Atomistic-continuum and ab initio estimation of the elastic moduli of single-walled carbon nanotubes

This paper deals with the calculation of elastic moduli and stress–strain curves for single-walled carbon nanotubes (SWNTs) using a computationally efficient, atomistically enriched continuum analysis. This approach is adopted to estimate shear and Young’s moduli and obtain stress–strain curves for...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 40; no. 1; pp. 147 - 158
Main Authors Chandraseker, Karthick, Mukherjee, Subrata
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.07.2007
Elsevier Science
Subjects
Online AccessGet full text
ISSN0927-0256
1879-0801
DOI10.1016/j.commatsci.2006.11.014

Cover

Loading…
Abstract This paper deals with the calculation of elastic moduli and stress–strain curves for single-walled carbon nanotubes (SWNTs) using a computationally efficient, atomistically enriched continuum analysis. This approach is adopted to estimate shear and Young’s moduli and obtain stress–strain curves for carbon nanotubes (CNTs) subject to coupled extension and twist deformations. This accounts for the effects of natural extension-twist coupling [K. Chandraseker, S. Mukherjee, ASME J. Appl. Mech. 73 (2) (2006) 315–326; K. Chandraseker, S. Mukherjee, Y.X. Mukherjee, Int. J. Solids Struct. 43 (2006) 7128–7144] on SWNT constitutive properties. The constitutive properties are evaluated by assuming a cylindrical reference configuration [Chandraseker and Mukherjee, 2006; Chandraseker et al., 2006] rather than a planar graphene sheet [P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, Int. J. Solids Struct. 39 (2002) 3893–3906; M. Arroyo, T. Belytschko, Phys. Rev. B 69 (2004) 115415] thereby allowing for the anisotropy and change in strain energy that results from the finite deformation required to roll up a graphene sheet into a nanotube [M. Arroyo, T. Belytschko, Phys. Rev. B 69 (2004) 115415]. The Tersoff–Brenner multi-body empirical interatomic potential for carbon [J. Tersoff, Phys. Rev. B 37 (1988) 6991–7000; D.W. Brenner, Phys. Rev. B 42 (1990) 9458–9471] is used to model the C–C bond energies in this work. This enables exact analytic evaluation of the derivatives of the strain energy density rather than a numerical approach. Consistent values obtained corresponding to these material properties indicate that they do not depend strongly on the chirality of the nanotube [R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998 [7]]. The relative magnitudes of the Young’s and shear moduli obtained from this approach fall within the well known range in classical elasticity theory in most cases, and the computed values for the moduli agree well with existing experimental results and atomistic studies that employ the same interatomic potential. Further, in the present work, the moduli are also evaluated using a more accurate, albeit computationally expensive, ab initio density-functional-theoretic (DFT) approach (see for e.g., [D. Sáncez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejón, Phys. Rev. B 59 (1999) 12678; K.N. Kudin, G.E. Scuseria, B.I. Yakobson, Phys. Rev. B 64 (2001) 235406]). A comparison between these values and the ones from the atomistic-continuum analysis brings to notice some of the advantages and limitations of both these approaches.
AbstractList This paper deals with the calculation of elastic moduli and stress–strain curves for single-walled carbon nanotubes (SWNTs) using a computationally efficient, atomistically enriched continuum analysis. This approach is adopted to estimate shear and Young’s moduli and obtain stress–strain curves for carbon nanotubes (CNTs) subject to coupled extension and twist deformations. This accounts for the effects of natural extension-twist coupling [K. Chandraseker, S. Mukherjee, ASME J. Appl. Mech. 73 (2) (2006) 315–326; K. Chandraseker, S. Mukherjee, Y.X. Mukherjee, Int. J. Solids Struct. 43 (2006) 7128–7144] on SWNT constitutive properties. The constitutive properties are evaluated by assuming a cylindrical reference configuration [Chandraseker and Mukherjee, 2006; Chandraseker et al., 2006] rather than a planar graphene sheet [P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, Int. J. Solids Struct. 39 (2002) 3893–3906; M. Arroyo, T. Belytschko, Phys. Rev. B 69 (2004) 115415] thereby allowing for the anisotropy and change in strain energy that results from the finite deformation required to roll up a graphene sheet into a nanotube [M. Arroyo, T. Belytschko, Phys. Rev. B 69 (2004) 115415]. The Tersoff–Brenner multi-body empirical interatomic potential for carbon [J. Tersoff, Phys. Rev. B 37 (1988) 6991–7000; D.W. Brenner, Phys. Rev. B 42 (1990) 9458–9471] is used to model the C–C bond energies in this work. This enables exact analytic evaluation of the derivatives of the strain energy density rather than a numerical approach. Consistent values obtained corresponding to these material properties indicate that they do not depend strongly on the chirality of the nanotube [R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998 [7]]. The relative magnitudes of the Young’s and shear moduli obtained from this approach fall within the well known range in classical elasticity theory in most cases, and the computed values for the moduli agree well with existing experimental results and atomistic studies that employ the same interatomic potential. Further, in the present work, the moduli are also evaluated using a more accurate, albeit computationally expensive, ab initio density-functional-theoretic (DFT) approach (see for e.g., [D. Sáncez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejón, Phys. Rev. B 59 (1999) 12678; K.N. Kudin, G.E. Scuseria, B.I. Yakobson, Phys. Rev. B 64 (2001) 235406]). A comparison between these values and the ones from the atomistic-continuum analysis brings to notice some of the advantages and limitations of both these approaches.
This paper deals with the calculation of elastic moduli and stress-strain curves for single-walled carbon nanotubes (SWNTs) using a computationally efficient, atomistically enriched continuum analysis. This approach is adopted to estimate shear and Young's moduli and obtain stress-strain curves for carbon nanotubes (CNTs) subject to coupled extension and twist deformations. This accounts for the effects of natural extension-twist coupling [K. Chandraseker, S. Mukherjee, ASME J. Appl. Mech. 73 (2) (2006) 315-326; K. Chandraseker, S. Mukherjee, Y.X. Mukherjee, Int. J. Solids Struct. 43 (2006) 7128-7144] on SWNT constitutive properties. The constitutive properties are evaluated by assuming a cylindrical reference configuration [Chandraseker and Mukherjee, 2006; Chandraseker et al., 2006] rather than a planar graphene sheet [P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, Int. J. Solids Struct. 39 (2002) 3893-3906; M. Arroyo, T. Belytschko, Phys. Rev. B 69 (2004) 115415] thereby allowing for the anisotropy and change in strain energy that results from the finite deformation required to roll up a graphene sheet into a nanotube [M. Arroyo, T. Belytschko, Phys. Rev. B 69 (2004) 115415]. The Tersoff-Brenner multi-body empirical interatomic potential for carbon [J. Tersoff, Phys. Rev. B 37 (1988) 6991-7000; D.W. Brenner, Phys. Rev. B 42 (1990) 9458-9471] is used to model the C-C bond energies in this work. This enables exact analytic evaluation of the derivatives of the strain energy density rather than a numerical approach. Consistent values obtained corresponding to these material properties indicate that they do not depend strongly on the chirality of the nanotube [R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998 [7]]. The relative magnitudes of the Young's and shear moduli obtained from this approach fall within the well known range in classical elasticity theory in most cases, and the computed values for the moduli agree well with existing experimental results and atomistic studies that employ the same interatomic potential. Further, in the present work, the moduli are also evaluated using a more accurate, albeit computationally expensive, ab initio density-functional-theoretic (DFT) approach (see for e.g., [D. Sancez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejon, Phys. Rev. B 59 (1999) 12678; K.N. Kudin, G.E. Scuseria, B.I. Yakobson, Phys. Rev. B 64 (2001) 235406]). A comparison between these values and the ones from the atomistic-continuum analysis brings to notice some of the advantages and limitations of both these approaches.
Author Chandraseker, Karthick
Mukherjee, Subrata
Author_xml – sequence: 1
  givenname: Karthick
  surname: Chandraseker
  fullname: Chandraseker, Karthick
– sequence: 2
  givenname: Subrata
  surname: Mukherjee
  fullname: Mukherjee, Subrata
  email: sm85@cornell.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18833352$$DView record in Pascal Francis
BookMark eNqFkTFv3SAUhVGVSn1J-xvKkm52ABsbhg5PUdJGitSlmRGG65YnDAngRPn3wX1Rhi6ZkOB8h3vPOUUnIQZA6CslLSV0uDi0Ji6LLtm4lhEytJS2hPYf0I6KUTZEEHqCdkSysSGMD5_Qac4HUkkp2A7ZfYmLy8WZxsRQXFjXBetgsZ6wC664iKG-Vn8XA44zLn8Bg9cbgZdoV--22-zCHw_Nk_YeLDY6TVUddIhlnSB_Rh9n7TN8eT3P0N311e_Ln83trx83l_vbxvQ9K41l_QQ95UyzbhgnJin0nRDApR3twETP-cD1rKdhFpYMxBAQk7Uc7CgN5aI7Q9-OvvcpPqx1blVXM-C9DhDXrJiUcsujCs9fhTob7eekg3FZ3ae6aHpWVIiu6ziruu9HnUkx5wSzMq78i6Ik7byiRG0dqIN660BtHShKVe2g8uN__NsX75L7Iwk1r0cHSVUFBAPWJTBF2eje9XgBeh6qOA
CitedBy_id crossref_primary_10_1061__ASCE_NM_2153_5477_0000049
crossref_primary_10_1186_1556_276X_8_54
crossref_primary_10_1016_j_physb_2017_06_026
crossref_primary_10_1103_PhysRevB_108_045411
crossref_primary_10_1016_j_ijsolstr_2012_09_008
crossref_primary_10_1016_j_cma_2012_10_013
crossref_primary_10_1177_1740349911412874
crossref_primary_10_1016_j_commatsci_2008_01_032
crossref_primary_10_1371_journal_pone_0064697
crossref_primary_10_1007_s00707_018_2336_7
crossref_primary_10_1016_j_paerosci_2015_12_001
crossref_primary_10_1016_j_spmi_2015_06_001
crossref_primary_10_1177_1464420715584809
crossref_primary_10_1016_j_apm_2017_01_038
crossref_primary_10_1016_j_apm_2011_11_073
crossref_primary_10_4028_www_scientific_net_JNanoR_33_92
crossref_primary_10_3390_ma5010047
crossref_primary_10_1103_PhysRevLett_100_175503
crossref_primary_10_1016_j_compstruct_2014_12_020
crossref_primary_10_1007_s11029_010_9135_0
crossref_primary_10_12989_sss_2014_13_4_685
crossref_primary_10_1021_acsanm_4c03495
crossref_primary_10_1016_j_ijsolstr_2011_02_022
crossref_primary_10_1016_j_carbon_2015_07_092
crossref_primary_10_1016_j_physb_2013_04_047
crossref_primary_10_1016_j_compstruct_2012_07_038
crossref_primary_10_1016_j_commatsci_2015_07_036
crossref_primary_10_1016_j_carbon_2009_01_048
crossref_primary_10_1115_1_4003191
crossref_primary_10_1016_j_commatsci_2009_12_020
crossref_primary_10_1016_j_conbuildmat_2013_09_053
crossref_primary_10_1039_b716565j
crossref_primary_10_1007_s00707_011_0528_5
crossref_primary_10_1016_j_compstruct_2011_01_017
crossref_primary_10_1007_s10659_016_9587_0
crossref_primary_10_1007_s11837_020_04287_1
crossref_primary_10_1007_s00707_018_2115_5
crossref_primary_10_1115_1_4003503
crossref_primary_10_1088_1757_899X_178_1_012016
crossref_primary_10_1016_j_ijsolstr_2012_08_031
crossref_primary_10_1007_s10999_008_9087_x
crossref_primary_10_1007_s00707_009_0246_4
crossref_primary_10_1016_j_commatsci_2011_04_005
crossref_primary_10_1016_j_commatsci_2009_11_034
Cites_doi 10.1103/PhysRevLett.81.2260
10.1103/PhysRevB.67.115407
10.1016/S0020-7683(02)00186-5
10.1016/j.commatsci.2003.08.004
10.1016/S0009-2614(00)01404-4
10.1103/PhysRevLett.79.1297
10.1103/PhysRevB.61.3078
10.1126/science.287.5453.637
10.1007/s003390050999
10.1016/j.ijsolstr.2006.03.007
10.1093/comjnl/13.3.317
10.1115/1.2125987
10.1103/PhysRevB.62.9973
10.1080/01418619608243000
10.1016/S0022-5096(03)00112-1
10.1090/S0025-5718-1970-0274029-X
10.1103/PhysRevLett.82.944
10.1103/PhysRevB.45.12592
10.1103/PhysRevLett.88.065501
10.1090/S0025-5718-1970-0258249-6
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.70.100102
10.1016/S0038-1098(96)00742-9
10.1016/S0022-5096(98)00051-9
10.1103/PhysRevLett.83.2973
10.1007/s003390050890
10.1016/S0038-1098(98)00626-7
10.1103/PhysRevB.59.235
10.1103/PhysRevB.49.16223
10.1103/PhysRevLett.76.2511
10.1146/annurev.matsci.34.040203.114607
10.1103/PhysRevB.37.6991
10.1103/PhysRevB.64.235406
10.1016/S0009-2614(00)00764-8
10.1016/j.cplett.2004.04.054
10.1103/PhysRevLett.81.4656
10.1103/PhysRevB.47.5485
10.1016/S0022-5096(02)00002-9
10.1016/S0022-3697(97)00045-0
10.1103/PhysRevB.59.12678
10.1103/PhysRevB.69.115415
10.1063/1.471211
10.1016/S0010-4655(00)00072-2
10.1103/PhysRevB.58.14013
10.1103/PhysRevB.13.5188
10.1093/imamat/6.1.76
10.1103/PhysRevB.41.7892
10.1088/0022-3719/11/24/017
10.1103/PhysRevB.42.9458
ContentType Journal Article
Copyright 2006 Elsevier B.V.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier B.V.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOI 10.1016/j.commatsci.2006.11.014
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0801
EndPage 158
ExternalDocumentID 18833352
10_1016_j_commatsci_2006_11_014
S0927025606003351
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AFXIZ
EFKBS
IQODW
7SC
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c442t-d24be4152a2367b291e4388e59d7d62845565afab6f8d060c0e8bdd5ed79c1583
IEDL.DBID AIKHN
ISSN 0927-0256
IngestDate Mon Jul 21 10:45:52 EDT 2025
Mon Jul 21 09:16:16 EDT 2025
Tue Jul 01 00:37:48 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Fri Feb 23 02:27:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Membrane
Cauchy–Born rule
Ab initio calculations
Nonlinear elasticity
Quasicontinuum
Atomistic-continuum
Constitutive equation
Elastic modulus
Shear
Cauchy-Born rule
Digital simulation
Elasticity
Carbon nanotubes
Stress-strain relations
Continuum
Young modulus
Interatomic potential
Singlewalled nanotube
Anisotropy
Atomistic model
Graphene
Non linear effect
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-d24be4152a2367b291e4388e59d7d62845565afab6f8d060c0e8bdd5ed79c1583
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29990801
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_29990801
pascalfrancis_primary_18833352
crossref_citationtrail_10_1016_j_commatsci_2006_11_014
crossref_primary_10_1016_j_commatsci_2006_11_014
elsevier_sciencedirect_doi_10_1016_j_commatsci_2006_11_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-07-01
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computational materials science
PublicationYear 2007
Publisher Elsevier B.V
Elsevier Science
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
References Lu (bib51) 1997; 58
Saito, Dresselhaus, Dresselhaus (bib7) 1998
Chandraseker, Mukherjee, Mukherjee (bib2) 2006; 43
Sáncez-Portal, Artacho, Soler, Rubio, Ordejón (bib8) 1999; 59
Van Lier, Van Alsenoy, Van Doren, Geerlings (bib20) 2000; 326
Fletcher (bib41) 1970; 13
Cousins (bib28) 1978; 11
Yu, Lourie, Dyer, Moloni, Kelly, Ruoff (bib10) 2000; 287
Nardelli, Yakobson (bib11) 1998; 81
Jiang, Zhang, Liu, Huang, Geubelle, Gao, Hwang (bib26) 2003; 28
Tersoff (bib5) 1988; 37
S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj, PWscf (Plane-Wave Self-Consistent Field).
Brenner (bib6) 1990; 42
Ismail-Beigi, Arias (bib35) 2000; 128
.
Garg, Han, Sinnott (bib31) 1998; 81
Broyden (bib40) 1970; 6
Zhang, Huang, Geubelle, Klein, Hwang (bib3) 2002; 39
White, Robertson, Mintmire (bib36) 1993; 47
Tadmor, Smith, Bernstein, Kaxiras (bib22) 1996; 73
Shanno (bib43) 1970; 24
Salvetat, Bonard, Thomson, Kulik, Forró, Benoit, Zuppiroli (bib50) 1999; 69
Chandraseker, Mukherjee (bib1) 2006; 73
B.I. Yakobson, Ph. Avouris, Mechanical properties of carbon nanotubes, in: M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Eds.), Topics in Applied Physics, Springer-Verlag, Heidelberg, Germany, Carbon Nanotubes 80 (2001) 287–329.
Liu, Jiang, Johnson, Huang (bib27) 2004; 52
Shenoy, Miller, Tadmor, Rodney, Phillips, Ortiz (bib23) 1999; 47
Krishnan, Dujardin, Ebbesen, Yianilos, Treacy (bib53) 1998; 58
Arroyo, Belytschko (bib4) 2004; 69
Dresselhaus, Dresselhaus, Jorio (bib34) 2004; 34
Robertson, Brenner, Mintmire (bib17) 1992; 45
Kudin, Scuseria, Yakobson (bib9) 2001; 64
Mielke, Troya, Zhang, Li, Xiao, Car, Ruoff, Schatz, Belytschko (bib39) 2004; 390
Arroyo, Belytschko (bib25) 2002; 50
Lu (bib13) 1997; 79
Samsonidze, Samsonidze, Yakobson (bib32) 2002; 88
Zhou, Duan, Gu (bib49) 2001; 333
Fago, Hayes, Carter, Ortiz (bib54) 2004; 70
Cornwell, Wille (bib16) 1997; 101
Popov, Van Doren, Balkanski (bib18) 2000; 61
Goldfarb (bib42) 1970; 24
Yakobson, Brabec, Bernholc (bib21) 1996; 76
Govindjee, Sackman (bib14) 1999; 110
Tadmor, Smith, Bernstein, Kaxiras (bib24) 1999; 59
Molina, Savinsky, Khokhriakov (bib48) 1996; 104
Hernández, Goze, Bernier, Rubio (bib19) 1999; 68
Salvetat, D Briggs, Bonard, Bacsa, Kulik, Stöckli, Burnham, Forró (bib47) 1999; 82
Srivastava, Menon, Cho (bib12) 1999; 83
Wei, Cho, Srivastava (bib33) 2003; 67
Vanderbilt (bib38) 1990; 41
Brenner, Shenderova, Harrison, Stuart, Ni, Sinnott (bib52) 2002; 14
Perdew, Burke, Ernzerhof (bib37) 1996; 77
Monkhorst, Pack (bib44) 1976; 13
Blöchl, Jepsen, Andersen (bib45) 1994; 49
Ericksen (bib29) 1984
Ru (bib15) 2000; 62
Goldfarb (10.1016/j.commatsci.2006.11.014_bib42) 1970; 24
Shanno (10.1016/j.commatsci.2006.11.014_bib43) 1970; 24
Nardelli (10.1016/j.commatsci.2006.11.014_bib11) 1998; 81
Arroyo (10.1016/j.commatsci.2006.11.014_bib25) 2002; 50
Yu (10.1016/j.commatsci.2006.11.014_bib10) 2000; 287
Tadmor (10.1016/j.commatsci.2006.11.014_bib24) 1999; 59
Govindjee (10.1016/j.commatsci.2006.11.014_bib14) 1999; 110
Fago (10.1016/j.commatsci.2006.11.014_bib54) 2004; 70
Jiang (10.1016/j.commatsci.2006.11.014_bib26) 2003; 28
Wei (10.1016/j.commatsci.2006.11.014_bib33) 2003; 67
Mielke (10.1016/j.commatsci.2006.11.014_bib39) 2004; 390
Molina (10.1016/j.commatsci.2006.11.014_bib48) 1996; 104
Chandraseker (10.1016/j.commatsci.2006.11.014_bib1) 2006; 73
Lu (10.1016/j.commatsci.2006.11.014_bib13) 1997; 79
Tadmor (10.1016/j.commatsci.2006.11.014_bib22) 1996; 73
Brenner (10.1016/j.commatsci.2006.11.014_bib6) 1990; 42
Ru (10.1016/j.commatsci.2006.11.014_bib15) 2000; 62
10.1016/j.commatsci.2006.11.014_bib30
Salvetat (10.1016/j.commatsci.2006.11.014_bib47) 1999; 82
Monkhorst (10.1016/j.commatsci.2006.11.014_bib44) 1976; 13
Shenoy (10.1016/j.commatsci.2006.11.014_bib23) 1999; 47
Samsonidze (10.1016/j.commatsci.2006.11.014_bib32) 2002; 88
Robertson (10.1016/j.commatsci.2006.11.014_bib17) 1992; 45
Fletcher (10.1016/j.commatsci.2006.11.014_bib41) 1970; 13
Cornwell (10.1016/j.commatsci.2006.11.014_bib16) 1997; 101
Kudin (10.1016/j.commatsci.2006.11.014_bib9) 2001; 64
Tersoff (10.1016/j.commatsci.2006.11.014_bib5) 1988; 37
Van Lier (10.1016/j.commatsci.2006.11.014_bib20) 2000; 326
Arroyo (10.1016/j.commatsci.2006.11.014_bib4) 2004; 69
Hernández (10.1016/j.commatsci.2006.11.014_bib19) 1999; 68
Dresselhaus (10.1016/j.commatsci.2006.11.014_bib34) 2004; 34
Cousins (10.1016/j.commatsci.2006.11.014_bib28) 1978; 11
Sáncez-Portal (10.1016/j.commatsci.2006.11.014_bib8) 1999; 59
Ismail-Beigi (10.1016/j.commatsci.2006.11.014_bib35) 2000; 128
Perdew (10.1016/j.commatsci.2006.11.014_bib37) 1996; 77
Srivastava (10.1016/j.commatsci.2006.11.014_bib12) 1999; 83
10.1016/j.commatsci.2006.11.014_bib46
Salvetat (10.1016/j.commatsci.2006.11.014_bib50) 1999; 69
Yakobson (10.1016/j.commatsci.2006.11.014_bib21) 1996; 76
Garg (10.1016/j.commatsci.2006.11.014_bib31) 1998; 81
Krishnan (10.1016/j.commatsci.2006.11.014_bib53) 1998; 58
Vanderbilt (10.1016/j.commatsci.2006.11.014_bib38) 1990; 41
Chandraseker (10.1016/j.commatsci.2006.11.014_bib2) 2006; 43
Brenner (10.1016/j.commatsci.2006.11.014_bib52) 2002; 14
Lu (10.1016/j.commatsci.2006.11.014_bib51) 1997; 58
Ericksen (10.1016/j.commatsci.2006.11.014_bib29) 1984
Zhang (10.1016/j.commatsci.2006.11.014_bib3) 2002; 39
Liu (10.1016/j.commatsci.2006.11.014_bib27) 2004; 52
Zhou (10.1016/j.commatsci.2006.11.014_bib49) 2001; 333
White (10.1016/j.commatsci.2006.11.014_bib36) 1993; 47
Blöchl (10.1016/j.commatsci.2006.11.014_bib45) 1994; 49
Saito (10.1016/j.commatsci.2006.11.014_bib7) 1998
Broyden (10.1016/j.commatsci.2006.11.014_bib40) 1970; 6
Popov (10.1016/j.commatsci.2006.11.014_bib18) 2000; 61
References_xml – volume: 58
  start-page: 1649
  year: 1997
  end-page: 1652
  ident: bib51
  publication-title: J. Phys. Chem. Solids
– volume: 43
  start-page: 7128
  year: 2006
  end-page: 7144
  ident: bib2
  publication-title: Int. J. Solids Struct.
– volume: 88
  start-page: 065501
  year: 2002
  ident: bib32
  publication-title: Phys. Rev. Lett.
– volume: 390
  start-page: 413
  year: 2004
  end-page: 420
  ident: bib39
  publication-title: Chem. Phys. Lett.
– volume: 6
  start-page: 76
  year: 1970
  end-page: 90
  ident: bib40
  publication-title: J. Inst. Math. Appl.
– volume: 14
  start-page: 783
  year: 2002
  end-page: 802
  ident: bib52
  publication-title: J. Phys.: Condens. Matter
– volume: 287
  start-page: 637
  year: 2000
  end-page: 640
  ident: bib10
  publication-title: Science
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib37
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: bib44
  publication-title: Phys. Rev. B
– volume: 68
  start-page: 287
  year: 1999
  end-page: 292
  ident: bib19
  publication-title: Appl. Phys. A: Mater. Sci. Process.
– volume: 62
  start-page: 9973
  year: 2000
  end-page: 9976
  ident: bib15
  publication-title: Phys. Rev. B
– volume: 13
  start-page: 317
  year: 1970
  end-page: 322
  ident: bib41
  publication-title: Comput. J.
– reference: S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj, PWscf (Plane-Wave Self-Consistent Field).
– year: 1998
  ident: bib7
  article-title: Physical Properties of Carbon Nanotubes
– volume: 41
  start-page: 7892
  year: 1990
  end-page: 7895
  ident: bib38
  publication-title: Phys. Rev. B
– volume: 69
  start-page: 255
  year: 1999
  end-page: 260
  ident: bib50
  publication-title: Appl. Phys. A: Mater. Sci. Process.
– volume: 37
  start-page: 6991
  year: 1988
  end-page: 7000
  ident: bib5
  publication-title: Phys. Rev. B
– volume: 81
  start-page: 4656
  year: 1998
  end-page: 4659
  ident: bib11
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 2260
  year: 1998
  end-page: 2263
  ident: bib31
  publication-title: Phys. Rev. Lett.
– volume: 39
  start-page: 3893
  year: 2002
  end-page: 3906
  ident: bib3
  publication-title: Int. J. Solids Struct.
– volume: 59
  start-page: 12678
  year: 1999
  ident: bib8
  publication-title: Phys. Rev. B
– volume: 47
  start-page: 611
  year: 1999
  end-page: 642
  ident: bib23
  publication-title: J. Mech. Phys. Solids
– volume: 82
  start-page: 944
  year: 1999
  end-page: 947
  ident: bib47
  publication-title: Phys. Rev. Lett.
– volume: 76
  start-page: 2511
  year: 1996
  end-page: 2514
  ident: bib21
  publication-title: Phys. Rev. Lett.
– volume: 326
  start-page: 181
  year: 2000
  end-page: 185
  ident: bib20
  publication-title: Chem. Phys. Lett.
– volume: 128
  start-page: 1
  year: 2000
  end-page: 45
  ident: bib35
  publication-title: Comput. Phys. Commun.
– volume: 73
  start-page: 315
  year: 2006
  end-page: 326
  ident: bib1
  publication-title: ASME J. Appl. Mech.
– volume: 58
  start-page: 14013
  year: 1998
  end-page: 14019
  ident: bib53
  publication-title: Phys. Rev. B
– reference: B.I. Yakobson, Ph. Avouris, Mechanical properties of carbon nanotubes, in: M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Eds.), Topics in Applied Physics, Springer-Verlag, Heidelberg, Germany, Carbon Nanotubes 80 (2001) 287–329.
– volume: 52
  start-page: 1
  year: 2004
  end-page: 26
  ident: bib27
  publication-title: J. Mech. Phys. Solids
– volume: 24
  start-page: 23
  year: 1970
  end-page: 26
  ident: bib42
  publication-title: Math. Comput.
– volume: 73
  start-page: 1529
  year: 1996
  end-page: 1563
  ident: bib22
  publication-title: Philos. Mag. A
– volume: 11
  start-page: 4867
  year: 1978
  end-page: 4879
  ident: bib28
  publication-title: J. Phys. C
– volume: 61
  start-page: 3078
  year: 2000
  end-page: 3084
  ident: bib18
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 2973
  year: 1999
  end-page: 2976
  ident: bib12
  publication-title: Phys. Rev. Lett.
– volume: 45
  start-page: 12592
  year: 1992
  end-page: 12595
  ident: bib17
  publication-title: Phys. Rev. B
– volume: 67
  start-page: 115407
  year: 2003
  ident: bib33
  publication-title: Phys. Rev. B
– volume: 69
  start-page: 115415
  year: 2004
  ident: bib4
  publication-title: Phys. Rev. B
– volume: 42
  start-page: 9458
  year: 1990
  end-page: 9471
  ident: bib6
  publication-title: Phys. Rev. B
– volume: 64
  start-page: 235406
  year: 2001
  ident: bib9
  publication-title: Phys. Rev. B
– volume: 59
  start-page: 235
  year: 1999
  end-page: 245
  ident: bib24
  publication-title: Phys. Rev. B
– volume: 70
  start-page: 100102(R)
  year: 2004
  ident: bib54
  publication-title: Phys. Rev. B
– volume: 101
  start-page: 555
  year: 1997
  end-page: 558
  ident: bib16
  publication-title: Solid State Commun.
– volume: 110
  start-page: 227
  year: 1999
  end-page: 230
  ident: bib14
  publication-title: Solid State Commun.
– volume: 333
  start-page: 344
  year: 2001
  end-page: 349
  ident: bib49
  publication-title: Chem. Phys. Lett.
– volume: 24
  start-page: 647
  year: 1970
  end-page: 656
  ident: bib43
  publication-title: Math. Comput.
– volume: 47
  start-page: 5485
  year: 1993
  end-page: 5488
  ident: bib36
  publication-title: Phys. Rev. B
– volume: 49
  start-page: 16223
  year: 1994
  end-page: 16233
  ident: bib45
  publication-title: Phys. Rev. B
– volume: 79
  start-page: 1297
  year: 1997
  end-page: 1300
  ident: bib13
  publication-title: Phys. Rev. Lett.
– volume: 28
  start-page: 429
  year: 2003
  end-page: 442
  ident: bib26
  publication-title: J. Comput. Mater. Sci.
– reference: .
– volume: 104
  start-page: 4652
  year: 1996
  end-page: 4656
  ident: bib48
  publication-title: J. Chem. Phys.
– start-page: 61
  year: 1984
  end-page: 77
  ident: bib29
  publication-title: Phase Transformations and Material Instabilities in Solids
– volume: 50
  start-page: 1941
  year: 2002
  end-page: 1977
  ident: bib25
  publication-title: J. Mech. Phys. Solids
– volume: 34
  start-page: 247
  year: 2004
  end-page: 278
  ident: bib34
  publication-title: Annu. Rev. Mater. Res.
– volume: 81
  start-page: 2260
  year: 1998
  ident: 10.1016/j.commatsci.2006.11.014_bib31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2260
– volume: 67
  start-page: 115407
  year: 2003
  ident: 10.1016/j.commatsci.2006.11.014_bib33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.115407
– volume: 39
  start-page: 3893
  year: 2002
  ident: 10.1016/j.commatsci.2006.11.014_bib3
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(02)00186-5
– start-page: 61
  year: 1984
  ident: 10.1016/j.commatsci.2006.11.014_bib29
– volume: 28
  start-page: 429
  year: 2003
  ident: 10.1016/j.commatsci.2006.11.014_bib26
  publication-title: J. Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2003.08.004
– volume: 333
  start-page: 344
  year: 2001
  ident: 10.1016/j.commatsci.2006.11.014_bib49
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)01404-4
– volume: 79
  start-page: 1297
  year: 1997
  ident: 10.1016/j.commatsci.2006.11.014_bib13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.1297
– volume: 61
  start-page: 3078
  year: 2000
  ident: 10.1016/j.commatsci.2006.11.014_bib18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.3078
– volume: 287
  start-page: 637
  year: 2000
  ident: 10.1016/j.commatsci.2006.11.014_bib10
  publication-title: Science
  doi: 10.1126/science.287.5453.637
– volume: 69
  start-page: 255
  year: 1999
  ident: 10.1016/j.commatsci.2006.11.014_bib50
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s003390050999
– volume: 43
  start-page: 7128
  year: 2006
  ident: 10.1016/j.commatsci.2006.11.014_bib2
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2006.03.007
– volume: 13
  start-page: 317
  year: 1970
  ident: 10.1016/j.commatsci.2006.11.014_bib41
  publication-title: Comput. J.
  doi: 10.1093/comjnl/13.3.317
– volume: 73
  start-page: 315
  issue: 2
  year: 2006
  ident: 10.1016/j.commatsci.2006.11.014_bib1
  publication-title: ASME J. Appl. Mech.
  doi: 10.1115/1.2125987
– volume: 62
  start-page: 9973
  year: 2000
  ident: 10.1016/j.commatsci.2006.11.014_bib15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.9973
– volume: 73
  start-page: 1529
  issue: 6
  year: 1996
  ident: 10.1016/j.commatsci.2006.11.014_bib22
  publication-title: Philos. Mag. A
  doi: 10.1080/01418619608243000
– volume: 52
  start-page: 1
  year: 2004
  ident: 10.1016/j.commatsci.2006.11.014_bib27
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(03)00112-1
– volume: 24
  start-page: 647
  year: 1970
  ident: 10.1016/j.commatsci.2006.11.014_bib43
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1970-0274029-X
– volume: 82
  start-page: 944
  year: 1999
  ident: 10.1016/j.commatsci.2006.11.014_bib47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.944
– volume: 45
  start-page: 12592
  year: 1992
  ident: 10.1016/j.commatsci.2006.11.014_bib17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.12592
– volume: 88
  start-page: 065501
  year: 2002
  ident: 10.1016/j.commatsci.2006.11.014_bib32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.065501
– volume: 24
  start-page: 23
  year: 1970
  ident: 10.1016/j.commatsci.2006.11.014_bib42
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1970-0258249-6
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.commatsci.2006.11.014_bib37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 70
  start-page: 100102(R)
  year: 2004
  ident: 10.1016/j.commatsci.2006.11.014_bib54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.100102
– volume: 101
  start-page: 555
  year: 1997
  ident: 10.1016/j.commatsci.2006.11.014_bib16
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(96)00742-9
– volume: 47
  start-page: 611
  year: 1999
  ident: 10.1016/j.commatsci.2006.11.014_bib23
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(98)00051-9
– volume: 83
  start-page: 2973
  year: 1999
  ident: 10.1016/j.commatsci.2006.11.014_bib12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.2973
– volume: 14
  start-page: 783
  year: 2002
  ident: 10.1016/j.commatsci.2006.11.014_bib52
  publication-title: J. Phys.: Condens. Matter
– volume: 68
  start-page: 287
  year: 1999
  ident: 10.1016/j.commatsci.2006.11.014_bib19
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s003390050890
– volume: 110
  start-page: 227
  year: 1999
  ident: 10.1016/j.commatsci.2006.11.014_bib14
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(98)00626-7
– year: 1998
  ident: 10.1016/j.commatsci.2006.11.014_bib7
– volume: 59
  start-page: 235
  year: 1999
  ident: 10.1016/j.commatsci.2006.11.014_bib24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.235
– volume: 49
  start-page: 16223
  year: 1994
  ident: 10.1016/j.commatsci.2006.11.014_bib45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.16223
– volume: 76
  start-page: 2511
  year: 1996
  ident: 10.1016/j.commatsci.2006.11.014_bib21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.2511
– volume: 34
  start-page: 247
  year: 2004
  ident: 10.1016/j.commatsci.2006.11.014_bib34
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.34.040203.114607
– volume: 37
  start-page: 6991
  year: 1988
  ident: 10.1016/j.commatsci.2006.11.014_bib5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.6991
– volume: 64
  start-page: 235406
  year: 2001
  ident: 10.1016/j.commatsci.2006.11.014_bib9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.235406
– volume: 326
  start-page: 181
  year: 2000
  ident: 10.1016/j.commatsci.2006.11.014_bib20
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00764-8
– volume: 390
  start-page: 413
  year: 2004
  ident: 10.1016/j.commatsci.2006.11.014_bib39
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.04.054
– volume: 81
  start-page: 4656
  year: 1998
  ident: 10.1016/j.commatsci.2006.11.014_bib11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.4656
– volume: 47
  start-page: 5485
  year: 1993
  ident: 10.1016/j.commatsci.2006.11.014_bib36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.5485
– ident: 10.1016/j.commatsci.2006.11.014_bib46
– volume: 50
  start-page: 1941
  year: 2002
  ident: 10.1016/j.commatsci.2006.11.014_bib25
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(02)00002-9
– volume: 58
  start-page: 1649
  year: 1997
  ident: 10.1016/j.commatsci.2006.11.014_bib51
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/S0022-3697(97)00045-0
– volume: 59
  start-page: 12678
  year: 1999
  ident: 10.1016/j.commatsci.2006.11.014_bib8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.12678
– volume: 69
  start-page: 115415
  year: 2004
  ident: 10.1016/j.commatsci.2006.11.014_bib4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.115415
– ident: 10.1016/j.commatsci.2006.11.014_bib30
– volume: 104
  start-page: 4652
  year: 1996
  ident: 10.1016/j.commatsci.2006.11.014_bib48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471211
– volume: 128
  start-page: 1
  year: 2000
  ident: 10.1016/j.commatsci.2006.11.014_bib35
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(00)00072-2
– volume: 58
  start-page: 14013
  year: 1998
  ident: 10.1016/j.commatsci.2006.11.014_bib53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.14013
– volume: 13
  start-page: 5188
  year: 1976
  ident: 10.1016/j.commatsci.2006.11.014_bib44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 6
  start-page: 76
  year: 1970
  ident: 10.1016/j.commatsci.2006.11.014_bib40
  publication-title: J. Inst. Math. Appl.
  doi: 10.1093/imamat/6.1.76
– volume: 41
  start-page: 7892
  year: 1990
  ident: 10.1016/j.commatsci.2006.11.014_bib38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.7892
– volume: 11
  start-page: 4867
  year: 1978
  ident: 10.1016/j.commatsci.2006.11.014_bib28
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/11/24/017
– volume: 42
  start-page: 9458
  year: 1990
  ident: 10.1016/j.commatsci.2006.11.014_bib6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.42.9458
SSID ssj0016982
Score 2.05019
Snippet This paper deals with the calculation of elastic moduli and stress–strain curves for single-walled carbon nanotubes (SWNTs) using a computationally efficient,...
This paper deals with the calculation of elastic moduli and stress-strain curves for single-walled carbon nanotubes (SWNTs) using a computationally efficient,...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 147
SubjectTerms Ab initio calculations
Atomistic-continuum
Cauchy–Born rule
Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Mechanical and acoustical properties of condensed matter
Mechanical properties of nanoscale materials
Membrane
Nonlinear elasticity
Physics
Quasicontinuum
Title Atomistic-continuum and ab initio estimation of the elastic moduli of single-walled carbon nanotubes
URI https://dx.doi.org/10.1016/j.commatsci.2006.11.014
https://www.proquest.com/docview/29990801
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZ4XBYhBMuuKI_iw15N83CchFuFQAUkLoDELbLjiZRVm1RtIm78dmbyKFSrFQcuOSSeOJqx5pvYM_Mx9kdloQ29CIRE-BAyNVZowItxtApd8PFZ0-3zQU2e5d1L8LLBrvpaGEqr7Hx_69Mbb93dGXXaHM3zfPToxFRLhYitiJCMyqi3PT9WuLS3x7f3k4fVYYKKG84oGi9IYC3NC1-PoSFO0B5MUEdPV_4PpHbneomqy1rOi3_cd4NJN_tsrwsm-bj93gO2AcVPtvOpxeAhs-OqnDXNmAVlpedFXc-4LizXhueUOFRy6rPRFjDyMuMYEHLAkBol-Ky09TSnu7SjMAXxSswrlqd6YXB0oYuyqg0sf7Hnm-unq4nomBVEKqVXCetJAwTdmhq4GS92QfpRBEFsQ6sQsQKM83Smjcoii_pNHYiMtQHYME7dIPJ_s62iLOCIcURBLTOtfXBSaUOtlZsGkIVxQ2QCMGCqV2WSdm3Hif1imvT5ZX-TlQ2IFFPhT0mCNhgwZyU4bztvfC1y2dsqWVtECeLD18LDNet-TEp8zBinDth5b-4EDUcHK7qAsl4mCOkxRt7u8XfmP2E_-n1jxz1lW9WihjMMeCozZJsXb-6wW9bvEJcDYg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQHFiEVsAuoiwPH7iaJq3jJNwQApXnBZC4WXY8kbJqk6pNxG1_-87kUagQ4sAlB8djRx57vok9no-xE5WGLhxEICTCh5CJdcIAPqxnVOjDEN_V2T4f1OhZ3rwELyvsorsLQ2GVre1vbHptrduSfjua_WmW9R-9mO5SIWIrIiSja9RrEpcvrc7Tf4s4D1_FNWMU1RZUfSnICxtHxxCbb44lKJ-nLz-DqM2pmePApQ3jxQfjXSPS1Rb72bqS_Lz52m22AvkO23iXYPAXc-dlMalTMQuKSc_yqppwkztuLM8obKjglGWjub7Ii5SjO8gBHWqU4JPCVeOMSmk_YQzilXhXHE_MzGLt3ORFWVmY_2bPV5dPFyPR8iqIRMpBKdxAWiDgNpS-zQ5iH-QwiiCIXegU4lWAXp5JjVVp5HB0Ew8i61wALowTP4iGu2w1L3LYYxwx0MjUmCF4iXShMcpPAkjDuKYxAegx1Q2lTtqk48R9MdZddNlfvdABUWIq_CXRqIMe8xaC0ybvxtciZ52u9NIU0ogOXwsfLWn3rVNiY0YvtceOO3VrVBwdq5gcimquEdBj9Lv9_e_0f8zWR0_3d_ru-uH2D_vR7SB7_gFbLWcVHKLrU9qjemr_BzXABCY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomistic-continuum+and+ab+initio+estimation+of+the+elastic+moduli+of+single-walled+carbon+nanotubes&rft.jtitle=Computational+materials+science&rft.au=CHANDRASEKER%2C+Karthick&rft.au=MUKHERJEE%2C+Subrata&rft.date=2007-07-01&rft.pub=Elsevier+Science&rft.issn=0927-0256&rft.volume=40&rft.issue=1&rft.spage=147&rft.epage=158&rft_id=info:doi/10.1016%2Fj.commatsci.2006.11.014&rft.externalDBID=n%2Fa&rft.externalDocID=18833352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon