Atomistic-continuum and ab initio estimation of the elastic moduli of single-walled carbon nanotubes
This paper deals with the calculation of elastic moduli and stress–strain curves for single-walled carbon nanotubes (SWNTs) using a computationally efficient, atomistically enriched continuum analysis. This approach is adopted to estimate shear and Young’s moduli and obtain stress–strain curves for...
Saved in:
Published in | Computational materials science Vol. 40; no. 1; pp. 147 - 158 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2007
Elsevier Science |
Subjects | |
Online Access | Get full text |
ISSN | 0927-0256 1879-0801 |
DOI | 10.1016/j.commatsci.2006.11.014 |
Cover
Loading…
Abstract | This paper deals with the calculation of elastic moduli and stress–strain curves for single-walled carbon nanotubes (SWNTs) using a computationally efficient, atomistically enriched continuum analysis. This approach is adopted to estimate shear and Young’s moduli and obtain stress–strain curves for carbon nanotubes (CNTs) subject to coupled extension and twist deformations. This accounts for the effects of natural extension-twist coupling [K. Chandraseker, S. Mukherjee, ASME J. Appl. Mech. 73 (2) (2006) 315–326; K. Chandraseker, S. Mukherjee, Y.X. Mukherjee, Int. J. Solids Struct. 43 (2006) 7128–7144] on SWNT constitutive properties. The constitutive properties are evaluated by assuming a cylindrical reference configuration [Chandraseker and Mukherjee, 2006; Chandraseker et al., 2006] rather than a planar graphene sheet [P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, Int. J. Solids Struct. 39 (2002) 3893–3906; M. Arroyo, T. Belytschko, Phys. Rev. B 69 (2004) 115415] thereby allowing for the anisotropy and change in strain energy that results from the finite deformation required to roll up a graphene sheet into a nanotube [M. Arroyo, T. Belytschko, Phys. Rev. B 69 (2004) 115415]. The Tersoff–Brenner multi-body empirical interatomic potential for carbon [J. Tersoff, Phys. Rev. B 37 (1988) 6991–7000; D.W. Brenner, Phys. Rev. B 42 (1990) 9458–9471] is used to model the C–C bond energies in this work. This enables exact analytic evaluation of the derivatives of the strain energy density rather than a numerical approach. Consistent values obtained corresponding to these material properties indicate that they do not depend strongly on the chirality of the nanotube [R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998 [7]]. The relative magnitudes of the Young’s and shear moduli obtained from this approach fall within the well known range in classical elasticity theory in most cases, and the computed values for the moduli agree well with existing experimental results and atomistic studies that employ the same interatomic potential. Further, in the present work, the moduli are also evaluated using a more accurate, albeit computationally expensive, ab initio density-functional-theoretic (DFT) approach (see for e.g., [D. Sáncez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejón, Phys. Rev. B 59 (1999) 12678; K.N. Kudin, G.E. Scuseria, B.I. Yakobson, Phys. Rev. B 64 (2001) 235406]). A comparison between these values and the ones from the atomistic-continuum analysis brings to notice some of the advantages and limitations of both these approaches. |
---|---|
AbstractList | This paper deals with the calculation of elastic moduli and stress–strain curves for single-walled carbon nanotubes (SWNTs) using a computationally efficient, atomistically enriched continuum analysis. This approach is adopted to estimate shear and Young’s moduli and obtain stress–strain curves for carbon nanotubes (CNTs) subject to coupled extension and twist deformations. This accounts for the effects of natural extension-twist coupling [K. Chandraseker, S. Mukherjee, ASME J. Appl. Mech. 73 (2) (2006) 315–326; K. Chandraseker, S. Mukherjee, Y.X. Mukherjee, Int. J. Solids Struct. 43 (2006) 7128–7144] on SWNT constitutive properties. The constitutive properties are evaluated by assuming a cylindrical reference configuration [Chandraseker and Mukherjee, 2006; Chandraseker et al., 2006] rather than a planar graphene sheet [P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, Int. J. Solids Struct. 39 (2002) 3893–3906; M. Arroyo, T. Belytschko, Phys. Rev. B 69 (2004) 115415] thereby allowing for the anisotropy and change in strain energy that results from the finite deformation required to roll up a graphene sheet into a nanotube [M. Arroyo, T. Belytschko, Phys. Rev. B 69 (2004) 115415]. The Tersoff–Brenner multi-body empirical interatomic potential for carbon [J. Tersoff, Phys. Rev. B 37 (1988) 6991–7000; D.W. Brenner, Phys. Rev. B 42 (1990) 9458–9471] is used to model the C–C bond energies in this work. This enables exact analytic evaluation of the derivatives of the strain energy density rather than a numerical approach. Consistent values obtained corresponding to these material properties indicate that they do not depend strongly on the chirality of the nanotube [R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998 [7]]. The relative magnitudes of the Young’s and shear moduli obtained from this approach fall within the well known range in classical elasticity theory in most cases, and the computed values for the moduli agree well with existing experimental results and atomistic studies that employ the same interatomic potential. Further, in the present work, the moduli are also evaluated using a more accurate, albeit computationally expensive, ab initio density-functional-theoretic (DFT) approach (see for e.g., [D. Sáncez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejón, Phys. Rev. B 59 (1999) 12678; K.N. Kudin, G.E. Scuseria, B.I. Yakobson, Phys. Rev. B 64 (2001) 235406]). A comparison between these values and the ones from the atomistic-continuum analysis brings to notice some of the advantages and limitations of both these approaches. This paper deals with the calculation of elastic moduli and stress-strain curves for single-walled carbon nanotubes (SWNTs) using a computationally efficient, atomistically enriched continuum analysis. This approach is adopted to estimate shear and Young's moduli and obtain stress-strain curves for carbon nanotubes (CNTs) subject to coupled extension and twist deformations. This accounts for the effects of natural extension-twist coupling [K. Chandraseker, S. Mukherjee, ASME J. Appl. Mech. 73 (2) (2006) 315-326; K. Chandraseker, S. Mukherjee, Y.X. Mukherjee, Int. J. Solids Struct. 43 (2006) 7128-7144] on SWNT constitutive properties. The constitutive properties are evaluated by assuming a cylindrical reference configuration [Chandraseker and Mukherjee, 2006; Chandraseker et al., 2006] rather than a planar graphene sheet [P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, Int. J. Solids Struct. 39 (2002) 3893-3906; M. Arroyo, T. Belytschko, Phys. Rev. B 69 (2004) 115415] thereby allowing for the anisotropy and change in strain energy that results from the finite deformation required to roll up a graphene sheet into a nanotube [M. Arroyo, T. Belytschko, Phys. Rev. B 69 (2004) 115415]. The Tersoff-Brenner multi-body empirical interatomic potential for carbon [J. Tersoff, Phys. Rev. B 37 (1988) 6991-7000; D.W. Brenner, Phys. Rev. B 42 (1990) 9458-9471] is used to model the C-C bond energies in this work. This enables exact analytic evaluation of the derivatives of the strain energy density rather than a numerical approach. Consistent values obtained corresponding to these material properties indicate that they do not depend strongly on the chirality of the nanotube [R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998 [7]]. The relative magnitudes of the Young's and shear moduli obtained from this approach fall within the well known range in classical elasticity theory in most cases, and the computed values for the moduli agree well with existing experimental results and atomistic studies that employ the same interatomic potential. Further, in the present work, the moduli are also evaluated using a more accurate, albeit computationally expensive, ab initio density-functional-theoretic (DFT) approach (see for e.g., [D. Sancez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejon, Phys. Rev. B 59 (1999) 12678; K.N. Kudin, G.E. Scuseria, B.I. Yakobson, Phys. Rev. B 64 (2001) 235406]). A comparison between these values and the ones from the atomistic-continuum analysis brings to notice some of the advantages and limitations of both these approaches. |
Author | Chandraseker, Karthick Mukherjee, Subrata |
Author_xml | – sequence: 1 givenname: Karthick surname: Chandraseker fullname: Chandraseker, Karthick – sequence: 2 givenname: Subrata surname: Mukherjee fullname: Mukherjee, Subrata email: sm85@cornell.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18833352$$DView record in Pascal Francis |
BookMark | eNqFkTFv3SAUhVGVSn1J-xvKkm52ABsbhg5PUdJGitSlmRGG65YnDAngRPn3wX1Rhi6ZkOB8h3vPOUUnIQZA6CslLSV0uDi0Ji6LLtm4lhEytJS2hPYf0I6KUTZEEHqCdkSysSGMD5_Qac4HUkkp2A7ZfYmLy8WZxsRQXFjXBetgsZ6wC664iKG-Vn8XA44zLn8Bg9cbgZdoV--22-zCHw_Nk_YeLDY6TVUddIhlnSB_Rh9n7TN8eT3P0N311e_Ln83trx83l_vbxvQ9K41l_QQ95UyzbhgnJin0nRDApR3twETP-cD1rKdhFpYMxBAQk7Uc7CgN5aI7Q9-OvvcpPqx1blVXM-C9DhDXrJiUcsujCs9fhTob7eekg3FZ3ae6aHpWVIiu6ziruu9HnUkx5wSzMq78i6Ik7byiRG0dqIN660BtHShKVe2g8uN__NsX75L7Iwk1r0cHSVUFBAPWJTBF2eje9XgBeh6qOA |
CitedBy_id | crossref_primary_10_1061__ASCE_NM_2153_5477_0000049 crossref_primary_10_1186_1556_276X_8_54 crossref_primary_10_1016_j_physb_2017_06_026 crossref_primary_10_1103_PhysRevB_108_045411 crossref_primary_10_1016_j_ijsolstr_2012_09_008 crossref_primary_10_1016_j_cma_2012_10_013 crossref_primary_10_1177_1740349911412874 crossref_primary_10_1016_j_commatsci_2008_01_032 crossref_primary_10_1371_journal_pone_0064697 crossref_primary_10_1007_s00707_018_2336_7 crossref_primary_10_1016_j_paerosci_2015_12_001 crossref_primary_10_1016_j_spmi_2015_06_001 crossref_primary_10_1177_1464420715584809 crossref_primary_10_1016_j_apm_2017_01_038 crossref_primary_10_1016_j_apm_2011_11_073 crossref_primary_10_4028_www_scientific_net_JNanoR_33_92 crossref_primary_10_3390_ma5010047 crossref_primary_10_1103_PhysRevLett_100_175503 crossref_primary_10_1016_j_compstruct_2014_12_020 crossref_primary_10_1007_s11029_010_9135_0 crossref_primary_10_12989_sss_2014_13_4_685 crossref_primary_10_1021_acsanm_4c03495 crossref_primary_10_1016_j_ijsolstr_2011_02_022 crossref_primary_10_1016_j_carbon_2015_07_092 crossref_primary_10_1016_j_physb_2013_04_047 crossref_primary_10_1016_j_compstruct_2012_07_038 crossref_primary_10_1016_j_commatsci_2015_07_036 crossref_primary_10_1016_j_carbon_2009_01_048 crossref_primary_10_1115_1_4003191 crossref_primary_10_1016_j_commatsci_2009_12_020 crossref_primary_10_1016_j_conbuildmat_2013_09_053 crossref_primary_10_1039_b716565j crossref_primary_10_1007_s00707_011_0528_5 crossref_primary_10_1016_j_compstruct_2011_01_017 crossref_primary_10_1007_s10659_016_9587_0 crossref_primary_10_1007_s11837_020_04287_1 crossref_primary_10_1007_s00707_018_2115_5 crossref_primary_10_1115_1_4003503 crossref_primary_10_1088_1757_899X_178_1_012016 crossref_primary_10_1016_j_ijsolstr_2012_08_031 crossref_primary_10_1007_s10999_008_9087_x crossref_primary_10_1007_s00707_009_0246_4 crossref_primary_10_1016_j_commatsci_2011_04_005 crossref_primary_10_1016_j_commatsci_2009_11_034 |
Cites_doi | 10.1103/PhysRevLett.81.2260 10.1103/PhysRevB.67.115407 10.1016/S0020-7683(02)00186-5 10.1016/j.commatsci.2003.08.004 10.1016/S0009-2614(00)01404-4 10.1103/PhysRevLett.79.1297 10.1103/PhysRevB.61.3078 10.1126/science.287.5453.637 10.1007/s003390050999 10.1016/j.ijsolstr.2006.03.007 10.1093/comjnl/13.3.317 10.1115/1.2125987 10.1103/PhysRevB.62.9973 10.1080/01418619608243000 10.1016/S0022-5096(03)00112-1 10.1090/S0025-5718-1970-0274029-X 10.1103/PhysRevLett.82.944 10.1103/PhysRevB.45.12592 10.1103/PhysRevLett.88.065501 10.1090/S0025-5718-1970-0258249-6 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.70.100102 10.1016/S0038-1098(96)00742-9 10.1016/S0022-5096(98)00051-9 10.1103/PhysRevLett.83.2973 10.1007/s003390050890 10.1016/S0038-1098(98)00626-7 10.1103/PhysRevB.59.235 10.1103/PhysRevB.49.16223 10.1103/PhysRevLett.76.2511 10.1146/annurev.matsci.34.040203.114607 10.1103/PhysRevB.37.6991 10.1103/PhysRevB.64.235406 10.1016/S0009-2614(00)00764-8 10.1016/j.cplett.2004.04.054 10.1103/PhysRevLett.81.4656 10.1103/PhysRevB.47.5485 10.1016/S0022-5096(02)00002-9 10.1016/S0022-3697(97)00045-0 10.1103/PhysRevB.59.12678 10.1103/PhysRevB.69.115415 10.1063/1.471211 10.1016/S0010-4655(00)00072-2 10.1103/PhysRevB.58.14013 10.1103/PhysRevB.13.5188 10.1093/imamat/6.1.76 10.1103/PhysRevB.41.7892 10.1088/0022-3719/11/24/017 10.1103/PhysRevB.42.9458 |
ContentType | Journal Article |
Copyright | 2006 Elsevier B.V. 2007 INIST-CNRS |
Copyright_xml | – notice: 2006 Elsevier B.V. – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
DOI | 10.1016/j.commatsci.2006.11.014 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-0801 |
EndPage | 158 |
ExternalDocumentID | 18833352 10_1016_j_commatsci_2006_11_014 S0927025606003351 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AFXIZ EFKBS IQODW 7SC 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c442t-d24be4152a2367b291e4388e59d7d62845565afab6f8d060c0e8bdd5ed79c1583 |
IEDL.DBID | AIKHN |
ISSN | 0927-0256 |
IngestDate | Mon Jul 21 10:45:52 EDT 2025 Mon Jul 21 09:16:16 EDT 2025 Tue Jul 01 00:37:48 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Fri Feb 23 02:27:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Membrane Cauchy–Born rule Ab initio calculations Nonlinear elasticity Quasicontinuum Atomistic-continuum Constitutive equation Elastic modulus Shear Cauchy-Born rule Digital simulation Elasticity Carbon nanotubes Stress-strain relations Continuum Young modulus Interatomic potential Singlewalled nanotube Anisotropy Atomistic model Graphene Non linear effect |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-d24be4152a2367b291e4388e59d7d62845565afab6f8d060c0e8bdd5ed79c1583 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 29990801 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_29990801 pascalfrancis_primary_18833352 crossref_citationtrail_10_1016_j_commatsci_2006_11_014 crossref_primary_10_1016_j_commatsci_2006_11_014 elsevier_sciencedirect_doi_10_1016_j_commatsci_2006_11_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-07-01 |
PublicationDateYYYYMMDD | 2007-07-01 |
PublicationDate_xml | – month: 07 year: 2007 text: 2007-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computational materials science |
PublicationYear | 2007 |
Publisher | Elsevier B.V Elsevier Science |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science |
References | Lu (bib51) 1997; 58 Saito, Dresselhaus, Dresselhaus (bib7) 1998 Chandraseker, Mukherjee, Mukherjee (bib2) 2006; 43 Sáncez-Portal, Artacho, Soler, Rubio, Ordejón (bib8) 1999; 59 Van Lier, Van Alsenoy, Van Doren, Geerlings (bib20) 2000; 326 Fletcher (bib41) 1970; 13 Cousins (bib28) 1978; 11 Yu, Lourie, Dyer, Moloni, Kelly, Ruoff (bib10) 2000; 287 Nardelli, Yakobson (bib11) 1998; 81 Jiang, Zhang, Liu, Huang, Geubelle, Gao, Hwang (bib26) 2003; 28 Tersoff (bib5) 1988; 37 S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj, PWscf (Plane-Wave Self-Consistent Field). Brenner (bib6) 1990; 42 Ismail-Beigi, Arias (bib35) 2000; 128 . Garg, Han, Sinnott (bib31) 1998; 81 Broyden (bib40) 1970; 6 Zhang, Huang, Geubelle, Klein, Hwang (bib3) 2002; 39 White, Robertson, Mintmire (bib36) 1993; 47 Tadmor, Smith, Bernstein, Kaxiras (bib22) 1996; 73 Shanno (bib43) 1970; 24 Salvetat, Bonard, Thomson, Kulik, Forró, Benoit, Zuppiroli (bib50) 1999; 69 Chandraseker, Mukherjee (bib1) 2006; 73 B.I. Yakobson, Ph. Avouris, Mechanical properties of carbon nanotubes, in: M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Eds.), Topics in Applied Physics, Springer-Verlag, Heidelberg, Germany, Carbon Nanotubes 80 (2001) 287–329. Liu, Jiang, Johnson, Huang (bib27) 2004; 52 Shenoy, Miller, Tadmor, Rodney, Phillips, Ortiz (bib23) 1999; 47 Krishnan, Dujardin, Ebbesen, Yianilos, Treacy (bib53) 1998; 58 Arroyo, Belytschko (bib4) 2004; 69 Dresselhaus, Dresselhaus, Jorio (bib34) 2004; 34 Robertson, Brenner, Mintmire (bib17) 1992; 45 Kudin, Scuseria, Yakobson (bib9) 2001; 64 Mielke, Troya, Zhang, Li, Xiao, Car, Ruoff, Schatz, Belytschko (bib39) 2004; 390 Arroyo, Belytschko (bib25) 2002; 50 Lu (bib13) 1997; 79 Samsonidze, Samsonidze, Yakobson (bib32) 2002; 88 Zhou, Duan, Gu (bib49) 2001; 333 Fago, Hayes, Carter, Ortiz (bib54) 2004; 70 Cornwell, Wille (bib16) 1997; 101 Popov, Van Doren, Balkanski (bib18) 2000; 61 Goldfarb (bib42) 1970; 24 Yakobson, Brabec, Bernholc (bib21) 1996; 76 Govindjee, Sackman (bib14) 1999; 110 Tadmor, Smith, Bernstein, Kaxiras (bib24) 1999; 59 Molina, Savinsky, Khokhriakov (bib48) 1996; 104 Hernández, Goze, Bernier, Rubio (bib19) 1999; 68 Salvetat, D Briggs, Bonard, Bacsa, Kulik, Stöckli, Burnham, Forró (bib47) 1999; 82 Srivastava, Menon, Cho (bib12) 1999; 83 Wei, Cho, Srivastava (bib33) 2003; 67 Vanderbilt (bib38) 1990; 41 Brenner, Shenderova, Harrison, Stuart, Ni, Sinnott (bib52) 2002; 14 Perdew, Burke, Ernzerhof (bib37) 1996; 77 Monkhorst, Pack (bib44) 1976; 13 Blöchl, Jepsen, Andersen (bib45) 1994; 49 Ericksen (bib29) 1984 Ru (bib15) 2000; 62 Goldfarb (10.1016/j.commatsci.2006.11.014_bib42) 1970; 24 Shanno (10.1016/j.commatsci.2006.11.014_bib43) 1970; 24 Nardelli (10.1016/j.commatsci.2006.11.014_bib11) 1998; 81 Arroyo (10.1016/j.commatsci.2006.11.014_bib25) 2002; 50 Yu (10.1016/j.commatsci.2006.11.014_bib10) 2000; 287 Tadmor (10.1016/j.commatsci.2006.11.014_bib24) 1999; 59 Govindjee (10.1016/j.commatsci.2006.11.014_bib14) 1999; 110 Fago (10.1016/j.commatsci.2006.11.014_bib54) 2004; 70 Jiang (10.1016/j.commatsci.2006.11.014_bib26) 2003; 28 Wei (10.1016/j.commatsci.2006.11.014_bib33) 2003; 67 Mielke (10.1016/j.commatsci.2006.11.014_bib39) 2004; 390 Molina (10.1016/j.commatsci.2006.11.014_bib48) 1996; 104 Chandraseker (10.1016/j.commatsci.2006.11.014_bib1) 2006; 73 Lu (10.1016/j.commatsci.2006.11.014_bib13) 1997; 79 Tadmor (10.1016/j.commatsci.2006.11.014_bib22) 1996; 73 Brenner (10.1016/j.commatsci.2006.11.014_bib6) 1990; 42 Ru (10.1016/j.commatsci.2006.11.014_bib15) 2000; 62 10.1016/j.commatsci.2006.11.014_bib30 Salvetat (10.1016/j.commatsci.2006.11.014_bib47) 1999; 82 Monkhorst (10.1016/j.commatsci.2006.11.014_bib44) 1976; 13 Shenoy (10.1016/j.commatsci.2006.11.014_bib23) 1999; 47 Samsonidze (10.1016/j.commatsci.2006.11.014_bib32) 2002; 88 Robertson (10.1016/j.commatsci.2006.11.014_bib17) 1992; 45 Fletcher (10.1016/j.commatsci.2006.11.014_bib41) 1970; 13 Cornwell (10.1016/j.commatsci.2006.11.014_bib16) 1997; 101 Kudin (10.1016/j.commatsci.2006.11.014_bib9) 2001; 64 Tersoff (10.1016/j.commatsci.2006.11.014_bib5) 1988; 37 Van Lier (10.1016/j.commatsci.2006.11.014_bib20) 2000; 326 Arroyo (10.1016/j.commatsci.2006.11.014_bib4) 2004; 69 Hernández (10.1016/j.commatsci.2006.11.014_bib19) 1999; 68 Dresselhaus (10.1016/j.commatsci.2006.11.014_bib34) 2004; 34 Cousins (10.1016/j.commatsci.2006.11.014_bib28) 1978; 11 Sáncez-Portal (10.1016/j.commatsci.2006.11.014_bib8) 1999; 59 Ismail-Beigi (10.1016/j.commatsci.2006.11.014_bib35) 2000; 128 Perdew (10.1016/j.commatsci.2006.11.014_bib37) 1996; 77 Srivastava (10.1016/j.commatsci.2006.11.014_bib12) 1999; 83 10.1016/j.commatsci.2006.11.014_bib46 Salvetat (10.1016/j.commatsci.2006.11.014_bib50) 1999; 69 Yakobson (10.1016/j.commatsci.2006.11.014_bib21) 1996; 76 Garg (10.1016/j.commatsci.2006.11.014_bib31) 1998; 81 Krishnan (10.1016/j.commatsci.2006.11.014_bib53) 1998; 58 Vanderbilt (10.1016/j.commatsci.2006.11.014_bib38) 1990; 41 Chandraseker (10.1016/j.commatsci.2006.11.014_bib2) 2006; 43 Brenner (10.1016/j.commatsci.2006.11.014_bib52) 2002; 14 Lu (10.1016/j.commatsci.2006.11.014_bib51) 1997; 58 Ericksen (10.1016/j.commatsci.2006.11.014_bib29) 1984 Zhang (10.1016/j.commatsci.2006.11.014_bib3) 2002; 39 Liu (10.1016/j.commatsci.2006.11.014_bib27) 2004; 52 Zhou (10.1016/j.commatsci.2006.11.014_bib49) 2001; 333 White (10.1016/j.commatsci.2006.11.014_bib36) 1993; 47 Blöchl (10.1016/j.commatsci.2006.11.014_bib45) 1994; 49 Saito (10.1016/j.commatsci.2006.11.014_bib7) 1998 Broyden (10.1016/j.commatsci.2006.11.014_bib40) 1970; 6 Popov (10.1016/j.commatsci.2006.11.014_bib18) 2000; 61 |
References_xml | – volume: 58 start-page: 1649 year: 1997 end-page: 1652 ident: bib51 publication-title: J. Phys. Chem. Solids – volume: 43 start-page: 7128 year: 2006 end-page: 7144 ident: bib2 publication-title: Int. J. Solids Struct. – volume: 88 start-page: 065501 year: 2002 ident: bib32 publication-title: Phys. Rev. Lett. – volume: 390 start-page: 413 year: 2004 end-page: 420 ident: bib39 publication-title: Chem. Phys. Lett. – volume: 6 start-page: 76 year: 1970 end-page: 90 ident: bib40 publication-title: J. Inst. Math. Appl. – volume: 14 start-page: 783 year: 2002 end-page: 802 ident: bib52 publication-title: J. Phys.: Condens. Matter – volume: 287 start-page: 637 year: 2000 end-page: 640 ident: bib10 publication-title: Science – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib37 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: bib44 publication-title: Phys. Rev. B – volume: 68 start-page: 287 year: 1999 end-page: 292 ident: bib19 publication-title: Appl. Phys. A: Mater. Sci. Process. – volume: 62 start-page: 9973 year: 2000 end-page: 9976 ident: bib15 publication-title: Phys. Rev. B – volume: 13 start-page: 317 year: 1970 end-page: 322 ident: bib41 publication-title: Comput. J. – reference: S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj, PWscf (Plane-Wave Self-Consistent Field). – year: 1998 ident: bib7 article-title: Physical Properties of Carbon Nanotubes – volume: 41 start-page: 7892 year: 1990 end-page: 7895 ident: bib38 publication-title: Phys. Rev. B – volume: 69 start-page: 255 year: 1999 end-page: 260 ident: bib50 publication-title: Appl. Phys. A: Mater. Sci. Process. – volume: 37 start-page: 6991 year: 1988 end-page: 7000 ident: bib5 publication-title: Phys. Rev. B – volume: 81 start-page: 4656 year: 1998 end-page: 4659 ident: bib11 publication-title: Phys. Rev. Lett. – volume: 81 start-page: 2260 year: 1998 end-page: 2263 ident: bib31 publication-title: Phys. Rev. Lett. – volume: 39 start-page: 3893 year: 2002 end-page: 3906 ident: bib3 publication-title: Int. J. Solids Struct. – volume: 59 start-page: 12678 year: 1999 ident: bib8 publication-title: Phys. Rev. B – volume: 47 start-page: 611 year: 1999 end-page: 642 ident: bib23 publication-title: J. Mech. Phys. Solids – volume: 82 start-page: 944 year: 1999 end-page: 947 ident: bib47 publication-title: Phys. Rev. Lett. – volume: 76 start-page: 2511 year: 1996 end-page: 2514 ident: bib21 publication-title: Phys. Rev. Lett. – volume: 326 start-page: 181 year: 2000 end-page: 185 ident: bib20 publication-title: Chem. Phys. Lett. – volume: 128 start-page: 1 year: 2000 end-page: 45 ident: bib35 publication-title: Comput. Phys. Commun. – volume: 73 start-page: 315 year: 2006 end-page: 326 ident: bib1 publication-title: ASME J. Appl. Mech. – volume: 58 start-page: 14013 year: 1998 end-page: 14019 ident: bib53 publication-title: Phys. Rev. B – reference: B.I. Yakobson, Ph. Avouris, Mechanical properties of carbon nanotubes, in: M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Eds.), Topics in Applied Physics, Springer-Verlag, Heidelberg, Germany, Carbon Nanotubes 80 (2001) 287–329. – volume: 52 start-page: 1 year: 2004 end-page: 26 ident: bib27 publication-title: J. Mech. Phys. Solids – volume: 24 start-page: 23 year: 1970 end-page: 26 ident: bib42 publication-title: Math. Comput. – volume: 73 start-page: 1529 year: 1996 end-page: 1563 ident: bib22 publication-title: Philos. Mag. A – volume: 11 start-page: 4867 year: 1978 end-page: 4879 ident: bib28 publication-title: J. Phys. C – volume: 61 start-page: 3078 year: 2000 end-page: 3084 ident: bib18 publication-title: Phys. Rev. B – volume: 83 start-page: 2973 year: 1999 end-page: 2976 ident: bib12 publication-title: Phys. Rev. Lett. – volume: 45 start-page: 12592 year: 1992 end-page: 12595 ident: bib17 publication-title: Phys. Rev. B – volume: 67 start-page: 115407 year: 2003 ident: bib33 publication-title: Phys. Rev. B – volume: 69 start-page: 115415 year: 2004 ident: bib4 publication-title: Phys. Rev. B – volume: 42 start-page: 9458 year: 1990 end-page: 9471 ident: bib6 publication-title: Phys. Rev. B – volume: 64 start-page: 235406 year: 2001 ident: bib9 publication-title: Phys. Rev. B – volume: 59 start-page: 235 year: 1999 end-page: 245 ident: bib24 publication-title: Phys. Rev. B – volume: 70 start-page: 100102(R) year: 2004 ident: bib54 publication-title: Phys. Rev. B – volume: 101 start-page: 555 year: 1997 end-page: 558 ident: bib16 publication-title: Solid State Commun. – volume: 110 start-page: 227 year: 1999 end-page: 230 ident: bib14 publication-title: Solid State Commun. – volume: 333 start-page: 344 year: 2001 end-page: 349 ident: bib49 publication-title: Chem. Phys. Lett. – volume: 24 start-page: 647 year: 1970 end-page: 656 ident: bib43 publication-title: Math. Comput. – volume: 47 start-page: 5485 year: 1993 end-page: 5488 ident: bib36 publication-title: Phys. Rev. B – volume: 49 start-page: 16223 year: 1994 end-page: 16233 ident: bib45 publication-title: Phys. Rev. B – volume: 79 start-page: 1297 year: 1997 end-page: 1300 ident: bib13 publication-title: Phys. Rev. Lett. – volume: 28 start-page: 429 year: 2003 end-page: 442 ident: bib26 publication-title: J. Comput. Mater. Sci. – reference: . – volume: 104 start-page: 4652 year: 1996 end-page: 4656 ident: bib48 publication-title: J. Chem. Phys. – start-page: 61 year: 1984 end-page: 77 ident: bib29 publication-title: Phase Transformations and Material Instabilities in Solids – volume: 50 start-page: 1941 year: 2002 end-page: 1977 ident: bib25 publication-title: J. Mech. Phys. Solids – volume: 34 start-page: 247 year: 2004 end-page: 278 ident: bib34 publication-title: Annu. Rev. Mater. Res. – volume: 81 start-page: 2260 year: 1998 ident: 10.1016/j.commatsci.2006.11.014_bib31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2260 – volume: 67 start-page: 115407 year: 2003 ident: 10.1016/j.commatsci.2006.11.014_bib33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.115407 – volume: 39 start-page: 3893 year: 2002 ident: 10.1016/j.commatsci.2006.11.014_bib3 publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(02)00186-5 – start-page: 61 year: 1984 ident: 10.1016/j.commatsci.2006.11.014_bib29 – volume: 28 start-page: 429 year: 2003 ident: 10.1016/j.commatsci.2006.11.014_bib26 publication-title: J. Comput. Mater. Sci. doi: 10.1016/j.commatsci.2003.08.004 – volume: 333 start-page: 344 year: 2001 ident: 10.1016/j.commatsci.2006.11.014_bib49 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)01404-4 – volume: 79 start-page: 1297 year: 1997 ident: 10.1016/j.commatsci.2006.11.014_bib13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.1297 – volume: 61 start-page: 3078 year: 2000 ident: 10.1016/j.commatsci.2006.11.014_bib18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.3078 – volume: 287 start-page: 637 year: 2000 ident: 10.1016/j.commatsci.2006.11.014_bib10 publication-title: Science doi: 10.1126/science.287.5453.637 – volume: 69 start-page: 255 year: 1999 ident: 10.1016/j.commatsci.2006.11.014_bib50 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s003390050999 – volume: 43 start-page: 7128 year: 2006 ident: 10.1016/j.commatsci.2006.11.014_bib2 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2006.03.007 – volume: 13 start-page: 317 year: 1970 ident: 10.1016/j.commatsci.2006.11.014_bib41 publication-title: Comput. J. doi: 10.1093/comjnl/13.3.317 – volume: 73 start-page: 315 issue: 2 year: 2006 ident: 10.1016/j.commatsci.2006.11.014_bib1 publication-title: ASME J. Appl. Mech. doi: 10.1115/1.2125987 – volume: 62 start-page: 9973 year: 2000 ident: 10.1016/j.commatsci.2006.11.014_bib15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.9973 – volume: 73 start-page: 1529 issue: 6 year: 1996 ident: 10.1016/j.commatsci.2006.11.014_bib22 publication-title: Philos. Mag. A doi: 10.1080/01418619608243000 – volume: 52 start-page: 1 year: 2004 ident: 10.1016/j.commatsci.2006.11.014_bib27 publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(03)00112-1 – volume: 24 start-page: 647 year: 1970 ident: 10.1016/j.commatsci.2006.11.014_bib43 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1970-0274029-X – volume: 82 start-page: 944 year: 1999 ident: 10.1016/j.commatsci.2006.11.014_bib47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.944 – volume: 45 start-page: 12592 year: 1992 ident: 10.1016/j.commatsci.2006.11.014_bib17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.12592 – volume: 88 start-page: 065501 year: 2002 ident: 10.1016/j.commatsci.2006.11.014_bib32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.065501 – volume: 24 start-page: 23 year: 1970 ident: 10.1016/j.commatsci.2006.11.014_bib42 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1970-0258249-6 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.commatsci.2006.11.014_bib37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 70 start-page: 100102(R) year: 2004 ident: 10.1016/j.commatsci.2006.11.014_bib54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.100102 – volume: 101 start-page: 555 year: 1997 ident: 10.1016/j.commatsci.2006.11.014_bib16 publication-title: Solid State Commun. doi: 10.1016/S0038-1098(96)00742-9 – volume: 47 start-page: 611 year: 1999 ident: 10.1016/j.commatsci.2006.11.014_bib23 publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(98)00051-9 – volume: 83 start-page: 2973 year: 1999 ident: 10.1016/j.commatsci.2006.11.014_bib12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.2973 – volume: 14 start-page: 783 year: 2002 ident: 10.1016/j.commatsci.2006.11.014_bib52 publication-title: J. Phys.: Condens. Matter – volume: 68 start-page: 287 year: 1999 ident: 10.1016/j.commatsci.2006.11.014_bib19 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s003390050890 – volume: 110 start-page: 227 year: 1999 ident: 10.1016/j.commatsci.2006.11.014_bib14 publication-title: Solid State Commun. doi: 10.1016/S0038-1098(98)00626-7 – year: 1998 ident: 10.1016/j.commatsci.2006.11.014_bib7 – volume: 59 start-page: 235 year: 1999 ident: 10.1016/j.commatsci.2006.11.014_bib24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.235 – volume: 49 start-page: 16223 year: 1994 ident: 10.1016/j.commatsci.2006.11.014_bib45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.16223 – volume: 76 start-page: 2511 year: 1996 ident: 10.1016/j.commatsci.2006.11.014_bib21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.2511 – volume: 34 start-page: 247 year: 2004 ident: 10.1016/j.commatsci.2006.11.014_bib34 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev.matsci.34.040203.114607 – volume: 37 start-page: 6991 year: 1988 ident: 10.1016/j.commatsci.2006.11.014_bib5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.6991 – volume: 64 start-page: 235406 year: 2001 ident: 10.1016/j.commatsci.2006.11.014_bib9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.235406 – volume: 326 start-page: 181 year: 2000 ident: 10.1016/j.commatsci.2006.11.014_bib20 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)00764-8 – volume: 390 start-page: 413 year: 2004 ident: 10.1016/j.commatsci.2006.11.014_bib39 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.04.054 – volume: 81 start-page: 4656 year: 1998 ident: 10.1016/j.commatsci.2006.11.014_bib11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.4656 – volume: 47 start-page: 5485 year: 1993 ident: 10.1016/j.commatsci.2006.11.014_bib36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.5485 – ident: 10.1016/j.commatsci.2006.11.014_bib46 – volume: 50 start-page: 1941 year: 2002 ident: 10.1016/j.commatsci.2006.11.014_bib25 publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(02)00002-9 – volume: 58 start-page: 1649 year: 1997 ident: 10.1016/j.commatsci.2006.11.014_bib51 publication-title: J. Phys. Chem. Solids doi: 10.1016/S0022-3697(97)00045-0 – volume: 59 start-page: 12678 year: 1999 ident: 10.1016/j.commatsci.2006.11.014_bib8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.12678 – volume: 69 start-page: 115415 year: 2004 ident: 10.1016/j.commatsci.2006.11.014_bib4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.115415 – ident: 10.1016/j.commatsci.2006.11.014_bib30 – volume: 104 start-page: 4652 year: 1996 ident: 10.1016/j.commatsci.2006.11.014_bib48 publication-title: J. Chem. Phys. doi: 10.1063/1.471211 – volume: 128 start-page: 1 year: 2000 ident: 10.1016/j.commatsci.2006.11.014_bib35 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(00)00072-2 – volume: 58 start-page: 14013 year: 1998 ident: 10.1016/j.commatsci.2006.11.014_bib53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.14013 – volume: 13 start-page: 5188 year: 1976 ident: 10.1016/j.commatsci.2006.11.014_bib44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 6 start-page: 76 year: 1970 ident: 10.1016/j.commatsci.2006.11.014_bib40 publication-title: J. Inst. Math. Appl. doi: 10.1093/imamat/6.1.76 – volume: 41 start-page: 7892 year: 1990 ident: 10.1016/j.commatsci.2006.11.014_bib38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.7892 – volume: 11 start-page: 4867 year: 1978 ident: 10.1016/j.commatsci.2006.11.014_bib28 publication-title: J. Phys. C doi: 10.1088/0022-3719/11/24/017 – volume: 42 start-page: 9458 year: 1990 ident: 10.1016/j.commatsci.2006.11.014_bib6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.42.9458 |
SSID | ssj0016982 |
Score | 2.05019 |
Snippet | This paper deals with the calculation of elastic moduli and stress–strain curves for single-walled carbon nanotubes (SWNTs) using a computationally efficient,... This paper deals with the calculation of elastic moduli and stress-strain curves for single-walled carbon nanotubes (SWNTs) using a computationally efficient,... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 147 |
SubjectTerms | Ab initio calculations Atomistic-continuum Cauchy–Born rule Condensed matter: structure, mechanical and thermal properties Exact sciences and technology Mechanical and acoustical properties of condensed matter Mechanical properties of nanoscale materials Membrane Nonlinear elasticity Physics Quasicontinuum |
Title | Atomistic-continuum and ab initio estimation of the elastic moduli of single-walled carbon nanotubes |
URI | https://dx.doi.org/10.1016/j.commatsci.2006.11.014 https://www.proquest.com/docview/29990801 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZ4XBYhBMuuKI_iw15N83CchFuFQAUkLoDELbLjiZRVm1RtIm78dmbyKFSrFQcuOSSeOJqx5pvYM_Mx9kdloQ29CIRE-BAyNVZowItxtApd8PFZ0-3zQU2e5d1L8LLBrvpaGEqr7Hx_69Mbb93dGXXaHM3zfPToxFRLhYitiJCMyqi3PT9WuLS3x7f3k4fVYYKKG84oGi9IYC3NC1-PoSFO0B5MUEdPV_4PpHbneomqy1rOi3_cd4NJN_tsrwsm-bj93gO2AcVPtvOpxeAhs-OqnDXNmAVlpedFXc-4LizXhueUOFRy6rPRFjDyMuMYEHLAkBol-Ky09TSnu7SjMAXxSswrlqd6YXB0oYuyqg0sf7Hnm-unq4nomBVEKqVXCetJAwTdmhq4GS92QfpRBEFsQ6sQsQKM83Smjcoii_pNHYiMtQHYME7dIPJ_s62iLOCIcURBLTOtfXBSaUOtlZsGkIVxQ2QCMGCqV2WSdm3Hif1imvT5ZX-TlQ2IFFPhT0mCNhgwZyU4bztvfC1y2dsqWVtECeLD18LDNet-TEp8zBinDth5b-4EDUcHK7qAsl4mCOkxRt7u8XfmP2E_-n1jxz1lW9WihjMMeCozZJsXb-6wW9bvEJcDYg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQHFiEVsAuoiwPH7iaJq3jJNwQApXnBZC4WXY8kbJqk6pNxG1_-87kUagQ4sAlB8djRx57vok9no-xE5WGLhxEICTCh5CJdcIAPqxnVOjDEN_V2T4f1OhZ3rwELyvsorsLQ2GVre1vbHptrduSfjua_WmW9R-9mO5SIWIrIiSja9RrEpcvrc7Tf4s4D1_FNWMU1RZUfSnICxtHxxCbb44lKJ-nLz-DqM2pmePApQ3jxQfjXSPS1Rb72bqS_Lz52m22AvkO23iXYPAXc-dlMalTMQuKSc_yqppwkztuLM8obKjglGWjub7Ii5SjO8gBHWqU4JPCVeOMSmk_YQzilXhXHE_MzGLt3ORFWVmY_2bPV5dPFyPR8iqIRMpBKdxAWiDgNpS-zQ5iH-QwiiCIXegU4lWAXp5JjVVp5HB0Ew8i61wALowTP4iGu2w1L3LYYxwx0MjUmCF4iXShMcpPAkjDuKYxAegx1Q2lTtqk48R9MdZddNlfvdABUWIq_CXRqIMe8xaC0ybvxtciZ52u9NIU0ogOXwsfLWn3rVNiY0YvtceOO3VrVBwdq5gcimquEdBj9Lv9_e_0f8zWR0_3d_ru-uH2D_vR7SB7_gFbLWcVHKLrU9qjemr_BzXABCY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomistic-continuum+and+ab+initio+estimation+of+the+elastic+moduli+of+single-walled+carbon+nanotubes&rft.jtitle=Computational+materials+science&rft.au=CHANDRASEKER%2C+Karthick&rft.au=MUKHERJEE%2C+Subrata&rft.date=2007-07-01&rft.pub=Elsevier+Science&rft.issn=0927-0256&rft.volume=40&rft.issue=1&rft.spage=147&rft.epage=158&rft_id=info:doi/10.1016%2Fj.commatsci.2006.11.014&rft.externalDBID=n%2Fa&rft.externalDocID=18833352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |