Regulation of Ribosomal Protein Operons rplM-rpsI , rpmB-rpmG , and rplU-rpmA at the Transcriptional and Translational Levels

It is widely assumed that in the best-characterized model bacterium Escherichia coli , transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been es...

Full description

Saved in:
Bibliographic Details
Published inJournal of bacteriology Vol. 198; no. 18; pp. 2494 - 2502
Main Authors Aseev, Leonid V., Koledinskaya, Ludmila S., Boni, Irina V.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 15.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is widely assumed that in the best-characterized model bacterium Escherichia coli , transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI , rpmB-rpmG , and rplU-rpmA . The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI , is regulated by the mechanism of autogenous repression involving the 5′ untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo , acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria. IMPORTANCE It is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents.
AbstractList It is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI, rpmB-rpmG, and rplU-rpmA The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5' untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo, acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria.UNLABELLEDIt is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI, rpmB-rpmG, and rplU-rpmA The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5' untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo, acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria.It is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents.IMPORTANCEIt is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents.
It is widely assumed that in the best-characterized model bacterium Escherichia coli , transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI , rpmB-rpmG , and rplU-rpmA . The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI , is regulated by the mechanism of autogenous repression involving the 5′ untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo , acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria. IMPORTANCE It is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents.
It is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI, rpmB-rpmG, and rplU-rpmA The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5' untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo, acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria. It is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents.
It is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI, rpmB-rpmG, and rplU-rpmA. The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5' untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo, acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria.
It is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI, rpmB-rpmG, and rplU-rpmA. The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5' untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo, acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria. IMPORTANCE It is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents.
Author Boni, Irina V.
Aseev, Leonid V.
Koledinskaya, Ludmila S.
Author_xml – sequence: 1
  givenname: Leonid V.
  surname: Aseev
  fullname: Aseev, Leonid V.
  organization: Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
– sequence: 2
  givenname: Ludmila S.
  surname: Koledinskaya
  fullname: Koledinskaya, Ludmila S.
  organization: Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
– sequence: 3
  givenname: Irina V.
  surname: Boni
  fullname: Boni, Irina V.
  organization: Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27381917$$D View this record in MEDLINE/PubMed
BookMark eNqNksFO3DAQhq2KqiwLp96rSL1UagMex46dSyUWtRS0FQjB2XJiB4wSO9gJUg999zq7FLWoh_ri8czn3-OZ2UM7zjuD0FvAhwBEHJ2vDjEGwXMoX6EF4ErkjBV4By0wJpBXUBW7aC_G-0RRysgbtEt4IaACvkA_r8zt1KnRepf5NruytY--V112GfxorMsuBhO8i1kYuu95GOJZ9inZ_SrZ_WmyldNz7GY-H2dqzMY7k10H5WIT7DDrJrEZ2vi2LyXP2jyaLu6j163qojl42pfo5uuX65Nv-fri9OzkeJ03lJIx11pASw0WnDcaBLAWC1VjrVmtS1Eqqg2mRLWm5lwzBqVJ9RBtyxtOlKirYok-b3WHqe6Nbowbg-rkEGyvwg_plZV_R5y9k7f-UdIqrVStJfrwJBD8w2TiKHsbG9N1yhk_RQmC8AqLiuD_QIGWXEAxp_X-BXrvp5DKs6E4K5goZ-rdn8k_Z_27iQn4uAWa4GMMpn1GAMt5ROT5Sm5GREKZaHhBN3bctCX93Hb_vPMLffO-Zw
CODEN JOBAAY
CitedBy_id crossref_primary_10_1016_j_micres_2021_126709
crossref_primary_10_1128_JB_00407_17
crossref_primary_10_1128_jb_00104_24
crossref_primary_10_1186_s12866_020_01823_6
crossref_primary_10_3390_ijms25052957
crossref_primary_10_1007_s12010_019_03003_3
crossref_primary_10_1111_jam_14950
crossref_primary_10_3390_ijms22189679
crossref_primary_10_3390_ijms21010225
crossref_primary_10_3389_fgene_2021_564056
crossref_primary_10_3389_fmicb_2023_1086021
crossref_primary_10_1128_AEM_01099_21
crossref_primary_10_1016_j_cell_2018_02_034
crossref_primary_10_1016_j_lwt_2023_114803
crossref_primary_10_1093_nar_gkz502
crossref_primary_10_1371_journal_ppat_1010170
crossref_primary_10_3390_jpm12081301
crossref_primary_10_3390_ijms25031393
crossref_primary_10_1002_wrna_1632
crossref_primary_10_1021_acssynbio_3c00067
crossref_primary_10_1128_microbiolspec_RWR_0006_2017
crossref_primary_10_1186_s12864_021_07742_8
crossref_primary_10_1261_rna_065011_117
crossref_primary_10_1261_rna_074237_119
Cites_doi 10.1186/1471-2199-11-17
10.1128/JB.186.10.3046-3055.2004
10.1128/jb.179.8.2486-2493.1997
10.1016/j.biochi.2012.02.010
10.1093/nar/gkt055
10.1016/S0021-9258(17)44866-6
10.1261/rna.1099108
10.1128/JB.01713-06
10.1128/JB.00330-07
10.1016/S0079-6603(08)60256-1
10.1016/j.molcel.2005.09.009
10.1261/rna.041285.113
10.1111/j.1365-2958.2011.07779.x
10.1128/JB.02096-14
10.1046/j.1365-2958.1997.2131578.x
10.1128/JB.181.14.4223-4236.1999
10.1111/j.1365-2958.1994.tb00400.x
10.1038/nrmicro1912
10.1074/jbc.273.31.19847
10.1021/bi991866o
10.1101/gr.849004
10.1134/S0006297914080057
10.1073/pnas.77.12.7084
10.1016/j.jmb.2010.02.036
10.1080/10409230500256523
10.1261/rna.047381.114
10.1128/JB.00455-13
10.1128/JB.01092-07
10.1261/rna.053330.115
10.1016/0022-2836(88)90601-8
10.1016/j.cell.2006.04.034
10.1073/pnas.0912007107
10.1073/pnas.0405227101
10.1017/S1355838202029990
10.1093/nar/gkl956
10.1261/rna.038794.113
10.1146/annurev.bi.53.070184.000451
10.1046/j.1365-2958.2003.03513.x
10.1093/emboj/20.15.4222
10.1016/S0021-9258(19)67694-5
10.1134/S0026893311050025
10.1073/pnas.1019383108
10.1261/rna.049544.115
ContentType Journal Article
Copyright Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Copyright American Society for Microbiology Sep 2016
Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
Copyright_xml – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved.
– notice: Copyright American Society for Microbiology Sep 2016
– notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1128/JB.00187-16
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Regulation of Ribosomal Protein Operons
EISSN 1098-5530
EndPage 2502
ExternalDocumentID PMC4999927
4174037381
27381917
10_1128_JB_00187_16
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Russian Foundation for Basic Research (RFBR)
  grantid: 15-04-04597
– fundername: Russian Academy of Sciences (RAS)
GroupedDBID ---
-DZ
-~X
.55
0R~
18M
29J
2WC
39C
4.4
53G
5GY
5RE
5VS
79B
85S
AAGFI
AAYXX
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
O9-
OK1
P-S
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YQT
YR2
YZZ
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
RHF
UCJ
VQA
YIN
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c442t-dd81f4e0877cd1815f08ab0dd5bd686a4de042afeb77d5516e0188ff7c72a8b93
ISSN 0021-9193
1098-5530
IngestDate Thu Aug 21 17:50:27 EDT 2025
Fri Jul 11 10:30:16 EDT 2025
Fri Jul 11 03:29:04 EDT 2025
Mon Jun 30 08:07:17 EDT 2025
Wed Feb 19 02:41:30 EST 2025
Tue Jul 01 03:26:32 EDT 2025
Thu Apr 24 22:50:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Copyright © 2016, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-dd81f4e0877cd1815f08ab0dd5bd686a4de042afeb77d5516e0188ff7c72a8b93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Citation Aseev LV, Koledinskaya LS, Boni IV. 2016. Regulation of ribosomal protein operons rplM-rpsI, rpmB-rpmG, and rplU-rpmA at the transcriptional and translational levels. J Bacteriol 198:2494–2502. doi:10.1128/JB.00187-16.
OpenAccessLink https://jb.asm.org/content/jb/198/18/2494.full.pdf
PMID 27381917
PQID 1817535869
PQPubID 40724
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4999927
proquest_miscellaneous_1827908920
proquest_miscellaneous_1814678139
proquest_journals_1817535869
pubmed_primary_27381917
crossref_primary_10_1128_JB_00187_16
crossref_citationtrail_10_1128_JB_00187_16
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-15
PublicationDateYYYYMMDD 2016-09-15
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2016
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_25_2
Skouv J (e_1_3_2_44_2) 1990; 265
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Tobisch S (e_1_3_2_28_2) 2003; 3
Aseev LV (e_1_3_2_23_2) 2008; 14
2005134 - J Biol Chem. 1991 Mar 25;266(9):5980-90
23396277 - Nucleic Acids Res. 2013 Apr 1;41(6):3491-503
24310371 - RNA. 2014 Feb;20(2):168-76
18521075 - Nat Rev Microbiol. 2008 Jul;6(7):507-19
15126466 - J Bacteriol. 2004 May;186(10):3046-55
7984093 - Mol Microbiol. 1994 Jul;13(1):35-49
25749694 - RNA. 2015 May;21(5):851-61
26447183 - RNA. 2015 Dec;21(12):2039-46
25365487 - Biochemistry (Mosc). 2014 Aug;79(8):776-84
15308780 - Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12439-43
6206783 - Annu Rev Biochem. 1984;53:75-117
21859437 - Mol Microbiol. 2011 Oct;82(2):300-11
20167073 - BMC Mol Biol. 2010 Feb 18;11:17
20207951 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5417-22
9677420 - J Biol Chem. 1998 Jul 31;273(31):19847-52
12358433 - RNA. 2002 Sep;8(9):1137-47
2464068 - J Mol Biol. 1988 Nov 5;204(1):79-94
25266388 - J Bacteriol. 2015 Jan 1;197(1):18-28
20188109 - J Mol Biol. 2010 Apr 23;398(1):1-7
17496080 - J Bacteriol. 2007 Jul;189(14):5193-202
16285924 - Mol Cell. 2005 Nov 11;20(3):427-35
23729652 - J Bacteriol. 2013 Aug;195(16):3524-30
15173120 - Genome Res. 2004 Jun;14(6):1188-90
9098043 - J Bacteriol. 1997 Apr;179(8):2486-93
16257826 - Crit Rev Biochem Mol Biol. 2005 Sep-Oct;40(5):243-67
22370051 - Biochimie. 2012 Jul;94(7):1544-53
7012833 - Proc Natl Acad Sci U S A. 1980 Dec;77(12):7084-8
18039766 - J Bacteriol. 2008 Feb;190(3):1084-96
18648071 - RNA. 2008 Sep;14(9):1882-94
21402902 - Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5712-7
16777598 - Cell. 2006 Jun 16;125(6):1069-82
11483525 - EMBO J. 2001 Aug 1;20(15):4222-32
23980204 - RNA. 2013 Oct;19(10):1341-8
17189297 - Nucleic Acids Res. 2007;35(3):771-88
9044258 - Mol Microbiol. 1997 Jan;23(2):237-45
10625493 - Biochemistry. 2000 Jan 11;39(1):183-93
12787353 - Mol Microbiol. 2003 Jun;48(5):1253-65
7517053 - Prog Nucleic Acid Res Mol Biol. 1994;47:331-70
10400579 - J Bacteriol. 1999 Jul;181(14):4223-36
2120211 - J Biol Chem. 1990 Oct 5;265(28):17044-9
17277072 - J Bacteriol. 2007 Apr;189(7):2844-53
26475831 - RNA. 2015 Dec;21(12):2047-52
References_xml – ident: e_1_3_2_41_2
  doi: 10.1186/1471-2199-11-17
– ident: e_1_3_2_19_2
  doi: 10.1128/JB.186.10.3046-3055.2004
– ident: e_1_3_2_21_2
  doi: 10.1128/jb.179.8.2486-2493.1997
– ident: e_1_3_2_42_2
  doi: 10.1016/j.biochi.2012.02.010
– ident: e_1_3_2_36_2
  doi: 10.1093/nar/gkt055
– volume: 265
  start-page: 17044
  year: 1990
  ident: e_1_3_2_44_2
  article-title: Ribosomal protein S1 is the effector for the regulation of its own synthesis
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)44866-6
– volume: 14
  start-page: 1883
  year: 2008
  ident: e_1_3_2_23_2
  article-title: A new regulatory circuit in ribosomal protein operons: S2-mediated control of the rpsB-tsf expression in vivo
  publication-title: RNA
  doi: 10.1261/rna.1099108
– ident: e_1_3_2_17_2
  doi: 10.1128/JB.01713-06
– ident: e_1_3_2_33_2
  doi: 10.1128/JB.00330-07
– ident: e_1_3_2_4_2
  doi: 10.1016/S0079-6603(08)60256-1
– ident: e_1_3_2_9_2
  doi: 10.1016/j.molcel.2005.09.009
– ident: e_1_3_2_38_2
  doi: 10.1261/rna.041285.113
– ident: e_1_3_2_13_2
  doi: 10.1111/j.1365-2958.2011.07779.x
– ident: e_1_3_2_22_2
  doi: 10.1128/JB.02096-14
– ident: e_1_3_2_20_2
  doi: 10.1046/j.1365-2958.1997.2131578.x
– ident: e_1_3_2_31_2
  doi: 10.1128/JB.181.14.4223-4236.1999
– ident: e_1_3_2_45_2
  doi: 10.1111/j.1365-2958.1994.tb00400.x
– ident: e_1_3_2_5_2
  doi: 10.1038/nrmicro1912
– ident: e_1_3_2_8_2
  doi: 10.1074/jbc.273.31.19847
– ident: e_1_3_2_11_2
  doi: 10.1021/bi991866o
– ident: e_1_3_2_29_2
  doi: 10.1101/gr.849004
– ident: e_1_3_2_24_2
  doi: 10.1134/S0006297914080057
– ident: e_1_3_2_2_2
  doi: 10.1073/pnas.77.12.7084
– ident: e_1_3_2_15_2
  doi: 10.1016/j.jmb.2010.02.036
– ident: e_1_3_2_7_2
  doi: 10.1080/10409230500256523
– ident: e_1_3_2_25_2
  doi: 10.1261/rna.047381.114
– ident: e_1_3_2_18_2
  doi: 10.1128/JB.00455-13
– ident: e_1_3_2_32_2
  doi: 10.1128/JB.01092-07
– ident: e_1_3_2_10_2
  doi: 10.1261/rna.053330.115
– ident: e_1_3_2_26_2
  doi: 10.1016/0022-2836(88)90601-8
– ident: e_1_3_2_34_2
  doi: 10.1016/j.cell.2006.04.034
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.0912007107
– ident: e_1_3_2_16_2
  doi: 10.1073/pnas.0405227101
– ident: e_1_3_2_27_2
  doi: 10.1017/S1355838202029990
– ident: e_1_3_2_30_2
  doi: 10.1093/nar/gkl956
– ident: e_1_3_2_37_2
  doi: 10.1261/rna.038794.113
– ident: e_1_3_2_3_2
  doi: 10.1146/annurev.bi.53.070184.000451
– volume: 3
  start-page: 5
  year: 2003
  ident: e_1_3_2_28_2
  article-title: Quantification of bacterial mRNA by one-step RT-PCR using the LightCycler system
  publication-title: Biochemica
– ident: e_1_3_2_12_2
  doi: 10.1046/j.1365-2958.2003.03513.x
– ident: e_1_3_2_40_2
  doi: 10.1093/emboj/20.15.4222
– ident: e_1_3_2_43_2
  doi: 10.1016/S0021-9258(19)67694-5
– ident: e_1_3_2_35_2
  doi: 10.1134/S0026893311050025
– ident: e_1_3_2_6_2
  doi: 10.1073/pnas.1019383108
– ident: e_1_3_2_39_2
  doi: 10.1261/rna.049544.115
– reference: 23396277 - Nucleic Acids Res. 2013 Apr 1;41(6):3491-503
– reference: 7517053 - Prog Nucleic Acid Res Mol Biol. 1994;47:331-70
– reference: 25266388 - J Bacteriol. 2015 Jan 1;197(1):18-28
– reference: 12358433 - RNA. 2002 Sep;8(9):1137-47
– reference: 11483525 - EMBO J. 2001 Aug 1;20(15):4222-32
– reference: 20188109 - J Mol Biol. 2010 Apr 23;398(1):1-7
– reference: 2464068 - J Mol Biol. 1988 Nov 5;204(1):79-94
– reference: 6206783 - Annu Rev Biochem. 1984;53:75-117
– reference: 20207951 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5417-22
– reference: 18521075 - Nat Rev Microbiol. 2008 Jul;6(7):507-19
– reference: 7984093 - Mol Microbiol. 1994 Jul;13(1):35-49
– reference: 15126466 - J Bacteriol. 2004 May;186(10):3046-55
– reference: 26475831 - RNA. 2015 Dec;21(12):2047-52
– reference: 17277072 - J Bacteriol. 2007 Apr;189(7):2844-53
– reference: 12787353 - Mol Microbiol. 2003 Jun;48(5):1253-65
– reference: 15308780 - Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12439-43
– reference: 16285924 - Mol Cell. 2005 Nov 11;20(3):427-35
– reference: 20167073 - BMC Mol Biol. 2010 Feb 18;11:17
– reference: 26447183 - RNA. 2015 Dec;21(12):2039-46
– reference: 7012833 - Proc Natl Acad Sci U S A. 1980 Dec;77(12):7084-8
– reference: 2120211 - J Biol Chem. 1990 Oct 5;265(28):17044-9
– reference: 16777598 - Cell. 2006 Jun 16;125(6):1069-82
– reference: 18039766 - J Bacteriol. 2008 Feb;190(3):1084-96
– reference: 17189297 - Nucleic Acids Res. 2007;35(3):771-88
– reference: 21402902 - Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5712-7
– reference: 17496080 - J Bacteriol. 2007 Jul;189(14):5193-202
– reference: 9044258 - Mol Microbiol. 1997 Jan;23(2):237-45
– reference: 23729652 - J Bacteriol. 2013 Aug;195(16):3524-30
– reference: 2005134 - J Biol Chem. 1991 Mar 25;266(9):5980-90
– reference: 23980204 - RNA. 2013 Oct;19(10):1341-8
– reference: 25365487 - Biochemistry (Mosc). 2014 Aug;79(8):776-84
– reference: 25749694 - RNA. 2015 May;21(5):851-61
– reference: 21859437 - Mol Microbiol. 2011 Oct;82(2):300-11
– reference: 16257826 - Crit Rev Biochem Mol Biol. 2005 Sep-Oct;40(5):243-67
– reference: 24310371 - RNA. 2014 Feb;20(2):168-76
– reference: 10625493 - Biochemistry. 2000 Jan 11;39(1):183-93
– reference: 10400579 - J Bacteriol. 1999 Jul;181(14):4223-36
– reference: 9677420 - J Biol Chem. 1998 Jul 31;273(31):19847-52
– reference: 22370051 - Biochimie. 2012 Jul;94(7):1544-53
– reference: 9098043 - J Bacteriol. 1997 Apr;179(8):2486-93
– reference: 18648071 - RNA. 2008 Sep;14(9):1882-94
– reference: 15173120 - Genome Res. 2004 Jun;14(6):1188-90
SSID ssj0014452
Score 2.3580194
Snippet It is widely assumed that in the best-characterized model bacterium Escherichia coli , transcription units encoding ribosomal proteins (r-proteins) and...
It is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2494
SubjectTerms Amino acids
Bacterial proteins
Bacteriology
beta-Galactosidase - genetics
beta-Galactosidase - metabolism
Biochemistry
E coli
Escherichia coli
Escherichia coli - genetics
Gene Expression Regulation, Bacterial - physiology
Gene Expression Regulation, Enzymologic
Genetics
Operon - genetics
Operon - physiology
Protein Binding
Protein Biosynthesis - physiology
Protein expression
Ribosomal Proteins - genetics
Ribosomal Proteins - metabolism
RNA-protein interactions
Transcription, Genetic
Title Regulation of Ribosomal Protein Operons rplM-rpsI , rpmB-rpmG , and rplU-rpmA at the Transcriptional and Translational Levels
URI https://www.ncbi.nlm.nih.gov/pubmed/27381917
https://www.proquest.com/docview/1817535869
https://www.proquest.com/docview/1814678139
https://www.proquest.com/docview/1827908920
https://pubmed.ncbi.nlm.nih.gov/PMC4999927
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEBIviN8UBjLSnuhSmjRp3Md2ArZphWmsqG-REzsiok2qpn0Y_H38X9zZjpuMgmAvVetcmsb39Xzn3H1HyAFLcWNNCgd8V-H4nuQOi0XopH3OISCJ3UTxzE4-Do6n_uksmLVaP2tZS5t13E2-76wruYlWYQz0ilWy_6FZ-6UwAO9Bv_AKGobXf9LxhW4kb3y-iywuymIBc36O5AtZ3vmELOB52Vkt5xNntSxPcEJXy8UYPiw-VImbcHSKAyNT2KgJzytrYrgE1Ni82jk8w1Sj8g-ObawJoBv79aNSws3hHoAEIyI6X7rW0hdzXD_Lb_xK-bFnG7HI5rzz2UqMC9V2qnOyynJenWk2KtwBZlXoUs1abQAarVo66iTb0k3VzTTmjbi6dWJXasuMxKfY46hhuoesjlFWt8S-bp5sVnXw9LzdK4aHVRCn465qT-jows8adpYLBR6sYMLQdrts2mTG88kRho1DL7xFbnsQraia85nNNIKQNTCk9fquTJkoXPlt7bpIS20u0vSRfgt8rufv1hyiy_vknlE4HWlYPiAtmT8kd3Rv06tH5McWnLRIqQUnNeCkBpzUgvOQWmgeUsActcCkfE0BmPQaMJVQA5hUA_Mxmb5_d3l07JhOH07i-97aEYK5qS-RnDIR4HMGaY_xuCdEEIsBG3BfSFhceCrjMBT4aFfCpLE0DZPQ4ywe9p-QvbzI5TNCe30uweJ4vI9sfS4bYs_KAE4NYSX1Y9Ymb6q5jRJDg4_dWOaRCoc9Fp2OI6WTyB20yYEVXmr2l91i-5WSImMeyghuIwz6ARsM2-S1PQzGG5_I8VwWGyUDjgqDKOxvMl6ID-e9Xps81Xq3v6UCTJuEDURYASSPbx7Js6-KRN5A9vmNz3xB7m7_5ftkb73ayJfgoK_jVwr-vwAkauoH
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Ribosomal+Protein+Operons+rplM-rpsI%2C+rpmB-rpmG%2C+and+rplU-rpmA+at+the+Transcriptional+and+Translational+Levels&rft.jtitle=Journal+of+bacteriology&rft.au=Aseev%2C+Leonid+V.&rft.au=Koledinskaya%2C+Ludmila+S.&rft.au=Boni%2C+Irina+V.&rft.date=2016-09-15&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=198&rft.issue=18&rft.spage=2494&rft.epage=2502&rft_id=info:doi/10.1128%2FJB.00187-16&rft_id=info%3Apmid%2F27381917&rft.externalDocID=PMC4999927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon