Classification using hierarchical naive bayes models

Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe an i...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 63; no. 2; pp. 135 - 159
Main Authors LANGSETH, Helge, NIELSEN, Thomas D
Format Journal Article
LanguageEnglish
Published Dordrecht Springer 01.05.2006
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe an instance are conditionally independent given the class of that instance. When this assumption is violated (which is often the case in practice) it can reduce classification accuracy due to "information double-counting" and interaction omission. In this paper we focus on a relatively new set of models, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models in the context of classification. Experimental results show that the learned models can significantly improve classification accuracy as compared to other frameworks.[PUBLICATION ABSTRACT]
AbstractList Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naive Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe an instance are conditionally independent given the class of that instance. When this assumption is violated (which is often the case in practice) it can reduce classification accuracy due to 'information double-counting' and interaction omission.
Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe an instance are conditionally independent given the class of that instance. When this assumption is violated (which is often the case in practice) it can reduce classification accuracy due to "information double-counting" and interaction omission. In this paper we focus on a relatively new set of models, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models in the context of classification. Experimental results show that the learned models can significantly improve classification accuracy as compared to other frameworks.[PUBLICATION ABSTRACT]
Author NIELSEN, Thomas D
LANGSETH, Helge
Author_xml – sequence: 1
  givenname: Helge
  surname: LANGSETH
  fullname: LANGSETH, Helge
  organization: Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
– sequence: 2
  givenname: Thomas D
  surname: NIELSEN
  fullname: NIELSEN, Thomas D
  organization: Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17769561$$DView record in Pascal Francis
BookMark eNpdkE1LAzEQhoNUsK3-AG-LoLfVSTaZTY5S_IKCFz2HbDZrU7bZmnSF_ntTWhA8Dcw88_LyzMgkDMERck3hngLUD4mCUrwEwBJphSU7I1Mq6qoEgWJCpiClyBcmLsgspTUAMJQ4JXzRm5R8563Z-SEUY_Lhq1h5F020q7zti2D8jysas3ep2Ayt69MlOe9Mn9zVac7J5_PTx-K1XL6_vC0el6XlnO3KtkFqkVWUdxWrpZLIW0UFc6xtGoqGC4odFRYag51B56SCFqjhWKNyvKnm5O6Yu43D9-jSTm98sq7vTXDDmDSTCqGqWAZv_oHrYYwhd9O1qIGCZCpD9AjZOKQUXae30W9M3GsK-iBRHyXqLFEfJOpD8O0p2KTsoosmWJ_-HuvcVGT2F2ydccs
CitedBy_id crossref_primary_10_1097_PHM_0000000000001124
crossref_primary_10_35940_ijrte_B7094_0711222
crossref_primary_10_1016_j_aca_2008_01_065
crossref_primary_10_3390_s18113769
crossref_primary_10_1016_j_knosys_2019_105361
crossref_primary_10_1016_j_rse_2011_10_017
crossref_primary_10_1371_journal_pone_0092866
crossref_primary_10_1016_j_dss_2011_01_007
crossref_primary_10_1016_j_jag_2011_08_012
crossref_primary_10_1016_j_ijar_2012_06_024
crossref_primary_10_1016_j_snb_2020_128484
crossref_primary_10_1145_2576868
crossref_primary_10_3390_s18061862
crossref_primary_10_1007_s00521_020_05343_2
crossref_primary_10_1177_1687814016647615
crossref_primary_10_1007_s10994_011_5275_2
crossref_primary_10_1016_j_knosys_2024_112003
crossref_primary_10_1016_j_patcog_2015_08_023
crossref_primary_10_1155_2013_289056
crossref_primary_10_1186_1471_2105_7_514
crossref_primary_10_1002_cpe_4418
crossref_primary_10_15802_stp2023_295252
crossref_primary_10_3390_coatings13071140
crossref_primary_10_1109_JSEN_2020_3041322
crossref_primary_10_3390_s18093108
crossref_primary_10_1016_j_knosys_2020_106646
crossref_primary_10_1051_e3sconf_202449901016
crossref_primary_10_1142_S0218213011004769
crossref_primary_10_1016_j_knosys_2020_106422
crossref_primary_10_1016_j_asoc_2018_04_020
crossref_primary_10_3390_e23040420
crossref_primary_10_1007_s10994_011_5262_7
crossref_primary_10_1021_jf100949k
crossref_primary_10_1186_s12874_023_02013_4
crossref_primary_10_1016_j_jallcom_2023_171891
Cites_doi 10.1111/j.1467-8640.1994.tb00166.x
10.1109/TAI.1994.346412
10.1109/TIT.1968.1054142
10.1145/1015330.1015339
10.1016/S0004-3702(97)00043-X
10.1007/978-1-4612-2748-9
10.1007/BF01531015
10.1016/j.artmed.2003.11.004
10.1007/3-540-56602-3_134
10.1007/978-1-4612-2404-4_23
10.1023/A:1007421730016
10.1007/BFb0017015
10.1111/j.2517-6161.1988.tb01721.x
10.1016/0005-1098(78)90005-5
10.1023/A:1007413511361
10.1111/j.2517-6161.1977.tb01600.x
10.1214/aos/1176344136
10.21236/ADA292575
10.1023/A:1007465528199
10.1023/A:1009778005914
10.1023/A:1024068626366
10.1007/978-1-4757-3502-4
ContentType Journal Article
Copyright 2006 INIST-CNRS
Springer Science + Business Media, LLC 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Springer Science + Business Media, LLC 2006
DBID IQODW
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-006-6136-2
DatabaseName Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Science Journals
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-0565
EndPage 159
ExternalDocumentID 2157423191
10_1007_s10994_006_6136_2
17769561
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIVO
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IQODW
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
XFK
XJT
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AACDK
AAEOY
AAEWM
AAJBT
AASML
AAYXX
ABAKF
ABJNI
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
HVGLF
7SC
7XB
8AL
8FD
8FK
AAYZH
JQ2
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c442t-db61c62314f32789864d9152e2dbb16a4516f15c0ba6fa6ee890d01a46769e4b3
IEDL.DBID BENPR
ISSN 0885-6125
IngestDate Fri Oct 25 03:46:31 EDT 2024
Wed Nov 06 08:30:07 EST 2024
Thu Sep 12 16:45:44 EDT 2024
Sun Oct 22 16:06:48 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bayes estimation
Naïve Bayes models
Hierarchical classification
Classification
Latent variable model
Learning algorithm
Artificial intelligence
Modeling
Hierarchical models
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-db61c62314f32789864d9152e2dbb16a4516f15c0ba6fa6ee890d01a46769e4b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10994-006-6136-2.pdf
PQID 757010829
PQPubID 54194
PageCount 25
ParticipantIDs proquest_miscellaneous_28960332
proquest_journals_757010829
crossref_primary_10_1007_s10994_006_6136_2
pascalfrancis_primary_17769561
PublicationCentury 2000
PublicationDate 2006-05-01
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Machine learning
PublicationYear 2006
Publisher Springer
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Nature B.V
References G. Schwarz (6136_CR35) 1978; 6
P. Spirtes (6136_CR37) 1993
6136_CR20
6136_CR41
N. Friedman (6136_CR11) 1997; 29
C. K. Chow (6136_CR4) 1968; 14
6136_CR29
J. Pearl (6136_CR32) 1988
6136_CR26
N. L. Zhang (6136_CR43) 2003; 30
6136_CR24
6136_CR25
6136_CR22
T. M. Mitchell (6136_CR27) 1997
6136_CR23
J. Binder (6136_CR1) 1997; 29
N. L. Zhang (6136_CR42) 2004b; 5
6136_CR31
6136_CR10
6136_CR30
G. R. Shafer (6136_CR36) 1990; 2
R. O. Duda (6136_CR7) 1973
F. V. Jensen (6136_CR15) 2001
6136_CR17
6136_CR39
6136_CR16
6136_CR38
6136_CR9
6136_CR13
J. Rissanen (6136_CR34) 1978; 14
J. Whittaker (6136_CR40) 1990
6136_CR8
6136_CR14
6136_CR33
6136_CR12
6136_CR5
P. Domingos (6136_CR6) 1997; 29
C. Nadeau (6136_CR28) 2003; 52
R. Kohavi (6136_CR18) 1997; 97
6136_CR3
6136_CR19
6136_CR2
W. Lam (6136_CR21) 1994; 10
References_xml – volume: 10
  start-page: 269
  issue: 4
  year: 1994
  ident: 6136_CR21
  publication-title: Computational Intelligence
  doi: 10.1111/j.1467-8640.1994.tb00166.x
  contributor:
    fullname: W. Lam
– ident: 6136_CR17
  doi: 10.1109/TAI.1994.346412
– volume-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
  year: 1988
  ident: 6136_CR32
  contributor:
    fullname: J. Pearl
– volume: 14
  start-page: 462
  year: 1968
  ident: 6136_CR4
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1968.1054142
  contributor:
    fullname: C. K. Chow
– ident: 6136_CR13
  doi: 10.1145/1015330.1015339
– ident: 6136_CR25
– volume: 97
  start-page: 273
  issue: 1–2
  year: 1997
  ident: 6136_CR18
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
  contributor:
    fullname: R. Kohavi
– volume-title: Causation, prediction, and search
  year: 1993
  ident: 6136_CR37
  doi: 10.1007/978-1-4612-2748-9
  contributor:
    fullname: P. Spirtes
– ident: 6136_CR3
– volume-title: Pattern classification and scene analysis
  year: 1973
  ident: 6136_CR7
  contributor:
    fullname: R. O. Duda
– volume: 2
  start-page: 327
  year: 1990
  ident: 6136_CR36
  publication-title: Annals of Mathematics and Artificial Intelligence
  doi: 10.1007/BF01531015
  contributor:
    fullname: G. R. Shafer
– volume: 30
  start-page: 283
  issue: 3
  year: 2003
  ident: 6136_CR43
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2003.11.004
  contributor:
    fullname: N. L. Zhang
– ident: 6136_CR22
  doi: 10.1007/3-540-56602-3_134
– ident: 6136_CR30
  doi: 10.1007/978-1-4612-2404-4_23
– ident: 6136_CR12
– volume: 29
  start-page: 213
  issue: 2–3
  year: 1997
  ident: 6136_CR1
  publication-title: Machine Learning
  doi: 10.1023/A:1007421730016
  contributor:
    fullname: J. Binder
– ident: 6136_CR14
– ident: 6136_CR31
– ident: 6136_CR9
– ident: 6136_CR16
– ident: 6136_CR33
– ident: 6136_CR19
  doi: 10.1007/BFb0017015
– ident: 6136_CR24
  doi: 10.1111/j.2517-6161.1988.tb01721.x
– volume: 14
  start-page: 465
  year: 1978
  ident: 6136_CR34
  publication-title: Automatica
  doi: 10.1016/0005-1098(78)90005-5
  contributor:
    fullname: J. Rissanen
– ident: 6136_CR39
– volume: 5
  start-page: 697
  issue: 6
  year: 2004b
  ident: 6136_CR42
  publication-title: Journal of Machine Learning Research
  contributor:
    fullname: N. L. Zhang
– volume: 29
  start-page: 103
  issue: 2–3
  year: 1997
  ident: 6136_CR6
  publication-title: Machine Learning
  doi: 10.1023/A:1007413511361
  contributor:
    fullname: P. Domingos
– ident: 6136_CR5
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 6
  start-page: 461
  year: 1978
  ident: 6136_CR35
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344136
  contributor:
    fullname: G. Schwarz
– ident: 6136_CR23
  doi: 10.21236/ADA292575
– ident: 6136_CR26
– ident: 6136_CR20
– ident: 6136_CR41
– ident: 6136_CR29
– volume: 29
  start-page: 131
  issue: 2–3
  year: 1997
  ident: 6136_CR11
  publication-title: Machine Learning
  doi: 10.1023/A:1007465528199
  contributor:
    fullname: N. Friedman
– volume-title: Graphical models in applied multivariate statistics
  year: 1990
  ident: 6136_CR40
  contributor:
    fullname: J. Whittaker
– ident: 6136_CR10
  doi: 10.1023/A:1009778005914
– volume-title: Machine learning
  year: 1997
  ident: 6136_CR27
  contributor:
    fullname: T. M. Mitchell
– ident: 6136_CR2
– volume: 52
  start-page: 239
  issue: 3
  year: 2003
  ident: 6136_CR28
  publication-title: Machine Learning
  doi: 10.1023/A:1024068626366
  contributor:
    fullname: C. Nadeau
– ident: 6136_CR38
– volume-title: Bayesian networks and decision graphs
  year: 2001
  ident: 6136_CR15
  doi: 10.1007/978-1-4757-3502-4
  contributor:
    fullname: F. V. Jensen
– ident: 6136_CR8
SSID ssj0002686
Score 2.1430135
Snippet Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of...
SourceID proquest
crossref
pascalfrancis
SourceType Aggregation Database
Index Database
StartPage 135
SubjectTerms Applied sciences
Artificial intelligence
Computer science; control theory; systems
Exact sciences and technology
Studies
Title Classification using hierarchical naive bayes models
URI https://www.proquest.com/docview/757010829
https://search.proquest.com/docview/28960332
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dS8MwFL247UUQv8U6nX3wSQi2aZt2T-JkcwgOEQd7K2mbiCDdtJvgr_JH-Me8t003huBzCQ0nyf1Izr0H4ELoKORaKKa1FMwPwy6THlGsUldKrlToRVTv_DASw7F_PwkmhptTGFplbRNLQ51NU7ojvwqDEFOHiHevZ--MRKPocdUoaDSgxTFRcJrQ6vVHj09LU8xFKfWIJylg5MrrZ82qdq7siovzQo8mGF9zTFszWSBGuhK3-GOnS-cz2IVtEzXaN9Uy78GGyvdhp1ZksM0BPYCg1Lgk9k8JuE2s9hd7-EpVxqXoyZs9kj_fn8ruyS9V2KUOTnEI40H_-XbIjDACS32fz1mWCDfFuMX1tUeVrJHwsy46YsWzJHGFJPFd7Qapk0iBS6BU1HUyx5U-8VmVn3hH0MynuToGGxPAAEMSajGTYSzlyFBkVG2ruNQa_bcFlzUq8azqfxGvOh0ThDEx4wjCmFvQWcNtNSLEH2OkZkG7BjI2Z6WIlytrwfnyK25yermQuZouihizQuF4Hj_5d3wbNqsLEqIjnkJz_rFQZxgyzJMONKLBXcdsj1-P778L
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7o9qAg3sU53frgkxBs0zZtn8TJxtRtiGywt5K2iQiyTbsJ_ip_hH_Mc3rZGILPJTR8Sc4l-c75AC6F9j2uhWJaS8EczwuYtIliFVtScqU826d65_5AdEfOw9gdF9yctKBVljYxM9TJNKY78mvP9TB18HlwM3tnJBpFj6uFgsYmVKlTFeZe1VZ78PS8NMVcZFKPeJJcRq68fNbMa-eyrrg4L_RogvE1x7QzkylipHNxiz92OnM-nX3YLaJG4zZf5gPYUJND2CsVGYzigB6Bm2lcEvsnA9wgVvuL0X2lKuNM9OTNGMif709ltOSXSo1MByc9hlGnPbzrskIYgcWOw-csiYQVY9xiOdqmSlZfOEmAjljxJIosIUl8V1tubEZS4BIo5QdmYlrSIT6rciL7BCqT6USdgoEJoIshCbWYSTCWMqUnEqq2VVxqjf67BlclKuEs738RrjodE4QhMeMIwpDXoLGG22qEhz_GSK0G9RLIsDgrabhc2Ro0l19xk9PLhZyo6SINMSsUpm3zs3_HN2GrO-z3wt794LEO2_llCVETz6Ey_1ioCwwf5lGj2CS_R6LBHw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7oBBHEuzhv64NPQrBN06R7Em9j3oaIgm8lbRMRZJt2E_xV_gj_mOe06YYIPpfQ8CXnkuQ75wM4kDZW3ErDrNWSCaXaTIdEscoCrbkxKoyp3vm2J7uP4uopenIthQpHq6x9Yumo80FGd-RHKlJ4dIh5-8g6VsTdeed4-MZIQIoeWp2axizMKSFDvwFzpxe9u_uJW-aylH1Eq4oYhfX6ibOqoys75OIcMbpJxn8FqcWhLhAvWwld_PHZZSDqrMCSyyC9k2rJV2HG9NdguVZn8JyxrkNU6l0SE6gE3yOG-7PXfaGK41IA5dXr6e-vD-Od6k9TeKUmTrEBj52Lh7MucyIJLBOCj1ieyiDDHCYQNqSq1liKvI1B2fA8TQOpSYjXBlHmp1richgTt_3cD7QgbqsRabgJjf6gb7bAw8NghOkJtZvJMa_ytZI5Vd4arq3FWN6EwxqVZFj1wkimXY8JwoRYcgRhwpuw_wu36QiFP8asrQk7NZCJs5simaxyE1qTr7jh6RVD981gXCR4QpR-GPLtf8e3YB73R3Jz2bvegYXq3oRYirvQGL2PzR5mEqN03-2RH0F1xU0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+using+Hierarchical+Naive+Bayes+models&rft.jtitle=Machine+learning&rft.au=Langseth%2C+Helge&rft.au=Nielsen%2C+Thomas+D&rft.date=2006-05-01&rft.issn=0885-6125&rft.volume=63&rft.issue=2&rft.spage=135&rft.epage=159&rft_id=info:doi/10.1007%2Fs10994-006-6136-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon