characterized model bacterium Escherichia coli , transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been es...
Saved in:
Published in | Journal of bacteriology Vol. 198; no. 18; pp. 2494 - 2502 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
15.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is widely assumed that in the best-characterized model bacterium
Escherichia coli
, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several
E. coli
r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the
in vivo
regulation of three r-protein operons,
rplM-rpsI
,
rpmB-rpmG
, and
rplU-rpmA
. The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal
lacZ
gene, we show here that at the translation level only one of these operons,
rplM-rpsI
, is regulated by the mechanism of autogenous repression involving the 5′ untranslated region (UTR) of the operon mRNA, while
rpmB-rpmG
and
rplU-rpmA
are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of
E. coli
r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of
rplM-rpsI
expression
in vivo
, acting at a target within the
rplM
translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria.
IMPORTANCE
It is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents. |
---|---|
AbstractList | It is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI, rpmB-rpmG, and rplU-rpmA The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5' untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo, acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria.UNLABELLEDIt is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI, rpmB-rpmG, and rplU-rpmA The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5' untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo, acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria.It is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents.IMPORTANCEIt is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents. It is widely assumed that in the best-characterized model bacterium Escherichia coli , transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI , rpmB-rpmG , and rplU-rpmA . The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI , is regulated by the mechanism of autogenous repression involving the 5′ untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo , acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria. IMPORTANCE It is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents. It is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI, rpmB-rpmG, and rplU-rpmA The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5' untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo, acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria. It is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents. It is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI, rpmB-rpmG, and rplU-rpmA. The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5' untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo, acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria. It is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI, rpmB-rpmG, and rplU-rpmA. The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5' untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo, acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria. IMPORTANCE It is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents. |
Author | Boni, Irina V. Aseev, Leonid V. Koledinskaya, Ludmila S. |
Author_xml | – sequence: 1 givenname: Leonid V. surname: Aseev fullname: Aseev, Leonid V. organization: Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia – sequence: 2 givenname: Ludmila S. surname: Koledinskaya fullname: Koledinskaya, Ludmila S. organization: Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia – sequence: 3 givenname: Irina V. surname: Boni fullname: Boni, Irina V. organization: Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27381917$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFO3DAQhq2KqiwLp96rSL1UagMex46dSyUWtRS0FQjB2XJiB4wSO9gJUg999zq7FLWoh_ri8czn3-OZ2UM7zjuD0FvAhwBEHJ2vDjEGwXMoX6EF4ErkjBV4By0wJpBXUBW7aC_G-0RRysgbtEt4IaACvkA_r8zt1KnRepf5NruytY--V112GfxorMsuBhO8i1kYuu95GOJZ9inZ_SrZ_WmyldNz7GY-H2dqzMY7k10H5WIT7DDrJrEZ2vi2LyXP2jyaLu6j163qojl42pfo5uuX65Nv-fri9OzkeJ03lJIx11pASw0WnDcaBLAWC1VjrVmtS1Eqqg2mRLWm5lwzBqVJ9RBtyxtOlKirYok-b3WHqe6Nbowbg-rkEGyvwg_plZV_R5y9k7f-UdIqrVStJfrwJBD8w2TiKHsbG9N1yhk_RQmC8AqLiuD_QIGWXEAxp_X-BXrvp5DKs6E4K5goZ-rdn8k_Z_27iQn4uAWa4GMMpn1GAMt5ROT5Sm5GREKZaHhBN3bctCX93Hb_vPMLffO-Zw |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1016_j_micres_2021_126709 crossref_primary_10_1128_JB_00407_17 crossref_primary_10_1128_jb_00104_24 crossref_primary_10_1186_s12866_020_01823_6 crossref_primary_10_3390_ijms25052957 crossref_primary_10_1007_s12010_019_03003_3 crossref_primary_10_1111_jam_14950 crossref_primary_10_3390_ijms22189679 crossref_primary_10_3390_ijms21010225 crossref_primary_10_3389_fgene_2021_564056 crossref_primary_10_3389_fmicb_2023_1086021 crossref_primary_10_1128_AEM_01099_21 crossref_primary_10_1016_j_cell_2018_02_034 crossref_primary_10_1016_j_lwt_2023_114803 crossref_primary_10_1093_nar_gkz502 crossref_primary_10_1371_journal_ppat_1010170 crossref_primary_10_3390_jpm12081301 crossref_primary_10_3390_ijms25031393 crossref_primary_10_1002_wrna_1632 crossref_primary_10_1021_acssynbio_3c00067 crossref_primary_10_1128_microbiolspec_RWR_0006_2017 crossref_primary_10_1186_s12864_021_07742_8 crossref_primary_10_1261_rna_065011_117 crossref_primary_10_1261_rna_074237_119 |
Cites_doi | 10.1186/1471-2199-11-17 10.1128/JB.186.10.3046-3055.2004 10.1128/jb.179.8.2486-2493.1997 10.1016/j.biochi.2012.02.010 10.1093/nar/gkt055 10.1016/S0021-9258(17)44866-6 10.1261/rna.1099108 10.1128/JB.01713-06 10.1128/JB.00330-07 10.1016/S0079-6603(08)60256-1 10.1016/j.molcel.2005.09.009 10.1261/rna.041285.113 10.1111/j.1365-2958.2011.07779.x 10.1128/JB.02096-14 10.1046/j.1365-2958.1997.2131578.x 10.1128/JB.181.14.4223-4236.1999 10.1111/j.1365-2958.1994.tb00400.x 10.1038/nrmicro1912 10.1074/jbc.273.31.19847 10.1021/bi991866o 10.1101/gr.849004 10.1134/S0006297914080057 10.1073/pnas.77.12.7084 10.1016/j.jmb.2010.02.036 10.1080/10409230500256523 10.1261/rna.047381.114 10.1128/JB.00455-13 10.1128/JB.01092-07 10.1261/rna.053330.115 10.1016/0022-2836(88)90601-8 10.1016/j.cell.2006.04.034 10.1073/pnas.0912007107 10.1073/pnas.0405227101 10.1017/S1355838202029990 10.1093/nar/gkl956 10.1261/rna.038794.113 10.1146/annurev.bi.53.070184.000451 10.1046/j.1365-2958.2003.03513.x 10.1093/emboj/20.15.4222 10.1016/S0021-9258(19)67694-5 10.1134/S0026893311050025 10.1073/pnas.1019383108 10.1261/rna.049544.115 |
ContentType | Journal Article |
Copyright | Copyright © 2016, American Society for Microbiology. All Rights Reserved. Copyright American Society for Microbiology Sep 2016 Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. – notice: Copyright American Society for Microbiology Sep 2016 – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1128/JB.00187-16 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts Bacteriology Abstracts (Microbiology B) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Regulation of Ribosomal Protein Operons |
EISSN | 1098-5530 |
EndPage | 2502 |
ExternalDocumentID | PMC4999927 4174037381 27381917 10_1128_JB_00187_16 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Russian Foundation for Basic Research (RFBR) grantid: 15-04-04597 – fundername: Russian Academy of Sciences (RAS) |
GroupedDBID | --- -DZ -~X .55 0R~ 18M 29J 2WC 39C 4.4 53G 5GY 5RE 5VS 79B 85S AAGFI AAYXX ABPPZ ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B O9- OK1 P-S P2P PQQKQ RHI RNS RPM RSF RXW TAE TR2 UHB UKR UPT W8F WH7 WOQ X7M YQT YR2 YZZ ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM RHF UCJ VQA YIN 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c442t-dd81f4e0877cd1815f08ab0dd5bd686a4de042afeb77d5516e0188ff7c72a8b93 |
ISSN | 0021-9193 1098-5530 |
IngestDate | Thu Aug 21 17:50:27 EDT 2025 Fri Jul 11 10:30:16 EDT 2025 Fri Jul 11 03:29:04 EDT 2025 Mon Jun 30 08:07:17 EDT 2025 Wed Feb 19 02:41:30 EST 2025 Tue Jul 01 03:26:32 EDT 2025 Thu Apr 24 22:50:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | Copyright © 2016, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c442t-dd81f4e0877cd1815f08ab0dd5bd686a4de042afeb77d5516e0188ff7c72a8b93 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Citation Aseev LV, Koledinskaya LS, Boni IV. 2016. Regulation of ribosomal protein operons rplM-rpsI, rpmB-rpmG, and rplU-rpmA at the transcriptional and translational levels. J Bacteriol 198:2494–2502. doi:10.1128/JB.00187-16. |
OpenAccessLink | https://jb.asm.org/content/jb/198/18/2494.full.pdf |
PMID | 27381917 |
PQID | 1817535869 |
PQPubID | 40724 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4999927 proquest_miscellaneous_1827908920 proquest_miscellaneous_1814678139 proquest_journals_1817535869 pubmed_primary_27381917 crossref_primary_10_1128_JB_00187_16 crossref_citationtrail_10_1128_JB_00187_16 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-15 |
PublicationDateYYYYMMDD | 2016-09-15 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2016 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_25_2 Skouv J (e_1_3_2_44_2) 1990; 265 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Tobisch S (e_1_3_2_28_2) 2003; 3 Aseev LV (e_1_3_2_23_2) 2008; 14 2005134 - J Biol Chem. 1991 Mar 25;266(9):5980-90 23396277 - Nucleic Acids Res. 2013 Apr 1;41(6):3491-503 24310371 - RNA. 2014 Feb;20(2):168-76 18521075 - Nat Rev Microbiol. 2008 Jul;6(7):507-19 15126466 - J Bacteriol. 2004 May;186(10):3046-55 7984093 - Mol Microbiol. 1994 Jul;13(1):35-49 25749694 - RNA. 2015 May;21(5):851-61 26447183 - RNA. 2015 Dec;21(12):2039-46 25365487 - Biochemistry (Mosc). 2014 Aug;79(8):776-84 15308780 - Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12439-43 6206783 - Annu Rev Biochem. 1984;53:75-117 21859437 - Mol Microbiol. 2011 Oct;82(2):300-11 20167073 - BMC Mol Biol. 2010 Feb 18;11:17 20207951 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5417-22 9677420 - J Biol Chem. 1998 Jul 31;273(31):19847-52 12358433 - RNA. 2002 Sep;8(9):1137-47 2464068 - J Mol Biol. 1988 Nov 5;204(1):79-94 25266388 - J Bacteriol. 2015 Jan 1;197(1):18-28 20188109 - J Mol Biol. 2010 Apr 23;398(1):1-7 17496080 - J Bacteriol. 2007 Jul;189(14):5193-202 16285924 - Mol Cell. 2005 Nov 11;20(3):427-35 23729652 - J Bacteriol. 2013 Aug;195(16):3524-30 15173120 - Genome Res. 2004 Jun;14(6):1188-90 9098043 - J Bacteriol. 1997 Apr;179(8):2486-93 16257826 - Crit Rev Biochem Mol Biol. 2005 Sep-Oct;40(5):243-67 22370051 - Biochimie. 2012 Jul;94(7):1544-53 7012833 - Proc Natl Acad Sci U S A. 1980 Dec;77(12):7084-8 18039766 - J Bacteriol. 2008 Feb;190(3):1084-96 18648071 - RNA. 2008 Sep;14(9):1882-94 21402902 - Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5712-7 16777598 - Cell. 2006 Jun 16;125(6):1069-82 11483525 - EMBO J. 2001 Aug 1;20(15):4222-32 23980204 - RNA. 2013 Oct;19(10):1341-8 17189297 - Nucleic Acids Res. 2007;35(3):771-88 9044258 - Mol Microbiol. 1997 Jan;23(2):237-45 10625493 - Biochemistry. 2000 Jan 11;39(1):183-93 12787353 - Mol Microbiol. 2003 Jun;48(5):1253-65 7517053 - Prog Nucleic Acid Res Mol Biol. 1994;47:331-70 10400579 - J Bacteriol. 1999 Jul;181(14):4223-36 2120211 - J Biol Chem. 1990 Oct 5;265(28):17044-9 17277072 - J Bacteriol. 2007 Apr;189(7):2844-53 26475831 - RNA. 2015 Dec;21(12):2047-52 |
References_xml | – ident: e_1_3_2_41_2 doi: 10.1186/1471-2199-11-17 – ident: e_1_3_2_19_2 doi: 10.1128/JB.186.10.3046-3055.2004 – ident: e_1_3_2_21_2 doi: 10.1128/jb.179.8.2486-2493.1997 – ident: e_1_3_2_42_2 doi: 10.1016/j.biochi.2012.02.010 – ident: e_1_3_2_36_2 doi: 10.1093/nar/gkt055 – volume: 265 start-page: 17044 year: 1990 ident: e_1_3_2_44_2 article-title: Ribosomal protein S1 is the effector for the regulation of its own synthesis publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)44866-6 – volume: 14 start-page: 1883 year: 2008 ident: e_1_3_2_23_2 article-title: A new regulatory circuit in ribosomal protein operons: S2-mediated control of the rpsB-tsf expression in vivo publication-title: RNA doi: 10.1261/rna.1099108 – ident: e_1_3_2_17_2 doi: 10.1128/JB.01713-06 – ident: e_1_3_2_33_2 doi: 10.1128/JB.00330-07 – ident: e_1_3_2_4_2 doi: 10.1016/S0079-6603(08)60256-1 – ident: e_1_3_2_9_2 doi: 10.1016/j.molcel.2005.09.009 – ident: e_1_3_2_38_2 doi: 10.1261/rna.041285.113 – ident: e_1_3_2_13_2 doi: 10.1111/j.1365-2958.2011.07779.x – ident: e_1_3_2_22_2 doi: 10.1128/JB.02096-14 – ident: e_1_3_2_20_2 doi: 10.1046/j.1365-2958.1997.2131578.x – ident: e_1_3_2_31_2 doi: 10.1128/JB.181.14.4223-4236.1999 – ident: e_1_3_2_45_2 doi: 10.1111/j.1365-2958.1994.tb00400.x – ident: e_1_3_2_5_2 doi: 10.1038/nrmicro1912 – ident: e_1_3_2_8_2 doi: 10.1074/jbc.273.31.19847 – ident: e_1_3_2_11_2 doi: 10.1021/bi991866o – ident: e_1_3_2_29_2 doi: 10.1101/gr.849004 – ident: e_1_3_2_24_2 doi: 10.1134/S0006297914080057 – ident: e_1_3_2_2_2 doi: 10.1073/pnas.77.12.7084 – ident: e_1_3_2_15_2 doi: 10.1016/j.jmb.2010.02.036 – ident: e_1_3_2_7_2 doi: 10.1080/10409230500256523 – ident: e_1_3_2_25_2 doi: 10.1261/rna.047381.114 – ident: e_1_3_2_18_2 doi: 10.1128/JB.00455-13 – ident: e_1_3_2_32_2 doi: 10.1128/JB.01092-07 – ident: e_1_3_2_10_2 doi: 10.1261/rna.053330.115 – ident: e_1_3_2_26_2 doi: 10.1016/0022-2836(88)90601-8 – ident: e_1_3_2_34_2 doi: 10.1016/j.cell.2006.04.034 – ident: e_1_3_2_14_2 doi: 10.1073/pnas.0912007107 – ident: e_1_3_2_16_2 doi: 10.1073/pnas.0405227101 – ident: e_1_3_2_27_2 doi: 10.1017/S1355838202029990 – ident: e_1_3_2_30_2 doi: 10.1093/nar/gkl956 – ident: e_1_3_2_37_2 doi: 10.1261/rna.038794.113 – ident: e_1_3_2_3_2 doi: 10.1146/annurev.bi.53.070184.000451 – volume: 3 start-page: 5 year: 2003 ident: e_1_3_2_28_2 article-title: Quantification of bacterial mRNA by one-step RT-PCR using the LightCycler system publication-title: Biochemica – ident: e_1_3_2_12_2 doi: 10.1046/j.1365-2958.2003.03513.x – ident: e_1_3_2_40_2 doi: 10.1093/emboj/20.15.4222 – ident: e_1_3_2_43_2 doi: 10.1016/S0021-9258(19)67694-5 – ident: e_1_3_2_35_2 doi: 10.1134/S0026893311050025 – ident: e_1_3_2_6_2 doi: 10.1073/pnas.1019383108 – ident: e_1_3_2_39_2 doi: 10.1261/rna.049544.115 – reference: 23396277 - Nucleic Acids Res. 2013 Apr 1;41(6):3491-503 – reference: 7517053 - Prog Nucleic Acid Res Mol Biol. 1994;47:331-70 – reference: 25266388 - J Bacteriol. 2015 Jan 1;197(1):18-28 – reference: 12358433 - RNA. 2002 Sep;8(9):1137-47 – reference: 11483525 - EMBO J. 2001 Aug 1;20(15):4222-32 – reference: 20188109 - J Mol Biol. 2010 Apr 23;398(1):1-7 – reference: 2464068 - J Mol Biol. 1988 Nov 5;204(1):79-94 – reference: 6206783 - Annu Rev Biochem. 1984;53:75-117 – reference: 20207951 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5417-22 – reference: 18521075 - Nat Rev Microbiol. 2008 Jul;6(7):507-19 – reference: 7984093 - Mol Microbiol. 1994 Jul;13(1):35-49 – reference: 15126466 - J Bacteriol. 2004 May;186(10):3046-55 – reference: 26475831 - RNA. 2015 Dec;21(12):2047-52 – reference: 17277072 - J Bacteriol. 2007 Apr;189(7):2844-53 – reference: 12787353 - Mol Microbiol. 2003 Jun;48(5):1253-65 – reference: 15308780 - Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12439-43 – reference: 16285924 - Mol Cell. 2005 Nov 11;20(3):427-35 – reference: 20167073 - BMC Mol Biol. 2010 Feb 18;11:17 – reference: 26447183 - RNA. 2015 Dec;21(12):2039-46 – reference: 7012833 - Proc Natl Acad Sci U S A. 1980 Dec;77(12):7084-8 – reference: 2120211 - J Biol Chem. 1990 Oct 5;265(28):17044-9 – reference: 16777598 - Cell. 2006 Jun 16;125(6):1069-82 – reference: 18039766 - J Bacteriol. 2008 Feb;190(3):1084-96 – reference: 17189297 - Nucleic Acids Res. 2007;35(3):771-88 – reference: 21402902 - Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5712-7 – reference: 17496080 - J Bacteriol. 2007 Jul;189(14):5193-202 – reference: 9044258 - Mol Microbiol. 1997 Jan;23(2):237-45 – reference: 23729652 - J Bacteriol. 2013 Aug;195(16):3524-30 – reference: 2005134 - J Biol Chem. 1991 Mar 25;266(9):5980-90 – reference: 23980204 - RNA. 2013 Oct;19(10):1341-8 – reference: 25365487 - Biochemistry (Mosc). 2014 Aug;79(8):776-84 – reference: 25749694 - RNA. 2015 May;21(5):851-61 – reference: 21859437 - Mol Microbiol. 2011 Oct;82(2):300-11 – reference: 16257826 - Crit Rev Biochem Mol Biol. 2005 Sep-Oct;40(5):243-67 – reference: 24310371 - RNA. 2014 Feb;20(2):168-76 – reference: 10625493 - Biochemistry. 2000 Jan 11;39(1):183-93 – reference: 10400579 - J Bacteriol. 1999 Jul;181(14):4223-36 – reference: 9677420 - J Biol Chem. 1998 Jul 31;273(31):19847-52 – reference: 22370051 - Biochimie. 2012 Jul;94(7):1544-53 – reference: 9098043 - J Bacteriol. 1997 Apr;179(8):2486-93 – reference: 18648071 - RNA. 2008 Sep;14(9):1882-94 – reference: 15173120 - Genome Res. 2004 Jun;14(6):1188-90 |
SSID | ssj0014452 |
Score | 2.3580194 |
Snippet | It is widely assumed that in the best-characterized model bacterium
Escherichia coli
, transcription units encoding ribosomal proteins (r-proteins) and... It is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2494 |
SubjectTerms | Amino acids Bacterial proteins Bacteriology beta-Galactosidase - genetics beta-Galactosidase - metabolism Biochemistry E coli Escherichia coli Escherichia coli - genetics Gene Expression Regulation, Bacterial - physiology Gene Expression Regulation, Enzymologic Genetics Operon - genetics Operon - physiology Protein Binding Protein Biosynthesis - physiology Protein expression Ribosomal Proteins - genetics Ribosomal Proteins - metabolism RNA-protein interactions Transcription, Genetic |
Title | Regulation of Ribosomal Protein Operons rplM-rpsI , rpmB-rpmG , and rplU-rpmA at the Transcriptional and Translational Levels |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27381917 https://www.proquest.com/docview/1817535869 https://www.proquest.com/docview/1814678139 https://www.proquest.com/docview/1827908920 https://pubmed.ncbi.nlm.nih.gov/PMC4999927 |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEBIviN8UBjLSnuhSmjRp3Md2ArZphWmsqG-REzsiok2qpn0Y_H38X9zZjpuMgmAvVetcmsb39Xzn3H1HyAFLcWNNCgd8V-H4nuQOi0XopH3OISCJ3UTxzE4-Do6n_uksmLVaP2tZS5t13E2-76wruYlWYQz0ilWy_6FZ-6UwAO9Bv_AKGobXf9LxhW4kb3y-iywuymIBc36O5AtZ3vmELOB52Vkt5xNntSxPcEJXy8UYPiw-VImbcHSKAyNT2KgJzytrYrgE1Ni82jk8w1Sj8g-ObawJoBv79aNSws3hHoAEIyI6X7rW0hdzXD_Lb_xK-bFnG7HI5rzz2UqMC9V2qnOyynJenWk2KtwBZlXoUs1abQAarVo66iTb0k3VzTTmjbi6dWJXasuMxKfY46hhuoesjlFWt8S-bp5sVnXw9LzdK4aHVRCn465qT-jows8adpYLBR6sYMLQdrts2mTG88kRho1DL7xFbnsQraia85nNNIKQNTCk9fquTJkoXPlt7bpIS20u0vSRfgt8rufv1hyiy_vknlE4HWlYPiAtmT8kd3Rv06tH5McWnLRIqQUnNeCkBpzUgvOQWmgeUsActcCkfE0BmPQaMJVQA5hUA_Mxmb5_d3l07JhOH07i-97aEYK5qS-RnDIR4HMGaY_xuCdEEIsBG3BfSFhceCrjMBT4aFfCpLE0DZPQ4ywe9p-QvbzI5TNCe30uweJ4vI9sfS4bYs_KAE4NYSX1Y9Ymb6q5jRJDg4_dWOaRCoc9Fp2OI6WTyB20yYEVXmr2l91i-5WSImMeyghuIwz6ARsM2-S1PQzGG5_I8VwWGyUDjgqDKOxvMl6ID-e9Xps81Xq3v6UCTJuEDURYASSPbx7Js6-KRN5A9vmNz3xB7m7_5ftkb73ayJfgoK_jVwr-vwAkauoH |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Ribosomal+Protein+Operons+rplM-rpsI%2C+rpmB-rpmG%2C+and+rplU-rpmA+at+the+Transcriptional+and+Translational+Levels&rft.jtitle=Journal+of+bacteriology&rft.au=Aseev%2C+Leonid+V.&rft.au=Koledinskaya%2C+Ludmila+S.&rft.au=Boni%2C+Irina+V.&rft.date=2016-09-15&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=198&rft.issue=18&rft.spage=2494&rft.epage=2502&rft_id=info:doi/10.1128%2FJB.00187-16&rft_id=info%3Apmid%2F27381917&rft.externalDocID=PMC4999927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |