Classification using hierarchical naive bayes models
Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe an i...
Saved in:
Published in | Machine learning Vol. 63; no. 2; pp. 135 - 159 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer
01.05.2006
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe an instance are conditionally independent given the class of that instance. When this assumption is violated (which is often the case in practice) it can reduce classification accuracy due to "information double-counting" and interaction omission. In this paper we focus on a relatively new set of models, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models in the context of classification. Experimental results show that the learned models can significantly improve classification accuracy as compared to other frameworks.[PUBLICATION ABSTRACT] |
---|---|
AbstractList | Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naive Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe an instance are conditionally independent given the class of that instance. When this assumption is violated (which is often the case in practice) it can reduce classification accuracy due to 'information double-counting' and interaction omission. Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe an instance are conditionally independent given the class of that instance. When this assumption is violated (which is often the case in practice) it can reduce classification accuracy due to "information double-counting" and interaction omission. In this paper we focus on a relatively new set of models, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models in the context of classification. Experimental results show that the learned models can significantly improve classification accuracy as compared to other frameworks.[PUBLICATION ABSTRACT] |
Author | NIELSEN, Thomas D LANGSETH, Helge |
Author_xml | – sequence: 1 givenname: Helge surname: LANGSETH fullname: LANGSETH, Helge organization: Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway – sequence: 2 givenname: Thomas D surname: NIELSEN fullname: NIELSEN, Thomas D organization: Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg, Denmark |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17769561$$DView record in Pascal Francis |
BookMark | eNpdkE1LAzEQhoNUsK3-AG-LoLfVSTaZTY5S_IKCFz2HbDZrU7bZmnSF_ntTWhA8Dcw88_LyzMgkDMERck3hngLUD4mCUrwEwBJphSU7I1Mq6qoEgWJCpiClyBcmLsgspTUAMJQ4JXzRm5R8563Z-SEUY_Lhq1h5F020q7zti2D8jysas3ep2Ayt69MlOe9Mn9zVac7J5_PTx-K1XL6_vC0el6XlnO3KtkFqkVWUdxWrpZLIW0UFc6xtGoqGC4odFRYag51B56SCFqjhWKNyvKnm5O6Yu43D9-jSTm98sq7vTXDDmDSTCqGqWAZv_oHrYYwhd9O1qIGCZCpD9AjZOKQUXae30W9M3GsK-iBRHyXqLFEfJOpD8O0p2KTsoosmWJ_-HuvcVGT2F2ydccs |
CitedBy_id | crossref_primary_10_1097_PHM_0000000000001124 crossref_primary_10_35940_ijrte_B7094_0711222 crossref_primary_10_1016_j_aca_2008_01_065 crossref_primary_10_3390_s18113769 crossref_primary_10_1016_j_knosys_2019_105361 crossref_primary_10_1016_j_rse_2011_10_017 crossref_primary_10_1371_journal_pone_0092866 crossref_primary_10_1016_j_dss_2011_01_007 crossref_primary_10_1016_j_jag_2011_08_012 crossref_primary_10_1016_j_ijar_2012_06_024 crossref_primary_10_1016_j_snb_2020_128484 crossref_primary_10_1145_2576868 crossref_primary_10_3390_s18061862 crossref_primary_10_1007_s00521_020_05343_2 crossref_primary_10_1177_1687814016647615 crossref_primary_10_1007_s10994_011_5275_2 crossref_primary_10_1016_j_knosys_2024_112003 crossref_primary_10_1016_j_patcog_2015_08_023 crossref_primary_10_1155_2013_289056 crossref_primary_10_1186_1471_2105_7_514 crossref_primary_10_1002_cpe_4418 crossref_primary_10_15802_stp2023_295252 crossref_primary_10_3390_coatings13071140 crossref_primary_10_1109_JSEN_2020_3041322 crossref_primary_10_3390_s18093108 crossref_primary_10_1016_j_knosys_2020_106646 crossref_primary_10_1051_e3sconf_202449901016 crossref_primary_10_1142_S0218213011004769 crossref_primary_10_1016_j_knosys_2020_106422 crossref_primary_10_1016_j_asoc_2018_04_020 crossref_primary_10_3390_e23040420 crossref_primary_10_1007_s10994_011_5262_7 crossref_primary_10_1021_jf100949k crossref_primary_10_1186_s12874_023_02013_4 crossref_primary_10_1016_j_jallcom_2023_171891 |
Cites_doi | 10.1111/j.1467-8640.1994.tb00166.x 10.1109/TAI.1994.346412 10.1109/TIT.1968.1054142 10.1145/1015330.1015339 10.1016/S0004-3702(97)00043-X 10.1007/978-1-4612-2748-9 10.1007/BF01531015 10.1016/j.artmed.2003.11.004 10.1007/3-540-56602-3_134 10.1007/978-1-4612-2404-4_23 10.1023/A:1007421730016 10.1007/BFb0017015 10.1111/j.2517-6161.1988.tb01721.x 10.1016/0005-1098(78)90005-5 10.1023/A:1007413511361 10.1111/j.2517-6161.1977.tb01600.x 10.1214/aos/1176344136 10.21236/ADA292575 10.1023/A:1007465528199 10.1023/A:1009778005914 10.1023/A:1024068626366 10.1007/978-1-4757-3502-4 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Springer Science + Business Media, LLC 2006 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Springer Science + Business Media, LLC 2006 |
DBID | IQODW AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10994-006-6136-2 |
DatabaseName | Pascal-Francis CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Science Journals ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Central Korea Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1573-0565 |
EndPage | 159 |
ExternalDocumentID | 2157423191 10_1007_s10994_006_6136_2 17769561 |
Genre | Feature |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIVO ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HZ~ I-F I09 IHE IJ- IKXTQ IQODW ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 XFK XJT YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AACDK AAEOY AAEWM AAJBT AASML AAYXX ABAKF ABJNI ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION HVGLF 7SC 7XB 8AL 8FD 8FK AAYZH JQ2 L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c442t-db61c62314f32789864d9152e2dbb16a4516f15c0ba6fa6ee890d01a46769e4b3 |
IEDL.DBID | BENPR |
ISSN | 0885-6125 |
IngestDate | Fri Oct 25 03:46:31 EDT 2024 Wed Nov 06 08:30:07 EST 2024 Thu Sep 12 16:45:44 EDT 2024 Sun Oct 22 16:06:48 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Bayes estimation Naïve Bayes models Hierarchical classification Classification Latent variable model Learning algorithm Artificial intelligence Modeling Hierarchical models |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-db61c62314f32789864d9152e2dbb16a4516f15c0ba6fa6ee890d01a46769e4b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10994-006-6136-2.pdf |
PQID | 757010829 |
PQPubID | 54194 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_28960332 proquest_journals_757010829 crossref_primary_10_1007_s10994_006_6136_2 pascalfrancis_primary_17769561 |
PublicationCentury | 2000 |
PublicationDate | 2006-05-01 |
PublicationDateYYYYMMDD | 2006-05-01 |
PublicationDate_xml | – month: 05 year: 2006 text: 2006-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Machine learning |
PublicationYear | 2006 |
Publisher | Springer Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Nature B.V |
References | G. Schwarz (6136_CR35) 1978; 6 P. Spirtes (6136_CR37) 1993 6136_CR20 6136_CR41 N. Friedman (6136_CR11) 1997; 29 C. K. Chow (6136_CR4) 1968; 14 6136_CR29 J. Pearl (6136_CR32) 1988 6136_CR26 N. L. Zhang (6136_CR43) 2003; 30 6136_CR24 6136_CR25 6136_CR22 T. M. Mitchell (6136_CR27) 1997 6136_CR23 J. Binder (6136_CR1) 1997; 29 N. L. Zhang (6136_CR42) 2004b; 5 6136_CR31 6136_CR10 6136_CR30 G. R. Shafer (6136_CR36) 1990; 2 R. O. Duda (6136_CR7) 1973 F. V. Jensen (6136_CR15) 2001 6136_CR17 6136_CR39 6136_CR16 6136_CR38 6136_CR9 6136_CR13 J. Rissanen (6136_CR34) 1978; 14 J. Whittaker (6136_CR40) 1990 6136_CR8 6136_CR14 6136_CR33 6136_CR12 6136_CR5 P. Domingos (6136_CR6) 1997; 29 C. Nadeau (6136_CR28) 2003; 52 R. Kohavi (6136_CR18) 1997; 97 6136_CR3 6136_CR19 6136_CR2 W. Lam (6136_CR21) 1994; 10 |
References_xml | – volume: 10 start-page: 269 issue: 4 year: 1994 ident: 6136_CR21 publication-title: Computational Intelligence doi: 10.1111/j.1467-8640.1994.tb00166.x contributor: fullname: W. Lam – ident: 6136_CR17 doi: 10.1109/TAI.1994.346412 – volume-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference year: 1988 ident: 6136_CR32 contributor: fullname: J. Pearl – volume: 14 start-page: 462 year: 1968 ident: 6136_CR4 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1968.1054142 contributor: fullname: C. K. Chow – ident: 6136_CR13 doi: 10.1145/1015330.1015339 – ident: 6136_CR25 – volume: 97 start-page: 273 issue: 1–2 year: 1997 ident: 6136_CR18 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00043-X contributor: fullname: R. Kohavi – volume-title: Causation, prediction, and search year: 1993 ident: 6136_CR37 doi: 10.1007/978-1-4612-2748-9 contributor: fullname: P. Spirtes – ident: 6136_CR3 – volume-title: Pattern classification and scene analysis year: 1973 ident: 6136_CR7 contributor: fullname: R. O. Duda – volume: 2 start-page: 327 year: 1990 ident: 6136_CR36 publication-title: Annals of Mathematics and Artificial Intelligence doi: 10.1007/BF01531015 contributor: fullname: G. R. Shafer – volume: 30 start-page: 283 issue: 3 year: 2003 ident: 6136_CR43 publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2003.11.004 contributor: fullname: N. L. Zhang – ident: 6136_CR22 doi: 10.1007/3-540-56602-3_134 – ident: 6136_CR30 doi: 10.1007/978-1-4612-2404-4_23 – ident: 6136_CR12 – volume: 29 start-page: 213 issue: 2–3 year: 1997 ident: 6136_CR1 publication-title: Machine Learning doi: 10.1023/A:1007421730016 contributor: fullname: J. Binder – ident: 6136_CR14 – ident: 6136_CR31 – ident: 6136_CR9 – ident: 6136_CR16 – ident: 6136_CR33 – ident: 6136_CR19 doi: 10.1007/BFb0017015 – ident: 6136_CR24 doi: 10.1111/j.2517-6161.1988.tb01721.x – volume: 14 start-page: 465 year: 1978 ident: 6136_CR34 publication-title: Automatica doi: 10.1016/0005-1098(78)90005-5 contributor: fullname: J. Rissanen – ident: 6136_CR39 – volume: 5 start-page: 697 issue: 6 year: 2004b ident: 6136_CR42 publication-title: Journal of Machine Learning Research contributor: fullname: N. L. Zhang – volume: 29 start-page: 103 issue: 2–3 year: 1997 ident: 6136_CR6 publication-title: Machine Learning doi: 10.1023/A:1007413511361 contributor: fullname: P. Domingos – ident: 6136_CR5 doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 6 start-page: 461 year: 1978 ident: 6136_CR35 publication-title: The Annals of Statistics doi: 10.1214/aos/1176344136 contributor: fullname: G. Schwarz – ident: 6136_CR23 doi: 10.21236/ADA292575 – ident: 6136_CR26 – ident: 6136_CR20 – ident: 6136_CR41 – ident: 6136_CR29 – volume: 29 start-page: 131 issue: 2–3 year: 1997 ident: 6136_CR11 publication-title: Machine Learning doi: 10.1023/A:1007465528199 contributor: fullname: N. Friedman – volume-title: Graphical models in applied multivariate statistics year: 1990 ident: 6136_CR40 contributor: fullname: J. Whittaker – ident: 6136_CR10 doi: 10.1023/A:1009778005914 – volume-title: Machine learning year: 1997 ident: 6136_CR27 contributor: fullname: T. M. Mitchell – ident: 6136_CR2 – volume: 52 start-page: 239 issue: 3 year: 2003 ident: 6136_CR28 publication-title: Machine Learning doi: 10.1023/A:1024068626366 contributor: fullname: C. Nadeau – ident: 6136_CR38 – volume-title: Bayesian networks and decision graphs year: 2001 ident: 6136_CR15 doi: 10.1007/978-1-4757-3502-4 contributor: fullname: F. V. Jensen – ident: 6136_CR8 |
SSID | ssj0002686 |
Score | 2.1430135 |
Snippet | Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of... |
SourceID | proquest crossref pascalfrancis |
SourceType | Aggregation Database Index Database |
StartPage | 135 |
SubjectTerms | Applied sciences Artificial intelligence Computer science; control theory; systems Exact sciences and technology Studies |
Title | Classification using hierarchical naive bayes models |
URI | https://www.proquest.com/docview/757010829 https://search.proquest.com/docview/28960332 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dS8MwFL247UUQv8U6nX3wSQi2aZt2T-JkcwgOEQd7K2mbiCDdtJvgr_JH-Me8t003huBzCQ0nyf1Izr0H4ELoKORaKKa1FMwPwy6THlGsUldKrlToRVTv_DASw7F_PwkmhptTGFplbRNLQ51NU7ojvwqDEFOHiHevZ--MRKPocdUoaDSgxTFRcJrQ6vVHj09LU8xFKfWIJylg5MrrZ82qdq7siovzQo8mGF9zTFszWSBGuhK3-GOnS-cz2IVtEzXaN9Uy78GGyvdhp1ZksM0BPYCg1Lgk9k8JuE2s9hd7-EpVxqXoyZs9kj_fn8ruyS9V2KUOTnEI40H_-XbIjDACS32fz1mWCDfFuMX1tUeVrJHwsy46YsWzJHGFJPFd7Qapk0iBS6BU1HUyx5U-8VmVn3hH0MynuToGGxPAAEMSajGTYSzlyFBkVG2ruNQa_bcFlzUq8azqfxGvOh0ThDEx4wjCmFvQWcNtNSLEH2OkZkG7BjI2Z6WIlytrwfnyK25yermQuZouihizQuF4Hj_5d3wbNqsLEqIjnkJz_rFQZxgyzJMONKLBXcdsj1-P778L |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7o9qAg3sU53frgkxBs0zZtn8TJxtRtiGywt5K2iQiyTbsJ_ip_hH_Mc3rZGILPJTR8Sc4l-c75AC6F9j2uhWJaS8EczwuYtIliFVtScqU826d65_5AdEfOw9gdF9yctKBVljYxM9TJNKY78mvP9TB18HlwM3tnJBpFj6uFgsYmVKlTFeZe1VZ78PS8NMVcZFKPeJJcRq68fNbMa-eyrrg4L_RogvE1x7QzkylipHNxiz92OnM-nX3YLaJG4zZf5gPYUJND2CsVGYzigB6Bm2lcEvsnA9wgVvuL0X2lKuNM9OTNGMif709ltOSXSo1MByc9hlGnPbzrskIYgcWOw-csiYQVY9xiOdqmSlZfOEmAjljxJIosIUl8V1tubEZS4BIo5QdmYlrSIT6rciL7BCqT6USdgoEJoIshCbWYSTCWMqUnEqq2VVxqjf67BlclKuEs738RrjodE4QhMeMIwpDXoLGG22qEhz_GSK0G9RLIsDgrabhc2Ro0l19xk9PLhZyo6SINMSsUpm3zs3_HN2GrO-z3wt794LEO2_llCVETz6Ey_1ioCwwf5lGj2CS_R6LBHw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7oBBHEuzhv64NPQrBN06R7Em9j3oaIgm8lbRMRZJt2E_xV_gj_mOe06YYIPpfQ8CXnkuQ75wM4kDZW3ErDrNWSCaXaTIdEscoCrbkxKoyp3vm2J7uP4uopenIthQpHq6x9Yumo80FGd-RHKlJ4dIh5-8g6VsTdeed4-MZIQIoeWp2axizMKSFDvwFzpxe9u_uJW-aylH1Eq4oYhfX6ibOqoys75OIcMbpJxn8FqcWhLhAvWwld_PHZZSDqrMCSyyC9k2rJV2HG9NdguVZn8JyxrkNU6l0SE6gE3yOG-7PXfaGK41IA5dXr6e-vD-Od6k9TeKUmTrEBj52Lh7MucyIJLBOCj1ieyiDDHCYQNqSq1liKvI1B2fA8TQOpSYjXBlHmp1richgTt_3cD7QgbqsRabgJjf6gb7bAw8NghOkJtZvJMa_ytZI5Vd4arq3FWN6EwxqVZFj1wkimXY8JwoRYcgRhwpuw_wu36QiFP8asrQk7NZCJs5simaxyE1qTr7jh6RVD981gXCR4QpR-GPLtf8e3YB73R3Jz2bvegYXq3oRYirvQGL2PzR5mEqN03-2RH0F1xU0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+using+Hierarchical+Naive+Bayes+models&rft.jtitle=Machine+learning&rft.au=Langseth%2C+Helge&rft.au=Nielsen%2C+Thomas+D&rft.date=2006-05-01&rft.issn=0885-6125&rft.volume=63&rft.issue=2&rft.spage=135&rft.epage=159&rft_id=info:doi/10.1007%2Fs10994-006-6136-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |