A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies
Microalgae are the important part of carbon cycle in the nature, and they could utilize the carbon resource in water and soil efficiently. The abilities of microalgae to mitigate CO 2 emission and produce oil with a high productivity have been proven. Hence, this third-generation biodiesel should be...
Saved in:
Published in | Frontiers in microbiology Vol. 13; p. 970028 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
29.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microalgae are the important part of carbon cycle in the nature, and they could utilize the carbon resource in water and soil efficiently. The abilities of microalgae to mitigate CO
2
emission and produce oil with a high productivity have been proven. Hence, this third-generation biodiesel should be popularized. This review firstly introduce the basic characteristics and application fields of microalgae. Then, the influencing parameters and recent advanced technologies for the microalgae biodiesel production have been discussed. In influencing parameters for biodiesel production section, the factors of microalgae cultivation, lipid accumulation, microalgae harvesting, and lipid extraction have been summarized. In recent advanced technologies for biodiesel production section, the microalgae cultivation systems, lipid induction technologies, microalgae harvesting technologies, and lipid extraction technologies have been reviewed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production. |
---|---|
AbstractList | Microalgae are the important part of carbon cycle in the nature, and they could utilize the carbon resource in water and soil efficiently. The abilities of microalgae to mitigate CO
2
emission and produce oil with a high productivity have been proven. Hence, this third-generation biodiesel should be popularized. This review firstly introduce the basic characteristics and application fields of microalgae. Then, the influencing parameters and recent advanced technologies for the microalgae biodiesel production have been discussed. In influencing parameters for biodiesel production section, the factors of microalgae cultivation, lipid accumulation, microalgae harvesting, and lipid extraction have been summarized. In recent advanced technologies for biodiesel production section, the microalgae cultivation systems, lipid induction technologies, microalgae harvesting technologies, and lipid extraction technologies have been reviewed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production. Microalgae are the important part of carbon cycle in the nature, and they could utilize the carbon resource in water and soil efficiently. The abilities of microalgae to mitigate CO2 emission and produce oil with a high productivity have been proven. Hence, this third-generation biodiesel should be popularized. This review firstly introduce the basic characteristics and application fields of microalgae. Then, the influencing parameters and recent advanced technologies for the microalgae biodiesel production have been discussed. In influencing parameters for biodiesel production section, the factors of microalgae cultivation, lipid accumulation, microalgae harvesting, and lipid extraction have been summarized. In recent advanced technologies for biodiesel production section, the microalgae cultivation systems, lipid induction technologies, microalgae harvesting technologies, and lipid extraction technologies have been reviewed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.Microalgae are the important part of carbon cycle in the nature, and they could utilize the carbon resource in water and soil efficiently. The abilities of microalgae to mitigate CO2 emission and produce oil with a high productivity have been proven. Hence, this third-generation biodiesel should be popularized. This review firstly introduce the basic characteristics and application fields of microalgae. Then, the influencing parameters and recent advanced technologies for the microalgae biodiesel production have been discussed. In influencing parameters for biodiesel production section, the factors of microalgae cultivation, lipid accumulation, microalgae harvesting, and lipid extraction have been summarized. In recent advanced technologies for biodiesel production section, the microalgae cultivation systems, lipid induction technologies, microalgae harvesting technologies, and lipid extraction technologies have been reviewed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production. Microalgae are the important part of carbon cycle in the nature, and they could utilize the carbon resource in water and soil efficiently. The abilities of microalgae to mitigate CO2 emission and produce oil with a high productivity have been proven. Hence, this third-generation biodiesel should be popularized. This review firstly introduce the basic characteristics and application fields of microalgae. Then, the influencing parameters and recent advanced technologies for the microalgae biodiesel production have been discussed. In influencing parameters for biodiesel production section, the factors of microalgae cultivation, lipid accumulation, microalgae harvesting, and lipid extraction have been summarized. In recent advanced technologies for biodiesel production section, the microalgae cultivation systems, lipid induction technologies, microalgae harvesting technologies, and lipid extraction technologies have been reviewed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production. |
Author | Xu, Geng Zhang, Shiqiu Li, Fei Li, Xiaokang Zhang, Lijie |
AuthorAffiliation | 1 College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University , Jinan , China 4 School of Geography and Environment, Shandong Normal University , Jinan , China 3 School of Municipal and Environmental Engineering, Shandong Jianzhu University , Jinan , China 2 School of Environmental and Material Engineering, Yantai University , Yantai , China |
AuthorAffiliation_xml | – name: 2 School of Environmental and Material Engineering, Yantai University , Yantai , China – name: 3 School of Municipal and Environmental Engineering, Shandong Jianzhu University , Jinan , China – name: 1 College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University , Jinan , China – name: 4 School of Geography and Environment, Shandong Normal University , Jinan , China |
Author_xml | – sequence: 1 givenname: Shiqiu surname: Zhang fullname: Zhang, Shiqiu – sequence: 2 givenname: Lijie surname: Zhang fullname: Zhang, Lijie – sequence: 3 givenname: Geng surname: Xu fullname: Xu, Geng – sequence: 4 givenname: Fei surname: Li fullname: Li, Fei – sequence: 5 givenname: Xiaokang surname: Li fullname: Li, Xiaokang |
BookMark | eNp9kU1v3CAQhlGVqknT_IDeOPayWwzYhh4qRVE_VorUSyv1hsYwdogwbMG7Vf99cTaqmh7KAdAw87wzvC_JWUwRCXndsK0QSr8dZ2-HLWecb3XPGFfPyEXTdXIjGP9-9tf9nFyVcs_qkozX_QU5F63uuq7tL4i_phmPHn_SFOngk_NYMNB9Tu5gF1-DY04zrVo5QZgA39FdHMMBo_VxonvIMOOCuVCIrqIsxoWCO0K06OiC9i6mkKZKfUWejxAKXj2el-Tbxw9fbz5vbr982t1c326slHzZON23yo2gQNnR9QyVVlxzZ5XlTnQdb4dOwiixbRphuZCDZk5CHZRbic6JS7I7cV2Ce7PPfob8yyTw5iGQ8mQgL94GNFJzC3bERvVcMqd01eOO6UaCq32Iynp_Yu0Pw4xuHS5DeAJ9-hL9nZnS0WixElUFvHkE5PTjgGUxsy8WQ4CI6VAMr4JSCd7KmtqcUutPl5Jx_CPTMLM6bh4cN6vj5uR4ren_qbF-gdW22o0P_6n8DduZtLI |
CitedBy_id | crossref_primary_10_1016_j_fuel_2025_134315 crossref_primary_10_3390_plants12162898 crossref_primary_10_1007_s13399_023_05263_w crossref_primary_10_1080_10826068_2024_2405941 crossref_primary_10_1007_s12088_024_01364_w crossref_primary_10_1007_s43615_025_00520_8 crossref_primary_10_1007_s12155_023_10707_2 crossref_primary_10_1007_s42452_024_06221_5 crossref_primary_10_1007_s10811_024_03426_4 crossref_primary_10_1007_s13399_024_05279_w crossref_primary_10_32434_0321_4095_2023_149_4_17_25 crossref_primary_10_3390_su15010016 crossref_primary_10_1002_bit_28451 crossref_primary_10_1007_s10973_024_12958_3 crossref_primary_10_1021_acscatal_3c01144 crossref_primary_10_1007_s10811_024_03234_w crossref_primary_10_1111_jmi_13259 crossref_primary_10_1021_acssynbio_4c00683 crossref_primary_10_1007_s10668_024_05796_8 crossref_primary_10_5897_AJB2022_17518 crossref_primary_10_3390_fuels5040049 crossref_primary_10_3390_en16052429 crossref_primary_10_1007_s11356_024_35024_9 crossref_primary_10_3390_biotech12030053 crossref_primary_10_1007_s13399_024_06074_3 crossref_primary_10_3390_fermentation10110551 crossref_primary_10_3390_fermentation9100907 crossref_primary_10_3390_microorganisms11071621 crossref_primary_10_1080_10643389_2023_2209492 crossref_primary_10_3934_energy_2024019 |
Cites_doi | 10.1016/B978-0-323-90971-6.00027-9 10.1021/acssuschemeng.6b02732 10.1016/j.cej.2021.132631 10.1016/j.rser.2019.01.064 10.1016/j.cep.2009.03.006 10.1016/j.renene.2019.09.071 10.1016/j.seppur.2021.119830 10.1016/j.chemosphere.2020.129172 10.1016/j.seppur.2020.116783 10.1016/j.biortech.2020.124224 10.1016/j.algal.2018.10.018 10.1093/plankt/25.4.365 10.1016/j.biortech.2010.10.055 10.1016/j.seppur.2020.118293 10.1016/S0044-8486(01)00875-4 10.1016/j.algal.2021.102617 10.1016/j.energy.2014.05.043 10.1016/j.biortech.2017.12.046 10.1016/j.algal.2018.01.017 10.1016/j.matpr.2019.12.238 10.1016/j.jclepro.2021.128752 10.1016/B978-0-444-59558-4.00005-X 10.1016/j.jenvman.2022.115379 10.1016/j.crgsc.2022.100291 10.1016/j.matpr.2022.01.152 10.1016/j.fuel.2022.124623 10.1016/B978-0-323-85859-5.00006-3 10.1016/j.biortech.2022.126888 10.1016/j.eti.2022.102444 10.1016/j.biortech.2012.08.110 10.1016/j.seppur.2020.118171 10.3390/metabo8040065 10.1016/j.jwpe.2021.102382 10.1016/j.algal.2019.101521 10.1039/d0gc02770g 10.1016/j.biortech.2021.125745 10.1093/jxb/34.2.144 10.3390/plants9010031 10.1016/j.biortech.2012.08.003 10.1016/j.biteb.2021.100771 10.1016/j.biortech.2022.127014 10.1016/S1011-1344(99)00034-2 10.1016/j.biotechadv.2015.04.012 10.1016/j.algal.2020.101976 10.1016/j.biortech.2021.126392 10.1016/j.biortech.2014.03.113 10.1016/j.jenvman.2021.114095 10.1016/j.rser.2019.109621 10.1016/j.biortech.2021.126096 10.1016/j.algal.2019.101736 10.1016/j.jclepro.2022.131153 10.1016/j.jclepro.2021.127295 10.1016/j.seppur.2021.119918 10.1016/j.biortech.2018.07.080 10.1016/j.biortech.2012.05.104 10.1016/j.rser.2014.09.037 10.1139/y59-099 10.1016/j.rser.2021.111661 10.1080/01496390801973771 10.1021/ef1003123 10.1016/j.scitotenv.2021.151336 10.1073/pnas.120067297 10.1016/j.arabjc.2021.103591 10.1016/j.egypro.2014.01.196 10.1016/j.eti.2019.100402 10.1016/j.algal.2019.101659 10.1016/j.nbt.2017.09.003 10.1016/j.bbalip.2016.02.008 10.1016/j.resconrec.2022.106355 10.1016/j.biortech.2013.04.074 10.1016/j.algal.2020.102113 10.4155/bfs.13.25 10.1016/j.biortech.2010.06.035 10.1016/j.rser.2018.05.012 10.1016/j.algal.2018.10.009 10.1016/j.biortech.2021.126404 10.1016/j.jtice.2018.05.039 10.1016/j.scitotenv.2021.151387 10.1016/j.biortech.2014.11.081 10.1016/j.seppur.2020.116603 10.1016/j.biortech.2018.01.012 10.1016/B978-0-12-817536-1.00009-6 10.1016/j.algal.2017.05.009 10.1016/j.algal.2015.08.014 10.4061/2010/592980 10.1016/j.algal.2020.102163 10.1016/j.biortech.2016.12.062 10.1016/0144-4565(85)90064-2 10.1016/j.biortech.2014.10.124 10.1016/j.biortech.2019.03.011 10.1016/j.fuel.2020.119199 10.1016/j.btre.2018.e00302 10.1016/j.bej.2021.108065 10.1016/j.seppur.2022.120570 10.1021/es702649h 10.1016/S0927-7765(98)00059-9 10.1016/j.biortech.2021.126056 10.1016/j.bej.2020.107741 10.1016/j.rser.2015.12.293 10.1016/j.renene.2018.01.121 10.1016/j.biortech.2014.06.036 10.1007/s11802-020-4302-y 10.1016/j.algal.2017.08.005 10.1016/j.desal.2012.06.026 10.1016/j.biteb.2021.100917 10.1016/j.algal.2018.07.003 10.1016/j.algal.2022.102698 10.1016/j.ultsonch.2018.05.006 10.1016/j.cej.2022.136487 10.1016/j.biortech.2011.10.048 10.1016/j.jece.2022.107868 10.1016/j.biortech.2011.11.105 10.1016/j.algal.2021.102522 10.1016/j.matpr.2020.11.668 10.1016/j.algal.2020.102046 10.1016/B978-0-12-819850-6.00006-1 10.1016/j.watres.2009.05.003 10.1016/j.biortech.2022.127129 10.1016/j.biortech.2019.03.089 10.1016/j.bbalip.2009.12.005 10.1016/j.biortech.2014.11.028 10.1016/j.fbp.2018.10.006 10.1016/j.aca.2022.339791 10.3844/ojbsci.2015.260.267 10.1016/j.biortech.2014.06.062 10.1016/j.apenergy.2016.06.012 10.1016/j.apenergy.2016.07.015 10.1007/s11356-019-07267-4 10.1016/j.jbiotec.2021.06.017 10.1016/j.seppur.2022.120481 10.2516/ogst/2020088 10.1016/j.bej.2018.04.002 10.1016/j.scitotenv.2020.144590 10.1016/j.biortech.2020.123233 10.2172/6204677 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Zhang, Zhang, Xu, Li and Li. Copyright © 2022 Zhang, Zhang, Xu, Li and Li. 2022 Zhang, Zhang, Xu, Li and Li |
Copyright_xml | – notice: Copyright © 2022 Zhang, Zhang, Xu, Li and Li. – notice: Copyright © 2022 Zhang, Zhang, Xu, Li and Li. 2022 Zhang, Zhang, Xu, Li and Li |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fmicb.2022.970028 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_492cacfe187240d89d702d0914add973 PMC9372408 10_3389_fmicb_2022_970028 |
GrantInformation_xml | – fundername: ; grantid: 42107304 – fundername: ; grantid: ZR2021QB216; ZR2021QH281; ZR2021QD116 – fundername: ; grantid: 2020M672086 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c442t-d9758dfa8a8cfd70e898292dc8c2d36625b64af4e5113c234b90d4a3022c4edd3 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:30:46 EDT 2025 Thu Aug 21 14:03:52 EDT 2025 Fri Jul 11 12:34:10 EDT 2025 Tue Jul 01 01:39:35 EDT 2025 Thu Apr 24 23:01:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-d9758dfa8a8cfd70e898292dc8c2d36625b64af4e5113c234b90d4a3022c4edd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Microbiotechnology, a section of the journal Frontiers in Microbiology Reviewed by: Wenchao Yu, Beijing Forestry University, China; Mengting Zhu, Tongji University, China Edited by: Lean Zhou, Changsha University of Science and Technology, China |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2022.970028 |
PMID | 35966657 |
PQID | 2702483254 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_492cacfe187240d89d702d0914add973 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9372408 proquest_miscellaneous_2702483254 crossref_primary_10_3389_fmicb_2022_970028 crossref_citationtrail_10_3389_fmicb_2022_970028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-29 |
PublicationDateYYYYMMDD | 2022-07-29 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-29 day: 29 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in microbiology |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Choi (B29) 2020; 45 Wang (B117) 2022 Enamala (B36) 2018; 94 Gerde (B40) 2012; 125 Peng (B76) 2020; 19 Attilio (B13) 2009; 48 Hou (B46) 2021; 23 Show (B96) 2014 Zhong (B135) 2022; 317 Martin (B65) 1985; 7 Hadiyanto (B41) 2022; 5 Wang (B119) 2018; 253 Dries (B34) 2011; 105 Sanghamitra (B91) 2020; 28 Abhishek (B2) 2016; 19 Shankar (B93) 2017; 25 Yaping (B126) 2020; 50 Yang (B124) 2015; 175 Sousa (B100) 2012; 104 Henderson (B43); 42 Zhou (B136) 2022; 286 Chhandama (B28) 2021; 15 Fuad (B37) 2018; 112 Zhang (B131) 2020; 27 Ortiz (B75) 2021; 259 Ranadheer (B84) 2019; 283 Shelef (B95) 1984 Carullo (B21) 2018; 31 Zada (B127) 2021; 265 Abd El Baky (B1) 2012; 119 Aburai (B4) 2021; 60 Purba (B81) 2022; 27 He (B42) 2022; 806 Soxhlet (B101) 1879; 232 Converti (B30) 2009; 48 Khalid (B53) 2019; 15 Jon (B51) 2019; 37 Breuer (B18) 2012; 124 Vignesh (B113) 2021; 76 Abimbola (B3) 2021; 311 Singh (B97) 2020; 307 Cheng (B26) 2022; 349 Zhao (B133) 2022; 351 Liu (B58) 2014; 78 Barros (B15) 2015; 41 Min (B67) 2022; 344 Kuluncsics (B54) 1999; 49 Tran (B111) 2017; 26 Dahlqvist (B31) 2000; 97 Sung (B106) 2022; 443 Li (B57) 2022 Liu (B60) 2014; 167 Cheng (B25) 2021; 265 Taghavijeloudar (B109) 2021; 319 Zienkiewicz (B137) 2016; 1861 Aghaalipour (B5) 2020; 163 Rehman (B87) 2022; 56 Arun (B11) 2021; 321 Qi (B82) 2017; 227 Spiden (B102) 2013; 140 Japar (B49) 2021; 53 Henderson (B44); 43 Qian (B83) 2021; 172 Sirohi (B98) 2022; 352 Cai (B19) 2022; 280 Yan (B123) 2016; 178 šalić (B90) 2020; 242 Liu (B59) 2018; 252 Arutselvan (B12) 2022; 324 Cheah (B22) 2016; 179 Ren (B88) 2014; 169 Arivalagan (B10) 2019; 21 Mousavi (B70) 2022; 10 Zinkoné (B138) 2018; 267 Barten (B16) 2021; 336 Urrutia (B112) 2019; 43 Ma (B62) 2022; 806 Ebhodaghe (B35) 2022; 15 Chew (B27) 2018; 91 Najjar (B72) 2020; 51 Sharma (B94) 2014; 4 Wan (B115) 2015; 184 Bligh (B17) 1959; 37 Zhang (B132) 2020; 52 Dianursanti, Baharudin (B33) 2014; 47 Sanyal (B92) 2022 Xin (B122) 2011; 102 Yang (B125) 2022; 347 Ortiz (B74) 2022; 281 Chen (B23) 2022; 1208 Gao (B39) 2022; 302 Rastogi (B85) 2010; 2010 Wang (B116) 2015; 177 Wang (B118) 2022; 430 Phong (B78) 2018; 135 Candice (B20) 2019; 51 Wu (B121) 2021; 340 Teo (B110) 2014; 162 Gao (B38) 2019; 282 Di Caprio (B32) 2018; 40 Zhang (B130) 2021; 342 Maria (B64) 2019; 9 Ruiz (B89) 2022; 64 Menegazzo (B66) 2019; 107 Peperzak (B77) 2003; 25 Prasanthkumar (B80) 2020; 147 Aziz (B14) 2020; 119 Wiley (B120) 2011; 24 Obeid (B73) 2018; 34 Laamanen (B55) 2016; 58 Zeng (B129) 2021; 152 Moreno-Garcia (B69) 2019; 41 Karim (B52) 2020 Sydney (B108) 2018; 8 Ahmed (B7) 2022; 62 Munns (B71) 1983; 34 Liu (B61) 2022; 287 Alkarawi (B8) 2018; 36 Monika (B68) 2015; 15 Chen (B24) 1998; 12 Vitova (B114) 2015; 33 Ahmad (B6) 2012; 302 Su (B104) 2022; 344 Zhao (B134) 2020; 240 Song (B99) 2022; 183 Isiramen (B47) 2022; 17 Pittman (B79) 2011; 102 Su (B105) 2021; 762 Maity (B63) 2022; 345 Srinuanpan (B103) 2018; 122 Jarvis (B50) 2009; 43 Hongxiang (B45) 2019; 41 Aravind (B9) 2021; 43 Susan (B107) 2002; 211 Reddy (B86) 2010; 1801 Zafar (B128) 2021; 44 Li (B56) 2017; 5 Jafari (B48) 2021; 285 |
References_xml | – start-page: 225 year: 2022 ident: B57 article-title: 11 – Unit operations applied to cell disruption of microalgae publication-title: 3rd Generation Biofuels doi: 10.1016/B978-0-323-90971-6.00027-9 – volume: 5 start-page: 1237 year: 2017 ident: B56 article-title: Structure Evolution of Synthetic Amino Acids-Derived Basic Ionic Liquids for Catalytic Production of Biodiesel. publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02732 – volume: 430 year: 2022 ident: B118 article-title: Insight into the rapid biogranulation for suspended single-cell microalgae harvesting in wastewater treatment systems: focus on the role of extracellular polymeric substances. publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132631 – volume: 107 start-page: 87 year: 2019 ident: B66 article-title: Biomass recovery and lipid extraction processes for microalgae biofuels production: a review. publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.01.064 – volume: 48 start-page: 1146 year: 2009 ident: B30 article-title: Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. publication-title: Chem. Eng. Processing doi: 10.1016/j.cep.2009.03.006 – volume: 147 start-page: 1082 year: 2020 ident: B80 article-title: Experimental evaluation of the culture parameters for optimum yield of lipids and other nutraceutically valuable compounds in Chloroidium saccharophillum (Kruger) comb. publication-title: Nov. Renew. Energ. doi: 10.1016/j.renene.2019.09.071 – volume: 281 year: 2022 ident: B74 article-title: Optimization of multi-stage thickening of biomass in a demonstrative full–scale microalgae-based wastewater treatment system. publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119830 – volume: 265 year: 2021 ident: B127 article-title: Biosorption of iron ions through microalgae from wastewater and soil: optimization and comparative study. publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129172 – volume: 242 year: 2020 ident: B90 article-title: Biodiesel purification in microextractors: choline chloride based deep eutectic solvents vs water. publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116783 – volume: 319 year: 2021 ident: B109 article-title: Simultaneous harvesting and extracellular polymeric substances extrusion of microalgae using surfactant: promoting surfactant-assisted flocculation through pH adjustment. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124224 – volume: 36 start-page: 125 year: 2018 ident: B8 article-title: Continuous harvesting of microalgae biomass using foam flotation. publication-title: Algal Res. doi: 10.1016/j.algal.2018.10.018 – volume: 25 start-page: 365 year: 2003 ident: B77 article-title: Phytoplankton sinking rates in the Rhine region of freshwater influence. publication-title: J. Plankton Res. doi: 10.1093/plankt/25.4.365 – volume: 102 start-page: 3098 year: 2011 ident: B122 article-title: Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.10.055 – volume: 265 year: 2021 ident: B25 article-title: Extensive review about industrial and laboratory dynamic filtration modules: scientific production, configurations and performances. publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.118293 – volume: 211 start-page: 195 year: 2002 ident: B107 article-title: Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. publication-title: Aquaculture doi: 10.1016/S0044-8486(01)00875-4 – volume: 62 year: 2022 ident: B7 article-title: Effect of high-pressure treatment on oscillatory rheology, particle size distribution and microstructure of microalgae Chlorella vulgaris and Arthrospira platensis. publication-title: Algal Res. doi: 10.1016/j.algal.2021.102617 – volume: 78 start-page: 40 year: 2014 ident: B58 article-title: The effects of illumination factors on the growth and HCO 3 – fixation of microalgae in an experiment culture system. publication-title: Energy doi: 10.1016/j.energy.2014.05.043 – volume: 252 start-page: 14 year: 2018 ident: B59 article-title: Optimizing light distribution and controlling biomass concentration by continuously pre-harvesting Spirulina platensis for improving the microalgae production. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.12.046 – volume: 31 start-page: 60 year: 2018 ident: B21 article-title: Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. publication-title: Algal Res. doi: 10.1016/j.algal.2018.01.017 – volume: 28 start-page: 659 year: 2020 ident: B91 article-title: Effects of alternate nutrient medium on microalgae biomass and lipid production as a bioenergy source for fuel production. publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2019.12.238 – volume: 321 year: 2021 ident: B11 article-title: Mechanistic insights into nitrification by microalgae-bacterial consortia in a photo-sequencing batch reactor under different light intensities. publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128752 – start-page: 85 year: 2014 ident: B96 article-title: Chapter 5 – Algal Biomass Harvesting publication-title: Biofuels from Algae doi: 10.1016/B978-0-444-59558-4.00005-X – volume: 317 year: 2022 ident: B135 article-title: The spatiotemporal variations in microalgae communities in vertical waters of a subtropical reservoir. publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2022.115379 – volume: 5 year: 2022 ident: B41 article-title: The flocculation process of Chlorella sp. using chitosan as a bio-flocculant: optimization of operating conditions by response surface methodology. publication-title: Curr. Res. Green Sustain. Chem. doi: 10.1016/j.crgsc.2022.100291 – volume: 56 start-page: 282 year: 2022 ident: B87 article-title: Impact of cultivation conditions on microalgae biomass productivity and lipid content. publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.01.152 – volume: 324 year: 2022 ident: B12 article-title: Review on wastewater treatment by microalgae in different cultivation systems and its importance in biodiesel production. publication-title: Fuel doi: 10.1016/j.fuel.2022.124623 – start-page: 235 year: 2022 ident: B117 article-title: Chapter 10 – Cultivation of microalgae on agricultural wastewater for recycling energy, water, and fertilizer nutrients publication-title: Integrated Wastewater Management and Valorization Using Algal Cultures doi: 10.1016/B978-0-323-85859-5.00006-3 – volume: 232 start-page: 461 year: 1879 ident: B101 article-title: Die gewichtsanalytische bestimmung des milchfettes. publication-title: Dinglers Polytechnisches J. – volume: 349 year: 2022 ident: B26 article-title: Heterotrophic and mixotrophic cultivation of microalgae to simultaneously achieve furfural wastewater treatment and lipid production. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.126888 – volume: 27 year: 2022 ident: B81 article-title: Enhanced cultivation and lipid production of isolated microalgae strains using municipal wastewater. publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2022.102444 – volume: 125 start-page: 175 year: 2012 ident: B40 article-title: Evaluation of microalgae cell disruption by ultrasonic treatment. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.08.110 – volume: 259 year: 2021 ident: B75 article-title: Optimization and operation of a demonstrative full scale microalgae harvesting unit based on coagulation, flocculation and sedimentation. publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.118171 – volume: 8 year: 2018 ident: B108 article-title: The Effect of High-Intensity Ultraviolet Light to Elicit Microalgal Cell Lysis and Enhance Lipid Extraction. publication-title: Metabolites. doi: 10.3390/metabo8040065 – volume: 44 year: 2021 ident: B128 article-title: Recent updates on ions and nutrients uptake by halotolerant freshwater and marine microalgae in conditions of high salinity. publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.102382 – volume: 41 year: 2019 ident: B69 article-title: Effect of environmental factors on the biomass and lipid production of microalgae grown in wastewaters. publication-title: Algal Res. doi: 10.1016/j.algal.2019.101521 – volume: 23 start-page: 119 year: 2021 ident: B46 article-title: Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. publication-title: Green Chem. doi: 10.1039/d0gc02770g – volume: 340 year: 2021 ident: B121 article-title: Effect of phosphorus concentration and light/dark condition on phosphorus uptake and distribution with microalgae. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125745 – volume: 34 start-page: 144 year: 1983 ident: B71 article-title: Turgor Pressure, Volumetric Elastic Modulus, Osmotic Volume and Ultrastructure of Chlorella emersonii Grown at High and Low External NaCl. publication-title: J. Exp. Bot. doi: 10.1093/jxb/34.2.144 – volume: 9 year: 2019 ident: B64 article-title: Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella vulgaris. publication-title: Plants doi: 10.3390/plants9010031 – volume: 124 start-page: 217 year: 2012 ident: B18 article-title: The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.08.003 – volume: 15 year: 2021 ident: B28 article-title: Microalgae as a feedstock for the production of biodiesel: a review. publication-title: Bioresour. Technol. Rep. doi: 10.1016/j.biteb.2021.100771 – volume: 351 year: 2022 ident: B133 article-title: Attached cultivation of microalgae on rational carriers for swine wastewater treatment and biomass harvesting. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127014 – volume: 49 start-page: 71 year: 1999 ident: B54 article-title: Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts. publication-title: J. Photochem. Photobiol. B: Biol. doi: 10.1016/S1011-1344(99)00034-2 – volume: 33 start-page: 1204 year: 2015 ident: B114 article-title: Accumulation of energy reserves in algae: from cell cycles to biotechnological applications. publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.04.012 – volume: 50 year: 2020 ident: B126 article-title: High light boosts salinity stress-induced biosynthesis of astaxanthin and lipids in the green alga Chromochloris zofingiensis. publication-title: Algal Res. doi: 10.1016/j.algal.2020.101976 – volume: 347 year: 2022 ident: B125 article-title: Improving sedimentation and lipid production of microalgae in the photobioreactor using saline wastewater. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126392 – volume: 162 start-page: 38 year: 2014 ident: B110 article-title: Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.113 – volume: 302 year: 2022 ident: B39 article-title: Regulation of carbon source metabolism in mixotrophic microalgae cultivation in response to light intensity variation. publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.114095 – volume: 119 year: 2020 ident: B14 article-title: Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: a review. publication-title: Renew Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109621 – volume: 344 year: 2022 ident: B104 article-title: Co-pyrolysis of microalgae and other biomass wastes for the production of high-quality bio-oil: progress and prospective. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126096 – volume: 45 year: 2020 ident: B29 article-title: Influence of activated sludge derived-extracellular polymeric substance (ASD-EPS) as bio-flocculation of microalgae for biofuel recovery. publication-title: Algal Res. doi: 10.1016/j.algal.2019.101736 – volume: 345 year: 2022 ident: B63 article-title: Trends and advances in sustainable bioethanol production by marine microalgae: a critical review. publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131153 – volume: 311 year: 2021 ident: B3 article-title: Performance and optimization studies of oil extraction from Nannochloropsis spp. and Scenedesmus obliquus. publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127295 – volume: 280 year: 2022 ident: B19 article-title: Harvesting of different microalgae through 100-μm-pore-sized screen filtration assisted by cationic polyacrylamide and specific extracellular organic matter. publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119918 – volume: 267 start-page: 458 year: 2018 ident: B138 article-title: Bead milling disruption kinetics of microalgae: process modeling, optimization and application to biomolecules recovery from Chlorella sorokiniana. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.07.080 – volume: 119 start-page: 429 year: 2012 ident: B1 article-title: Enhancement of lipid accumulation in Scenedesmus obliquus by Optimizing CO2 and Fe3+ levels for biodiesel production. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.05.104 – volume: 41 start-page: 1489 year: 2015 ident: B15 article-title: Harvesting techniques applied to microalgae: a review. publication-title: Renew Sustain. Energy Rev. doi: 10.1016/j.rser.2014.09.037 – volume: 37 start-page: 911 year: 1959 ident: B17 article-title: A rapid method of total lipid extraction and purification. publication-title: Can. J. Biochem. Physiol. doi: 10.1139/y59-099 – volume: 152 year: 2021 ident: B129 article-title: Biological characteristics of energy conversion in carbon fixation by microalgae. publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111661 – volume: 43 start-page: 1653 ident: B44 article-title: Successful Removal of Algae through the Control of Zeta Potential. publication-title: Sep. Sci. Technol. doi: 10.1080/01496390801973771 – volume: 24 start-page: 4062 year: 2011 ident: B120 article-title: Life-Cycle Assessment of Potential Algal Biodiesel Production in the United Kingdom: a Comparison of Raceways and Air-Lift Tubular Bioreactors. publication-title: Energy Fuel doi: 10.1021/ef1003123 – volume: 806 year: 2022 ident: B42 article-title: A bacterial strain Citrobacter W4 facilitates the bio-flocculation of wastewater cultured microalgae Chlorella pyrenoidosa. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.151336 – volume: 97 start-page: 6487 year: 2000 ident: B31 article-title: Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. publication-title: Proc. Natl. Acad. Sci. U S A. doi: 10.1073/pnas.120067297 – volume: 15 year: 2022 ident: B35 article-title: Biofuels from microalgae biomass: a review of conversion processes and procedures. publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2021.103591 – volume: 47 start-page: 56 year: 2014 ident: B33 article-title: Industrial Tofu Wastewater as a Cultivation Medium of Microalgae Chlorella vulgaris. publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.01.196 – volume: 15 year: 2019 ident: B53 article-title: Assessing the feasibility of microalgae cultivation in agricultural wastewater: the nutrient characteristics. publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2019.100402 – volume: 43 year: 2019 ident: B112 article-title: Bioremoval of heavy metals from metal mine tailings water using microalgae biomass. publication-title: Algal Res. doi: 10.1016/j.algal.2019.101659 – volume: 40 start-page: 228 year: 2018 ident: B32 article-title: Effect of Ca2+ concentration on Scenedesmus sp. growth in heterotrophic and photoautotrophic cultivation. publication-title: N. Biotechnol. doi: 10.1016/j.nbt.2017.09.003 – volume: 1861 start-page: 1269 year: 2016 ident: B137 article-title: Stress-induced neutral lipid biosynthesis in microalgae — Molecular, cellular and physiological insights. publication-title: Biochimica et Biophys. Acta (BBA) – Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2016.02.008 – volume: 183 year: 2022 ident: B99 article-title: Overview on stress-induced strategies for enhanced microalgae lipid production: application, mechanisms and challenges. publication-title: Resour. Conserv. Recycling doi: 10.1016/j.resconrec.2022.106355 – volume: 140 start-page: 165 year: 2013 ident: B102 article-title: Quantitative evaluation of the ease of rupture of industrially promising microalgae by high pressure homogenization. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.04.074 – volume: 52 year: 2020 ident: B132 article-title: Lipid remodeling associated with chitooligosaccharides-induced heat tolerance of marine macroalgae Gracilariopsis lemaneiformis. publication-title: Algal Res. doi: 10.1016/j.algal.2020.102113 – volume: 4 start-page: 397 year: 2014 ident: B94 article-title: Critical analysis of current Microalgae dewatering techniques. publication-title: Biofuels doi: 10.4155/bfs.13.25 – volume: 41 year: 2019 ident: B45 article-title: Responses of Arthrospira ZJU9000 to high bicarbonate concentration (HCO 3 – : 171.2 mM): how do biomass productivity and lipid content simultaneously increase? publication-title: Algal Res. – volume: 102 start-page: 17 year: 2011 ident: B79 article-title: The potential of sustainable algal biofuel production using wastewater resources. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.035 – volume: 94 start-page: 49 year: 2018 ident: B36 article-title: Production of biofuels from microalgae – A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. publication-title: Renew Sustain. Energy Rev. doi: 10.1016/j.rser.2018.05.012 – volume: 37 start-page: 11 year: 2019 ident: B51 article-title: Temperature dependent growth rate, lipid content and fatty acid composition of the marine cold-water diatom Porosira glacialis. publication-title: Algal Res. doi: 10.1016/j.algal.2018.10.009 – volume: 344 year: 2022 ident: B67 article-title: Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: scalable and low-cost harvesting process development. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126404 – volume: 91 start-page: 332 year: 2018 ident: B27 article-title: Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: a review. publication-title: J. Taiwan Inst. Chem. E. doi: 10.1016/j.jtice.2018.05.039 – volume: 806 year: 2022 ident: B62 article-title: A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.151387 – volume: 184 start-page: 251 year: 2015 ident: B115 article-title: Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.11.081 – volume: 240 year: 2020 ident: B134 article-title: Synergy between membrane filtration and flocculation for harvesting microalgae. publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116603 – volume: 253 start-page: 79 year: 2018 ident: B119 article-title: Tofu whey wastewater is a promising basal medium for microalgae culture. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.01.012 – start-page: 129 year: 2020 ident: B52 article-title: Chapter 9 – Microalgal Cell Disruption and Lipid Extraction Techniques for Potential Biofuel Production publication-title: Microalgae Cultivation for Biofuels Production doi: 10.1016/B978-0-12-817536-1.00009-6 – volume: 25 start-page: 228 year: 2017 ident: B93 article-title: Protic ionic liquid-assisted cell disruption and lipid extraction from fresh water Chlorella and Chlorococcum microalgae. publication-title: Algal Res. doi: 10.1016/j.algal.2017.05.009 – volume: 19 start-page: 292 year: 2016 ident: B2 article-title: An innovative electrochemical process to alleviate the challenges for harvesting of small size microalgae by using non-sacrificial carbon electrodes. publication-title: Algal Res. doi: 10.1016/j.algal.2015.08.014 – volume: 2010 year: 2010 ident: B85 article-title: Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. publication-title: J. Nucleic Acids. doi: 10.4061/2010/592980 – volume: 53 year: 2021 ident: B49 article-title: Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition. publication-title: Algal Res. doi: 10.1016/j.algal.2020.102163 – volume: 227 start-page: 317 year: 2017 ident: B82 article-title: High-strength fermentable wastewater reclamation through a sequential process of anaerobic fermentation followed by microalgae cultivation. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.12.062 – volume: 7 start-page: 245 year: 1985 ident: B65 article-title: Intensive cultivation of freshwater microalgae on aerated pig manure. publication-title: Biomass doi: 10.1016/0144-4565(85)90064-2 – volume: 175 start-page: 537 year: 2015 ident: B124 article-title: Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.10.124 – volume: 282 start-page: 118 year: 2019 ident: B38 article-title: Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.03.011 – volume: 285 year: 2021 ident: B48 article-title: New insights to direct conversion of wet microalgae impregnated with ethanol to biodiesel exploiting extraction with supercritical carbon dioxide. publication-title: Fuel doi: 10.1016/j.fuel.2020.119199 – volume: 21 year: 2019 ident: B10 article-title: A review on chemical mechanism of microalgae flocculation via polymers. publication-title: Biotechnol. Rep. doi: 10.1016/j.btre.2018.e00302 – volume: 172 year: 2021 ident: B83 article-title: Enhancement of algal growth by Mg2+ released from anaerobic digestion effluent of aquatic macrophytes through photolysis. publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2021.108065 – volume: 287 year: 2022 ident: B61 article-title: Coupling bead-milling and microfiltration for the recovery of lipids and proteins from Parachlorella kessleri: impact of the cell disruption conditions on the separation performances. publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120570 – volume: 42 start-page: 4883 ident: B43 article-title: Surfactants as bubble surface modifiers in the flotation of algae: dissolved air flotation that utilizes a chemically modified bubble surface. publication-title: Environ. Sci. Technol. doi: 10.1021/es702649h – volume: 12 start-page: 49 year: 1998 ident: B24 article-title: Flotation removal of algae from water. publication-title: Colloids Surf. B Biointerfaces. doi: 10.1016/S0927-7765(98)00059-9 – volume: 342 year: 2021 ident: B130 article-title: Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: a critical review. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126056 – volume: 163 year: 2020 ident: B5 article-title: Carbon dioxide capture with microalgae species in continuous gas-supplied closed cultivation systems. publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2020.107741 – volume: 58 start-page: 75 year: 2016 ident: B55 article-title: Flotation harvesting of microalgae. publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.293 – volume: 122 start-page: 507 year: 2018 ident: B103 article-title: Strategies to increase the potential use of oleaginous microalgae as biodiesel feedstocks: nutrient starvations and cost-effective harvesting process. publication-title: Renew. Energ. doi: 10.1016/j.renene.2018.01.121 – volume: 167 start-page: 367 year: 2014 ident: B60 article-title: Effective flocculation of target microalgae with self-flocculating microalgae induced by pH decrease. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.036 – volume: 19 start-page: 1183 year: 2020 ident: B76 article-title: Effect of pH. Temperature, and CO_2 Concentration on Growth and Lipid Accumulation of Nannochloropsis sp. MASCC 11. publication-title: J. Ocean U. China. doi: 10.1007/s11802-020-4302-y – volume: 26 start-page: 302 year: 2017 ident: B111 article-title: Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsis oculata. publication-title: Algal Res. doi: 10.1016/j.algal.2017.08.005 – volume: 302 start-page: 65 year: 2012 ident: B6 article-title: Crossflow microfiltration of microalgae biomass for biofuel production. publication-title: Desalination doi: 10.1016/j.desal.2012.06.026 – volume: 17 year: 2022 ident: B47 article-title: Improving pH control and carbon dioxide utilisation efficiency in microalgae cultivation systems with the use of a Proportional-integral + dead-zone control strategy. publication-title: Bioresour. Technol. Rep. doi: 10.1016/j.biteb.2021.100917 – volume: 34 start-page: 49 year: 2018 ident: B73 article-title: Supercritical carbon dioxide extraction and fractionation of lipids from freeze-dried microalgae Nannochloropsis oculata and Chlorella vulgaris. publication-title: Algal Res. doi: 10.1016/j.algal.2018.07.003 – volume: 64 year: 2022 ident: B89 article-title: Heterotrophic vs autotrophic production of microalgae: bringing some light into the everlasting cost controversy. publication-title: Algal Res. doi: 10.1016/j.algal.2022.102698 – volume: 51 start-page: 496 year: 2019 ident: B20 article-title: Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic transducer. publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.05.006 – volume: 48 start-page: 1146 year: 2009 ident: B13 article-title: Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. publication-title: Chem. Eng. Process doi: 10.1016/j.cep.2009.03.006 – volume: 443 year: 2022 ident: B106 article-title: Accelerated sunlight-driven conversion of industrial flue gas into biofuels by microfluidic high-throughput screening towards improving photosynthesis in microalgae under fluctuating light. publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136487 – volume: 104 start-page: 565 year: 2012 ident: B100 article-title: Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.10.048 – volume: 10 year: 2022 ident: B70 article-title: Theoretical study of flue gas CO2 conversion to microalgae Chlorella vulgaris biomass in a bubble column photobioreactor: tanks-in-series approach, kinetic modeling, and dynamic optimization. publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.107868 – volume: 105 start-page: 114 year: 2011 ident: B34 article-title: Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.11.105 – volume: 60 year: 2021 ident: B4 article-title: Aerial microalgae Coccomyxa simplex isolated from a low-temperature, low-light environment, and its biofilm growth and lipid accumulation. publication-title: Algal Res. doi: 10.1016/j.algal.2021.102522 – volume: 43 start-page: 308 year: 2021 ident: B9 article-title: Investigation on algae oil extraction from algae Spirogyra by Soxhlet extraction method. publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.11.668 – volume: 51 year: 2020 ident: B72 article-title: Harvesting of microalgae by centrifugation for biodiesel production: a review. publication-title: Algal Res. doi: 10.1016/j.algal.2020.102046 – start-page: 157 year: 2022 ident: B92 article-title: Chapter 9 – Switchable green solvents for lipids extraction from microalgae publication-title: Green Sustainable Process for Chemical and Environmental Engineering and Science doi: 10.1016/B978-0-12-819850-6.00006-1 – volume: 43 start-page: 3427 year: 2009 ident: B50 article-title: Low energy ballasted flotation. publication-title: Water Res. doi: 10.1016/j.watres.2009.05.003 – volume: 352 year: 2022 ident: B98 article-title: Waste mitigation and resource recovery from food industry wastewater employing microalgae-bacterial consortium. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127129 – volume: 283 start-page: 373 year: 2019 ident: B84 article-title: Non-lethal nitrate supplementation enhances photosystem II efficiency in mixotrophic microalgae towards the synthesis of proteins and lipids. publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2019.03.089 – volume: 1801 start-page: 455 year: 2010 ident: B86 article-title: Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana. publication-title: Biochimica et Biophys. Acta (BBA)Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2009.12.005 – volume: 177 start-page: 282 year: 2015 ident: B116 article-title: Coordinated response of photosynthesis, carbon assimilation, and triacylglycerol accumulation to nitrogen starvation in the marine microalgae Isochrysis zhangjiangensis (Haptophyta). publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.11.028 – volume: 112 start-page: 169 year: 2018 ident: B37 article-title: Mass harvesting of marine microalgae using different techniques. publication-title: Food Bioprod. Process doi: 10.1016/j.fbp.2018.10.006 – volume: 1208 year: 2022 ident: B23 article-title: Assess heavy metals-induced oxidative stress of microalgae by Electro-Raman combined technique. publication-title: Anal. Chim. Acta. doi: 10.1016/j.aca.2022.339791 – volume: 15 start-page: 260 year: 2015 ident: B68 article-title: Effect of Salinity, pH, Light Intensity on Growth and Lipid Production of Microalgae for Bioenergy Application. publication-title: OnLine J. Biol. Sci. doi: 10.3844/ojbsci.2015.260.267 – volume: 169 start-page: 763 year: 2014 ident: B88 article-title: Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.062 – volume: 178 start-page: 9 year: 2016 ident: B123 article-title: Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods. publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2016.06.012 – volume: 179 start-page: 609 year: 2016 ident: B22 article-title: Cultivation in wastewaters for energy: a microalgae platform. publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2016.07.015 – volume: 27 start-page: 6362 year: 2020 ident: B131 article-title: Effect of operating parameters on hydrothermal liquefaction of corn straw and its life cycle assessment. publication-title: Environ. Sci. Pollut. R. doi: 10.1007/s11356-019-07267-4 – volume: 336 start-page: 56 year: 2021 ident: B16 article-title: Towards industrial production of microalgae without temperature control: the effect of diel temperature fluctuations on microalgal physiology. publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2021.06.017 – volume: 286 year: 2022 ident: B136 article-title: Acetate stimulates tetracycline biodegradation pathways in bioelectrochemical system publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120481 – volume: 76 year: 2021 ident: B113 article-title: Biodiesel and green diesel generation: an overview. publication-title: Oil Gas Sci. Technol. doi: 10.2516/ogst/2020088 – volume: 135 start-page: 83 year: 2018 ident: B78 article-title: Improving cell disruption efficiency to facilitate protein release from microalgae using chemical and mechanical integrated method. publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2018.04.002 – volume: 762 year: 2021 ident: B105 article-title: Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144590 – volume: 307 year: 2020 ident: B97 article-title: Bioremediation and biomass production of microalgae cultivation in river water contaminated with pharmaceutical effluent. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123233 – year: 1984 ident: B95 publication-title: Microalgae Harvesting and Processing: a Literature Review. doi: 10.2172/6204677 |
SSID | ssj0000402000 |
Score | 2.5742788 |
SecondaryResourceType | review_article |
Snippet | Microalgae are the important part of carbon cycle in the nature, and they could utilize the carbon resource in water and soil efficiently. The abilities of... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 970028 |
SubjectTerms | biodiesel lipid accumulation lipid extraction microalgae cultivation microalgae harvesting Microbiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF7ET5xfRPAkVNv0tU28TXFMQU8OdgtpkuJg64bbDv73vtd2Y73oxWPbNE1_-XjvJe_9HmM3kZGxdUkYOIjyAEzkA0XbHFmYWpUm3mbVUczbe9ofwOswGW6k-iKfsJoeuAbuHpSwxhY-khkKHyeVy0LhUMoBzkyVVTyfeLVhTFVrMJlFYXOMiVaYwm4a2RztQSHuVEaWRksQVXz9LSWz7SK5IXN6-2yvURZ5t27kAdvy5SHbqdNHfh-xUZfXkSd8WvJ8NCWHQD_ms5rEFQHnFDzCJ-RzRyEb_oG_NDlJUGBxYv2ekDfMnJvSYVXUCr5yCuCL1aY71nrMBr3nj6d-0KROCCyAWASITCJdYaSRtkDEvFRSKOGstMLFKRo9eQqmAI_6VmxFDLkKHZgY4bHgnYtP2HY5Lf0p47Fx0oOR3qQh2DQzCZpA0hBRPZjcJx0WrnDUtuEVp_QWY432BUGvK-g1Qa9r6Dvsdv3KrCbV-K3wI3XOuiDxYVc3cJToZpTov0ZJh12vulbj_KFDEVP66XKuKR4PcFlLoMOyVp-3vth-Uo4-KyZu1O2IIu7sP5p4znbpr2nfWKgLtr34WvpLVHgW-VU1tn8Aqt4AvQ priority: 102 providerName: Directory of Open Access Journals |
Title | A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies |
URI | https://www.proquest.com/docview/2702483254 https://pubmed.ncbi.nlm.nih.gov/PMC9372408 https://doaj.org/article/492cacfe187240d89d702d0914add973 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpQqGX0ifZpg0q9FRwsOWxHoFS0tA0KaSnLuxNyJI2WdjY6e4Gmn-fGdkONYTQiw-2LNszlmY-aeYbxj4VTpc-VHkWoKgzcEXMDC1zqFx6I6voVdqKOf8lT6fwc1bNtthQ3qoX4PpBaEf1pKar5cHfP7dfccB_IcSJ9hY1sPA1Qj0hDowiEPGE7aBhUjROz3tvP03MhJVSUkohJe0HiFm3z_lwLyNLlQj9R17oOIbyH6N08oI9771JftSp_yXbis0r9rSrL3n7mi2OeJeawtuG14uWIgbjkl93LK-oEU7ZJfyKgvIopyMe8rO-aAlaNE604FcULrPmrgnYFb0FH6IG-GZYlcde37Dpyfffx6dZX1sh8wBikwWDQCHMnXbaz4PKozZaGBG89iKUElFRLcHNIaJDVnpRQm3yAA5lJjzEEMq3bLtpm7jLeOmCjuB0dDIHL5WrECNpR0z24OpYTVg-yNH6nnic6l8sLQIQEr1NorcketuJfsI-399y3bFuPNb4GynnviERZqcT7erC9uPPghHe-XkstEIfJmiD3ywCOkuAE7xR5YR9HFRrcYDRrolrYnuztpSwBzjvVTBhaqTz0RPHV5rFZaLqRuePOOTe_Ufve-wZfRStGwvznm1vVjfxAzo8m3o_LRTg8ces2E-_9B3xlwIn |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+biodiesel+production+from+microalgae%3A+Influencing+parameters+and+recent+advanced+technologies&rft.jtitle=Frontiers+in+microbiology&rft.au=Zhang%2C+Shiqiu&rft.au=Zhang%2C+Lijie&rft.au=Xu%2C+Geng&rft.au=Li%2C+Fei&rft.date=2022-07-29&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=13&rft.spage=970028&rft_id=info:doi/10.3389%2Ffmicb.2022.970028&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |