Biological Features of Extracellular Vesicles and Challenges
Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological macromolecules such as DNA, RNA, lipids and proteins on the inside. EVs were once thought to be vesicles for the removal of waste materials, bu...
Saved in:
Published in | Frontiers in cell and developmental biology Vol. 10; p. 816698 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
24.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological macromolecules such as DNA, RNA, lipids and proteins on the inside. EVs were once thought to be vesicles for the removal of waste materials, but are now known to be involved in a variety of pathophysiological processes in many diseases. This study examines the advantage of EVs and the challenges associated with their application. A more rational use of the advantageous properties of EVs such as composition specificity, specific targeting, circulatory stability, active penetration of biological barriers, high efficient drug delivery vehicles and anticancer vaccines, oxidative phosphorylation activity and enzymatic activity, and the resolution of shortcomings such as isolation and purification methods, storage conditions and pharmacokinetics and biodistribution patterns during drug delivery will facilitate the clinical application of EVs. |
---|---|
AbstractList | Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological macromolecules such as DNA, RNA, lipids and proteins on the inside. EVs were once thought to be vesicles for the removal of waste materials, but are now known to be involved in a variety of pathophysiological processes in many diseases. This study examines the advantage of EVs and the challenges associated with their application. A more rational use of the advantageous properties of EVs such as composition specificity, specific targeting, circulatory stability, active penetration of biological barriers, high efficient drug delivery vehicles and anticancer vaccines, oxidative phosphorylation activity and enzymatic activity, and the resolution of shortcomings such as isolation and purification methods, storage conditions and pharmacokinetics and biodistribution patterns during drug delivery will facilitate the clinical application of EVs. Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological macromolecules such as DNA, RNA, lipids and proteins on the inside. EVs were once thought to be vesicles for the removal of waste materials, but are now known to be involved in a variety of pathophysiological processes in many diseases. This study examines the advantage of EVs and the challenges associated with their application. A more rational use of the advantageous properties of EVs such as composition specificity, specific targeting, circulatory stability, active penetration of biological barriers, high efficient drug delivery vehicles and anticancer vaccines, oxidative phosphorylation activity and enzymatic activity, and the resolution of shortcomings such as isolation and purification methods, storage conditions and pharmacokinetics and biodistribution patterns during drug delivery will facilitate the clinical application of EVs.Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological macromolecules such as DNA, RNA, lipids and proteins on the inside. EVs were once thought to be vesicles for the removal of waste materials, but are now known to be involved in a variety of pathophysiological processes in many diseases. This study examines the advantage of EVs and the challenges associated with their application. A more rational use of the advantageous properties of EVs such as composition specificity, specific targeting, circulatory stability, active penetration of biological barriers, high efficient drug delivery vehicles and anticancer vaccines, oxidative phosphorylation activity and enzymatic activity, and the resolution of shortcomings such as isolation and purification methods, storage conditions and pharmacokinetics and biodistribution patterns during drug delivery will facilitate the clinical application of EVs. |
Author | Zeng, Ye Shen, Junyi Qiu, Yan Li, Liang Fu, Bingmei Jiang, Wenli He, Xueling Yao, Xinghong Liu, Xiaoheng |
AuthorAffiliation | 2 Laboratory Animal Center of Sichuan University , Chengdu , China 3 Department of Biomedical Engineering , The City College of the City University of New York , New York , NY , United States 1 Institute of Biomedical Engineering , West China School of Basic Medical Sciences and Forensic Medicine , Sichuan University , Chengdu , China |
AuthorAffiliation_xml | – name: 2 Laboratory Animal Center of Sichuan University , Chengdu , China – name: 1 Institute of Biomedical Engineering , West China School of Basic Medical Sciences and Forensic Medicine , Sichuan University , Chengdu , China – name: 3 Department of Biomedical Engineering , The City College of the City University of New York , New York , NY , United States |
Author_xml | – sequence: 1 givenname: Ye surname: Zeng fullname: Zeng, Ye – sequence: 2 givenname: Yan surname: Qiu fullname: Qiu, Yan – sequence: 3 givenname: Wenli surname: Jiang fullname: Jiang, Wenli – sequence: 4 givenname: Junyi surname: Shen fullname: Shen, Junyi – sequence: 5 givenname: Xinghong surname: Yao fullname: Yao, Xinghong – sequence: 6 givenname: Xueling surname: He fullname: He, Xueling – sequence: 7 givenname: Liang surname: Li fullname: Li, Liang – sequence: 8 givenname: Bingmei surname: Fu fullname: Fu, Bingmei – sequence: 9 givenname: Xiaoheng surname: Liu fullname: Liu, Xiaoheng |
BookMark | eNp1kV1rFTEQhoNU7If9Ad7tpTfnmO9MQAQ9tLZQ8KYV78JsNnuakrOpya7ov3e3p4It9Coh77zPzOQ9JgdDHgIh7xhdCwH2Q-9DSmtOOV8D09rCK3LEudUrLeSPg__uh-S01jtKKePKKBBvyKFQwASz_Ih8_BJzytvoMTXnAcephNrkvjn7PRZcOkwJS_M91OjTrODQNZtbTCkM21Dfktc9phpOH88TcnN-dr25WF19-3q5-Xy18lLycdUJoWTgHgAVoPQ9dKC8Nh20gVMZaFhk3iO0tms7SoWXrNXUSgUG0YsTcrnndhnv3H2JOyx_XMboHh5y2Tos4zKhM4YyZVug2gTpuUcpwWjFWtO10DM9sz7tWfdTuwudD8O8aHoCfaoM8dZt8y9nuRac8xnw_hFQ8s8p1NHtYl1-CoeQp-q4BqBgLV1Kzb7Ul1xrCb3zccQx5oUck2PULVG6hyjdEqXbRzk72TPnvwFf9vwFpeCjeA |
CitedBy_id | crossref_primary_10_1007_s11033_024_10209_0 crossref_primary_10_3389_fbioe_2022_1091360 crossref_primary_10_3389_fimmu_2022_1089410 crossref_primary_10_3390_pharmaceutics15112623 crossref_primary_10_3390_ijms241411801 crossref_primary_10_3390_ijms242417317 crossref_primary_10_3389_fvets_2024_1415594 crossref_primary_10_36233_0507_4088_173 crossref_primary_10_1016_j_lmd_2025_100060 crossref_primary_10_3390_pharmaceutics15051465 crossref_primary_10_1186_s12951_024_02538_w crossref_primary_10_1016_j_saa_2024_125236 crossref_primary_10_3390_vaccines10101691 crossref_primary_10_3390_toxins17010036 crossref_primary_10_1016_j_tips_2024_02_006 crossref_primary_10_3389_fimmu_2023_1090416 crossref_primary_10_3390_ijms24098240 crossref_primary_10_1016_j_humimm_2024_111187 crossref_primary_10_1038_s41598_023_30744_3 crossref_primary_10_1186_s12917_025_04517_1 crossref_primary_10_1016_j_semcancer_2023_09_004 crossref_primary_10_3390_cancers14215415 crossref_primary_10_3390_ijms25137371 crossref_primary_10_1016_j_mtbio_2023_100751 crossref_primary_10_1016_j_cpt_2024_04_005 crossref_primary_10_3389_fnins_2023_1309172 crossref_primary_10_3390_ijms25116210 crossref_primary_10_1093_stcltm_szae095 crossref_primary_10_1093_stmcls_sxad089 crossref_primary_10_3390_pharmaceutics16040567 crossref_primary_10_3389_fcvm_2024_1493290 crossref_primary_10_1186_s40824_022_00338_7 crossref_primary_10_1002_adhm_202401888 crossref_primary_10_1016_j_actbio_2023_10_004 crossref_primary_10_1186_s12938_024_01311_2 crossref_primary_10_1080_08830185_2023_2225551 crossref_primary_10_1016_j_molmed_2023_04_006 crossref_primary_10_18231_j_ijpca_2024_017 crossref_primary_10_1007_s00216_023_04530_z crossref_primary_10_1016_j_jconrel_2025_01_085 crossref_primary_10_1016_j_cis_2024_103331 crossref_primary_10_1016_j_mtbio_2022_100522 crossref_primary_10_1038_s41598_024_75893_1 crossref_primary_10_1016_j_intimp_2023_110531 crossref_primary_10_3390_vaccines13030285 crossref_primary_10_1016_j_apmt_2024_102395 crossref_primary_10_1186_s12645_024_00284_0 crossref_primary_10_3389_fmolb_2024_1447953 crossref_primary_10_1007_s12265_023_10438_x crossref_primary_10_1063_5_0226665 crossref_primary_10_1016_j_jtos_2024_09_006 crossref_primary_10_3390_ijms24119590 crossref_primary_10_3390_biomedinformatics4020084 crossref_primary_10_1016_j_biopha_2023_115767 crossref_primary_10_1016_j_cej_2024_150561 crossref_primary_10_3389_fimmu_2024_1362120 crossref_primary_10_3390_pharmaceutics14102027 crossref_primary_10_3390_vaccines12111282 crossref_primary_10_1016_j_bbcan_2024_189177 crossref_primary_10_1016_j_aca_2024_343171 crossref_primary_10_1016_j_actbio_2024_07_037 crossref_primary_10_3389_fonc_2023_1185363 crossref_primary_10_3390_cancers15092564 crossref_primary_10_1016_j_canlet_2025_217531 crossref_primary_10_1021_jacsau_3c00365 crossref_primary_10_1093_ecco_jcc_jjad042 crossref_primary_10_3390_ijms25137470 crossref_primary_10_20517_evcna_2023_68 |
Cites_doi | 10.1093/jn/nxab031 10.1038/s41392-021-00779-x 10.1002/jev2.12038 10.1002/btm2.10065 10.3390/pharmaceutics13081151 10.1152/ajpcell.00169.2015 10.1038/s41419-021-04004-z 10.1016/j.plabm.2021.e00241 10.1002/jev2.12139 10.2741/4621 10.1002/jev2.12090 10.1038/nm.2753 10.3402/jev.v4.30087 10.1002/biot.201600699 10.1016/j.jprot.2016.02.001 10.1016/j.ccr.2014.03.007 10.1016/j.jconrel.2019.12.005 10.1039/d0bm01497d 10.1016/j.yexcr.2019.03.014 10.1016/j.ejps.2016.10.009 10.1080/20013078.2017.1359478 10.1038/nature15756 10.1186/s13287-020-01761-0 10.1002/jps.24251 10.1093/annonc/mdy261 10.1016/j.addr.2021.113833 10.3402/jev.v4.26316 10.3233/cbm-160609 10.1002/jcb.21923 10.1186/s13287-021-02596-z 10.1210/jc.2015-2270 10.7150/thno.30716 10.1038/nbt.1807 10.3390/ijms222111421 10.3389/fendo.2020.00382 10.1208/s12249-020-01892-w 10.1080/20013078.2018.1535750 10.1016/j.apsb.2021.04.012 10.1016/j.cell.2020.07.009 10.3389/fcell.2021.724389 10.1007/s12032-021-01554-2 10.1007/s11095-014-1593-y 10.1016/j.pneurobio.2019.01.005 10.1007/s10928-011-9213-5 10.1021/acs.nanolett.8b04148 10.1080/20013078.2020.1809766 10.1038/s41573-021-00139-y 10.1093/annonc/mdx004 10.1111/jpi.12769 10.1016/j.jcyt.2015.11.018 10.1016/j.jcyt.2020.05.002 10.1093/neuonc/nox085 10.1016/j.jchromb.2021.122604 10.1186/s12964-021-00768-1 10.3390/ijms22105208 10.1016/j.jcyt.2021.01.001 10.3389/fimmu.2021.711565 10.1186/s13578-021-00650-0 10.1002/jev2.12085 10.32604/biocell.2021.012601 10.1016/j.jbiotec.2013.03.013 10.1080/20013078.2017.1400370 10.1002/jev2.12136 10.3389/fphar.2015.00286 10.1186/s13058-020-1251-8 10.1111/jocs.15868 10.1016/j.jdiacomp.2016.07.012 10.1186/s12943-020-01298-z 10.1016/j.nano.2017.03.001 10.1002/advs.202001581 10.1016/j.expneurol.2021.113895 10.1016/j.retram.2021.103323 10.1002/jev2.12084 10.1208/s12248-017-0154-9 10.1182/blood.2020009957 10.1016/j.bioactmat.2021.02.014 10.1038/s41598-017-08392-1 10.1016/j.bios.2021.113504 10.1002/jev2.12152 10.32604/biocell.2021.013960 10.1016/j.scr.2013.01.002 10.3389/fcvm.2021.712061 10.1016/j.bbamem.2014.07.026 10.1016/j.devcel.2019.04.011 10.1038/nature15376 10.1038/nature22341 10.1016/j.biomaterials.2017.01.004 10.3390/v13081499 10.1002/jev2.12158 10.1007/s00216-018-1052-4 10.1002/jev2.12128 10.1016/j.matbio.2017.10.007 10.1089/hum.2021.192 10.1038/s41467-021-21344-8 10.1016/j.canlet.2020.03.002 10.1016/j.jconrel.2021.05.001 10.2174/0929867324666170830113755 10.4103/1673-5374.313026 10.3390/cells10071763 10.1016/j.addr.2012.08.008 10.1007/978-1-0716-2014-4_4 10.1038/sj.bjc.6605058 10.2217/nnm-2016-0154 10.1007/s12265-021-10174-0 10.1080/20013078.2019.1629865 10.1158/1541-7786.mcr-16-0163 10.1007/s12195-016-0458-3 10.4103/1673-5374.320972 10.18632/oncotarget.13569 10.1002/prca.201700082 10.1080/10717544.2020.1869866 10.1080/20013078.2020.1795364 10.1080/20013078.2019.1647027 10.1084/jem.20181522 10.1016/j.jbc.2021.100569 10.1096/fj.201700149 10.3389/fcell.2020.622579 10.1016/j.ccell.2016.10.009 10.1080/20013078.2020.1757900 10.1080/20013078.2019.1609206 10.1016/j.nano.2015.01.003 10.1248/bpb.b18-00133 10.3390/cells8050511 10.1016/j.pharmthera.2021.108025 10.32604/biocell.2020.012645 10.1002/jcp.29153 10.1016/j.matbio.2017.09.001 10.3390/cells10102663 10.1016/s0021-9258(18)48095-7 10.1096/fj.15-279679 10.7150/thno.62330 10.1016/j.molcel.2012.12.004 10.1016/j.biomaterials.2021.120964 10.1016/j.addr.2021.113961 10.1016/j.jconrel.2014.07.049 10.1016/j.jconrel.2021.08.038 10.3906/biy-2002-79 10.1186/1479-5876-9-86 10.1016/j.biomaterials.2021.121306 10.1016/j.addr.2021.05.006 10.1038/s41598-021-01668-7 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Zeng, Qiu, Jiang, Shen, Yao, He, Li, Fu and Liu. Copyright © 2022 Zeng, Qiu, Jiang, Shen, Yao, He, Li, Fu and Liu. 2022 Zeng, Qiu, Jiang, Shen, Yao, He, Li, Fu and Liu |
Copyright_xml | – notice: Copyright © 2022 Zeng, Qiu, Jiang, Shen, Yao, He, Li, Fu and Liu. – notice: Copyright © 2022 Zeng, Qiu, Jiang, Shen, Yao, He, Li, Fu and Liu. 2022 Zeng, Qiu, Jiang, Shen, Yao, He, Li, Fu and Liu |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fcell.2022.816698 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Zeng et al |
EISSN | 2296-634X |
ExternalDocumentID | oai_doaj_org_article_770159b8067e4c2ca4487651b7db8f16 PMC9263222 10_3389_fcell_2022_816698 |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
ID | FETCH-LOGICAL-c442t-d3354e2c88a58a4cf8d85c67d8be204e0e54e22fa8b9dbd003c41b6094587aac3 |
IEDL.DBID | M48 |
ISSN | 2296-634X |
IngestDate | Wed Aug 27 01:25:40 EDT 2025 Thu Aug 21 18:18:41 EDT 2025 Fri Jul 11 07:28:05 EDT 2025 Tue Jul 01 01:17:22 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-d3354e2c88a58a4cf8d85c67d8be204e0e54e22fa8b9dbd003c41b6094587aac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Wei Seong Toh, National University of Singapore, Singapore Susana García-Silva, Spanish National Cancer Research Center (CNIO), Spain This article was submitted to Cellular Biochemistry, a section of the journal Frontiers in Cell and Developmental Biology Edited by: Dhruv Kumar, Amity University, India |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2022.816698 |
PMID | 35813192 |
PQID | 2688089902 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_770159b8067e4c2ca4487651b7db8f16 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9263222 proquest_miscellaneous_2688089902 crossref_citationtrail_10_3389_fcell_2022_816698 crossref_primary_10_3389_fcell_2022_816698 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-24 |
PublicationDateYYYYMMDD | 2022-06-24 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in cell and developmental biology |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Clayton (B27) 2019; 8 García-Silva (B38) 2020; 8 Kleinjan (B64) 2021; 151 Akers (B3) 2016; 17 Peinado (B95) 2012; 18 Chaudhary (B20) 2020; 22 Liu (B75) 2021; 71 Pan (B92) 2020; 11 Emam (B35) 2021; 334 Jiang (B54) 2021; 19 Morishita (B84) 2015; 104 Sharma (B107) 2020; 235 Takahashi (B114) 2013; 165 Martens-Uzunova (B82) 2021; 10 Lener (B71) 2015; 4 Shi (B108) 2019; 175 Liang (B73) 2021; 10 Smyth (B109) 2014; 1838 Xu (B131) 2021; 11 Barreiro (B12) 2021; 10 Allenson (B5) 2017; 28 Yamashita (B132) 2018; 41 Németh (B86) 2017; 7 Alvarez-Erviti (B6) 2011; 29 Cho (B26) 2020; 9 Hurwitz (B53) 2016; 7 Lee (B70) 2021; 10 Panfoli (B93) 2016; 30 D'Souza (B28) 2021; 338 Ding (B31) 2020; 479 Veerman (B119) 2021; 10 Wang (B121) 2019; 9 Agrawal (B1) 2017; 13 Sanwlani (B105) 2021; 10 Oggero (B89) 2021; 10 Lee (B69) 2013; 49 Sun (B113) 2016; 18 Marcoux (B80) 2021; 138 Perets (B96) 2019; 19 Maji (B78) 2017; 15 Kamerkar (B56) 2017; 546 Kang (B59) 2020; 7 Sanderson (B103) 2019 Han (B46) 2021; 2021 Sakowicz-Burkiewicz (B102) 2021; 22 Wu (B130) 2021; 28 Vogt (B120) 2021; 10 Witwer (B127) 2019; 8 Soekmadji (B110) 2020; 9 Becker (B13) 2016; 30 Cheng (B24) 2021; 275 Dave (B29) 2021; 22 Kim (B63) 2021; 192 Terstappen (B116) 2021; 20 Johnstone (B55) 1987; 262 Aharon (B2) 2021; 32 Yang (B134) 2015; 32 Gratpain (B42) 2021; 174 Eissa (B33) 2016; 30 Huang (B52) 2020; 11 Figueroa (B36) 2017; 19 Kanlikilicer (B60) 2022; 2435 Koh (B65) 2017; 121 García-Silva (B37) 2019; 216 Barreiro (B11) 2020; 10 Ludwig (B77) 2019; 378 Rezabakhsh (B100) 2021; 12 Angioni (B7) 2020; 9 Zhao (B139) 2020; 318 Dekel (B30) 2021; 12 He (B47) 2021; 8 Gimona (B40) 2021; 23 Wang (B122) 2021; 20 Bruschi (B16) 2016; 136 Alameldin (B4) 2021; 26 Bulut (B17) 2020; 44 Koh (B66) 2018; 23 Warren (B124) 2021; 9 Chiaradia (B25) 2021; 10 van der Meel (B118) 2014; 195 Purcell (B98) 2021; 9 Wortzel (B128) 2019; 49 Santos (B104) 2021; 12 Palazzolo (B91) 2018; 25 Gargiulo (B39) 2019; 8 Hadla (B44) 2016; 11 Lucchetti (B76) 2021; 11 Wen (B125) 2017; 6 Keller (B61) 2011; 9 Bruschi (B15) 2018; 12 Kang (B57) 2021; 10 Reinsalu (B99) 2021; 22 Zhang (B137) 2022; 347 Zieren (B142) 2021; 38 Wiklander (B126) 2015; 4 Mangiapane (B79) 2021; 296 Stam (B112) 2021; 1169 Aqil (B8) 2017; 19 Wang (B123) 2021; 45 Hoshino (B50) 2015; 527 El Andaloussi (B34) 2013; 65 Nakano (B85) 2021; 16 Rice (B101) 2015; 100 Börger (B14) 2020; 22 Wu (B129) 2021; 12 Zhou (B141) 2014; 25 Sercombe (B106) 2015; 6 Kusuma (B68) 2016; 310 Chen (B23) 2021; 36 Olmeda (B90) 2021; 175 Zhang (B138) 2015; 527 Liu (B74) 2021; 45 Zhou (B140) 2022; 280 Charoenviriyakul (B19) 2017; 96 Song (B111) 2020; 44 Hu (B51) 2021; 6 Khandagale (B62) 2021; 70 Yang (B133) 2017; 12 Picca (B97) 2022; 17 Chen (B22) 2021; 11 Goetzl (B41) 2017; 31 Bandari (B10) 2018; 65 Heidarzadeh (B48) 2021; 11 Patel (B94) 2017; 2 Théry (B117) 2018; 7 Zhang (B136) 2021 Hakulinen (B45) 2008; 105 Nilsson (B87) 2009; 100 Chen (B21) 2016; 9 Hoshino (B49) 2020; 182 Ding (B32) 2018; 410 Gupta (B43) 2021; 178 Montaner-Tarbes (B83) 2021; 13 Arslan (B9) 2013; 10 Tang (B115) 2021; 13 Zeng (B135) 2019; 8 Caron (B18) 2011; 38 Nordin (B88) 2015; 11 Krug (B67) 2018; 29 Li (B72) 2021; 6 Maroto (B81) 2017; 6 |
References_xml | – volume: 151 start-page: 1416 year: 2021 ident: B64 article-title: Regular Industrial Processing of Bovine Milk Impacts the Integrity and Molecular Composition of Extracellular Vesicles publication-title: J. Nutr. doi: 10.1093/jn/nxab031 – volume: 6 start-page: 383 year: 2021 ident: B72 article-title: Roles and Mechanisms of Exosomal Non-coding RNAs in Human Health and Diseases publication-title: Sig Transduct. Target Ther. doi: 10.1038/s41392-021-00779-x – volume: 10 start-page: e12038 year: 2020 ident: B11 article-title: Comparison of Urinary Extracellular Vesicle Isolation Methods for Transcriptomic Biomarker Research in Diabetic Kidney Disease publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12038 – volume: 2 start-page: 170 year: 2017 ident: B94 article-title: Impact of Cell Culture Parameters on Production and Vascularization Bioactivity of Mesenchymal Stem Cell-Derived Extracellular Vesicles publication-title: Bioeng. Transl. Med. doi: 10.1002/btm2.10065 – volume: 13 year: 2021 ident: B115 article-title: Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13081151 – volume: 310 start-page: C800 year: 2016 ident: B68 article-title: Human Vascular Endothelial Cells Transport Foreign Exosomes from Cow's Milk by Endocytosis publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00169.2015 – volume: 12 start-page: 721 year: 2021 ident: B129 article-title: TGF-β1-mediated Exosomal Lnc-MMP2-2 Increases Blood-Brain Barrier Permeability via the miRNA-1207-5p/EPB41L5 axis to Promote Non-small Cell Lung Cancer Brain Metastasis publication-title: Cell Death Dis. doi: 10.1038/s41419-021-04004-z – volume: 26 start-page: e00241 year: 2021 ident: B4 article-title: Coupling Size Exclusion Chromatography to Ultracentrifugation Improves Detection of Exosomal Proteins from Human Plasma by LC-MS publication-title: Pract. Lab. Med. doi: 10.1016/j.plabm.2021.e00241 – volume: 10 start-page: e12139 year: 2021 ident: B120 article-title: An Engineered CD81-Based Combinatorial Library for Selecting Recombinant Binders to Cell Surface Proteins: Laminin Binding CD81 Enhances Cellular Uptake of Extracellular Vesicles publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12139 – volume: 23 start-page: 865 year: 2018 ident: B66 article-title: Exosome Enrichment by Ultracentrifugation and Size Exclusion Chromatography publication-title: Front. Biosci. (Landmark Ed) doi: 10.2741/4621 – volume: 10 start-page: e12090 year: 2021 ident: B73 article-title: Emerging Methods in Biomarker Identification for Extracellular Vesicle-Based Liquid Biopsy publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12090 – volume: 18 start-page: 883 year: 2012 ident: B95 article-title: Melanoma Exosomes Educate Bone Marrow Progenitor Cells toward a Pro-metastatic Phenotype through MET publication-title: Nat. Med. doi: 10.1038/nm.2753 – volume: 4 start-page: 30087 year: 2015 ident: B71 article-title: Applying Extracellular Vesicles Based Therapeutics in Clinical Trials - an ISEV Position Paper publication-title: J. Extracell. vesicles doi: 10.3402/jev.v4.30087 – volume: 12 year: 2017 ident: B133 article-title: Exosome Separation Using Microfluidic Systems: Size-Based, Immunoaffinity-Based and Dynamic Methodologies publication-title: Biotechnol. J. doi: 10.1002/biot.201600699 – volume: 136 start-page: 25 year: 2016 ident: B16 article-title: Human Urinary Exosome Proteome Unveils its Aerobic Respiratory Ability publication-title: J. Proteomics doi: 10.1016/j.jprot.2016.02.001 – volume: 25 start-page: 501 year: 2014 ident: B141 article-title: Cancer-secreted miR-105 Destroys Vascular Endothelial Barriers to Promote Metastasis publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.03.007 – volume: 318 start-page: 1 year: 2020 ident: B139 article-title: Exosome-mediated siRNA Delivery to Suppress Postoperative Breast Cancer Metastasis publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.12.005 – volume: 9 start-page: 4260 year: 2021 ident: B124 article-title: Milk Exosomes with Enhanced Mucus Penetrability for Oral Delivery of siRNA publication-title: Biomater. Sci. doi: 10.1039/d0bm01497d – volume: 378 start-page: 149 year: 2019 ident: B77 article-title: Optimization of Cell Culture Conditions for Exosome Isolation Using Mini-Size Exclusion Chromatography (Mini-SEC) publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2019.03.014 – volume: 96 start-page: 316 year: 2017 ident: B19 article-title: Cell Type-specific and Common Characteristics of Exosomes Derived from Mouse Cell Lines: Yield, Physicochemical Properties, and Pharmacokinetics publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2016.10.009 – volume: 6 start-page: 1359478 year: 2017 ident: B81 article-title: Effects of Storage Temperature on Airway Exosome Integrity for Diagnostic and Functional Analyses publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2017.1359478 – volume: 527 start-page: 329 year: 2015 ident: B50 article-title: Tumour Exosome Integrins Determine Organotropic Metastasis publication-title: Nature doi: 10.1038/nature15756 – volume: 11 start-page: 260 year: 2020 ident: B92 article-title: miR-132-3p Priming Enhances the Effects of Mesenchymal Stromal Cell-Derived Exosomes on Ameliorating Brain Ischemic Injury publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-020-01761-0 – volume: 104 start-page: 705 year: 2015 ident: B84 article-title: Quantitative Analysis of Tissue Distribution of the B16BL6-Derived Exosomes Using a Streptavidin-Lactadherin Fusion Protein and Iodine-125-Labeled Biotin Derivative after Intravenous Injection in Mice publication-title: J. Pharm. Sci. doi: 10.1002/jps.24251 – volume: 29 start-page: 2143 year: 2018 ident: B67 article-title: Improved EGFR Mutation Detection Using Combined Exosomal RNA and Circulating Tumor DNA in NSCLC Patient Plasma publication-title: Ann. Oncol. doi: 10.1093/annonc/mdy261 – volume: 175 start-page: 113833 year: 2021 ident: B90 article-title: Physiological Models for In Vivo Imaging and Targeting the Lymphatic System: Nanoparticles and Extracellular Vesicles publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.113833 – volume: 4 start-page: 26316 year: 2015 ident: B126 article-title: Extracellular Vesicle In Vivo Biodistribution Is Determined by Cell Source, Route of Administration and Targeting publication-title: J. Extracell. Vesicles doi: 10.3402/jev.v4.26316 – volume: 17 start-page: 125 year: 2016 ident: B3 article-title: Optimizing Preservation of Extracellular Vesicular miRNAs Derived from Clinical Cerebrospinal Fluid publication-title: Cancer Biomark doi: 10.3233/cbm-160609 – volume: 105 start-page: 1211 year: 2008 ident: B45 article-title: Secretion of Active Membrane Type 1 Matrix Metalloproteinase (MMP-14) into Extracellular Space in Microvesicular Exosomes publication-title: J. Cell. Biochem. doi: 10.1002/jcb.21923 – volume: 12 start-page: 521 year: 2021 ident: B100 article-title: Applications, Challenges and Prospects of Mesenchymal Stem Cell Exosomes in Regenerative Medicine publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-021-02596-z – volume: 100 start-page: E1280 year: 2015 ident: B101 article-title: The Effect of Glucose on the Release and Bioactivity of Exosomes from First Trimester Trophoblast Cells publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2015-2270 – volume: 9 start-page: 1714 year: 2019 ident: B121 article-title: Exosomes from M1-Polarized Macrophages Enhance Paclitaxel Antitumor Activity by Activating Macrophages-Mediated Inflammation publication-title: Theranostics doi: 10.7150/thno.30716 – volume: 29 start-page: 341 year: 2011 ident: B6 article-title: Delivery of siRNA to the Mouse Brain by Systemic Injection of Targeted Exosomes publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1807 – volume: 22 year: 2021 ident: B102 article-title: Role of Energy Metabolism in the Progression of Neuroblastoma publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222111421 – volume: 11 start-page: 382 year: 2020 ident: B52 article-title: Urinary Exosomal Thyroglobulin in Thyroid Cancer Patients with Post-Ablative Therapy: A New Biomarker in Thyroid Cancer publication-title: Front. Endocrinol. doi: 10.3389/fendo.2020.00382 – volume: 22 start-page: 18 year: 2021 ident: B29 article-title: Extracellular Vesicles Derived from a Human Brain Endothelial Cell Line Increase Cellular ATP Levels publication-title: AAPS PharmSciTech doi: 10.1208/s12249-020-01892-w – volume: 7 start-page: 1535750 year: 2018 ident: B117 article-title: Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): a Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2018.1535750 – volume: 11 start-page: 2136 year: 2021 ident: B22 article-title: Tumor-derived Exosomes: Nanovesicles Made by Cancer Cells to Promote Cancer Metastasis publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2021.04.012 – volume: 182 start-page: 1044 year: 2020 ident: B49 article-title: Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers publication-title: Cell doi: 10.1016/j.cell.2020.07.009 – volume: 9 start-page: 724389 year: 2021 ident: B98 article-title: Epidermal Growth Factor Receptor Mutations Carried in Extracellular Vesicle-Derived Cargo Mirror Disease Status in Metastatic Non-small Cell Lung Cancer publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.724389 – volume: 38 start-page: 105 year: 2021 ident: B142 article-title: Defining Candidate mRNA and Protein EV Biomarkers to Discriminate ccRCC and pRCC from Non-malignant Renal Cells In Vitro publication-title: Med. Oncol. doi: 10.1007/s12032-021-01554-2 – volume: 32 start-page: 2003 year: 2015 ident: B134 article-title: Exosome Delivered Anticancer Drugs across the Blood-Brain Barrier for Brain Cancer Therapy in Danio rerio publication-title: Pharm. Res. doi: 10.1007/s11095-014-1593-y – volume: 175 start-page: 96 year: 2019 ident: B108 article-title: New Windows into the Brain: Central Nervous System-Derived Extracellular Vesicles in Blood publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2019.01.005 – volume: 38 start-page: 653 year: 2011 ident: B18 article-title: Allometric Scaling of Pegylated Liposomal Anticancer Drugs publication-title: J. Pharmacokinet. Pharmacodynamics doi: 10.1007/s10928-011-9213-5 – volume: 19 start-page: 3422 year: 2019 ident: B96 article-title: Golden Exosomes Selectively Target Brain Pathologies in Neurodegenerative and Neurodevelopmental Disorders publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04148 – volume: 9 start-page: 1809766 year: 2020 ident: B110 article-title: The Future of Extracellular Vesicles as Theranostics - an ISEV Meeting Report publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2020.1809766 – volume: 20 start-page: 362 year: 2021 ident: B116 article-title: Strategies for Delivering Therapeutics across the Blood-Brain Barrier publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-021-00139-y – volume: 28 start-page: 741 year: 2017 ident: B5 article-title: High Prevalence of mutantKRAS in Circulating Exosome-Derived DNA from Early-Stage Pancreatic Cancer Patients publication-title: Ann. Oncol. doi: 10.1093/annonc/mdx004 – volume: 71 start-page: e12769 year: 2021 ident: B75 article-title: Extracellular Vesicles Derived from Melatonin-Preconditioned Mesenchymal Stem Cells Containing USP29 Repair Traumatic Spinal Cord Injury by Stabilizing NRF2 publication-title: J. Pineal Res. doi: 10.1111/jpi.12769 – volume: 18 start-page: 413 year: 2016 ident: B113 article-title: Safety Evaluation of Exosomes Derived from Human Umbilical Cord Mesenchymal Stromal Cell publication-title: Cytotherapy doi: 10.1016/j.jcyt.2015.11.018 – volume: 22 start-page: 482 year: 2020 ident: B14 article-title: International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy Statement on Extracellular Vesicles from Mesenchymal Stromal Cells and Other Cells: Considerations for Potential Therapeutic Agents to Suppress Coronavirus Disease-19 publication-title: Cytotherapy doi: 10.1016/j.jcyt.2020.05.002 – volume: 19 start-page: 1494 year: 2017 ident: B36 article-title: Detection of Wild-type EGFR Amplification and EGFRvIII Mutation in CSF-Derived Extracellular Vesicles of Glioblastoma Patients publication-title: Neuro Oncol. doi: 10.1093/neuonc/nox085 – volume: 1169 start-page: 122604 year: 2021 ident: B112 article-title: Isolation of Extracellular Vesicles with Combined Enrichment Methods publication-title: J. Chromatogr. B Anal. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2021.122604 – volume: 19 start-page: 93 year: 2021 ident: B54 article-title: Cancer Derived Exosomes Induce Macrophages Immunosuppressive Polarization to Promote Bladder Cancer Progression publication-title: Cell Commun. Signal doi: 10.1186/s12964-021-00768-1 – volume: 22 year: 2021 ident: B99 article-title: MAGEA4 Coated Extracellular Vesicles Are Stable and Can Be Assembled In Vitro publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22105208 – volume: 23 start-page: 373 year: 2021 ident: B40 article-title: Critical Considerations for the Development of Potency Tests for Therapeutic Applications of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles publication-title: Cytotherapy doi: 10.1016/j.jcyt.2021.01.001 – volume: 12 start-page: 711565 year: 2021 ident: B104 article-title: Exosome-Based Vaccines: History, Current State, and Clinical Trials publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.711565 – volume: 11 start-page: 142 year: 2021 ident: B48 article-title: Exosomal Delivery of Therapeutic Modulators through the Blood-Brain Barrier; Promise and Pitfalls publication-title: Cell Biosci. doi: 10.1186/s13578-021-00650-0 – volume: 10 start-page: e12085 year: 2021 ident: B57 article-title: Biodistribution of Extracellular Vesicles Following Administration into Animals: A Systematic Review publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12085 – volume: 45 start-page: 27 year: 2021 ident: B74 article-title: Basing on microRNA-mRNA Analysis Identifies microRNA in Exosomes Associated with Wound Repair of Diabetic Ulcers publication-title: BIOCELL doi: 10.32604/biocell.2021.012601 – volume: 165 start-page: 77 year: 2013 ident: B114 article-title: Visualization and In Vivo Tracking of the Exosomes of Murine Melanoma B16-BL6 Cells in Mice after Intravenous Injection publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2013.03.013 – volume: 6 start-page: 1400370 year: 2017 ident: B125 article-title: Biological Roles and Potential Applications of Immune Cell-Derived Extracellular Vesicles publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2017.1400370 – volume: 10 start-page: e12136 year: 2021 ident: B82 article-title: Androgens Alter the Heterogeneity of Small Extracellular Vesicles and the Small RNA Cargo in Prostate Cancer publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12136 – volume: 6 start-page: 286 year: 2015 ident: B106 article-title: Advances and Challenges of Liposome Assisted Drug Delivery publication-title: Front. Pharmacol. doi: 10.3389/fphar.2015.00286 – volume: 22 start-page: 11 year: 2020 ident: B20 article-title: Serum Exosomal-Annexin A2 Is Associated with African-American Triple-Negative Breast Cancer and Promotes Angiogenesis publication-title: Breast Cancer Res. doi: 10.1186/s13058-020-1251-8 – volume: 36 start-page: 3721 year: 2021 ident: B23 article-title: miR‐6718‐5p and miR‐4329 Can Be Used as Potential Biomarkers for Acute Myocardial Infarction publication-title: J. Cardiac Surg. doi: 10.1111/jocs.15868 – volume: 30 start-page: 1585 year: 2016 ident: B33 article-title: Urinary Exosomal microRNA Panel Unravels Novel Biomarkers for Diagnosis of Type 2 Diabetic Kidney Disease publication-title: J. Diabetes Complicat. doi: 10.1016/j.jdiacomp.2016.07.012 – volume: 20 start-page: 13 year: 2021 ident: B122 article-title: Circular RNAs in Body Fluids as Cancer Biomarkers: the New Frontier of Liquid Biopsies publication-title: Mol. Cancer doi: 10.1186/s12943-020-01298-z – volume: 13 start-page: 1627 year: 2017 ident: B1 article-title: Milk-derived Exosomes for Oral Delivery of Paclitaxel publication-title: Nanomedicine Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2017.03.001 – volume: 7 start-page: 2001581 year: 2020 ident: B59 article-title: Dual-Isolation and Profiling of Circulating Tumor Cells and Cancer Exosomes from Blood Samples with Melanoma Using Immunoaffinity-Based Microfluidic Interfaces publication-title: Adv. Sci. (Weinh) doi: 10.1002/advs.202001581 – volume: 347 start-page: 113895 year: 2022 ident: B137 article-title: Exosomes Derived from Bone Marrow Mesenchymal Stromal Cells Promote Remyelination and Reduce Neuroinflammation in the Demyelinating Central Nervous System publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2021.113895 – volume: 70 start-page: 103323 year: 2021 ident: B62 article-title: Plasma-derived Extracellular Vesicles from Myocardial Infarction Patients Inhibits Tumor Necrosis Factor-Alpha Induced Cardiac Cell Death publication-title: Curr. Res. Transl. Med. doi: 10.1016/j.retram.2021.103323 – volume: 10 start-page: 12084 year: 2021 ident: B89 article-title: Extracellular Vesicles from Monocyte/platelet Aggregates Modulate Human Atherosclerotic Plaque Reactivity publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12084 – volume: 19 start-page: 1691 year: 2017 ident: B8 article-title: Exosomes for the Enhanced Tissue Bioavailability and Efficacy of Curcumin publication-title: AAPS J. doi: 10.1208/s12248-017-0154-9 – volume: 138 start-page: 2607 year: 2021 ident: B80 article-title: Platelet EVs Contain an Active Proteasome Involved in Protein Processing for Antigen Presentation via MHC-I Molecules publication-title: Blood doi: 10.1182/blood.2020009957 – volume: 6 start-page: 2905 year: 2021 ident: B51 article-title: Exosome-guided Bone Targeted Delivery of Antagomir-188 as an Anabolic Therapy for Bone Loss publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2021.02.014 – volume: 7 start-page: 8202 year: 2017 ident: B86 article-title: Antibiotic-induced Release of Small Extracellular Vesicles (Exosomes) with Surface-Associated DNA publication-title: Sci. Rep. doi: 10.1038/s41598-017-08392-1 – volume: 192 start-page: 113504 year: 2021 ident: B63 article-title: Hydrogel-based Hybridization Chain Reaction (HCR) for Detection of Urinary Exosomal miRNAs as a Diagnostic Tool of Prostate Cancer publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113504 – volume: 10 start-page: e12152 year: 2021 ident: B70 article-title: Extracellular Vesicles from Adipose Tissue-Derived Stem Cells Alleviate Osteoporosis through Osteoprotegerin and miR-21-5p publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12152 – volume: 45 start-page: 427 year: 2021 ident: B123 article-title: Exosomes Derived from Osteoclasts under Compression Stress Inhibit Osteoblast Differentiation publication-title: Biocell doi: 10.32604/biocell.2021.013960 – volume: 10 start-page: 301 year: 2013 ident: B9 article-title: Mesenchymal Stem Cell-Derived Exosomes Increase ATP Levels, Decrease Oxidative Stress and Activate PI3K/Akt Pathway to Enhance Myocardial Viability and Prevent Adverse Remodeling after Myocardial Ischemia/reperfusion Injury publication-title: Stem Cell Res. doi: 10.1016/j.scr.2013.01.002 – volume: 8 start-page: 712061 year: 2021 ident: B47 article-title: Association of Circulating, Inflammatory-Response Exosomal mRNAs with Acute Myocardial Infarction publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2021.712061 – volume: 1838 start-page: 2954 year: 2014 ident: B109 article-title: Examination of the Specificity of Tumor Cell Derived Exosomes with Tumor Cells In Vitro publication-title: Biochimica Biophysica Acta doi: 10.1016/j.bbamem.2014.07.026 – volume: 49 start-page: 347 year: 2019 ident: B128 article-title: Exosome-Mediated Metastasis: Communication from a Distance publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.04.011 – volume: 527 start-page: 100 year: 2015 ident: B138 article-title: Microenvironment-induced PTEN Loss by Exosomal microRNA Primes Brain Metastasis Outgrowth publication-title: Nature doi: 10.1038/nature15376 – volume: 546 start-page: 498 year: 2017 ident: B56 article-title: Exosomes Facilitate Therapeutic Targeting of Oncogenic KRAS in Pancreatic Cancer publication-title: Nature doi: 10.1038/nature22341 – volume: 121 start-page: 121 year: 2017 ident: B65 article-title: Exosome-Sirpα, a CD47 Blockade Increases Cancer Cell Phagocytosis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.01.004 – volume: 13 year: 2021 ident: B83 article-title: Exosome-Based Vaccines: Pros and Cons in the World of Animal Health publication-title: Viruses doi: 10.3390/v13081499 – volume: 10 start-page: e12158 year: 2021 ident: B12 article-title: Urinary Extracellular Vesicles: Assessment of Pre-analytical Variables and Development of a Quality Control with Focus on Transcriptomic Biomarker Research publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12158 – volume: 410 start-page: 3805 year: 2018 ident: B32 article-title: Comparison of Commercial Exosome Isolation Kits for Circulating Exosomal microRNA Profiling publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-018-1052-4 – volume: 10 start-page: e12128 year: 2021 ident: B119 article-title: Molecular Evaluation of Five Different Isolation Methods for Extracellular Vesicles Reveals Different Clinical Applicability and Subcellular Origin publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12128 – start-page: 160 year: 2019 ident: B103 article-title: Proteases and Glycosidases on the Surface of Exosomes: Newly Discovered Mechanisms for Extracellular Remodeling publication-title: Matrix Biol. doi: 10.1016/j.matbio.2017.10.007 – volume: 32 start-page: 1224 year: 2021 ident: B2 article-title: Extracellular Vesicles Derived from Chimeric Antigen Receptor-T Cells: A Potential Therapy for Cancer publication-title: Hum. gene Ther. doi: 10.1089/hum.2021.192 – volume: 12 start-page: 1172 year: 2021 ident: B30 article-title: 20S Proteasomes Secreted by the Malaria Parasite Promote its Growth publication-title: Nat. Commun. doi: 10.1038/s41467-021-21344-8 – volume: 479 start-page: 1 year: 2020 ident: B31 article-title: Exosome-Mediated Transfer of circRNA CircNFIX Enhances Temozolomide Resistance in Glioma publication-title: Cancer Lett. doi: 10.1016/j.canlet.2020.03.002 – volume: 334 start-page: 327 year: 2021 ident: B35 article-title: Anti-PEG IgM Production and Accelerated Blood Clearance Phenomenon after the Administration of PEGylated Exosomes in Mice publication-title: J. Control. Release doi: 10.1016/j.jconrel.2021.05.001 – volume: 25 start-page: 4224 year: 2018 ident: B91 article-title: The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes publication-title: Curr. Med. Chem. doi: 10.2174/0929867324666170830113755 – volume: 16 start-page: 2359 year: 2021 ident: B85 article-title: Potential Effects of Mesenchymal Stem Cell Derived Extracellular Vesicles and Exosomal miRNAs in Neurological Disorders publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.313026 – volume: 10 year: 2021 ident: B25 article-title: Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles publication-title: Cells doi: 10.3390/cells10071763 – volume: 65 start-page: 391 year: 2013 ident: B34 article-title: Exosomes for Targeted siRNA Delivery across Biological Barriers publication-title: Adv. drug Deliv. Rev. doi: 10.1016/j.addr.2012.08.008 – volume: 2435 start-page: 35 year: 2022 ident: B60 article-title: Exosome-Related Methods and Potential Use as Vaccines publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-2014-4_4 – volume: 100 start-page: 1603 year: 2009 ident: B87 article-title: Prostate Cancer-Derived Urine Exosomes: a Novel Approach to Biomarkers for Prostate Cancer publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6605058 – volume: 11 start-page: 2431 year: 2016 ident: B44 article-title: Exosomes Increase the Therapeutic Index of Doxorubicin in Breast and Ovarian Cancer Mouse Models publication-title: Nanomedicine doi: 10.2217/nnm-2016-0154 – year: 2021 ident: B136 article-title: Bovine Milk Exosomes Alleviate Cardiac Fibrosis via Enhancing Angiogenesis In Vivo and In Vitro publication-title: J. Cardiovasc. Transl. Res. doi: 10.1007/s12265-021-10174-0 – volume: 8 start-page: 1629865 year: 2019 ident: B135 article-title: Anti-angiogenesis Triggers Exosomes Release from Endothelial Cells to Promote Tumor Vasculogenesis publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2019.1629865 – volume: 15 start-page: 93 year: 2017 ident: B78 article-title: Exosomal Annexin II Promotes Angiogenesis and Breast Cancer Metastasis publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.mcr-16-0163 – volume: 9 start-page: 509 year: 2016 ident: B21 article-title: Elucidation of Exosome Migration across the Blood-Brain Barrier Model In Vitro publication-title: Cel. Mol. Bioeng. doi: 10.1007/s12195-016-0458-3 – volume: 17 start-page: 534 year: 2022 ident: B97 article-title: Circulating Extracellular Vesicles: Friends and Foes in Neurodegeneration publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.320972 – volume: 7 start-page: 86999 year: 2016 ident: B53 article-title: Proteomic Profiling of NCI-60 Extracellular Vesicles Uncovers Common Protein Cargo and Cancer Type-specific Biomarkers publication-title: Oncotarget doi: 10.18632/oncotarget.13569 – volume: 12 start-page: e1700082 year: 2018 ident: B15 article-title: Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants publication-title: Proteomics Clin. Appl. doi: 10.1002/prca.201700082 – volume: 28 start-page: 162 year: 2021 ident: B130 article-title: Preservation of Small Extracellular Vesicles for Functional Analysis and Therapeutic Applications: a Comparative Evaluation of Storage Conditions publication-title: Drug Deliv. doi: 10.1080/10717544.2020.1869866 – volume: 9 start-page: 1795364 year: 2020 ident: B26 article-title: Study of Immune-Tolerized Cell Lines and Extracellular Vesicles Inductive Environment Promoting Continuous Expression and Secretion of HLA-G from Semiallograft Immune Tolerance during Pregnancy publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2020.1795364 – volume: 8 start-page: 1647027 year: 2019 ident: B27 article-title: Considerations towards a Roadmap for Collection, Handling and Storage of Blood Extracellular Vesicles publication-title: J. Extracell. vesicles doi: 10.1080/20013078.2019.1647027 – volume: 216 start-page: 1061 year: 2019 ident: B37 article-title: Use of Extracellular Vesicles from Lymphatic Drainage as Surrogate Markers of Melanoma Progression and BRAF (V600E) Mutation publication-title: J. Exp. Med. doi: 10.1084/jem.20181522 – volume: 296 start-page: 100569 year: 2021 ident: B79 article-title: Enzymatically Active Apurinic/apyrimidinic Endodeoxyribonuclease 1 Is Released by Mammalian Cells through Exosomes publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.100569 – volume: 31 start-page: 3689 year: 2017 ident: B41 article-title: Altered Cargo Proteins of Human Plasma Endothelial Cell-Derived Exosomes in Atherosclerotic Cerebrovascular Disease publication-title: FASEB J. doi: 10.1096/fj.201700149 – volume: 8 start-page: 622579 year: 2020 ident: B38 article-title: DNA-loaded Extracellular Vesicles in Liquid Biopsy: Tiny Players with Big Potential? publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.622579 – volume: 30 start-page: 836 year: 2016 ident: B13 article-title: Extracellular Vesicles in Cancer: Cell-To-Cell Mediators of Metastasis publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.10.009 – volume: 9 start-page: 1757900 year: 2020 ident: B7 article-title: CD73(+) Extracellular Vesicles Inhibit Angiogenesis through Adenosine A(2B) Receptor Signalling publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2020.1757900 – volume: 8 start-page: 1609206 year: 2019 ident: B127 article-title: Defining Mesenchymal Stromal Cell (MSC)-derived Small Extracellular Vesicles for Therapeutic Applications publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2019.1609206 – volume: 11 start-page: 879 year: 2015 ident: B88 article-title: Ultrafiltration with Size-Exclusion Liquid Chromatography for High Yield Isolation of Extracellular Vesicles Preserving Intact Biophysical and Functional Properties publication-title: Nanomedicine doi: 10.1016/j.nano.2015.01.003 – volume: 41 start-page: 835 year: 2018 ident: B132 article-title: Possibility of Exosome-Based Therapeutics and Challenges in Production of Exosomes Eligible for Therapeutic Application publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.b18-00133 – volume: 8 year: 2019 ident: B39 article-title: Hematological Malignancy-Derived Small Extracellular Vesicles and Tumor Microenvironment: The Art of Turning Foes into Friends publication-title: Cells doi: 10.3390/cells8050511 – volume: 2021 start-page: 108025 year: 2021 ident: B46 article-title: Extracellular Vesicles in Cardiovascular Disease: Biological Functions and Therapeutic Implications publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2021.108025 – volume: 44 start-page: 623 year: 2020 ident: B111 article-title: Exosomes Derived from circBCRC-3-Knockdown Mesenchymal Stem Cells Promoted Macrophage Polarization publication-title: BIOCELL doi: 10.32604/biocell.2020.012645 – volume: 235 start-page: 1921 year: 2020 ident: B107 article-title: Exosome DNA: Critical Regulator of Tumor Immunity and a Diagnostic Biomarker publication-title: J. Cell Physiol. doi: 10.1002/jcp.29153 – volume: 65 start-page: 104 year: 2018 ident: B10 article-title: Chemotherapy Induces Secretion of Exosomes Loaded with Heparanase that Degrades Extracellular Matrix and Impacts Tumor and Host Cell Behavior publication-title: Matrix Biol. doi: 10.1016/j.matbio.2017.09.001 – volume: 10 year: 2021 ident: B105 article-title: Role of Extracellular Vesicles in Cell Death and Inflammation publication-title: Cells doi: 10.3390/cells10102663 – volume: 262 start-page: 9412 year: 1987 ident: B55 article-title: Vesicle Formation during Reticulocyte Maturation. Association of Plasma Membrane Activities with Released Vesicles (Exosomes) publication-title: J. Biol. Chem. doi: 10.1016/s0021-9258(18)48095-7 – volume: 30 start-page: 1416 year: 2016 ident: B93 article-title: Exosomes from Human Mesenchymal Stem Cells Conduct Aerobic Metabolism in Term and Preterm Newborn Infants publication-title: FASEB J. doi: 10.1096/fj.15-279679 – volume: 11 start-page: 8926 year: 2021 ident: B131 article-title: Engineered Exosomes: Desirable Target-Tracking Characteristics for Cerebrovascular and Neurodegenerative Disease Therapies publication-title: Theranostics doi: 10.7150/thno.62330 – volume: 49 start-page: 668 year: 2013 ident: B69 article-title: HIV Nef, Paxillin, and Pak1/2 Regulate Activation and Secretion of TACE/ADAM10 Proteases publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.12.004 – volume: 275 start-page: 120964 year: 2021 ident: B24 article-title: Gene-engineered Exosomes-Thermosensitive Liposomes Hybrid Nanovesicles by the Blockade of CD47 Signal for Combined Photothermal Therapy and Cancer Immunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120964 – volume: 178 start-page: 113961 year: 2021 ident: B43 article-title: Dosing Extracellular Vesicles publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.113961 – volume: 195 start-page: 72 year: 2014 ident: B118 article-title: Extracellular Vesicles as Drug Delivery Systems: Lessons from the Liposome Field publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.07.049 – volume: 338 start-page: 505 year: 2021 ident: B28 article-title: Microvesicles Transfer Mitochondria and Increase Mitochondrial Function in Brain Endothelial Cells publication-title: J. Control. Release doi: 10.1016/j.jconrel.2021.08.038 – volume: 44 start-page: 273 year: 2020 ident: B17 article-title: Mesenchymal Stem Cell Derived Extracellular Vesicles: Promising Immunomodulators against Autoimmune, Autoinflammatory Disorders and SARS-CoV-2 Infection publication-title: Turk J. Biol. doi: 10.3906/biy-2002-79 – volume: 9 start-page: 86 year: 2011 ident: B61 article-title: Body Fluid Derived Exosomes as a Novel Template for Clinical Diagnostics publication-title: J. Transl. Med. doi: 10.1186/1479-5876-9-86 – volume: 280 start-page: 121306 year: 2022 ident: B140 article-title: Exosomes Derived from Immunogenically Dying Tumor Cells as a Versatile Tool for Vaccination against Pancreatic Cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121306 – volume: 174 start-page: 535 year: 2021 ident: B42 article-title: Extracellular Vesicles for the Treatment of Central Nervous System Diseases publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.05.006 – volume: 11 start-page: 22686 year: 2021 ident: B76 article-title: Mutational Status of Plasma Exosomal KRAS Predicts Outcome in Patients with Metastatic Colorectal Cancer publication-title: Sci. Rep. doi: 10.1038/s41598-021-01668-7 |
SSID | ssj0001257583 |
Score | 2.4797816 |
SecondaryResourceType | review_article |
Snippet | Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 816698 |
SubjectTerms | biological feature biomarker Cell and Developmental Biology clinical application drug delivery exosomes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn7i-qOBJqLZp0iTgRRdlEfTkireQJwrSFXcX9N870-zK9qIXb6VJ0_SbJpkvGb4h5DSywpVVSfNYRZEzIW1uOY05VdLDnGlV6XBr4P6hHo7Y3TN_Xkr1hTFhSR44AXchBCxYykqYVQNz1BngE6LmpRXeyli2Ytuw5i2RqbS7Am6IrNIxJrAwdRFxIxz4IKXneFSmZGchavX6O05mN0Ryac253SDrc2cxu0qd3CQrodkiqyl95Nc2uUxXCHOGrtwMqHM2jtnNJzSGHcEQ0-wpTNrQt8w0PhsscqdMdsjo9uZxMMzn2RByxxid5r6qOAvUSWm4NMxF6SV3tfDSBlqwUAQsptFIq7z1MFodK20N9I1LYYyrdkmvGTdhj2SygKYsM0zUgdVUqAD8WinPg2SGB9cnxQIa7eZS4Zix4k0DZUA0dYumRjR1QrNPzn4eeU86Gb9Vvka8fyqixHV7Awyv54bXfxm-T04W1tIwJPAdpgnj2UTTGiYl4JEF7RPRMWPnjd2S5vWlFddWKGBP6f5_dPGArOFXY2QZZYekN_2YhSPwYab2uP1dvwGVw-6o priority: 102 providerName: Directory of Open Access Journals |
Title | Biological Features of Extracellular Vesicles and Challenges |
URI | https://www.proquest.com/docview/2688089902 https://pubmed.ncbi.nlm.nih.gov/PMC9263222 https://doaj.org/article/770159b8067e4c2ca4487651b7db8f16 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEB-sYvEitVp82kqEngrRZLOb3YWWUkURwZ76irdlP6sgee37AP3vnUnybAPSg7eQ_cxMZmd-s8MMwMfEC19WJctTlWTOpXK5EyzlTKuAZ6bTpSfXwNX3-mLML6_F9Qosy1v1BJw9C-2ontR4end0_-fhKwr8F0KcqG-PE_m4EeoxdkS3YFq9gjVUTJLk9Kq39juXC9omquruNp8fuQGvKSFY1V2N_lVUbT7_gRE6DKH8Ryedv4HN3pjMvnXc34KV2LyF9a685MM2fO6eiA0ZmXoLhNbZJGVn9zgZ7YlCULOfcdaGxmW2CdnpsrbKbAfG52c_Ti_yvlpC7jln8zxUleCReaWsUJb7pIISvpZBucgKHotIzSxZ5XRwAaXZ89LVCO-Ektb66h2sNpMm7kKmCpzKcctlHXnNpI6Iv7UOIipuRfQjKJakMb5PJU4VLe4MQgoirGkJa4iwpiPsCD49Dfnd5dH4X-cTovdTR0qB3b6YTH-ZXqKMlGjJaKdQ3UbumbcINGUtSieDU6msR3C45JZBkaE1bBMni5lhNR5aiDMLNgI5YONgxWFLc3vTJt_WlOCesb0Xj9yHDfpUCjdj_D2szqeL-AENm7k7aB0CB-1P-whKgfky |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+Features+of+Extracellular+Vesicles+and+Challenges&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Zeng%2C+Ye&rft.au=Qiu%2C+Yan&rft.au=Jiang%2C+Wenli&rft.au=Shen%2C+Junyi&rft.date=2022-06-24&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-634X&rft.volume=10&rft_id=info:doi/10.3389%2Ffcell.2022.816698&rft_id=info%3Apmid%2F35813192&rft.externalDocID=PMC9263222 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |