Folding and insertion thermodynamics of the transmembrane WALP peptide
The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural prope...
Saved in:
Published in | The Journal of chemical physics Vol. 143; no. 24; p. 243127 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
28.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide’s insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence. |
---|---|
AbstractList | The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide's insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum-in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence. The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA){sub n} (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide’s insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence. |
Author | Karttunen, Mikko Bereau, Tristan Bennett, W. F. Drew Deserno, Markus Pfaendtner, Jim |
Author_xml | – sequence: 1 givenname: Tristan orcidid: 0000-0001-9945-1271 surname: Bereau fullname: Bereau, Tristan – sequence: 2 givenname: W. F. Drew surname: Bennett fullname: Bennett, W. F. Drew – sequence: 3 givenname: Jim surname: Pfaendtner fullname: Pfaendtner, Jim – sequence: 4 givenname: Markus orcidid: 0000-0001-5692-1595 surname: Deserno fullname: Deserno, Markus – sequence: 5 givenname: Mikko surname: Karttunen fullname: Karttunen, Mikko |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26723612$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22493374$$D View this record in Osti.gov |
BookMark | eNptkU9LJDEQxcPioqPrYb-ANHhZD63510nnKLKjwoB72GWPoZNUr5HuZEwyB7-9GWZ0QTwVFL961HvvGB2EGACh7wRfEizYFbnkinW8l1_QguBetVIofIAWGFPSKoHFETrO-QljTCTlh-iICkmZIHSBlss4OR_-NUNwjQ8ZUvExNOUR0hzdSxhmb3MTx-2mKWkIeYbZ1AnN3-vVr2YN6-IdfENfx2HKcLqfJ-jP8ufvm7t29XB7f3O9ai3ntLSWAXcgDWEclLNGSOyUopQ4ZQbWMUdHpwQYGJXqjGE99G7AoxtHh7npJDtB5zvdmIvX2foC9tHGEMAWTWmNgUleqR87ap3i8wZy0bPPFqapvh03WRPZMUyoYuK_4Dv6FDcpVA-aEsp63Eu-FTzbUxszg9Pr5Ochvei3HCtwsQNsijknGN8RgvW2I030vqPKXn1gq41hG3vN10-fXLwCwGuQyg |
CitedBy_id | crossref_primary_10_3390_biom13121731 crossref_primary_10_3390_ijms23010326 crossref_primary_10_1016_j_bbamem_2018_03_028 crossref_primary_10_7717_peerj_4230 crossref_primary_10_1002_jcc_24694 crossref_primary_10_1246_bcsj_20190246 crossref_primary_10_1016_j_bpj_2017_05_019 crossref_primary_10_1021_acs_jpcb_8b06613 crossref_primary_10_1140_epjst_e2016_60114_5 crossref_primary_10_1016_j_bbamem_2016_03_032 crossref_primary_10_1021_acs_jpcb_1c02810 crossref_primary_10_1002_anie_201712448 crossref_primary_10_1039_C6CP01133K crossref_primary_10_3390_computation6010021 crossref_primary_10_1016_j_bpc_2016_07_001 crossref_primary_10_1007_s10867_018_9490_y crossref_primary_10_1021_acs_jcim_3c00360 crossref_primary_10_1016_j_ymeth_2020_02_007 crossref_primary_10_1021_acs_jctc_9b00815 crossref_primary_10_1088_1361_648X_abf6e2 crossref_primary_10_1016_j_jmb_2017_12_011 crossref_primary_10_1021_acs_biomac_3c00498 crossref_primary_10_1021_acs_chemrev_8b00460 crossref_primary_10_1002_ange_201712448 crossref_primary_10_1063_5_0012391 crossref_primary_10_1021_acs_jcim_1c01354 crossref_primary_10_1088_1361_651X_abd042 crossref_primary_10_1103_PhysRevE_109_064404 crossref_primary_10_1021_acs_jcim_6b00350 crossref_primary_10_1021_acs_jpcb_7b08241 crossref_primary_10_3934_molsci_2017_3_352 crossref_primary_10_1021_acs_jpcb_6b03682 crossref_primary_10_1039_C6CP02944B crossref_primary_10_1002_wcms_1693 crossref_primary_10_1063_1_5025125 crossref_primary_10_1016_j_bbamem_2019_183102 |
Cites_doi | 10.1371/journal.pcbi.1000810 10.1021/jp071097f 10.1016/j.cpc.2005.10.005 10.1021/ja507832e 10.1016/S0006-3495(00)76295-3 10.1016/j.sbi.2010.10.003 10.1016/0263-7855(96)00018-5 10.1073/pnas.202427399 10.1146/annurev-biochem-111910-091345 10.1103/PhysRevLett.104.190601 10.1016/j.sbi.2010.10.006 10.1088/1367-2630/12/9/095004 10.1021/ct700301q 10.1021/jp102543j 10.1021/acs.jctc.5b00056 10.1016/j.bpj.2011.02.041 10.1063/1.479208 10.1002/jcc.20090 10.1063/1.2408420 10.1002/prot.20460 10.1021/ct400617g 10.1021/ct5004803 10.1021/ja105206w 10.1021/bi00469a001 10.1063/1.2978177 10.1021/ja909347x 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H 10.1021/ct900313w 10.1103/PhysRevLett.63.1195 10.1063/1.3152842 10.1021/ct200888u 10.1088/0953-8984/18/28/S07 10.1103/PhysRevE.63.016701 10.1021/ja073784q 10.1021/ct200316w 10.1002/prot.24263 10.1126/science.1217737 10.1016/j.sbi.2008.02.003 10.1017/S0033583500001645 10.1063/1.4867465 10.1016/S0006-3495(97)78335-8 10.1103/PhysRevLett.100.020603 10.1073/pnas.0408135102 10.1016/j.bpj.2011.03.056 10.1038/nmeth.2472 10.1063/1.4823500 10.1021/cr300461d 10.1002/prot.340230412 10.1021/ct300323g 10.1002/jcc.21396 10.1016/j.sbi.2013.12.006 10.1038/nrm1102 10.1007/s00232-014-9738-9 10.1002/jcc.540130812 10.1021/acs.jctc.5b00209 10.1021/ja062463w 10.1016/S0959-440X(99)80015-3 10.1002/jcc.10307 10.1063/1.470117 10.1146/annurev.bi.53.070184.003115 10.1021/ct700324x 10.1021/ja9621760 10.1002/jcc.21989 10.1016/j.bpj.2010.05.039 10.1016/j.bpj.2010.04.015 10.1529/biophysj.105.073395 10.1021/ct300297t 10.1016/0021-9991(77)90121-8 10.1016/j.bpj.2010.05.042 10.1038/nature04395 10.1529/biophysj.103.035402 10.1021/bi800642m 10.1016/j.jcp.2009.05.011 10.1016/j.cpc.2013.09.018 10.1007/s00249-011-0700-9 10.1021/bi9519258 10.1016/j.phpro.2015.07.101 10.1021/ct300646g 10.1063/1.448118 10.1126/science.1219021 10.1529/biophysj.107.112805 10.1021/ct100494z |
ContentType | Journal Article |
Copyright | 2015 AIP Publishing LLC. |
Copyright_xml | – notice: 2015 AIP Publishing LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD H8D L7M 7X8 OTOTI |
DOI | 10.1063/1.4935487 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
EndPage | 243127 |
ExternalDocumentID | 22493374 26723612 10_1063_1_4935487 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAEUA CGR CUY CVF ECM EIF ESX NPM 8FD H8D L7M 7X8 0ZJ ABPTK AGIHO OTOTI UE8 ZHY |
ID | FETCH-LOGICAL-c442t-c3e4de7b134e9dcb670d99221d9ba353d2fd96ebef995bb38e8da0fdffd04b573 |
ISSN | 0021-9606 |
IngestDate | Fri May 19 01:42:36 EDT 2023 Thu Jul 10 23:10:57 EDT 2025 Sun Jun 29 16:22:30 EDT 2025 Wed Feb 19 02:00:35 EST 2025 Thu Apr 24 22:49:20 EDT 2025 Tue Jul 01 04:16:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c442t-c3e4de7b134e9dcb670d99221d9ba353d2fd96ebef995bb38e8da0fdffd04b573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5692-1595 0000-0001-9945-1271 |
OpenAccessLink | https://pure.tue.nl/ws/files/74777809/1.4935487.pdf |
PMID | 26723612 |
PQID | 2123808744 |
PQPubID | 2050685 |
PageCount | 1 |
ParticipantIDs | osti_scitechconnect_22493374 proquest_miscellaneous_1753012936 proquest_journals_2123808744 pubmed_primary_26723612 crossref_primary_10_1063_1_4935487 crossref_citationtrail_10_1063_1_4935487 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-28 |
PublicationDateYYYYMMDD | 2015-12-28 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2015 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023080308055086100_c53) 2011; 7 (2023080308055086100_c49) 1996; 118 (2023080308055086100_c37) 2012; 8 (2023080308055086100_c66) 2010; 6 (2023080308055086100_c69) 1984; 81 (2023080308055086100_c29) 2007; 111 (2023080308055086100_c20) 2005; 102 (2023080308055086100_c40) 2012; 9 (2023080308055086100_c44) 2014; 136 (2023080308055086100_c30) 2008; 47 (2023080308055086100_c48) 2010; 99 (2023080308055086100_c82) 2008; 100 (2023080308055086100_c13) 1999; 9 (2023080308055086100_c33) 2010; 12 (2023080308055086100_c25) 2005; 59 (2023080308055086100_c10) 2012; 8 (2023080308055086100_c35) 2011; 100 (2023080308055086100_c38) 2003; 24 (2023080308055086100_c3) 1990 (2023080308055086100_c41) 2008; 4 (2023080308055086100_c47) 1996; 14 (2023080308055086100_c79) 2012; 8 (2023080308055086100_c81) 2014; 10 (2023080308055086100_c18) 1997; 73 (2023080308055086100_c73) 2010; 31 (2023080308055086100_c23) 2010; 99 (2023080308055086100_c61) 1989; 63 (2023080308055086100_c9) 2012; 338 (2023080308055086100_c55) 2006; 174 (2023080308055086100_c77) 2006; 128 (2023080308055086100_c78) 2010; 104 (2023080308055086100_c28) 2014; 248 (2023080308055086100_c70) 2010; 6 (2023080308055086100_c62) 1992; 13 (2023080308055086100_c84) 2008; 129 (2023080308055086100_c11) 2014; 24 (2023080308055086100_c17) 1996; 35 (2023080308055086100_c63) 2009; 228 (2023080308055086100_c1) 1980; 13 (2023080308055086100_c5) 2011; 80 (2023080308055086100_c22) 2007; 129 (2023080308055086100_c68) 2007; 126 (2023080308055086100_c60) 1977; 23 (2023080308055086100_c43) 2015; 11 (2023080308055086100_c12) 2008; 18 (2023080308055086100_c51) 2004; 25 (2023080308055086100_c7) 2012; 337 (2023080308055086100_c67) 2014; 114 (2023080308055086100_c24) 2010; 99 (2023080308055086100_c59) 2000; 63 (2023080308055086100_c6) 2013; 10 (2023080308055086100_c64) 2008 (2023080308055086100_c54) 2002; 99 (2023080308055086100_c2) 1984; 53 (2023080308055086100_c85) 2012; 33 (2023080308055086100_c36) 2013; 81 (2023080308055086100_c14) 2005; 438 (2023080308055086100_c72) 2011; 40 (2023080308055086100_c16) 2011; 21 (2023080308055086100_c75) 1997; 18 (2023080308055086100_c42) 2009; 5 (2023080308055086100_c34) 2010; 132 (2023080308055086100_c80) 2014; 185 (2023080308055086100_c39) 2008; 94 (2023080308055086100_c27) 2014; 140 (2023080308055086100_c50) 2011; 100 (2023080308055086100_c19) 2004; 86 (2023080308055086100_c74) 1981 2023080308055086100_c83 (2023080308055086100_c52) 2006; 18 (2023080308055086100_c58) 1995; 23 (2023080308055086100_c15) 1990; 29 (2023080308055086100_c56) 1999; 111 (2023080308055086100_c4) 2003; 4 (2023080308055086100_c71) 2014; 10 (2023080308055086100_c76) 1995; 103 (2023080308055086100_c86) 2000; 79 (2023080308055086100_c46) 2013; 139 (2023080308055086100_c26) 2010; 132 (2023080308055086100_c45) 2015; 11 (2023080308055086100_c31) 2009; 130 (2023080308055086100_c8) 2011; 21 (2023080308055086100_c65) 2008; 4 (2023080308055086100_c57) 2015; 68 (2023080308055086100_c32) 2010; 114 (2023080308055086100_c21) 2006; 90 |
References_xml | – volume: 6 start-page: e1000810 year: 2010 ident: 2023080308055086100_c66 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000810 – volume: 111 start-page: 7812 year: 2007 ident: 2023080308055086100_c29 publication-title: J. Phys. Chem. B doi: 10.1021/jp071097f – volume: 174 start-page: 704 year: 2006 ident: 2023080308055086100_c55 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2005.10.005 – volume: 136 start-page: 14554 year: 2014 ident: 2023080308055086100_c44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja507832e – volume: 79 start-page: 328 year: 2000 ident: 2023080308055086100_c86 publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76295-3 – volume: 21 start-page: 42 year: 2011 ident: 2023080308055086100_c16 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2010.10.003 – volume: 14 start-page: 33 year: 1996 ident: 2023080308055086100_c47 publication-title: J. Mol. Graphics doi: 10.1016/0263-7855(96)00018-5 – volume: 99 start-page: 12562 year: 2002 ident: 2023080308055086100_c54 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.202427399 – volume: 80 start-page: 157 year: 2011 ident: 2023080308055086100_c5 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-111910-091345 – volume: 104 start-page: 190601 year: 2010 ident: 2023080308055086100_c78 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.190601 – volume: 21 start-page: 4 year: 2011 ident: 2023080308055086100_c8 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2010.10.006 – volume: 12 start-page: 095004 year: 2010 ident: 2023080308055086100_c33 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/9/095004 – volume: 4 start-page: 435 year: 2008 ident: 2023080308055086100_c65 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – volume: 114 start-page: 11207 year: 2010 ident: 2023080308055086100_c32 publication-title: J. Phys. Chem. B doi: 10.1021/jp102543j – volume: 11 start-page: 2783 year: 2015 ident: 2023080308055086100_c43 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00056 – start-page: 331 volume-title: Intermolecular Forces year: 1981 ident: 2023080308055086100_c74 – volume: 100 start-page: 1940 year: 2011 ident: 2023080308055086100_c50 publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.02.041 – volume: 111 start-page: 4453 year: 1999 ident: 2023080308055086100_c56 publication-title: J. Chem. Phys. doi: 10.1063/1.479208 – volume: 25 start-page: 1656 year: 2004 ident: 2023080308055086100_c51 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20090 – volume: 126 start-page: 014101 year: 2007 ident: 2023080308055086100_c68 publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 – volume: 59 start-page: 783 year: 2005 ident: 2023080308055086100_c25 publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.20460 – volume: 10 start-page: 676 year: 2014 ident: 2023080308055086100_c71 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400617g – volume: 10 start-page: 5081 year: 2014 ident: 2023080308055086100_c81 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5004803 – volume: 132 start-page: 13129 year: 2010 ident: 2023080308055086100_c34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105206w – volume: 29 start-page: 4031 year: 1990 ident: 2023080308055086100_c15 publication-title: Biochemistry doi: 10.1021/bi00469a001 – volume: 129 start-page: 124105 year: 2008 ident: 2023080308055086100_c84 publication-title: J. Chem. Phys. doi: 10.1063/1.2978177 – volume: 132 start-page: 3452 year: 2010 ident: 2023080308055086100_c26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909347x – volume: 18 start-page: 1463 year: 1997 ident: 2023080308055086100_c75 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H – volume: 5 start-page: 3195 year: 2009 ident: 2023080308055086100_c42 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900313w – volume: 63 start-page: 1195 year: 1989 ident: 2023080308055086100_c61 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.63.1195 – volume: 130 start-page: 235106 year: 2009 ident: 2023080308055086100_c31 publication-title: J. Chem. Phys. doi: 10.1063/1.3152842 – volume: 8 start-page: 3750 year: 2012 ident: 2023080308055086100_c37 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200888u – volume: 18 start-page: S1221 year: 2006 ident: 2023080308055086100_c52 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/18/28/S07 – volume: 63 start-page: 016701 year: 2000 ident: 2023080308055086100_c59 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.63.016701 – volume: 129 start-page: 15174 year: 2007 ident: 2023080308055086100_c22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja073784q – volume: 7 start-page: 4175 year: 2011 ident: 2023080308055086100_c53 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200316w – volume: 81 start-page: 1141 year: 2013 ident: 2023080308055086100_c36 publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.24263 – volume: 337 start-page: 362 year: 2012 ident: 2023080308055086100_c7 publication-title: Science doi: 10.1126/science.1217737 – volume: 18 start-page: 425 year: 2008 ident: 2023080308055086100_c12 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2008.02.003 – volume: 13 start-page: 121 year: 1980 ident: 2023080308055086100_c1 publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583500001645 – volume: 140 start-page: 115101 year: 2014 ident: 2023080308055086100_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.4867465 – volume: 73 start-page: 3078 year: 1997 ident: 2023080308055086100_c18 publication-title: Biophys. J. doi: 10.1016/S0006-3495(97)78335-8 – volume: 100 start-page: 020603 year: 2008 ident: 2023080308055086100_c82 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.020603 – volume: 102 start-page: 6771 year: 2005 ident: 2023080308055086100_c20 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0408135102 – volume: 100 start-page: 2764 year: 2011 ident: 2023080308055086100_c35 publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.03.056 – volume: 10 start-page: 584 year: 2013 ident: 2023080308055086100_c6 publication-title: Nat. Methods doi: 10.1038/nmeth.2472 – volume: 139 start-page: 134906 year: 2013 ident: 2023080308055086100_c46 publication-title: J. Chem. Phys. doi: 10.1063/1.4823500 – volume: 114 start-page: 779 year: 2014 ident: 2023080308055086100_c67 publication-title: Chem. Rev. doi: 10.1021/cr300461d – volume: 23 start-page: 566 year: 1995 ident: 2023080308055086100_c58 publication-title: Proteins: Struct., Funct., Genet. doi: 10.1002/prot.340230412 – volume: 8 start-page: 2725 year: 2012 ident: 2023080308055086100_c10 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300323g – volume: 31 start-page: 1117 year: 2010 ident: 2023080308055086100_c73 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21396 – volume: 24 start-page: 98 year: 2014 ident: 2023080308055086100_c11 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2013.12.006 – ident: 2023080308055086100_c83 – volume: 4 start-page: 414 year: 2003 ident: 2023080308055086100_c4 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1102 – volume: 248 start-page: 395 year: 2014 ident: 2023080308055086100_c28 publication-title: J. Membr. Biol. doi: 10.1007/s00232-014-9738-9 – volume: 13 start-page: 1011 year: 1992 ident: 2023080308055086100_c62 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540130812 – volume: 11 start-page: 2144 year: 2015 ident: 2023080308055086100_c45 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00209 – volume: 128 start-page: 13435 year: 2006 ident: 2023080308055086100_c77 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062463w – volume: 9 start-page: 115 year: 1999 ident: 2023080308055086100_c13 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(99)80015-3 – volume: 24 start-page: 1624 year: 2003 ident: 2023080308055086100_c38 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10307 – volume: 103 start-page: 8577 year: 1995 ident: 2023080308055086100_c76 publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – volume: 53 start-page: 595 year: 1984 ident: 2023080308055086100_c2 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.53.070184.003115 – volume: 4 start-page: 819 year: 2008 ident: 2023080308055086100_c41 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700324x – volume: 118 start-page: 11225 year: 1996 ident: 2023080308055086100_c49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9621760 – volume: 33 start-page: 453 year: 2012 ident: 2023080308055086100_c85 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21989 – volume: 99 start-page: 1455 year: 2010 ident: 2023080308055086100_c23 publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.05.039 – volume: 99 start-page: 175 year: 2010 ident: 2023080308055086100_c24 publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.04.015 – volume-title: Bootstrap Methods: A Guide for Practitioners and Researchers year: 2008 ident: 2023080308055086100_c64 – volume: 90 start-page: 2326 year: 2006 ident: 2023080308055086100_c21 publication-title: Biophys. J. doi: 10.1529/biophysj.105.073395 – volume: 8 start-page: 2189 year: 2012 ident: 2023080308055086100_c79 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300297t – volume: 23 start-page: 187 year: 1977 ident: 2023080308055086100_c60 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90121-8 – volume: 99 start-page: 1447 year: 2010 ident: 2023080308055086100_c48 publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.05.042 – volume: 438 start-page: 581 year: 2005 ident: 2023080308055086100_c14 publication-title: Nature doi: 10.1038/nature04395 – volume: 86 start-page: 3709 year: 2004 ident: 2023080308055086100_c19 publication-title: Biophys. J. doi: 10.1529/biophysj.103.035402 – volume: 47 start-page: 11321 year: 2008 ident: 2023080308055086100_c30 publication-title: Biochemistry doi: 10.1021/bi800642m – volume: 228 start-page: 6119 year: 2009 ident: 2023080308055086100_c63 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.05.011 – volume: 185 start-page: 604 year: 2014 ident: 2023080308055086100_c80 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.09.018 – volume: 40 start-page: 843 year: 2011 ident: 2023080308055086100_c72 publication-title: Eur. Biophys. J. doi: 10.1007/s00249-011-0700-9 – volume: 35 start-page: 1037 year: 1996 ident: 2023080308055086100_c17 publication-title: Biochemistry doi: 10.1021/bi9519258 – volume: 68 start-page: 7 year: 2015 ident: 2023080308055086100_c57 publication-title: Phys. Proc. doi: 10.1016/j.phpro.2015.07.101 – volume: 9 start-page: 687 year: 2012 ident: 2023080308055086100_c40 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300646g – volume: 81 start-page: 3684 year: 1984 ident: 2023080308055086100_c69 publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 338 start-page: 1042 year: 2012 ident: 2023080308055086100_c9 publication-title: Science doi: 10.1126/science.1219021 – volume-title: Molecular Cell Biology year: 1990 ident: 2023080308055086100_c3 – volume: 94 start-page: 3393 year: 2008 ident: 2023080308055086100_c39 publication-title: Biophys. J. doi: 10.1529/biophysj.107.112805 – volume: 6 start-page: 3713 year: 2010 ident: 2023080308055086100_c70 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100494z |
SSID | ssj0001724 |
Score | 2.3566248 |
Snippet | The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common... The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA){sub n} (L)WWA, is a... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 243127 |
SubjectTerms | Amino acids Anchors Cell Membrane - chemistry Chains COMPARATIVE EVALUATIONS Computer simulation COMPUTERIZED SIMULATION COOPERATIVES Dependence Folding FREE ENERGY Helices INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Insertion INTERFACES LAYERS Lipid Bilayers - chemistry LIPIDS MEMBRANE PROTEINS MEMBRANES Molecular Dynamics Simulation PEPTIDES Peptides - chemistry POTENTIALS PROBES Protein Folding Protein Structure, Secondary Proteins RESIDUES STABILITY THERMODYNAMICS WATER |
Title | Folding and insertion thermodynamics of the transmembrane WALP peptide |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26723612 https://www.proquest.com/docview/2123808744 https://www.proquest.com/docview/1753012936 https://www.osti.gov/biblio/22493374 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZythextZ9ZcuGN_YwCE5tS5bsx6xdKKUdhbW0TzO2JENhiUvivPSv750ly_HaQbcXExwnFrrT6af7-B0hX4o0LmMplV9oweCAEod-zjj1YfMRQZJTIST6IU9-8MNzdnQZXw4Gv7ayljZ1MZU399aV_I9U4R7IFatk_0Gy7k_hBnwG-cIVJAzXB8l4bkJHlkEJ4-pXxve_WlTKtJpft0kANW5KC72A0zHgyovZ8enkGjNaVC8XqKsUazCqbOkEjAOkc6lrwJqbRtZoJDoN-9aU-TSG_WI6mU8nB6utyEOZ66WqbYnN0dXCoWgNY296gDe1Q31fRBhjXkeUbNtXTPjggSW3NiY1SFJfcNMU1Nlcw81klctUUd8x5oCe0K8wZSnFc1W3Y7VR-j82Mpde2ATWOc3CzP70EdmJ4BgBdnBndnBy_NPt1QDfLE-3GXfLPcXpnntvD7EMK7C8fz-NNKjk7Dl5ZkXlzYxuvCADvdwlT_bbLn675PGpkdxLMrfa4oG2eE5bvL62eFWJd7yetnioLZ7VllfkfP79bP_Qt100fMlYVPuSaqa0KELKdKpkwUWgkIw4VGmR05iqqFQph7VcpmlcFDTRicqDUpWlClgRC_qaDJfVUr8lXqhKpgXleYwlcGGUc14GCqy6iHKdCzYiX9uZyqSlmMdOJ7-zOxIZkc_u0WvDq3LfQ2Oc7gzAIDIaS0z9knUGqDOlFF83bsWQ2VW5zhCKJQE2dRiRT-5rmHQMhMGUVZt1huy06IClfETeGPG5QURcIB9R9O4hA3xPnnbLYEyG9WqjPwBIrYuPVtNuAWMgj5g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Folding+and+insertion+thermodynamics+of+the+transmembrane+WALP+peptide&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Bereau%2C+Tristan&rft.au=Bennett%2C+W.+F.+Drew&rft.au=Pfaendtner%2C+Jim&rft.au=Deserno%2C+Markus&rft.date=2015-12-28&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=143&rft.issue=24&rft_id=info:doi/10.1063%2F1.4935487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4935487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |