Superoxide dismutase 2 ameliorates mitochondrial dysfunction in skin fibroblasts of Leber’s hereditary optic neuropathy patients

In Leber's hereditary optic neuropathy (LHON), mtDNA mutations mediate mitochondrial dysfunction and apoptosis of retinal ganglion cells. Mitochondrial superoxide dismutase 2 (SOD2) is a crucial antioxidase against reactive oxygen species (ROS). This study aims to investigate whether SOD2 could...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 16; p. 917348
Main Authors Zhou, Qingru, Yao, Shun, Yang, Mingzhu, Guo, Qingge, Li, Ya, Li, Lei, Lei, Bo
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 09.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In Leber's hereditary optic neuropathy (LHON), mtDNA mutations mediate mitochondrial dysfunction and apoptosis of retinal ganglion cells. Mitochondrial superoxide dismutase 2 (SOD2) is a crucial antioxidase against reactive oxygen species (ROS). This study aims to investigate whether SOD2 could ameliorate mtDNA mutation mediated mitochondrial dysfunction in skin fibroblasts of LHON patients and explore the underlying mechanisms.BackgroundIn Leber's hereditary optic neuropathy (LHON), mtDNA mutations mediate mitochondrial dysfunction and apoptosis of retinal ganglion cells. Mitochondrial superoxide dismutase 2 (SOD2) is a crucial antioxidase against reactive oxygen species (ROS). This study aims to investigate whether SOD2 could ameliorate mtDNA mutation mediated mitochondrial dysfunction in skin fibroblasts of LHON patients and explore the underlying mechanisms.The skin of normal healthy subjects and severe LHON patients harboring m.11778G > A mutation was taken to prepare immortalized skin fibroblast cell lines (control-iFB and LHON-iFB). LHON-iFB cells were transfected with SOD2 plasmid or negative control plasmid, respectively. In addition, human neuroblastoma SH-SY5Y cells and human primary retinal pigmental epithelium (hRPE) cells were stimulated by H2O2 after gene transfection. The oxygen consumption rate (OCR) was measured with a Seahorse extracellular flux analyzer. The level of ATP production, mitochondrial membrane potential, ROS and malondialdehyde (MDA) were measured separately with the corresponding assay kits. The expression level of SOD2, inflammatory cytokines and p-IκBα/IκBα was evaluated by western-blot. Assessment of apoptosis was performed by TUNEL assay.MethodsThe skin of normal healthy subjects and severe LHON patients harboring m.11778G > A mutation was taken to prepare immortalized skin fibroblast cell lines (control-iFB and LHON-iFB). LHON-iFB cells were transfected with SOD2 plasmid or negative control plasmid, respectively. In addition, human neuroblastoma SH-SY5Y cells and human primary retinal pigmental epithelium (hRPE) cells were stimulated by H2O2 after gene transfection. The oxygen consumption rate (OCR) was measured with a Seahorse extracellular flux analyzer. The level of ATP production, mitochondrial membrane potential, ROS and malondialdehyde (MDA) were measured separately with the corresponding assay kits. The expression level of SOD2, inflammatory cytokines and p-IκBα/IκBα was evaluated by western-blot. Assessment of apoptosis was performed by TUNEL assay.LHON-iFB exhibited lower OCR, ATP production, mitochondrial membrane potential but higher level of ROS and MDA than control-iFB. Western-blot revealed a significantly increased expression of IL-6 and p-IκBα/IκBα in LHON-iFB. Compared with the negative control, SOD2 overexpression increased OCR, ATP production and elevated mitochondrial membrane potential, but impaired ROS and MDA production. Besides, western-blot demonstrated exogenous SOD2 reduced the protein level of IL-6 and p-IκBα/IκBα. TUNEL assays suggested SOD2 inhibited cells apoptosis. Analogously, in SH-SY5Y and hRPE cells, SOD2 overexpression increased ATP production and mitochondrial membrane potential, but decreased ROS, MDA levels and suppressed apoptosis.ResultsLHON-iFB exhibited lower OCR, ATP production, mitochondrial membrane potential but higher level of ROS and MDA than control-iFB. Western-blot revealed a significantly increased expression of IL-6 and p-IκBα/IκBα in LHON-iFB. Compared with the negative control, SOD2 overexpression increased OCR, ATP production and elevated mitochondrial membrane potential, but impaired ROS and MDA production. Besides, western-blot demonstrated exogenous SOD2 reduced the protein level of IL-6 and p-IκBα/IκBα. TUNEL assays suggested SOD2 inhibited cells apoptosis. Analogously, in SH-SY5Y and hRPE cells, SOD2 overexpression increased ATP production and mitochondrial membrane potential, but decreased ROS, MDA levels and suppressed apoptosis.SOD2 upregulation inhibited cells apoptosis through ameliorating mitochondrial dysfunction and reducing NF-κB associated inflammatory response. This study further support exogenous SOD2 may be a promising therapy for the treatment of LHON.ConclusionSOD2 upregulation inhibited cells apoptosis through ameliorating mitochondrial dysfunction and reducing NF-κB associated inflammatory response. This study further support exogenous SOD2 may be a promising therapy for the treatment of LHON.
AbstractList BackgroundIn Leber’s hereditary optic neuropathy (LHON), mtDNA mutations mediate mitochondrial dysfunction and apoptosis of retinal ganglion cells. Mitochondrial superoxide dismutase 2 (SOD2) is a crucial antioxidase against reactive oxygen species (ROS). This study aims to investigate whether SOD2 could ameliorate mtDNA mutation mediated mitochondrial dysfunction in skin fibroblasts of LHON patients and explore the underlying mechanisms.MethodsThe skin of normal healthy subjects and severe LHON patients harboring m.11778G > A mutation was taken to prepare immortalized skin fibroblast cell lines (control-iFB and LHON-iFB). LHON-iFB cells were transfected with SOD2 plasmid or negative control plasmid, respectively. In addition, human neuroblastoma SH-SY5Y cells and human primary retinal pigmental epithelium (hRPE) cells were stimulated by H2O2 after gene transfection. The oxygen consumption rate (OCR) was measured with a Seahorse extracellular flux analyzer. The level of ATP production, mitochondrial membrane potential, ROS and malondialdehyde (MDA) were measured separately with the corresponding assay kits. The expression level of SOD2, inflammatory cytokines and p-IκBα/IκBα was evaluated by western-blot. Assessment of apoptosis was performed by TUNEL assay.ResultsLHON-iFB exhibited lower OCR, ATP production, mitochondrial membrane potential but higher level of ROS and MDA than control-iFB. Western-blot revealed a significantly increased expression of IL-6 and p-IκBα/IκBα in LHON-iFB. Compared with the negative control, SOD2 overexpression increased OCR, ATP production and elevated mitochondrial membrane potential, but impaired ROS and MDA production. Besides, western-blot demonstrated exogenous SOD2 reduced the protein level of IL-6 and p-IκBα/IκBα. TUNEL assays suggested SOD2 inhibited cells apoptosis. Analogously, in SH-SY5Y and hRPE cells, SOD2 overexpression increased ATP production and mitochondrial membrane potential, but decreased ROS, MDA levels and suppressed apoptosis.ConclusionSOD2 upregulation inhibited cells apoptosis through ameliorating mitochondrial dysfunction and reducing NF-κB associated inflammatory response. This study further support exogenous SOD2 may be a promising therapy for the treatment of LHON.
In Leber's hereditary optic neuropathy (LHON), mtDNA mutations mediate mitochondrial dysfunction and apoptosis of retinal ganglion cells. Mitochondrial superoxide dismutase 2 (SOD2) is a crucial antioxidase against reactive oxygen species (ROS). This study aims to investigate whether SOD2 could ameliorate mtDNA mutation mediated mitochondrial dysfunction in skin fibroblasts of LHON patients and explore the underlying mechanisms.BackgroundIn Leber's hereditary optic neuropathy (LHON), mtDNA mutations mediate mitochondrial dysfunction and apoptosis of retinal ganglion cells. Mitochondrial superoxide dismutase 2 (SOD2) is a crucial antioxidase against reactive oxygen species (ROS). This study aims to investigate whether SOD2 could ameliorate mtDNA mutation mediated mitochondrial dysfunction in skin fibroblasts of LHON patients and explore the underlying mechanisms.The skin of normal healthy subjects and severe LHON patients harboring m.11778G > A mutation was taken to prepare immortalized skin fibroblast cell lines (control-iFB and LHON-iFB). LHON-iFB cells were transfected with SOD2 plasmid or negative control plasmid, respectively. In addition, human neuroblastoma SH-SY5Y cells and human primary retinal pigmental epithelium (hRPE) cells were stimulated by H2O2 after gene transfection. The oxygen consumption rate (OCR) was measured with a Seahorse extracellular flux analyzer. The level of ATP production, mitochondrial membrane potential, ROS and malondialdehyde (MDA) were measured separately with the corresponding assay kits. The expression level of SOD2, inflammatory cytokines and p-IκBα/IκBα was evaluated by western-blot. Assessment of apoptosis was performed by TUNEL assay.MethodsThe skin of normal healthy subjects and severe LHON patients harboring m.11778G > A mutation was taken to prepare immortalized skin fibroblast cell lines (control-iFB and LHON-iFB). LHON-iFB cells were transfected with SOD2 plasmid or negative control plasmid, respectively. In addition, human neuroblastoma SH-SY5Y cells and human primary retinal pigmental epithelium (hRPE) cells were stimulated by H2O2 after gene transfection. The oxygen consumption rate (OCR) was measured with a Seahorse extracellular flux analyzer. The level of ATP production, mitochondrial membrane potential, ROS and malondialdehyde (MDA) were measured separately with the corresponding assay kits. The expression level of SOD2, inflammatory cytokines and p-IκBα/IκBα was evaluated by western-blot. Assessment of apoptosis was performed by TUNEL assay.LHON-iFB exhibited lower OCR, ATP production, mitochondrial membrane potential but higher level of ROS and MDA than control-iFB. Western-blot revealed a significantly increased expression of IL-6 and p-IκBα/IκBα in LHON-iFB. Compared with the negative control, SOD2 overexpression increased OCR, ATP production and elevated mitochondrial membrane potential, but impaired ROS and MDA production. Besides, western-blot demonstrated exogenous SOD2 reduced the protein level of IL-6 and p-IκBα/IκBα. TUNEL assays suggested SOD2 inhibited cells apoptosis. Analogously, in SH-SY5Y and hRPE cells, SOD2 overexpression increased ATP production and mitochondrial membrane potential, but decreased ROS, MDA levels and suppressed apoptosis.ResultsLHON-iFB exhibited lower OCR, ATP production, mitochondrial membrane potential but higher level of ROS and MDA than control-iFB. Western-blot revealed a significantly increased expression of IL-6 and p-IκBα/IκBα in LHON-iFB. Compared with the negative control, SOD2 overexpression increased OCR, ATP production and elevated mitochondrial membrane potential, but impaired ROS and MDA production. Besides, western-blot demonstrated exogenous SOD2 reduced the protein level of IL-6 and p-IκBα/IκBα. TUNEL assays suggested SOD2 inhibited cells apoptosis. Analogously, in SH-SY5Y and hRPE cells, SOD2 overexpression increased ATP production and mitochondrial membrane potential, but decreased ROS, MDA levels and suppressed apoptosis.SOD2 upregulation inhibited cells apoptosis through ameliorating mitochondrial dysfunction and reducing NF-κB associated inflammatory response. This study further support exogenous SOD2 may be a promising therapy for the treatment of LHON.ConclusionSOD2 upregulation inhibited cells apoptosis through ameliorating mitochondrial dysfunction and reducing NF-κB associated inflammatory response. This study further support exogenous SOD2 may be a promising therapy for the treatment of LHON.
Author Li, Ya
Zhou, Qingru
Yao, Shun
Guo, Qingge
Li, Lei
Lei, Bo
Yang, Mingzhu
AuthorAffiliation 3 Xinxiang Medical University , Xinxiang , China
2 Henan Eye Hospital, Henan Provincial People’s Hospital, Henan Eye Institute , Zhengzhou , China
1 Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital , Zhengzhou , China
AuthorAffiliation_xml – name: 1 Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital , Zhengzhou , China
– name: 2 Henan Eye Hospital, Henan Provincial People’s Hospital, Henan Eye Institute , Zhengzhou , China
– name: 3 Xinxiang Medical University , Xinxiang , China
Author_xml – sequence: 1
  givenname: Qingru
  surname: Zhou
  fullname: Zhou, Qingru
– sequence: 2
  givenname: Shun
  surname: Yao
  fullname: Yao, Shun
– sequence: 3
  givenname: Mingzhu
  surname: Yang
  fullname: Yang, Mingzhu
– sequence: 4
  givenname: Qingge
  surname: Guo
  fullname: Guo, Qingge
– sequence: 5
  givenname: Ya
  surname: Li
  fullname: Li, Ya
– sequence: 6
  givenname: Lei
  surname: Li
  fullname: Li, Lei
– sequence: 7
  givenname: Bo
  surname: Lei
  fullname: Lei, Bo
BookMark eNp9ksluFDEQhlsoiCzwANx85DKDt263L0goYok0EgdA4mZ5KWccuu3BdiPmhngLXo8nwZOJEOHApVwqu776rfrPu5OYInTdU4LXjI3yuY8hljXFlK4lEYyPD7ozMgx0xXv26eSv_LQ7L-UG44GOnD7qTtmAiSCjPOt-vF92kNO34AC5UOal6gKIIj3DFFLWFQqaQ012m6LLQU_I7Ytfoq0hRRQiKp9b8MHkZCZdakHJow0YyL--_yxoCxlcqDrvUdrVYFGEJaedrts9ajFArOVx99DrqcCTu_Oi-_j61YfLt6vNuzdXly83K8s5rSvbGyGw48RZB6Y3PSPegxh6CcQxQYnsWzJYS7xwWnBJwPCR6t4L0WMB7KK7OnJd0jdql8PcZKmkg7otpHytdG4aJ1BWyJFixrxlA9ejM3TEztFRGk5lb3hjvTiydouZwdn2j6yne9D7NzFs1XX6qiRrZMIa4NkdIKcvC5Sq5lAsTJOOkJaiqMBiwHQUh1nk-NTmVEoG_2cMwergA3XrA3XwgTr6oPWIf3ps28JhZ01NmP7T-Rs9-cAA
CitedBy_id crossref_primary_10_3390_genes16010108
crossref_primary_10_1167_tvst_12_10_1
crossref_primary_10_3389_fneur_2022_946559
crossref_primary_10_3390_biomedicines12092020
crossref_primary_10_1016_j_yexcr_2024_114075
Cites_doi 10.1242/jcs.099234
10.1167/iovs.17-21546
10.1016/j.cell.2010.02.016
10.1016/j.mito.2020.07.003
10.1016/j.cell.2005.02.001
10.1016/j.ijbiomac.2020.11.149
10.1038/nrneurol.2013.126
10.1097/WCO.0000000000000646
10.1093/brain/aww222
10.1007/s00109-019-01845-1842
10.1016/j.neuroscience.2017.07.053
10.1038/nri2873
10.3389/fnmol.2022.920221
10.1074/jbc.M006476200
10.1016/j.scr.2020.101939
10.3389/fneur.2021.648916
10.1016/j.bbabio.2010.07.005
10.1073/pnas.1217113109
10.1016/j.mito.2016.11.006
10.1042/BJ20091382
10.1021/cr4005296
10.3390/ijms21083027
10.3390/cells7120274
10.1093/hmg/ddaa063
10.1007/s10753-020-01377-1379
10.1093/brain/awq276
10.1016/j.biopha.2005.03.001
10.1016/j.yexcr.2018.01.020
10.1097/WNO.0000000000001375
10.1001/archopht.125.2.268
10.1007/s12031-020-01729-y
10.1080/01616412.2016.1251711
10.3390/ijms22042007
10.1016/j.cbi.2020.109086
10.1016/j.freeradbiomed.2015.05.039
10.1016/j.preteyeres.2010.11.002
10.1016/j.gpb.2022.06.001
10.1016/j.bbabio.2009.02.024
10.1111/j.1749-6632.2009.04901.x
10.1016/j.preteyeres.2006.05.002
10.1089/ars.2011.4066
10.1016/j.freeradbiomed.2011.08.005
10.1073/pnas.0510346103
10.1007/s11306-018-1345-1349
10.1016/j.pharmthera.2016.06.004
10.1007/7651_2021_384
10.1089/ars.2020.8058
10.3390/molecules24081583
10.1016/j.neulet.2017.06.050
10.1186/s40035-022-00308-y
ContentType Journal Article
Copyright Copyright © 2022 Zhou, Yao, Yang, Guo, Li, Li and Lei.
Copyright © 2022 Zhou, Yao, Yang, Guo, Li, Li and Lei. 2022 Zhou, Yao, Yang, Guo, Li, Li and Lei
Copyright_xml – notice: Copyright © 2022 Zhou, Yao, Yang, Guo, Li, Li and Lei.
– notice: Copyright © 2022 Zhou, Yao, Yang, Guo, Li, Li and Lei. 2022 Zhou, Yao, Yang, Guo, Li, Li and Lei
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fnins.2022.917348
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_c7982033fc364a8db280dd289b4295b4
PMC9398213
10_3389_fnins_2022_917348
GrantInformation_xml – fundername: ;
GroupedDBID ---
29H
2WC
53G
5GY
5VS
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
7X8
5PM
ID FETCH-LOGICAL-c442t-c5b770d41dcdeb5b531ffe7659e1d372195e1d6cc1f7da7491eb482a5f77507e3
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:22:32 EDT 2025
Thu Aug 21 13:45:09 EDT 2025
Thu Jul 10 22:58:50 EDT 2025
Tue Jul 01 01:39:42 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-c5b770d41dcdeb5b531ffe7659e1d372195e1d6cc1f7da7491eb482a5f77507e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience
These authors have contributed equally to this work and share first authorship
Reviewed by: Daniela Valenti, Department of Biomedical Sciences, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (CNR), Italy; Jingfa Zhang, Shanghai General Hospital, China; Haiwei Xu, Army Medical University, China
Edited by: Jose Hurst, University Hospital Tübingen, Germany
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2022.917348
PMID 36017189
PQID 2707602874
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c7982033fc364a8db280dd289b4295b4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9398213
proquest_miscellaneous_2707602874
crossref_primary_10_3389_fnins_2022_917348
crossref_citationtrail_10_3389_fnins_2022_917348
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-09
PublicationDateYYYYMMDD 2022-08-09
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-09
  day: 09
PublicationDecade 2020
PublicationTitle Frontiers in neuroscience
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Singh (B42) 2022; 2549
Sarewicz (B38) 2010; 1797
Yen (B48) 2006; 25
Glass (B12) 2010; 140
Lin (B24) 2012; 109
Zhang (B50) 2010; 16
Islam (B17) 2017; 39
Wu (B45) 2018; 363
Zhou (B51) 2020; 21
Yao (B47) 2022; 15
Jurkute (B20) 2019; 32
Jankauskaite (B18) 2017; 32
Carelli (B3) 2009; 1787
Dranka (B8) 2011; 51
Kausar (B21) 2018; 7
Singh (B41) 2019; 24
Rovcanin (B37) 2021; 71
Jin (B19) 2022
Brown (B2) 2000; 275
Sheng (B40) 2014; 114
Harvey (B13) 2022; 42
Qi (B34) 2007; 125
Rosa (B36) 2021; 168
Fan (B9) 2020; 324
Giordano (B11) 2011; 134
Morvan (B29) 2018; 14
DiMauro (B7) 2013; 9
Nguyen (B30) 2020; 98
Lopez Sanchez (B26) 2016; 165
Miyoshi (B28) 2006; 103
Chen (B6) 2010; 10
Lopez Sanchez (B27) 2020; 54
Liskova (B25) 2021; 22
Lei (B23) 2017; 360
Chao de la Barca (B5) 2016; 139
Hayashi (B14) 2015; 88
Olesen (B31) 2022; 11
Balaban (B1) 2005; 120
Cerella (B4) 2009; 1171
Hirst (B16) 2009; 425
Peron (B32) 2021; 12
Yang (B46) 2020; 29
Hernandez-Saavedra (B15) 2005; 59
Peron (B33) 2020; 48
Kwon (B22) 2012; 16
Qiu (B35) 2021; 44
Tait (B43) 2012; 125
Yu-Wai-Man (B49) 2011; 30
van Horssen (B44) 2019; 710
Schofield (B39) 2021; 34
Fu (B10) 2017; 58
References_xml – volume: 125
  start-page: 807
  year: 2012
  ident: B43
  article-title: Mitochondria and cell signalling.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.099234
– volume: 58
  start-page: 3018
  year: 2017
  ident: B10
  article-title: Overexpression of angiotensin-converting enzyme 2 ameliorates amyloid beta-induced inflammatory response in human primary retinal pigment epithelium.
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.17-21546
– volume: 140
  start-page: 918
  year: 2010
  ident: B12
  article-title: Mechanisms underlying inflammation in neurodegeneration.
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.016
– volume: 54
  start-page: 113
  year: 2020
  ident: B27
  article-title: OXPHOS bioenergetic compensation does not explain disease penetrance in Leber hereditary optic neuropathy.
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2020.07.003
– volume: 120
  start-page: 483
  year: 2005
  ident: B1
  article-title: Mitochondria, oxidants, and aging.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.02.001
– volume: 168
  start-page: 846
  year: 2021
  ident: B36
  article-title: Strategies to expand the therapeutic potential of superoxide dismutase by exploiting delivery approaches.
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.11.149
– volume: 9
  start-page: 429
  year: 2013
  ident: B7
  article-title: The clinical maze of mitochondrial neurology.
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2013.126
– volume: 32
  start-page: 99
  year: 2019
  ident: B20
  article-title: Treatment strategies for Leber hereditary optic neuropathy.
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000646
– volume: 139
  start-page: 2864
  year: 2016
  ident: B5
  article-title: The metabolomic signature of Leber’s hereditary optic neuropathy reveals endoplasmic reticulum stress.
  publication-title: Brain
  doi: 10.1093/brain/aww222
– volume: 98
  start-page: 59
  year: 2020
  ident: B30
  article-title: Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases.
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-019-01845-1842
– volume: 360
  start-page: 48
  year: 2017
  ident: B23
  article-title: Amelioration of amyloid beta-induced retinal inflammatory responses by a LXR agonist TO901317 is associated with inhibition of the NF-kappaB signaling and NLRP3 inflammasome.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2017.07.053
– volume: 10
  start-page: 826
  year: 2010
  ident: B6
  article-title: Sterile inflammation: sensing and reacting to damage.
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2873
– volume: 15
  year: 2022
  ident: B47
  article-title: Multi-mtDNA variants may be a factor contributing to mitochondrial function variety in the skin-derived fibroblasts of leber’s hereditary optic neuropathy patients.
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2022.920221
– volume: 275
  start-page: 39831
  year: 2000
  ident: B2
  article-title: Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber’s hereditary optic neuropathy mitochondrial DNA mutation.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M006476200
– volume: 48
  year: 2020
  ident: B33
  article-title: Generation of a human iPSC line, FINCBi001-A, carrying a homoplasmic m.G3460A mutation in MT-ND1 associated with Leber’s Hereditary optic Neuropathy (LHON).
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2020.101939
– volume: 12
  year: 2021
  ident: B32
  article-title: Exploiting hiPSCs in leber’s hereditary optic neuropathy (LHON): present achievements and future perspectives.
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2021.648916
– volume: 1797
  start-page: 1820
  year: 2010
  ident: B38
  article-title: Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc(1). Implications for the mechanism of superoxide production.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2010.07.005
– volume: 109
  start-page: 20065
  year: 2012
  ident: B24
  article-title: Mouse mtDNA mutant model of Leber hereditary optic neuropathy.
  publication-title: Proc. Natl. Acad. Sci. U S A.
  doi: 10.1073/pnas.1217113109
– volume: 32
  start-page: 19
  year: 2017
  ident: B18
  article-title: Investigating Leber’s hereditary optic neuropathy: cell models and future perspectives.
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2016.11.006
– volume: 425
  start-page: 327
  year: 2009
  ident: B16
  article-title: Towards the molecular mechanism of respiratory complex I.
  publication-title: Biochem. J.
  doi: 10.1042/BJ20091382
– volume: 114
  start-page: 3854
  year: 2014
  ident: B40
  article-title: Superoxide dismutases and superoxide reductases.
  publication-title: Chem. Rev.
  doi: 10.1021/cr4005296
– volume: 21
  year: 2020
  ident: B51
  article-title: Increased Protein S-Glutathionylation in Leber’s Hereditary Optic Neuropathy (LHON).
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21083027
– volume: 7
  year: 2018
  ident: B21
  article-title: The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases.
  publication-title: Cells
  doi: 10.3390/cells7120274
– volume: 29
  start-page: 1454
  year: 2020
  ident: B46
  article-title: Mitochondrial transport mediates survival of retinal ganglion cells in affected LHON patients.
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddaa063
– volume: 44
  start-page: 780
  year: 2021
  ident: B35
  article-title: The protective effects of VVN001 on LPS-Induced inflammatory responses in human RPE cells and in a mouse model of EIU.
  publication-title: Inflammation
  doi: 10.1007/s10753-020-01377-1379
– volume: 134
  start-page: 220
  year: 2011
  ident: B11
  article-title: Oestrogens ameliorate mitochondrial dysfunction in Leber’s hereditary optic neuropathy.
  publication-title: Brain
  doi: 10.1093/brain/awq276
– volume: 59
  start-page: 204
  year: 2005
  ident: B15
  article-title: Anti-inflammatory properties of a chimeric recombinant superoxide dismutase: SOD2/3.
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2005.03.001
– volume: 363
  start-page: 299
  year: 2018
  ident: B45
  article-title: Bioactivity and gene expression profiles of hiPSC-generated retinal ganglion cells in MT-ND4 mutated Leber’s hereditary optic neuropathy.
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2018.01.020
– volume: 42
  start-page: 35
  year: 2022
  ident: B13
  article-title: Induced pluripotent stem cells for inherited optic neuropathies-disease modeling and therapeutic development.
  publication-title: J. Neuroophthalmol.
  doi: 10.1097/WNO.0000000000001375
– volume: 125
  start-page: 268
  year: 2007
  ident: B34
  article-title: Use of mitochondrial antioxidant defenses for rescue of cells with a Leber hereditary optic neuropathy-causing mutation.
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.125.2.268
– volume: 71
  start-page: 1070
  year: 2021
  ident: B37
  article-title: Oxidative stress profile in genetically confirmed cases of leber’s hereditary optic neuropathy.
  publication-title: J. Mol. Neurosci.
  doi: 10.1007/s12031-020-01729-y
– volume: 39
  start-page: 73
  year: 2017
  ident: B17
  article-title: Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders.
  publication-title: Neurol. Res.
  doi: 10.1080/01616412.2016.1251711
– volume: 22
  year: 2021
  ident: B25
  article-title: Mitochondriopathies as a clue to systemic disorders-analytical tools and mitigating measures in context of predictive. preventive, and personalized (3p) medicine.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22042007
– volume: 324
  year: 2020
  ident: B9
  article-title: Sestrin2 overexpression alleviates hydrogen peroxide-induced apoptosis and oxidative stress in retinal ganglion cells by enhancing Nrf2 activation via Keap1 downregulation.
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2020.109086
– volume: 88
  start-page: 10
  year: 2015
  ident: B14
  article-title: Oxidative stress in inherited mitochondrial diseases.
  publication-title: Free Radic Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.05.039
– volume: 30
  start-page: 81
  year: 2011
  ident: B49
  article-title: Mitochondrial optic neuropathies - disease mechanisms and therapeutic strategies.
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2010.11.002
– year: 2022
  ident: B19
  article-title: Identification of age-associated proteins and functional alterations in human retinal pigment epithelium.
  publication-title: Genom. Proteom. Bioinform.
  doi: 10.1016/j.gpb.2022.06.001
– volume: 1787
  start-page: 518
  year: 2009
  ident: B3
  article-title: Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2009.02.024
– volume: 1171
  start-page: 559
  year: 2009
  ident: B4
  article-title: Multiple mechanisms for hydrogen peroxide-induced apoptosis.
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.04901.x
– volume: 16
  start-page: 2867
  year: 2010
  ident: B50
  article-title: Immunopanning purification and long-term culture of human retinal ganglion cells.
  publication-title: Mol. Vis.
– volume: 25
  start-page: 381
  year: 2006
  ident: B48
  article-title: Leber’s hereditary optic neuropathy: a multifactorial disease.
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2006.05.002
– volume: 16
  start-page: 297
  year: 2012
  ident: B22
  article-title: Superoxide dismutase 3 suppresses hyaluronic acid fragments mediated skin inflammation by inhibition of toll-like receptor 4 signaling pathway: superoxide dismutase 3 inhibits reactive oxygen species-induced trafficking of toll-like receptor 4 to lipid rafts.
  publication-title: Antioxid. Redox. Signal.
  doi: 10.1089/ars.2011.4066
– volume: 51
  start-page: 1621
  year: 2011
  ident: B8
  article-title: Assessing bioenergetic function in response to oxidative stress by metabolic profiling.
  publication-title: Free Radic Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.08.005
– volume: 103
  start-page: 1727
  year: 2006
  ident: B28
  article-title: Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis.
  publication-title: Proc. Natl. Acad. Sci. U S A.
  doi: 10.1073/pnas.0510346103
– volume: 14
  year: 2018
  ident: B29
  article-title: NMR metabolomics of fibroblasts with inherited mitochondrial complex I mutation reveals treatment-reversible lipid and amino acid metabolism alterations.
  publication-title: Metabolomics
  doi: 10.1007/s11306-018-1345-1349
– volume: 165
  start-page: 132
  year: 2016
  ident: B26
  article-title: Emerging mitochondrial therapeutic targets in optic neuropathies.
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2016.06.004
– volume: 2549
  start-page: 219
  year: 2022
  ident: B42
  article-title: Creating cell model 2.0 using patient samples carrying a pathogenic mitochondrial DNA mutation: iPSC approach for LHON.
  publication-title: Methods Mol. Biol.
  doi: 10.1007/7651_2021_384
– volume: 34
  start-page: 517
  year: 2021
  ident: B39
  article-title: Mitochondrial reactive oxygen species and mitophagy: a complex and nuanced relationship.
  publication-title: Antioxid. Redox. Signal.
  doi: 10.1089/ars.2020.8058
– volume: 24
  year: 2019
  ident: B41
  article-title: Oxidative stress: a key modulator in neurodegenerative diseases.
  publication-title: Molecules
  doi: 10.3390/molecules24081583
– volume: 710
  year: 2019
  ident: B44
  article-title: Inflammation and mitochondrial dysfunction: a vicious circle in neurodegenerative disorders?
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2017.06.050
– volume: 11
  year: 2022
  ident: B31
  article-title: The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders.
  publication-title: Transl. Neurodegener.
  doi: 10.1186/s40035-022-00308-y
SSID ssj0062842
Score 2.3676512
Snippet In Leber's hereditary optic neuropathy (LHON), mtDNA mutations mediate mitochondrial dysfunction and apoptosis of retinal ganglion cells. Mitochondrial...
BackgroundIn Leber’s hereditary optic neuropathy (LHON), mtDNA mutations mediate mitochondrial dysfunction and apoptosis of retinal ganglion cells....
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 917348
SubjectTerms LHON
mitochondrial dysfunction
Neuroscience
oxidative stress
retinal ganglion cell
SOD2
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT1wqoFQsFGQkxKFS6Ca24_hYEFWFWi6lUm-Rf9WIrlNtslL3VvUteD2ehBknW20ucOESRbETO57x_Njjbwj5MIcC7pTMSm1sxrXKs4obk0mFi27GWJMOCp9_L08v-bcrcbWV6gtjwgZ44GHgjqxUoKQYC5aVXFfOFNXcOXATDEhSYRISKOi8jTM1yOAShG4x7GGCC6aOQmwiYnMXxSdwTxgm-9nSQgmsf2JhTuMjtxTOyTOyO1qK9Hjo4XPyxMcXZO84gpe8WNOPNMVupkXxPfJwsULA77vGeeqaboGB1p4WVC_8DZ7BB3uSLmDugqyLDlmOunWHKg3JQptIu59wCeA6twbM6b6jbaBnMMDL3_e_OnqNCT2bXi_XtAURY2lCwcRkxms6ArN2L8nlydcfX06zMbtCZjkv-swKI-Xc8dxZ540wMBlD8LIUyueOgWOoBNyU1uZBOi25yr3hVaFFkGBlSM_2yU5so39FqBOVzcsqMAHfc2DyBSdNgdliwKDzms3IfDPatR2hxzEDxk0NLggSqE4EqpFA9UCgGTl8fOV2wN34W-XPSMLHigiZnR4AI9UjI9X_YqQZeb9hgBqmGO6b6OjbFbQkcfsSEwPMiJxwxqTFaUlsrhNYt2LQbM5e_48uviFP8a9T_KE6IDv9cuXfgk3Um3eJ_f8AQBwRIg
  priority: 102
  providerName: Directory of Open Access Journals
Title Superoxide dismutase 2 ameliorates mitochondrial dysfunction in skin fibroblasts of Leber’s hereditary optic neuropathy patients
URI https://www.proquest.com/docview/2707602874
https://pubmed.ncbi.nlm.nih.gov/PMC9398213
https://doaj.org/article/c7982033fc364a8db280dd289b4295b4
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFB1qBemLqFVcq2UE8UFI3WQmmcyDSBVrEeuLLuxbyHy1wd2JTbLQvIn_wr_nL_He2ezSQPHBl7BsPobMnZt77tyZcwh5MYUT3EgRZaXSES9lHOVcqUhInHRTSquwUfjsS3Y645_m6XyHbOSthg5sb0ztUE9q1iyOri77t-DwbzDjhHj72vnKI_N2khxB8sF4fovchsAk0E_P-LaokMGXOBQ_M9woBEh9XeS8-RF75A7LkEsG9d-vRaxA7D9Co-O1lNeC08k9cndAlfR4PQzukx3rH5D9Yw8Z9bKnL2lY5xkm0PfJr68rJAe_qoylpmqXuCjb0oSWS7vA_fqAPekS_By6xhscntT0LYY_NCGtPG2_w8FBml0rgN5dS2tHP4Mxmj8_f7f0AsU_q65selrD50jTwJiJwsc9HUhc24dkdvLh2_vTaFBiiDTnSRfpVAkxNTw22liVKnBc56zIUmljwyCJlCn8yLSOnTCl4DK2iudJmToBiERY9ojs-trbx4SaNNdxljuWwvMMwENnhEpQWQbAny3ZhEw3vV3ogaYc1TIWBaQraKsi2KpAWxVrW03Iq-0tP9YcHf-6-B2acHsh0muHP-rmvBi8tdBCAjJizGmW8TI3KsmnxkBuqiB8p4pPyPPNACjAHbHGUnpbr6AlgaVOFBGYEDEaGaMWx2d8dRGIvSWDZmP25L_vPCB7-KphgaJ8Sna7ZmWfAWjq1GGYbIDjx3l8GNziL8aMHkM
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superoxide+dismutase+2+ameliorates+mitochondrial+dysfunction+in+skin+fibroblasts+of+Leber%E2%80%99s+hereditary+optic+neuropathy+patients&rft.jtitle=Frontiers+in+neuroscience&rft.au=Zhou%2C+Qingru&rft.au=Yao%2C+Shun&rft.au=Yang%2C+Mingzhu&rft.au=Guo%2C+Qingge&rft.date=2022-08-09&rft.pub=Frontiers+Media+S.A&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=16&rft_id=info:doi/10.3389%2Ffnins.2022.917348&rft_id=info%3Apmid%2F36017189&rft.externalDocID=PMC9398213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon