STDP-based spiking deep convolutional neural networks for object recognition
Previous studies have shown that spike-timing-dependent plasticity (STDP) can be used in spiking neural networks (SNN) to extract visual features of low or intermediate complexity in an unsupervised manner. These studies, however, used relatively shallow architectures, and only one layer was trainab...
Saved in:
Published in | Neural networks Vol. 99; pp. 56 - 67 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.03.2018
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2017.12.005 |
Cover
Abstract | Previous studies have shown that spike-timing-dependent plasticity (STDP) can be used in spiking neural networks (SNN) to extract visual features of low or intermediate complexity in an unsupervised manner. These studies, however, used relatively shallow architectures, and only one layer was trainable. Another line of research has demonstrated – using rate-based neural networks trained with back-propagation – that having many layers increases the recognition robustness, an approach known as deep learning. We thus designed a deep SNN, comprising several convolutional (trainable with STDP) and pooling layers. We used a temporal coding scheme where the most strongly activated neurons fire first, and less activated neurons fire later or not at all. The network was exposed to natural images. Thanks to STDP, neurons progressively learned features corresponding to prototypical patterns that were both salient and frequent. Only a few tens of examples per category were required and no label was needed. After learning, the complexity of the extracted features increased along the hierarchy, from edge detectors in the first layer to object prototypes in the last layer. Coding was very sparse, with only a few thousands spikes per image, and in some cases the object category could be reasonably well inferred from the activity of a single higher-order neuron. More generally, the activity of a few hundreds of such neurons contained robust category information, as demonstrated using a classifier on Caltech 101, ETH-80, and MNIST databases. We also demonstrate the superiority of STDP over other unsupervised techniques such as random crops (HMAX) or auto-encoders. Taken together, our results suggest that the combination of STDP with latency coding may be a key to understanding the way that the primate visual system learns, its remarkable processing speed and its low energy consumption. These mechanisms are also interesting for artificial vision systems, particularly for hardware solutions. |
---|---|
AbstractList | Previous studies have shown that spike-timing-dependent plasticity (STDP) can be used in spiking neural networks (SNN) to extract visual features of low or intermediate complexity in an unsupervised manner. These studies, however, used relatively shallow architectures, and only one layer was trainable. Another line of research has demonstrated - using rate-based neural networks trained with back-propagation - that having many layers increases the recognition robustness, an approach known as deep learning. We thus designed a deep SNN, comprising several convolutional (trainable with STDP) and pooling layers. We used a temporal coding scheme where the most strongly activated neurons fire first, and less activated neurons fire later or not at all. The network was exposed to natural images. Thanks to STDP, neurons progressively learned features corresponding to prototypical patterns that were both salient and frequent. Only a few tens of examples per category were required and no label was needed. After learning, the complexity of the extracted features increased along the hierarchy, from edge detectors in the first layer to object prototypes in the last layer. Coding was very sparse, with only a few thousands spikes per image, and in some cases the object category could be reasonably well inferred from the activity of a single higher-order neuron. More generally, the activity of a few hundreds of such neurons contained robust category information, as demonstrated using a classifier on Caltech 101, ETH-80, and MNIST databases. We also demonstrate the superiority of STDP over other unsupervised techniques such as random crops (HMAX) or auto-encoders. Taken together, our results suggest that the combination of STDP with latency coding may be a key to understanding the way that the primate visual system learns, its remarkable processing speed and its low energy consumption. These mechanisms are also interesting for artificial vision systems, particularly for hardware solutions. Previous studies have shown that spike-timing-dependent plasticity (STDP) can be used in spiking neural networks (SNN) to extract visual features of low or intermediate complexity in an unsupervised manner. These studies, however, used relatively shallow architectures, and only one layer was trainable. Another line of research has demonstrated-using rate-based neural networks trained with back-propagationthat having many layers increases the recognition robustness, an approach known as deep learning. We thus designed a deep SNN, comprising several convolutional (trainable with STDP) and pooling layers. We used a temporal coding scheme where the most strongly activated neurons fire first, and less activated neurons fire later or not at all. The network was exposed to natural images. Thanks to STDP, neurons progressively learned features corresponding to prototypical patterns that were both salient and frequent. Only a few tens of examples per category were required and no label was needed. After learning, the complexity of the extracted features increased along the hierarchy, from edge detectors in the first layer to object prototypes in the last layer. Coding was very sparse, with only a few thousands spikes per image, and in some cases the object category could be reasonably well inferred from the activity of a single higherorder neuron. More generally, the activity of a few hundreds of such neurons contained robust category information, as demonstrated using a classifier on Caltech 101, ETH-80, and MNIST databases. We also demonstrate the superiority of STDP over other unsupervised techniques such as random crops (HMAX) or auto-encoders. Taken together, our results suggest that the combination of STDP with latency coding may be a key to understanding the way that the primate visual system learns, its remarkable processing speed and its low energy consumption. These mechanisms are also interesting for artificial vision systems, particularly for hardware solutions. Previous studies have shown that spike-timing-dependent plasticity (STDP) can be used in spiking neural networks (SNN) to extract visual features of low or intermediate complexity in an unsupervised manner. These studies, however, used relatively shallow architectures, and only one layer was trainable. Another line of research has demonstrated - using rate-based neural networks trained with back-propagation - that having many layers increases the recognition robustness, an approach known as deep learning. We thus designed a deep SNN, comprising several convolutional (trainable with STDP) and pooling layers. We used a temporal coding scheme where the most strongly activated neurons fire first, and less activated neurons fire later or not at all. The network was exposed to natural images. Thanks to STDP, neurons progressively learned features corresponding to prototypical patterns that were both salient and frequent. Only a few tens of examples per category were required and no label was needed. After learning, the complexity of the extracted features increased along the hierarchy, from edge detectors in the first layer to object prototypes in the last layer. Coding was very sparse, with only a few thousands spikes per image, and in some cases the object category could be reasonably well inferred from the activity of a single higher-order neuron. More generally, the activity of a few hundreds of such neurons contained robust category information, as demonstrated using a classifier on Caltech 101, ETH-80, and MNIST databases. We also demonstrate the superiority of STDP over other unsupervised techniques such as random crops (HMAX) or auto-encoders. Taken together, our results suggest that the combination of STDP with latency coding may be a key to understanding the way that the primate visual system learns, its remarkable processing speed and its low energy consumption. These mechanisms are also interesting for artificial vision systems, particularly for hardware solutions.Previous studies have shown that spike-timing-dependent plasticity (STDP) can be used in spiking neural networks (SNN) to extract visual features of low or intermediate complexity in an unsupervised manner. These studies, however, used relatively shallow architectures, and only one layer was trainable. Another line of research has demonstrated - using rate-based neural networks trained with back-propagation - that having many layers increases the recognition robustness, an approach known as deep learning. We thus designed a deep SNN, comprising several convolutional (trainable with STDP) and pooling layers. We used a temporal coding scheme where the most strongly activated neurons fire first, and less activated neurons fire later or not at all. The network was exposed to natural images. Thanks to STDP, neurons progressively learned features corresponding to prototypical patterns that were both salient and frequent. Only a few tens of examples per category were required and no label was needed. After learning, the complexity of the extracted features increased along the hierarchy, from edge detectors in the first layer to object prototypes in the last layer. Coding was very sparse, with only a few thousands spikes per image, and in some cases the object category could be reasonably well inferred from the activity of a single higher-order neuron. More generally, the activity of a few hundreds of such neurons contained robust category information, as demonstrated using a classifier on Caltech 101, ETH-80, and MNIST databases. We also demonstrate the superiority of STDP over other unsupervised techniques such as random crops (HMAX) or auto-encoders. Taken together, our results suggest that the combination of STDP with latency coding may be a key to understanding the way that the primate visual system learns, its remarkable processing speed and its low energy consumption. These mechanisms are also interesting for artificial vision systems, particularly for hardware solutions. |
Author | Kheradpisheh, Saeed Reza Ganjtabesh, Mohammad Thorpe, Simon J. Masquelier, Timothée |
Author_xml | – sequence: 1 givenname: Saeed Reza surname: Kheradpisheh fullname: Kheradpisheh, Saeed Reza email: kheradpisheh@ut.ac.ir organization: Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran – sequence: 2 givenname: Mohammad surname: Ganjtabesh fullname: Ganjtabesh, Mohammad email: mgtabesh@ut.ac.ir organization: Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran – sequence: 3 givenname: Simon J. surname: Thorpe fullname: Thorpe, Simon J. email: simon.thorpe@cnrs.fr organization: CERCO UMR 5549, CNRS –Université Toulouse 3, France – sequence: 4 givenname: Timothée orcidid: 0000-0001-8629-9506 surname: Masquelier fullname: Masquelier, Timothée email: timothee.masquelier@cnrs.fr organization: CERCO UMR 5549, CNRS –Université Toulouse 3, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29328958$$D View this record in MEDLINE/PubMed https://hal.science/hal-02341957$$DView record in HAL |
BookMark | eNqFkU9v1DAQxS1URLeFb4BQjvSQMLbjxOaAVJU_RVoJJMrZcuxJ8TZrL3ayiG9PQloOHOA00uj33mjeOyMnIQYk5DmFigJtXu2qgFPAsWJA24qyCkA8IhsqW1WyVrITsgGpeNmAhFNylvMOABpZ8yfklCnOpBJyQ7Zfbt5-LjuT0RX54O98uC0c4qGwMRzjMI0-BjMU86n0e4w_YrrLRR9TEbsd2rFIaONt8Av4lDzuzZDx2f08J1_fv7u5ui63nz58vLrclrau2Vi6TnDeC-xaZ7CpnaXIJXSqR8EYKAnCtbRTNdZ9rRyn0IGQjVFOONtwkPycXKy-38ygD8nvTfqpo_H6-nKrlx0wXlMl2iOd2Zcre0jx-4R51HufLQ6DCRinrKmag2iV5GJGX9yjU7dH98f5Ia0ZeL0CNsWcE_ba-tEsn4_J-EFT0Es1eqfXavRSjaZMz9XM4vov8YP_f2RvVhnOgR49Jp2tx2DR-Tn5Ubvo_23wC1Gqqa4 |
CitedBy_id | crossref_primary_10_3390_photonics9020120 crossref_primary_10_1016_j_neucom_2020_05_031 crossref_primary_10_1088_1742_6596_1845_1_012026 crossref_primary_10_1093_cercor_bhac050 crossref_primary_10_1016_j_patcog_2019_04_016 crossref_primary_10_1007_s11071_018_4730_z crossref_primary_10_1016_j_comcom_2023_06_006 crossref_primary_10_1109_TCSVT_2021_3083978 crossref_primary_10_1007_s12652_020_02357_5 crossref_primary_10_1007_s12559_023_10181_0 crossref_primary_10_3390_math11234777 crossref_primary_10_1109_ACCESS_2020_2968240 crossref_primary_10_3390_brainsci13010068 crossref_primary_10_1038_s42256_021_00388_x crossref_primary_10_2478_jaiscr_2019_0009 crossref_primary_10_3390_math10224191 crossref_primary_10_1016_j_neucom_2023_126247 crossref_primary_10_1109_TC_2022_3191968 crossref_primary_10_1002_aisy_202300383 crossref_primary_10_3389_fnins_2023_1151949 crossref_primary_10_3390_sym11010005 crossref_primary_10_1155_2021_5524611 crossref_primary_10_3389_fncom_2023_1250908 crossref_primary_10_1109_TBCAS_2019_2945406 crossref_primary_10_3389_fnins_2020_590164 crossref_primary_10_1109_TCAD_2021_3138347 crossref_primary_10_1142_S0218126622501833 crossref_primary_10_1109_TBCAS_2019_2948920 crossref_primary_10_1109_TNNLS_2020_3006263 crossref_primary_10_3390_nano14191575 crossref_primary_10_3389_fnins_2022_775457 crossref_primary_10_1360_TB_2023_0775 crossref_primary_10_1016_j_neunet_2022_06_001 crossref_primary_10_1109_TCSI_2021_3061766 crossref_primary_10_1007_s00779_019_01292_3 crossref_primary_10_3390_electronics11142114 crossref_primary_10_3389_frai_2022_680165 crossref_primary_10_1016_j_comnet_2025_111063 crossref_primary_10_1016_j_neucom_2023_01_087 crossref_primary_10_1109_JSTSP_2020_2983547 crossref_primary_10_1007_s11042_023_16344_3 crossref_primary_10_1016_j_neunet_2019_06_001 crossref_primary_10_1038_s41598_024_52299_7 crossref_primary_10_1109_ACCESS_2020_3047993 crossref_primary_10_1007_s00138_023_01494_z crossref_primary_10_1007_s00500_020_05501_7 crossref_primary_10_1016_j_jallcom_2020_156675 crossref_primary_10_1016_j_patcog_2024_111070 crossref_primary_10_1109_TCDS_2021_3139444 crossref_primary_10_3389_fnbot_2024_1518878 crossref_primary_10_1007_s11063_020_10322_8 crossref_primary_10_1002_int_22772 crossref_primary_10_1109_ACCESS_2020_2984383 crossref_primary_10_1109_ACCESS_2020_3034353 crossref_primary_10_1016_j_neunet_2021_08_009 crossref_primary_10_1109_ACCESS_2025_3544379 crossref_primary_10_3389_fnins_2020_00653 crossref_primary_10_1021_acsami_0c10796 crossref_primary_10_1007_s11571_020_09605_6 crossref_primary_10_1021_acsaelm_4c02015 crossref_primary_10_1109_TII_2019_2960536 crossref_primary_10_1016_j_neunet_2020_02_011 crossref_primary_10_1109_TNNLS_2021_3106961 crossref_primary_10_1371_journal_pcbi_1008127 crossref_primary_10_1109_ACCESS_2022_3149577 crossref_primary_10_1109_ACCESS_2024_3500134 crossref_primary_10_3389_fnins_2023_1187252 crossref_primary_10_1142_S0129065720500276 crossref_primary_10_1155_2023_3135668 crossref_primary_10_3389_fncom_2024_1418115 crossref_primary_10_3389_fnins_2022_857513 crossref_primary_10_3390_app13084809 crossref_primary_10_1007_s11042_023_16852_2 crossref_primary_10_1007_s11063_021_10680_x crossref_primary_10_1016_j_neunet_2018_12_002 crossref_primary_10_1109_TNNLS_2021_3085966 crossref_primary_10_1109_TVLSI_2022_3208191 crossref_primary_10_1103_PhysRevResearch_6_L012009 crossref_primary_10_1108_IMDS_02_2021_0093 crossref_primary_10_1109_TCSII_2022_3207989 crossref_primary_10_1007_s00422_023_00956_x crossref_primary_10_3390_bdcc5040067 crossref_primary_10_1109_MSP_2019_2933719 crossref_primary_10_3389_fnins_2024_1507654 crossref_primary_10_3389_fnins_2020_00423 crossref_primary_10_12677_mos_2024_133186 crossref_primary_10_1007_s11263_024_02046_2 crossref_primary_10_1016_j_neucom_2022_10_055 crossref_primary_10_1038_s41565_020_0655_z crossref_primary_10_1007_s11831_023_09901_4 crossref_primary_10_1016_j_neucom_2024_127762 crossref_primary_10_3390_mi14071353 crossref_primary_10_1109_ACCESS_2020_2998098 crossref_primary_10_1007_s42452_021_04553_0 crossref_primary_10_1109_TFUZZ_2021_3062899 crossref_primary_10_1063_5_0182699 crossref_primary_10_1016_j_neunet_2023_01_026 crossref_primary_10_3389_fnins_2021_615279 crossref_primary_10_1088_1741_2552_ad2d30 crossref_primary_10_1103_PhysRevApplied_19_064010 crossref_primary_10_1109_LED_2022_3219465 crossref_primary_10_1016_j_neucom_2024_128173 crossref_primary_10_1109_TNNLS_2021_3111051 crossref_primary_10_1109_ACCESS_2020_3040895 crossref_primary_10_1109_TNNLS_2021_3055421 crossref_primary_10_3389_fninf_2018_00079 crossref_primary_10_3390_electronics13183619 crossref_primary_10_3390_electronics14010043 crossref_primary_10_1007_s11071_024_09525_8 crossref_primary_10_1016_j_engappai_2023_106322 crossref_primary_10_1109_TBCAS_2019_2963676 crossref_primary_10_1039_D1TC01660A crossref_primary_10_1016_j_patcog_2019_05_015 crossref_primary_10_3389_fnins_2019_00189 crossref_primary_10_1109_JLT_2020_3000670 crossref_primary_10_1016_j_knosys_2022_108257 crossref_primary_10_1016_j_patter_2022_100522 crossref_primary_10_1116_6_0000591 crossref_primary_10_3389_fnbot_2020_568319 crossref_primary_10_3389_fnins_2018_00774 crossref_primary_10_3390_brainsci12070863 crossref_primary_10_3390_jlpea8040034 crossref_primary_10_3389_fnins_2024_1401690 crossref_primary_10_34133_icomputing_0032 crossref_primary_10_1016_j_engstruct_2021_111859 crossref_primary_10_1016_j_surfin_2024_105515 crossref_primary_10_1007_s11432_021_3217_0 crossref_primary_10_1016_j_neunet_2019_09_024 crossref_primary_10_1016_j_asoc_2024_111681 crossref_primary_10_1016_j_neucom_2020_07_109 crossref_primary_10_1016_j_psep_2022_10_080 crossref_primary_10_1155_2020_8851351 crossref_primary_10_1038_s41598_023_34517_w crossref_primary_10_1049_bme2_12099 crossref_primary_10_3389_fnins_2018_00524 crossref_primary_10_1109_JSTQE_2023_3240248 crossref_primary_10_3389_fnins_2019_00625 crossref_primary_10_1016_j_knosys_2022_110193 crossref_primary_10_1016_j_neucom_2023_126832 crossref_primary_10_3390_app11052059 crossref_primary_10_1016_j_ijleo_2020_164261 crossref_primary_10_1109_TNANO_2018_2871680 crossref_primary_10_1109_TNNLS_2021_3069683 crossref_primary_10_1016_j_knosys_2023_111024 crossref_primary_10_1016_j_neunet_2025_107256 crossref_primary_10_1109_JSEN_2024_3397884 crossref_primary_10_1109_ACCESS_2020_2995886 crossref_primary_10_1109_TNNLS_2021_3110991 crossref_primary_10_3389_fnins_2021_654786 crossref_primary_10_1145_3510854 crossref_primary_10_1016_j_mejo_2024_106377 crossref_primary_10_1016_j_knosys_2024_112099 crossref_primary_10_3390_electronics11091392 crossref_primary_10_1109_TCSII_2021_3063784 crossref_primary_10_3389_fnins_2023_1153999 crossref_primary_10_1109_TNNLS_2024_3352653 crossref_primary_10_3390_app11041383 crossref_primary_10_3389_fnins_2021_608567 crossref_primary_10_1007_s11432_020_3203_0 crossref_primary_10_3389_fnins_2021_603433 crossref_primary_10_1088_2634_4386_adad0e crossref_primary_10_1145_3266229 crossref_primary_10_1109_JPROC_2024_3429360 crossref_primary_10_1016_j_chip_2024_100093 crossref_primary_10_1016_j_neunet_2024_106318 crossref_primary_10_1145_3304103 crossref_primary_10_1088_1361_6641_ac3cc7 crossref_primary_10_1016_j_neucom_2023_126984 crossref_primary_10_1111_coin_70001 crossref_primary_10_1016_j_icte_2020_05_002 crossref_primary_10_1016_j_knosys_2024_112865 crossref_primary_10_1109_JETCAS_2022_3207514 crossref_primary_10_1109_JETCAS_2023_3328926 crossref_primary_10_1109_JIOT_2022_3150307 crossref_primary_10_23919_cje_2022_00_162 crossref_primary_10_1007_s40295_020_00212_5 crossref_primary_10_1109_TCSI_2022_3204645 crossref_primary_10_3390_brainsci12020281 crossref_primary_10_1016_j_cap_2022_07_004 crossref_primary_10_3390_app14209607 crossref_primary_10_3390_biomimetics9100646 crossref_primary_10_3390_sym10110626 crossref_primary_10_1109_TNNLS_2021_3095724 crossref_primary_10_3390_electronics11132097 crossref_primary_10_1109_ACCESS_2023_3236800 crossref_primary_10_3389_fnins_2023_1203956 crossref_primary_10_3389_fnins_2019_00405 crossref_primary_10_1016_j_neunet_2019_09_007 crossref_primary_10_1016_j_neunet_2022_09_003 crossref_primary_10_1109_TNNLS_2020_3044364 crossref_primary_10_1016_j_neucom_2024_128655 crossref_primary_10_1371_journal_pone_0313547 crossref_primary_10_3389_fnins_2018_00665 crossref_primary_10_1016_j_neucom_2023_126292 crossref_primary_10_1109_TETCI_2018_2872014 crossref_primary_10_1126_sciadv_ade4838 crossref_primary_10_1109_JETCAS_2023_3328916 crossref_primary_10_1016_j_neunet_2023_06_019 crossref_primary_10_1038_s41598_023_31365_6 crossref_primary_10_1371_journal_pone_0244683 crossref_primary_10_1002_bies_201800248 crossref_primary_10_1109_TASE_2024_3359641 crossref_primary_10_1080_13682199_2020_1757294 crossref_primary_10_1109_ACCESS_2025_3548318 crossref_primary_10_1002_mma_6241 crossref_primary_10_3390_s19050993 crossref_primary_10_1016_j_neucom_2023_127059 crossref_primary_10_1016_j_neunet_2019_08_002 crossref_primary_10_1109_TCAD_2024_3443003 crossref_primary_10_1109_TNNLS_2018_2826721 crossref_primary_10_1016_j_neunet_2019_01_010 crossref_primary_10_1038_s41598_020_60572_8 crossref_primary_10_1002_cta_2753 crossref_primary_10_1016_j_neucom_2024_128662 crossref_primary_10_1109_MNANO_2018_2845078 crossref_primary_10_1088_2634_4386_ad05da crossref_primary_10_3390_s22186998 crossref_primary_10_1145_3447778 crossref_primary_10_1145_3571155 crossref_primary_10_1142_S0129065718500594 crossref_primary_10_1109_JSTQE_2019_2911565 crossref_primary_10_1016_j_measen_2023_100861 crossref_primary_10_1109_ACCESS_2020_3044646 crossref_primary_10_1007_s11063_023_11247_8 crossref_primary_10_3389_fncom_2021_658764 crossref_primary_10_1016_j_bbr_2021_113484 crossref_primary_10_1109_ACCESS_2022_3179968 crossref_primary_10_1016_j_cmpbup_2024_100171 crossref_primary_10_1109_JSEN_2021_3120845 crossref_primary_10_3390_brainsci14111149 crossref_primary_10_1109_ACCESS_2024_3479968 crossref_primary_10_1016_j_jallcom_2024_177992 crossref_primary_10_3389_fncom_2021_594337 crossref_primary_10_3390_app12115749 crossref_primary_10_1088_2634_4386_acad98 crossref_primary_10_1109_TCDS_2018_2833071 crossref_primary_10_3389_fnins_2023_1261543 crossref_primary_10_12688_f1000research_22296_1 crossref_primary_10_2139_ssrn_4018613 crossref_primary_10_1016_j_neucom_2019_07_009 crossref_primary_10_1149_1945_7111_ac1699 crossref_primary_10_3389_fncom_2021_627567 crossref_primary_10_1016_j_engappai_2024_109415 crossref_primary_10_1016_j_neunet_2019_09_036 crossref_primary_10_1002_aisy_202000149 crossref_primary_10_32604_cmc_2024_047240 crossref_primary_10_3389_fncom_2018_00074 crossref_primary_10_3389_fnins_2021_712667 crossref_primary_10_1016_j_sse_2019_03_023 crossref_primary_10_1007_s00521_021_05910_1 crossref_primary_10_1007_s11063_023_11274_5 crossref_primary_10_1088_1755_1315_252_2_022046 crossref_primary_10_3390_math11051224 crossref_primary_10_1109_TCDS_2019_2918228 crossref_primary_10_3390_biomimetics7040246 crossref_primary_10_1109_TCDS_2023_3329747 crossref_primary_10_1016_j_neucom_2020_11_052 crossref_primary_10_3389_fnins_2022_983950 crossref_primary_10_1007_s00521_022_07513_w crossref_primary_10_1109_ACCESS_2020_2990416 crossref_primary_10_1038_s41928_022_00840_9 crossref_primary_10_1007_s11063_021_10562_2 crossref_primary_10_1016_j_neunet_2019_08_016 crossref_primary_10_1109_TNNLS_2021_3071976 crossref_primary_10_1016_j_neucom_2023_126773 crossref_primary_10_1002_pssr_202100255 crossref_primary_10_1007_s12559_022_10097_1 crossref_primary_10_1109_TCSII_2022_3199033 crossref_primary_10_3389_fnins_2021_695357 crossref_primary_10_1002_aisy_202000154 crossref_primary_10_1007_s10462_022_10272_8 crossref_primary_10_1038_s41467_024_51110_5 crossref_primary_10_1007_s00422_024_00998_9 crossref_primary_10_1007_s12652_022_04460_1 crossref_primary_10_1016_j_neucom_2025_129440 crossref_primary_10_1016_j_ins_2024_120998 crossref_primary_10_3389_fnbot_2021_629210 crossref_primary_10_1109_ACCESS_2019_2946422 crossref_primary_10_3389_fnins_2023_1047008 crossref_primary_10_1109_TCYB_2022_3188015 crossref_primary_10_1162_neco_a_01499 crossref_primary_10_3389_fncom_2021_617862 crossref_primary_10_1109_TCSII_2023_3301180 crossref_primary_10_3389_fnins_2021_638474 crossref_primary_10_1007_s10489_024_06128_z crossref_primary_10_1007_s13534_024_00436_6 crossref_primary_10_1038_s41598_020_65237_0 crossref_primary_10_3389_fnins_2020_00634 crossref_primary_10_3390_electronics9101605 crossref_primary_10_1109_TVT_2024_3415438 crossref_primary_10_1016_j_neucom_2021_02_027 crossref_primary_10_1016_j_neures_2022_12_002 crossref_primary_10_3389_fnbot_2019_00029 crossref_primary_10_1007_s00521_020_04755_4 crossref_primary_10_1016_j_neucom_2024_128587 crossref_primary_10_1109_TPAMI_2019_2903179 crossref_primary_10_3390_app8101857 crossref_primary_10_1051_e3sconf_202346004012 crossref_primary_10_1088_2634_4386_ad2d5c crossref_primary_10_1109_TETCI_2024_3359539 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_1016_j_conb_2023_102707 crossref_primary_10_1016_j_neucom_2023_02_026 crossref_primary_10_1016_j_neucom_2023_02_029 crossref_primary_10_1039_D4MH01182A crossref_primary_10_1109_TNNLS_2022_3232106 crossref_primary_10_1109_ACCESS_2022_3187033 crossref_primary_10_1016_j_peva_2024_102423 crossref_primary_10_1117_1_JRS_18_036509 crossref_primary_10_2139_ssrn_4237475 crossref_primary_10_1126_sciadv_adi1480 crossref_primary_10_3390_math12182846 crossref_primary_10_1140_epjs_s11734_025_01512_3 crossref_primary_10_1038_s41586_019_1677_2 crossref_primary_10_1109_TVT_2022_3178808 crossref_primary_10_1016_j_neucom_2024_127934 crossref_primary_10_1016_j_oceaneng_2019_05_042 crossref_primary_10_1109_TNNLS_2021_3131356 crossref_primary_10_1007_s10278_023_00776_2 crossref_primary_10_1109_TCDS_2020_2971655 crossref_primary_10_3389_frobt_2024_1435197 crossref_primary_10_1016_j_eswa_2025_126490 crossref_primary_10_1109_JSEN_2023_3329559 crossref_primary_10_1109_TCSII_2020_2980054 crossref_primary_10_1049_ipr2_12935 crossref_primary_10_1088_2634_4386_ad6733 crossref_primary_10_3390_app12125980 crossref_primary_10_1109_TNNLS_2020_3043415 crossref_primary_10_3389_fnins_2020_615756 crossref_primary_10_1007_s12559_024_10355_4 crossref_primary_10_3389_fnins_2024_1291053 crossref_primary_10_1109_TNNLS_2020_3015208 crossref_primary_10_1007_s11042_023_15864_2 crossref_primary_10_1016_j_neunet_2021_01_016 crossref_primary_10_3390_s21186006 crossref_primary_10_3389_fnins_2018_00829 crossref_primary_10_1088_1757_899X_949_1_012074 crossref_primary_10_1109_TCYB_2021_3079097 crossref_primary_10_1088_2634_4386_ad5c97 crossref_primary_10_1039_D2TC03544H crossref_primary_10_7717_peerj_cs_2549 crossref_primary_10_3389_fnins_2022_838832 crossref_primary_10_1109_TAI_2024_3352533 crossref_primary_10_1038_s42003_023_05257_4 crossref_primary_10_1016_j_neucom_2024_128364 crossref_primary_10_31988_SciTrends_40920 crossref_primary_10_1016_j_sciaf_2022_e01151 crossref_primary_10_1016_j_neunet_2018_05_018 crossref_primary_10_1016_j_chaos_2021_110649 crossref_primary_10_3390_s21093240 crossref_primary_10_3390_electronics8101087 crossref_primary_10_1109_JIOT_2024_3349533 crossref_primary_10_1109_TCDS_2023_3308347 crossref_primary_10_1016_j_compeleceng_2024_109806 crossref_primary_10_35741_issn_0258_2724_54_5_29 crossref_primary_10_1002_adfm_202113050 crossref_primary_10_1109_LSP_2021_3059172 crossref_primary_10_1063_5_0003696 crossref_primary_10_3389_fnins_2022_999029 crossref_primary_10_1109_TNNLS_2023_3286458 crossref_primary_10_3389_fnins_2021_756876 crossref_primary_10_1371_journal_pcbi_1011315 crossref_primary_10_3390_electronics7120396 crossref_primary_10_1109_JSEN_2021_3098013 crossref_primary_10_1007_s11571_024_10133_w crossref_primary_10_3389_fncom_2018_00042 crossref_primary_10_3389_fncom_2021_686239 crossref_primary_10_3389_fncom_2018_00046 crossref_primary_10_1016_j_neucom_2021_10_080 crossref_primary_10_1038_s42256_021_00397_w crossref_primary_10_1109_TIP_2021_3122092 crossref_primary_10_1016_j_mex_2023_102157 |
Cites_doi | 10.1162/08997660152002852 10.1007/s00359-006-0117-6 10.1109/TNNLS.2014.2362542 10.1016/j.visres.2005.10.002 10.1016/S0925-2312(01)00403-9 10.1109/EBCCSP.2015.7300698 10.1016/j.neuron.2009.02.025 10.1523/ENEURO.0134-15.2016 10.1523/JNEUROSCI.0983-14.2014 10.1016/j.neunet.2013.07.012 10.3389/fncom.2015.00099 10.1109/IJCNN.2016.7727212 10.1109/WACV.2011.5711540 10.1038/srep27755 10.1109/5.726791 10.1038/srep32672 10.1073/pnas.0700622104 10.1126/science.1117593 10.1109/TNANO.2013.2250995 10.1016/j.cub.2012.01.003 10.1007/s11263-014-0788-3 10.3389/fncom.2016.00092 10.1371/journal.pcbi.1003963 10.1162/neco.2007.19.11.2881 10.1016/S0959-4388(00)00153-7 10.1007/978-3-319-10590-1_53 10.1109/JSSC.2007.914337 10.1371/journal.pcbi.1004566 10.1016/S1364-6613(03)00023-8 10.1007/s10827-008-0108-4 10.1016/j.neucom.2016.04.029 10.1142/S0129065716500301 10.1007/BF00344251 10.1371/journal.pcbi.0030031 10.1109/ICRC.2016.7738691 10.1016/j.tics.2007.06.010 10.1371/journal.pcbi.1003915 10.1038/381520a0 10.1109/ISCAS.2014.6865715 10.1016/j.neuron.2012.01.010 10.1016/j.neuron.2015.04.015 10.1016/j.neuron.2005.12.009 10.1109/IJCNN.2015.7280696 10.1109/TPAMI.2007.56 10.1016/S0893-6080(01)00083-1 10.1038/nature14539 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES |
DOI | 10.1016/j.neunet.2017.12.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 67 |
ExternalDocumentID | oai_HAL_hal_02341957v1 29328958 10_1016_j_neunet_2017_12_005 S0893608017302903 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c442t-db533f5eb7dae64dc1e380b9fe52209805d71b94e4f49d310b0586a9d5dc63083 |
IEDL.DBID | AIKHN |
ISSN | 0893-6080 1879-2782 |
IngestDate | Sun Sep 07 03:28:38 EDT 2025 Thu Sep 04 21:46:57 EDT 2025 Mon Jul 21 05:42:18 EDT 2025 Thu Apr 24 22:56:07 EDT 2025 Tue Jul 01 01:24:31 EDT 2025 Fri Feb 23 02:28:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning STDP Object recognition Spiking neural network Temporal coding |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-db533f5eb7dae64dc1e380b9fe52209805d71b94e4f49d310b0586a9d5dc63083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8629-9506 0000-0001-6168-4379 0000-0003-4997-3367 |
OpenAccessLink | https://hal.science/hal-02341957 |
PMID | 29328958 |
PQID | 1989579835 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_02341957v1 proquest_miscellaneous_1989579835 pubmed_primary_29328958 crossref_citationtrail_10_1016_j_neunet_2017_12_005 crossref_primary_10_1016_j_neunet_2017_12_005 elsevier_sciencedirect_doi_10_1016_j_neunet_2017_12_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | DiCarlo, Zoccolan, Rust (b10) 2012; 73 Doya (b14) 2000; 10 Hung, Kreiman, Poggio, DiCarlo (b19) 2005; 310 Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., & Neftci, E. Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In Panda, P., & Roy, K. (2016). Unsupervised regenerative learning of hierarchical features in spiking deep networks for object recognition. In Lake Tahoe, Nevada, USA (pp. 773–781). Melbourne, VIC, Australia (pp. 2640–2643). Kheradpisheh, Ghodrati, Ganjtabesh, Masquelier (b24) 2016; 6 Lee, Grosse, Ranganath, Ng (b31) 2009 LeCun, Bengio (b28) 1998 Bengio, Y., Lee, D.-H., Bornschein, J., & Lin, Z. (2015). Towards biologically plausible deep learning Pinto, N., Barhomi, Y., Cox, D. D., & DiCarlo, J. J. (2011). Comparing state-of-the-art visual features on invariant object recognition tasks. In Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition Zhao, Ding, Chen, Linares-Barranco, Tang (b59) 2015; 26 Diehl, Cook (b11) 2015; 9 Khaligh-Razavi, Kriegeskorte (b22) 2014; 10 Vancouver, Canada (pp. 1–8). Lichtsteiner, Posch, Delbruck (b32) 2007; 43 Cadieu, Hong, Yamins, Pinto, Ardila, Solomon (b5) 2014; 10 Brader, Senn, Fusi (b3) 2007; 19 LeCun, Bottou, Bengio, Haffner (b30) 1998; 86 Sivilotti (b52) 1991 Zurich, Switzerland (pp. 818–833). Cao, Chen, Khosla (b6) 2015; 113 Habenschuss, S., Bill, J., & Nessler, B. (2012). Homeostatic plasticity in Bayesian spiking networks as expectation maximization with posterior constraints. In Wohrer, Kornprobst (b56) 2009; 26 Thorpe, Delorme, Van Rullen (b53) 2001; 14 Shoham, OConnor, Segev (b50) 2006; 192 . Masquelier, Thorpe (b36) 2007; 3 Rousselet, Thorpe, Fabre-Thorpe (b46) 2003; 7 Querlioz, Bichler, Dollfus, Gamrat (b44) 2013; 12 Burbank (b4) 2015; 11 Yousefzadeh, A., Serrano-Gotarredona, T., & Linares-Barranco, B. (2015). Fast Pipeline 128??128 pixel spiking convolution core for event-driven vision processing in FPGAs. In O’Connor, Neil, Liu, Delbruck, Pfeiffer (b39) 2013; 7 Martínez-Cañada, Morillas, Pino, Ros, Pelayo (b35) 2016; 26 Thorpe, Fize, Marlot (b54) 1996; 381 Fukushima (b15) 1980; 36 Kirchner, Thorpe (b26) 2006; 46 Kona, Hawaii, USA (pp. 463–470). Ghodrati, Farzmahdi, Rajaei, Ebrahimpour, Khaligh-Razavi (b16) 2014; 8 Meliza, Dan (b38) 2006; 49 Cichy, Khosla, Pantazis, Torralba, Oliva (b7) 2016; 6 Kheradpisheh, Ganjtabesh, Masquelier (b23) 2016; 205 Kheradpisheh, Ghodrati, Ganjtabesh, Masquelier (b25) 2016; 10 San Diego, California, USA (pp. 1–8). Lake Tahoe, Nevada, USA (pp. 1–9). Hunsberger, E., & Eliasmith, C. (2015). Spiking deep networks with LIF neurons DiCarlo, Cox (b9) 2007; 11 Serre, Oliva, Poggio (b48) 2007; 104 Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., & Pfeiffer, M. (2015). Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In Delorme, Perrinet, Thorpe (b8) 2001; 38 Liu, Agam, Madsen, Kreiman (b33) 2009; 62 Beyeler, Dutt, Krichmar (b2) 2013; 48 Rolls, Deco (b45) 2002 Hussain, S., Liu, S.-C., & Basu, A. (2014). Improved margin multi-class classification using dendritic neurons with morphological learning. In Portelli, Barrett, Hilgen, Masquelier, Maccione, Di Marco (b43) 2016; 3 Van Rullen, Thorpe (b55) 2001; 13 Maass (b34) 2002; 8 Serrano-Gotarredona, Masquelier, Prodromakis, Indiveri, Linares-Barranco (b47) 2013; 7 LeCun, Bengio, Hinton (b29) 2015; 521 Pignatelli, Bonci (b41) 2015; 86 Serre, Wolf, Bileschi, Riesenhuber, Poggio (b49) 2007; 29 McMahon, Leopold (b37) 2012; 22 Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In Huang, Rozas, Treviño, Contreras, Yang, Song (b18) 2014; 34 Killarney, Ireland (pp. 1–8). Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Cadieu (10.1016/j.neunet.2017.12.005_b5) 2014; 10 Van Rullen (10.1016/j.neunet.2017.12.005_b55) 2001; 13 Liu (10.1016/j.neunet.2017.12.005_b33) 2009; 62 Kheradpisheh (10.1016/j.neunet.2017.12.005_b23) 2016; 205 Martínez-Cañada (10.1016/j.neunet.2017.12.005_b35) 2016; 26 Huang (10.1016/j.neunet.2017.12.005_b18) 2014; 34 Thorpe (10.1016/j.neunet.2017.12.005_b54) 1996; 381 Thorpe (10.1016/j.neunet.2017.12.005_b53) 2001; 14 Zhao (10.1016/j.neunet.2017.12.005_b59) 2015; 26 DiCarlo (10.1016/j.neunet.2017.12.005_b10) 2012; 73 McMahon (10.1016/j.neunet.2017.12.005_b37) 2012; 22 Pignatelli (10.1016/j.neunet.2017.12.005_b41) 2015; 86 Doya (10.1016/j.neunet.2017.12.005_b14) 2000; 10 Lee (10.1016/j.neunet.2017.12.005_b31) 2009 LeCun (10.1016/j.neunet.2017.12.005_b29) 2015; 521 Brader (10.1016/j.neunet.2017.12.005_b3) 2007; 19 Serre (10.1016/j.neunet.2017.12.005_b48) 2007; 104 10.1016/j.neunet.2017.12.005_b27 Lichtsteiner (10.1016/j.neunet.2017.12.005_b32) 2007; 43 Portelli (10.1016/j.neunet.2017.12.005_b43) 2016; 3 10.1016/j.neunet.2017.12.005_b1 LeCun (10.1016/j.neunet.2017.12.005_b28) 1998 Serre (10.1016/j.neunet.2017.12.005_b49) 2007; 29 10.1016/j.neunet.2017.12.005_b21 10.1016/j.neunet.2017.12.005_b20 Cao (10.1016/j.neunet.2017.12.005_b6) 2015; 113 Delorme (10.1016/j.neunet.2017.12.005_b8) 2001; 38 Khaligh-Razavi (10.1016/j.neunet.2017.12.005_b22) 2014; 10 Rousselet (10.1016/j.neunet.2017.12.005_b46) 2003; 7 Beyeler (10.1016/j.neunet.2017.12.005_b2) 2013; 48 Maass (10.1016/j.neunet.2017.12.005_b34) 2002; 8 10.1016/j.neunet.2017.12.005_b58 10.1016/j.neunet.2017.12.005_b13 Masquelier (10.1016/j.neunet.2017.12.005_b36) 2007; 3 10.1016/j.neunet.2017.12.005_b57 10.1016/j.neunet.2017.12.005_b17 Hung (10.1016/j.neunet.2017.12.005_b19) 2005; 310 10.1016/j.neunet.2017.12.005_b51 Shoham (10.1016/j.neunet.2017.12.005_b50) 2006; 192 10.1016/j.neunet.2017.12.005_b12 Rolls (10.1016/j.neunet.2017.12.005_b45) 2002 Kheradpisheh (10.1016/j.neunet.2017.12.005_b24) 2016; 6 Querlioz (10.1016/j.neunet.2017.12.005_b44) 2013; 12 Burbank (10.1016/j.neunet.2017.12.005_b4) 2015; 11 Diehl (10.1016/j.neunet.2017.12.005_b11) 2015; 9 DiCarlo (10.1016/j.neunet.2017.12.005_b9) 2007; 11 Kirchner (10.1016/j.neunet.2017.12.005_b26) 2006; 46 Wohrer (10.1016/j.neunet.2017.12.005_b56) 2009; 26 Ghodrati (10.1016/j.neunet.2017.12.005_b16) 2014; 8 Serrano-Gotarredona (10.1016/j.neunet.2017.12.005_b47) 2013; 7 Kheradpisheh (10.1016/j.neunet.2017.12.005_b25) 2016; 10 Meliza (10.1016/j.neunet.2017.12.005_b38) 2006; 49 Fukushima (10.1016/j.neunet.2017.12.005_b15) 1980; 36 LeCun (10.1016/j.neunet.2017.12.005_b30) 1998; 86 10.1016/j.neunet.2017.12.005_b40 Sivilotti (10.1016/j.neunet.2017.12.005_b52) 1991 O’Connor (10.1016/j.neunet.2017.12.005_b39) 2013; 7 Cichy (10.1016/j.neunet.2017.12.005_b7) 2016; 6 10.1016/j.neunet.2017.12.005_b42 |
References_xml | – volume: 8 start-page: 1 year: 2014 end-page: 17 ident: b16 article-title: Feedforward object-vision models only tolerate small image variations compared to human publication-title: Frontiers in Computational Neuroscience – reference: Panda, P., & Roy, K. (2016). Unsupervised regenerative learning of hierarchical features in spiking deep networks for object recognition. In – volume: 73 start-page: 415 year: 2012 end-page: 434 ident: b10 article-title: How does the brain solve visual object recognition? publication-title: Neuron – reference: , Melbourne, VIC, Australia (pp. 2640–2643). – volume: 29 start-page: 411 year: 2007 end-page: 426 ident: b49 article-title: Robust object recognition with cortex-like mechanisms publication-title: IEEE Transactions on Pattern Analysis Machine Intelligence – volume: 62 start-page: 281 year: 2009 end-page: 290 ident: b33 article-title: Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex publication-title: Neuron – volume: 34 start-page: 7575 year: 2014 end-page: 7579 ident: b18 article-title: Associative Hebbian synaptic plasticity in primate visual cortex publication-title: The Journal of Neuroscience – volume: 205 start-page: 382 year: 2016 end-page: 392 ident: b23 article-title: Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition publication-title: Neurocomputing – reference: Yousefzadeh, A., Serrano-Gotarredona, T., & Linares-Barranco, B. (2015). Fast Pipeline 128??128 pixel spiking convolution core for event-driven vision processing in FPGAs. In – volume: 192 start-page: 777 year: 2006 end-page: 784 ident: b50 article-title: How silent is the brain: is there a dark matter problem in neuroscience? publication-title: Journal of Comparative Physiology A – volume: 86 start-page: 1145 year: 2015 end-page: 1157 ident: b41 article-title: Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective publication-title: Neuron – volume: 7 start-page: 99 year: 2003 end-page: 102 ident: b46 article-title: Taking the max from neuronal responses publication-title: Trends in Cognitive Sciences – reference: Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition, – reference: , Killarney, Ireland (pp. 1–8). – reference: Hussain, S., Liu, S.-C., & Basu, A. (2014). Improved margin multi-class classification using dendritic neurons with morphological learning. In – volume: 3 year: 2016 ident: b43 article-title: Rank order coding: a retinal information decoding strategy revealed by large-scale multielectrode array retinal recordings publication-title: Eneuro – volume: 7 start-page: 2 year: 2013 ident: b47 article-title: STDP and STDP variations with memristors for spiking neuromorphic learning systems publication-title: Frontiers in Neuroscience – volume: 310 start-page: 863 year: 2005 end-page: 866 ident: b19 article-title: Fast readout of object identity from macaque inferior temporal cortex publication-title: Science – volume: 381 start-page: 520 year: 1996 end-page: 522 ident: b54 article-title: Speed of processing in the human visual system publication-title: Nature – volume: 10 start-page: e1003963 year: 2014 ident: b5 article-title: Deep neural networks rival the representation of primate it cortex for core visual object recognition publication-title: PLoS Computational Biology – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b29 article-title: Deep learning publication-title: Nature – reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In – reference: , Zurich, Switzerland (pp. 818–833). – year: 2002 ident: b45 publication-title: Computational neuroscience of vision – start-page: 255 year: 1998 end-page: 258 ident: b28 article-title: Convolutional networks for images, speech, and time series publication-title: The handbook of brain theory and neural networks – volume: 38 start-page: 539 year: 2001 end-page: 545 ident: b8 article-title: Networks of integrate-and-fire neurons using rank order coding b: Spike timing dependent plasticity and emergence of orientation selectivity publication-title: Neurocomputing – volume: 8 start-page: 32 year: 2002 end-page: 36 ident: b34 article-title: Computing with spikes publication-title: Special Issue on Foundations of Information Processing of TELEMATIK – start-page: 1 year: 2009 end-page: 8 ident: b31 article-title: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations – volume: 26 start-page: 219 year: 2009 end-page: 249 ident: b56 article-title: Virtual Retina: a biological retina model and simulator, with contrast gain control publication-title: Journal of Computational Neuroscience – reference: . – volume: 10 start-page: 92 year: 2016 ident: b25 article-title: Humans and deep networks largely agree on which kinds of variation make object recognition harder publication-title: Frontiers in Computational Neuroscience – volume: 3 start-page: e31 year: 2007 ident: b36 article-title: Unsupervised learning of visual features through spike timing dependent plasticity publication-title: PLoS Computational Biology – volume: 26 start-page: 1963 year: 2015 end-page: 1978 ident: b59 article-title: Feedforward categorization on aer motion events using cortex-like features in a spiking neural network publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 14 start-page: 715 year: 2001 end-page: 725 ident: b53 article-title: Spike-based strategies for rapid processing publication-title: Neural Networks – volume: 22 start-page: 332 year: 2012 end-page: 337 ident: b37 article-title: Stimulus timing-dependent plasticity in high-level vision publication-title: Current Biology – volume: 113 start-page: 54 year: 2015 end-page: 66 ident: b6 article-title: Spiking deep convolutional neural networks for energy-efficient object recognition publication-title: International Journal of Computer Vision – volume: 7 start-page: 178 year: 2013 ident: b39 article-title: Real-time classification and sensor fusion with a spiking deep belief network publication-title: Frontiers in Neuroscience – reference: , San Diego, California, USA (pp. 1–8). – volume: 48 start-page: 109 year: 2013 end-page: 124 ident: b2 article-title: Categorization and decision-making in a neurobiologically plausible spiking network using a stdp-like learning rule publication-title: Neural Networks – reference: , Lake Tahoe, Nevada, USA (pp. 773–781). – volume: 46 start-page: 1762 year: 2006 end-page: 1776 ident: b26 article-title: Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited publication-title: Vision Reserch – reference: Bengio, Y., Lee, D.-H., Bornschein, J., & Lin, Z. (2015). Towards biologically plausible deep learning, – volume: 12 start-page: 288 year: 2013 end-page: 295 ident: b44 article-title: Immunity to device variations in a spiking neural network with memristive nanodevices publication-title: IEEE Transactions on Nanotechnology – volume: 19 start-page: 2881 year: 2007 end-page: 2912 ident: b3 article-title: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics publication-title: Neural Computation – volume: 13 start-page: 1255 year: 2001 end-page: 1283 ident: b55 article-title: Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex publication-title: Neural Computation – volume: 6 year: 2016 ident: b7 article-title: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence publication-title: Scientific Reports – reference: Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., & Pfeiffer, M. (2015). Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In – volume: 104 start-page: 6424 year: 2007 end-page: 6429 ident: b48 article-title: A feedforward architecture accounts for rapid categorization publication-title: Proceedings of the National Academy of Sciences – reference: Hunsberger, E., & Eliasmith, C. (2015). Spiking deep networks with LIF neurons, – volume: 10 start-page: e1003915 year: 2014 ident: b22 article-title: Deep supervised, but not unsupervised, models may explain it cortical representation publication-title: PLoS Computational Biology – reference: Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., & Neftci, E. Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b30 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE – reference: Pinto, N., Barhomi, Y., Cox, D. D., & DiCarlo, J. J. (2011). Comparing state-of-the-art visual features on invariant object recognition tasks. In – volume: 43 start-page: 566 year: 2007 end-page: 576 ident: b32 article-title: An 128x128 120dB 15us-latency temporal contrast vision sensor publication-title: IEEE Journal of Solid State Circuits – reference: , Kona, Hawaii, USA (pp. 463–470). – volume: 9 start-page: 99 year: 2015 ident: b11 article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity publication-title: Frontiers in Computational Neuroscience – year: 1991 ident: b52 publication-title: Wiring considerations in analog VLSI systems with application to field-programmable networks – reference: , Vancouver, Canada (pp. 1–8). – volume: 11 start-page: e1004566 year: 2015 ident: b4 article-title: Mirrored stdp implements autoencoder learning in a network of spiking neurons publication-title: PLoS Computational Biology – volume: 36 start-page: 193 year: 1980 end-page: 202 ident: b15 article-title: Neocognitron : a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biological Cybernetics – reference: Habenschuss, S., Bill, J., & Nessler, B. (2012). Homeostatic plasticity in Bayesian spiking networks as expectation maximization with posterior constraints. In – reference: . – reference: , Lake Tahoe, Nevada, USA (pp. 1–9). – volume: 49 start-page: 183 year: 2006 end-page: 189 ident: b38 article-title: Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking publication-title: Neuron – volume: 6 start-page: 32672 year: 2016 ident: b24 article-title: Deep networks resemble human feed-forward vision in invariant object recognition publication-title: Scientific Reports – reference: Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In – volume: 26 start-page: 1650030 year: 2016 ident: b35 article-title: A computational framework for realistic Retina modeling publication-title: International Journal of Neural Systems – volume: 11 start-page: 333 year: 2007 end-page: 341 ident: b9 article-title: Untangling invariant object recognition publication-title: Trends in Cognitive Sciences – volume: 10 start-page: 732 year: 2000 end-page: 739 ident: b14 article-title: Complementary roles of basal ganglia and cerebellum in learning and motor control publication-title: Current Opinion in Neurobiology – volume: 13 start-page: 1255 issue: 6 year: 2001 ident: 10.1016/j.neunet.2017.12.005_b55 article-title: Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex publication-title: Neural Computation doi: 10.1162/08997660152002852 – ident: 10.1016/j.neunet.2017.12.005_b1 – volume: 192 start-page: 777 issue: 8 year: 2006 ident: 10.1016/j.neunet.2017.12.005_b50 article-title: How silent is the brain: is there a dark matter problem in neuroscience? publication-title: Journal of Comparative Physiology A doi: 10.1007/s00359-006-0117-6 – volume: 26 start-page: 1963 issue: 9 year: 2015 ident: 10.1016/j.neunet.2017.12.005_b59 article-title: Feedforward categorization on aer motion events using cortex-like features in a spiking neural network publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2362542 – volume: 8 start-page: 1 issue: 74 year: 2014 ident: 10.1016/j.neunet.2017.12.005_b16 article-title: Feedforward object-vision models only tolerate small image variations compared to human publication-title: Frontiers in Computational Neuroscience – ident: 10.1016/j.neunet.2017.12.005_b20 – volume: 46 start-page: 1762 issue: 11 year: 2006 ident: 10.1016/j.neunet.2017.12.005_b26 article-title: Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited publication-title: Vision Reserch doi: 10.1016/j.visres.2005.10.002 – volume: 38 start-page: 539 year: 2001 ident: 10.1016/j.neunet.2017.12.005_b8 article-title: Networks of integrate-and-fire neurons using rank order coding b: Spike timing dependent plasticity and emergence of orientation selectivity publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00403-9 – ident: 10.1016/j.neunet.2017.12.005_b57 doi: 10.1109/EBCCSP.2015.7300698 – volume: 62 start-page: 281 issue: 2 year: 2009 ident: 10.1016/j.neunet.2017.12.005_b33 article-title: Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2009.02.025 – volume: 3 issue: 3 year: 2016 ident: 10.1016/j.neunet.2017.12.005_b43 article-title: Rank order coding: a retinal information decoding strategy revealed by large-scale multielectrode array retinal recordings publication-title: Eneuro doi: 10.1523/ENEURO.0134-15.2016 – year: 2002 ident: 10.1016/j.neunet.2017.12.005_b45 – volume: 34 start-page: 7575 issue: 22 year: 2014 ident: 10.1016/j.neunet.2017.12.005_b18 article-title: Associative Hebbian synaptic plasticity in primate visual cortex publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.0983-14.2014 – volume: 48 start-page: 109 year: 2013 ident: 10.1016/j.neunet.2017.12.005_b2 article-title: Categorization and decision-making in a neurobiologically plausible spiking network using a stdp-like learning rule publication-title: Neural Networks doi: 10.1016/j.neunet.2013.07.012 – volume: 9 start-page: 99 year: 2015 ident: 10.1016/j.neunet.2017.12.005_b11 article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity publication-title: Frontiers in Computational Neuroscience doi: 10.3389/fncom.2015.00099 – ident: 10.1016/j.neunet.2017.12.005_b40 doi: 10.1109/IJCNN.2016.7727212 – ident: 10.1016/j.neunet.2017.12.005_b42 doi: 10.1109/WACV.2011.5711540 – volume: 8 start-page: 32 issue: 1 year: 2002 ident: 10.1016/j.neunet.2017.12.005_b34 article-title: Computing with spikes publication-title: Special Issue on Foundations of Information Processing of TELEMATIK – volume: 6 year: 2016 ident: 10.1016/j.neunet.2017.12.005_b7 article-title: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence publication-title: Scientific Reports doi: 10.1038/srep27755 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.neunet.2017.12.005_b30 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – volume: 6 start-page: 32672 year: 2016 ident: 10.1016/j.neunet.2017.12.005_b24 article-title: Deep networks resemble human feed-forward vision in invariant object recognition publication-title: Scientific Reports doi: 10.1038/srep32672 – start-page: 1 year: 2009 ident: 10.1016/j.neunet.2017.12.005_b31 article-title: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations – volume: 104 start-page: 6424 issue: 15 year: 2007 ident: 10.1016/j.neunet.2017.12.005_b48 article-title: A feedforward architecture accounts for rapid categorization publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0700622104 – volume: 310 start-page: 863 issue: 5749 year: 2005 ident: 10.1016/j.neunet.2017.12.005_b19 article-title: Fast readout of object identity from macaque inferior temporal cortex publication-title: Science doi: 10.1126/science.1117593 – volume: 12 start-page: 288 issue: 3 year: 2013 ident: 10.1016/j.neunet.2017.12.005_b44 article-title: Immunity to device variations in a spiking neural network with memristive nanodevices publication-title: IEEE Transactions on Nanotechnology doi: 10.1109/TNANO.2013.2250995 – volume: 22 start-page: 332 issue: 4 year: 2012 ident: 10.1016/j.neunet.2017.12.005_b37 article-title: Stimulus timing-dependent plasticity in high-level vision publication-title: Current Biology doi: 10.1016/j.cub.2012.01.003 – volume: 113 start-page: 54 issue: 1 year: 2015 ident: 10.1016/j.neunet.2017.12.005_b6 article-title: Spiking deep convolutional neural networks for energy-efficient object recognition publication-title: International Journal of Computer Vision doi: 10.1007/s11263-014-0788-3 – volume: 10 start-page: 92 year: 2016 ident: 10.1016/j.neunet.2017.12.005_b25 article-title: Humans and deep networks largely agree on which kinds of variation make object recognition harder publication-title: Frontiers in Computational Neuroscience doi: 10.3389/fncom.2016.00092 – volume: 10 start-page: e1003963 issue: 12 year: 2014 ident: 10.1016/j.neunet.2017.12.005_b5 article-title: Deep neural networks rival the representation of primate it cortex for core visual object recognition publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1003963 – volume: 19 start-page: 2881 issue: 11 year: 2007 ident: 10.1016/j.neunet.2017.12.005_b3 article-title: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics publication-title: Neural Computation doi: 10.1162/neco.2007.19.11.2881 – volume: 10 start-page: 732 issue: 6 year: 2000 ident: 10.1016/j.neunet.2017.12.005_b14 article-title: Complementary roles of basal ganglia and cerebellum in learning and motor control publication-title: Current Opinion in Neurobiology doi: 10.1016/S0959-4388(00)00153-7 – ident: 10.1016/j.neunet.2017.12.005_b58 doi: 10.1007/978-3-319-10590-1_53 – volume: 7 start-page: 2 issue: February year: 2013 ident: 10.1016/j.neunet.2017.12.005_b47 article-title: STDP and STDP variations with memristors for spiking neuromorphic learning systems publication-title: Frontiers in Neuroscience – volume: 43 start-page: 566 issue: 2 year: 2007 ident: 10.1016/j.neunet.2017.12.005_b32 article-title: An 128x128 120dB 15us-latency temporal contrast vision sensor publication-title: IEEE Journal of Solid State Circuits doi: 10.1109/JSSC.2007.914337 – volume: 11 start-page: e1004566 issue: 12 year: 2015 ident: 10.1016/j.neunet.2017.12.005_b4 article-title: Mirrored stdp implements autoencoder learning in a network of spiking neurons publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1004566 – volume: 7 start-page: 99 issue: 3 year: 2003 ident: 10.1016/j.neunet.2017.12.005_b46 article-title: Taking the max from neuronal responses publication-title: Trends in Cognitive Sciences doi: 10.1016/S1364-6613(03)00023-8 – volume: 26 start-page: 219 issue: 2 year: 2009 ident: 10.1016/j.neunet.2017.12.005_b56 article-title: Virtual Retina: a biological retina model and simulator, with contrast gain control publication-title: Journal of Computational Neuroscience doi: 10.1007/s10827-008-0108-4 – volume: 205 start-page: 382 year: 2016 ident: 10.1016/j.neunet.2017.12.005_b23 article-title: Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.04.029 – volume: 26 start-page: 1650030 issue: 7 year: 2016 ident: 10.1016/j.neunet.2017.12.005_b35 article-title: A computational framework for realistic Retina modeling publication-title: International Journal of Neural Systems doi: 10.1142/S0129065716500301 – year: 1991 ident: 10.1016/j.neunet.2017.12.005_b52 – volume: 36 start-page: 193 issue: 4 year: 1980 ident: 10.1016/j.neunet.2017.12.005_b15 article-title: Neocognitron : a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biological Cybernetics doi: 10.1007/BF00344251 – volume: 3 start-page: e31 issue: 2 year: 2007 ident: 10.1016/j.neunet.2017.12.005_b36 article-title: Unsupervised learning of visual features through spike timing dependent plasticity publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.0030031 – ident: 10.1016/j.neunet.2017.12.005_b13 doi: 10.1109/ICRC.2016.7738691 – ident: 10.1016/j.neunet.2017.12.005_b51 – volume: 11 start-page: 333 issue: 8 year: 2007 ident: 10.1016/j.neunet.2017.12.005_b9 article-title: Untangling invariant object recognition publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2007.06.010 – ident: 10.1016/j.neunet.2017.12.005_b17 – ident: 10.1016/j.neunet.2017.12.005_b27 – volume: 10 start-page: e1003915 issue: 11 year: 2014 ident: 10.1016/j.neunet.2017.12.005_b22 article-title: Deep supervised, but not unsupervised, models may explain it cortical representation publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1003915 – start-page: 255 year: 1998 ident: 10.1016/j.neunet.2017.12.005_b28 article-title: Convolutional networks for images, speech, and time series – volume: 381 start-page: 520 issue: 6582 year: 1996 ident: 10.1016/j.neunet.2017.12.005_b54 article-title: Speed of processing in the human visual system publication-title: Nature doi: 10.1038/381520a0 – ident: 10.1016/j.neunet.2017.12.005_b21 doi: 10.1109/ISCAS.2014.6865715 – volume: 73 start-page: 415 issue: 3 year: 2012 ident: 10.1016/j.neunet.2017.12.005_b10 article-title: How does the brain solve visual object recognition? publication-title: Neuron doi: 10.1016/j.neuron.2012.01.010 – volume: 86 start-page: 1145 issue: 5 year: 2015 ident: 10.1016/j.neunet.2017.12.005_b41 article-title: Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective publication-title: Neuron doi: 10.1016/j.neuron.2015.04.015 – volume: 49 start-page: 183 issue: 2 year: 2006 ident: 10.1016/j.neunet.2017.12.005_b38 article-title: Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking publication-title: Neuron doi: 10.1016/j.neuron.2005.12.009 – ident: 10.1016/j.neunet.2017.12.005_b12 doi: 10.1109/IJCNN.2015.7280696 – volume: 29 start-page: 411 issue: 3 year: 2007 ident: 10.1016/j.neunet.2017.12.005_b49 article-title: Robust object recognition with cortex-like mechanisms publication-title: IEEE Transactions on Pattern Analysis Machine Intelligence doi: 10.1109/TPAMI.2007.56 – volume: 7 start-page: 178 year: 2013 ident: 10.1016/j.neunet.2017.12.005_b39 article-title: Real-time classification and sensor fusion with a spiking deep belief network publication-title: Frontiers in Neuroscience – volume: 14 start-page: 715 issue: 6 year: 2001 ident: 10.1016/j.neunet.2017.12.005_b53 article-title: Spike-based strategies for rapid processing publication-title: Neural Networks doi: 10.1016/S0893-6080(01)00083-1 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.neunet.2017.12.005_b29 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 |
SSID | ssj0006843 |
Score | 2.674693 |
Snippet | Previous studies have shown that spike-timing-dependent plasticity (STDP) can be used in spiking neural networks (SNN) to extract visual features of low or... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 56 |
SubjectTerms | Action Potentials - physiology Animals Cognitive science Computer Simulation - trends Deep learning Humans Learning - physiology Models, Neurological Neural Networks (Computer) Neuronal Plasticity - physiology Neurons - physiology Neuroscience Object recognition Pattern Recognition, Visual - physiology Photic Stimulation - methods Spiking neural network STDP Temporal coding Visual Perception - physiology |
Title | STDP-based spiking deep convolutional neural networks for object recognition |
URI | https://dx.doi.org/10.1016/j.neunet.2017.12.005 https://www.ncbi.nlm.nih.gov/pubmed/29328958 https://www.proquest.com/docview/1989579835 https://hal.science/hal-02341957 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SzaWXvh_btEEtvapr2ZJtHZc82LZpKCSB3IRljcmW4l26uz32t2fGlg2FlkBPxkaSxcxo5rP8aQbgA9pKqbr00mfaS40hkb7RjUSFGTYEUHXG552_XuSLa_35xtzswfFwFoZpldH39z6989bxySxKc7ZeLmeXCYXanACPIiNNLWf8PEgzm5sJHMw_fVlcjA45L3vyHLWX3GE4QdfRvFrctcikSlV0-4Jcx-7vEWr_lqmS_8KhXTw6ewwPI5AU836uT2AP26fwaCjSIOKafQbnl1cn3yQHqyA26yXvjIuAuBbMN492R-NwXsvu0rHCN4KwrFh53qQRI8do1T6H67PTq-OFjCUUZK11upXBE5xrDPoiVJjrUJMKysTbBgl3JbZMTCiUtxp1o20gqOcTU-aVDSbUeUbw7AVM2lWLr0AUFOsJO2RYcU76YGxF2Clp0ibNvcciTCEbxObqmF-cy1z8cAOR7Lvrhe1Y2E6ljoQ9BTn2Wvf5Ne5pXwwacX_YiaMQcE_P96TA8SWcVnsxP3f8jHCLVtYUv9QU3g36dbTO-OdJ1eJqt3HMLTOFJcA6hZe94sexCDLRd6spX__35A7hAd2VPbntDUy2P3f4ltDO1h_B_sff6ija9B2Q_f4C |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALLe8tBVzE1Wyc2HF8rArVAtuqUrdSb1YcT8QilF11d3vktzOTxyIkUCVOkRzbsWbGns_O5xmA9-hKpaoiyJDpIDXGRIZa1xIVZlgTQNUZ33c-O88nV_rLtbnegZPhLgzTKvu1v1vT29W6Lxn30hwv5_PxZUKuNifAo8hIU8cRP-9rk1nm9X34-ZvnkRcddY5qS64-3J9rSV4NbhpkSqWy7akgZ7H7u3-6942Jkv9Coa03Ot2HRz2MFMfdSB_DDjZPYG9I0SD6GfsUppezjxeSXVUUq-Wcz8VFRFwKZpv3Vkf9cFTL9tFywleCkKxYBD6iEVuG0aJ5Blenn2YnE9knUJCV1ulaxkBgrjYYbCwx17EiBRRJcDUS6kpckZhoVXAada1dJKAXElPkpYsmVnlG4Ow57DaLBl-CsOTpCTlkWHJE-mhcScgpqdM6zUNAG0eQDWLzVR9dnJNc_PADjey774TtWdhepZ6EPQK5bbXsomvcUd8OGvF_WIknB3BHy3ekwO1HOKj25HjquYxQi1bO2Fs1gqNBv55mGf86KRtcbFaemWXGOoKrI3jRKX7bFwEm2rWa4uC_B_cWHkxmZ1M__Xz-9RU8pDdFR3M7hN31zQZfE-5ZhzetXf8Ctbb-zQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STDP-based+spiking+deep+convolutional+neural+networks+for+object+recognition&rft.jtitle=Neural+networks&rft.au=Kheradpisheh%2C+Saeed+Reza&rft.au=Ganjtabesh%2C+Mohammad&rft.au=Thorpe%2C+Simon+J.&rft.au=Masquelier%2C+Timoth%C3%A9e&rft.date=2018-03-01&rft.issn=0893-6080&rft.volume=99&rft.spage=56&rft.epage=67&rft_id=info:doi/10.1016%2Fj.neunet.2017.12.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2017_12_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |