Folding and insertion thermodynamics of the transmembrane WALP peptide

The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural prope...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 143; no. 24; p. 243127
Main Authors Bereau, Tristan, Bennett, W. F. Drew, Pfaendtner, Jim, Deserno, Markus, Karttunen, Mikko
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 28.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide’s insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.
AbstractList The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide's insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum-in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.
The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA){sub n} (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide’s insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.
Author Karttunen, Mikko
Bereau, Tristan
Bennett, W. F. Drew
Deserno, Markus
Pfaendtner, Jim
Author_xml – sequence: 1
  givenname: Tristan
  orcidid: 0000-0001-9945-1271
  surname: Bereau
  fullname: Bereau, Tristan
– sequence: 2
  givenname: W. F. Drew
  surname: Bennett
  fullname: Bennett, W. F. Drew
– sequence: 3
  givenname: Jim
  surname: Pfaendtner
  fullname: Pfaendtner, Jim
– sequence: 4
  givenname: Markus
  orcidid: 0000-0001-5692-1595
  surname: Deserno
  fullname: Deserno, Markus
– sequence: 5
  givenname: Mikko
  surname: Karttunen
  fullname: Karttunen, Mikko
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26723612$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22493374$$D View this record in Osti.gov
BookMark eNptkU9LJDEQxcPioqPrYb-ANHhZD63510nnKLKjwoB72GWPoZNUr5HuZEwyB7-9GWZ0QTwVFL961HvvGB2EGACh7wRfEizYFbnkinW8l1_QguBetVIofIAWGFPSKoHFETrO-QljTCTlh-iICkmZIHSBlss4OR_-NUNwjQ8ZUvExNOUR0hzdSxhmb3MTx-2mKWkIeYbZ1AnN3-vVr2YN6-IdfENfx2HKcLqfJ-jP8ufvm7t29XB7f3O9ai3ntLSWAXcgDWEclLNGSOyUopQ4ZQbWMUdHpwQYGJXqjGE99G7AoxtHh7npJDtB5zvdmIvX2foC9tHGEMAWTWmNgUleqR87ap3i8wZy0bPPFqapvh03WRPZMUyoYuK_4Dv6FDcpVA-aEsp63Eu-FTzbUxszg9Pr5Ochvei3HCtwsQNsijknGN8RgvW2I030vqPKXn1gq41hG3vN10-fXLwCwGuQyg
CitedBy_id crossref_primary_10_3390_biom13121731
crossref_primary_10_3390_ijms23010326
crossref_primary_10_1016_j_bbamem_2018_03_028
crossref_primary_10_7717_peerj_4230
crossref_primary_10_1002_jcc_24694
crossref_primary_10_1246_bcsj_20190246
crossref_primary_10_1016_j_bpj_2017_05_019
crossref_primary_10_1021_acs_jpcb_8b06613
crossref_primary_10_1140_epjst_e2016_60114_5
crossref_primary_10_1016_j_bbamem_2016_03_032
crossref_primary_10_1021_acs_jpcb_1c02810
crossref_primary_10_1002_anie_201712448
crossref_primary_10_1039_C6CP01133K
crossref_primary_10_3390_computation6010021
crossref_primary_10_1016_j_bpc_2016_07_001
crossref_primary_10_1007_s10867_018_9490_y
crossref_primary_10_1021_acs_jcim_3c00360
crossref_primary_10_1016_j_ymeth_2020_02_007
crossref_primary_10_1021_acs_jctc_9b00815
crossref_primary_10_1088_1361_648X_abf6e2
crossref_primary_10_1016_j_jmb_2017_12_011
crossref_primary_10_1021_acs_biomac_3c00498
crossref_primary_10_1021_acs_chemrev_8b00460
crossref_primary_10_1002_ange_201712448
crossref_primary_10_1063_5_0012391
crossref_primary_10_1021_acs_jcim_1c01354
crossref_primary_10_1088_1361_651X_abd042
crossref_primary_10_1103_PhysRevE_109_064404
crossref_primary_10_1021_acs_jcim_6b00350
crossref_primary_10_1021_acs_jpcb_7b08241
crossref_primary_10_3934_molsci_2017_3_352
crossref_primary_10_1021_acs_jpcb_6b03682
crossref_primary_10_1039_C6CP02944B
crossref_primary_10_1002_wcms_1693
crossref_primary_10_1063_1_5025125
crossref_primary_10_1016_j_bbamem_2019_183102
Cites_doi 10.1371/journal.pcbi.1000810
10.1021/jp071097f
10.1016/j.cpc.2005.10.005
10.1021/ja507832e
10.1016/S0006-3495(00)76295-3
10.1016/j.sbi.2010.10.003
10.1016/0263-7855(96)00018-5
10.1073/pnas.202427399
10.1146/annurev-biochem-111910-091345
10.1103/PhysRevLett.104.190601
10.1016/j.sbi.2010.10.006
10.1088/1367-2630/12/9/095004
10.1021/ct700301q
10.1021/jp102543j
10.1021/acs.jctc.5b00056
10.1016/j.bpj.2011.02.041
10.1063/1.479208
10.1002/jcc.20090
10.1063/1.2408420
10.1002/prot.20460
10.1021/ct400617g
10.1021/ct5004803
10.1021/ja105206w
10.1021/bi00469a001
10.1063/1.2978177
10.1021/ja909347x
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1021/ct900313w
10.1103/PhysRevLett.63.1195
10.1063/1.3152842
10.1021/ct200888u
10.1088/0953-8984/18/28/S07
10.1103/PhysRevE.63.016701
10.1021/ja073784q
10.1021/ct200316w
10.1002/prot.24263
10.1126/science.1217737
10.1016/j.sbi.2008.02.003
10.1017/S0033583500001645
10.1063/1.4867465
10.1016/S0006-3495(97)78335-8
10.1103/PhysRevLett.100.020603
10.1073/pnas.0408135102
10.1016/j.bpj.2011.03.056
10.1038/nmeth.2472
10.1063/1.4823500
10.1021/cr300461d
10.1002/prot.340230412
10.1021/ct300323g
10.1002/jcc.21396
10.1016/j.sbi.2013.12.006
10.1038/nrm1102
10.1007/s00232-014-9738-9
10.1002/jcc.540130812
10.1021/acs.jctc.5b00209
10.1021/ja062463w
10.1016/S0959-440X(99)80015-3
10.1002/jcc.10307
10.1063/1.470117
10.1146/annurev.bi.53.070184.003115
10.1021/ct700324x
10.1021/ja9621760
10.1002/jcc.21989
10.1016/j.bpj.2010.05.039
10.1016/j.bpj.2010.04.015
10.1529/biophysj.105.073395
10.1021/ct300297t
10.1016/0021-9991(77)90121-8
10.1016/j.bpj.2010.05.042
10.1038/nature04395
10.1529/biophysj.103.035402
10.1021/bi800642m
10.1016/j.jcp.2009.05.011
10.1016/j.cpc.2013.09.018
10.1007/s00249-011-0700-9
10.1021/bi9519258
10.1016/j.phpro.2015.07.101
10.1021/ct300646g
10.1063/1.448118
10.1126/science.1219021
10.1529/biophysj.107.112805
10.1021/ct100494z
ContentType Journal Article
Copyright 2015 AIP Publishing LLC.
Copyright_xml – notice: 2015 AIP Publishing LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
H8D
L7M
7X8
OTOTI
DOI 10.1063/1.4935487
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
EndPage 243127
ExternalDocumentID 22493374
26723612
10_1063_1_4935487
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAEUA
CGR
CUY
CVF
ECM
EIF
ESX
NPM
8FD
H8D
L7M
7X8
0ZJ
ABPTK
AGIHO
OTOTI
UE8
ZHY
ID FETCH-LOGICAL-c442t-c3e4de7b134e9dcb670d99221d9ba353d2fd96ebef995bb38e8da0fdffd04b573
ISSN 0021-9606
IngestDate Fri May 19 01:42:36 EDT 2023
Thu Jul 10 23:10:57 EDT 2025
Sun Jun 29 16:22:30 EDT 2025
Wed Feb 19 02:00:35 EST 2025
Thu Apr 24 22:49:20 EDT 2025
Tue Jul 01 04:16:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-c3e4de7b134e9dcb670d99221d9ba353d2fd96ebef995bb38e8da0fdffd04b573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5692-1595
0000-0001-9945-1271
OpenAccessLink https://pure.tue.nl/ws/files/74777809/1.4935487.pdf
PMID 26723612
PQID 2123808744
PQPubID 2050685
PageCount 1
ParticipantIDs osti_scitechconnect_22493374
proquest_miscellaneous_1753012936
proquest_journals_2123808744
pubmed_primary_26723612
crossref_primary_10_1063_1_4935487
crossref_citationtrail_10_1063_1_4935487
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-28
PublicationDateYYYYMMDD 2015-12-28
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2015
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023080308055086100_c53) 2011; 7
(2023080308055086100_c49) 1996; 118
(2023080308055086100_c37) 2012; 8
(2023080308055086100_c66) 2010; 6
(2023080308055086100_c69) 1984; 81
(2023080308055086100_c29) 2007; 111
(2023080308055086100_c20) 2005; 102
(2023080308055086100_c40) 2012; 9
(2023080308055086100_c44) 2014; 136
(2023080308055086100_c30) 2008; 47
(2023080308055086100_c48) 2010; 99
(2023080308055086100_c82) 2008; 100
(2023080308055086100_c13) 1999; 9
(2023080308055086100_c33) 2010; 12
(2023080308055086100_c25) 2005; 59
(2023080308055086100_c10) 2012; 8
(2023080308055086100_c35) 2011; 100
(2023080308055086100_c38) 2003; 24
(2023080308055086100_c3) 1990
(2023080308055086100_c41) 2008; 4
(2023080308055086100_c47) 1996; 14
(2023080308055086100_c79) 2012; 8
(2023080308055086100_c81) 2014; 10
(2023080308055086100_c18) 1997; 73
(2023080308055086100_c73) 2010; 31
(2023080308055086100_c23) 2010; 99
(2023080308055086100_c61) 1989; 63
(2023080308055086100_c9) 2012; 338
(2023080308055086100_c55) 2006; 174
(2023080308055086100_c77) 2006; 128
(2023080308055086100_c78) 2010; 104
(2023080308055086100_c28) 2014; 248
(2023080308055086100_c70) 2010; 6
(2023080308055086100_c62) 1992; 13
(2023080308055086100_c84) 2008; 129
(2023080308055086100_c11) 2014; 24
(2023080308055086100_c17) 1996; 35
(2023080308055086100_c63) 2009; 228
(2023080308055086100_c1) 1980; 13
(2023080308055086100_c5) 2011; 80
(2023080308055086100_c22) 2007; 129
(2023080308055086100_c68) 2007; 126
(2023080308055086100_c60) 1977; 23
(2023080308055086100_c43) 2015; 11
(2023080308055086100_c12) 2008; 18
(2023080308055086100_c51) 2004; 25
(2023080308055086100_c7) 2012; 337
(2023080308055086100_c67) 2014; 114
(2023080308055086100_c24) 2010; 99
(2023080308055086100_c59) 2000; 63
(2023080308055086100_c6) 2013; 10
(2023080308055086100_c64) 2008
(2023080308055086100_c54) 2002; 99
(2023080308055086100_c2) 1984; 53
(2023080308055086100_c85) 2012; 33
(2023080308055086100_c36) 2013; 81
(2023080308055086100_c14) 2005; 438
(2023080308055086100_c72) 2011; 40
(2023080308055086100_c16) 2011; 21
(2023080308055086100_c75) 1997; 18
(2023080308055086100_c42) 2009; 5
(2023080308055086100_c34) 2010; 132
(2023080308055086100_c80) 2014; 185
(2023080308055086100_c39) 2008; 94
(2023080308055086100_c27) 2014; 140
(2023080308055086100_c50) 2011; 100
(2023080308055086100_c19) 2004; 86
(2023080308055086100_c74) 1981
2023080308055086100_c83
(2023080308055086100_c52) 2006; 18
(2023080308055086100_c58) 1995; 23
(2023080308055086100_c15) 1990; 29
(2023080308055086100_c56) 1999; 111
(2023080308055086100_c4) 2003; 4
(2023080308055086100_c71) 2014; 10
(2023080308055086100_c76) 1995; 103
(2023080308055086100_c86) 2000; 79
(2023080308055086100_c46) 2013; 139
(2023080308055086100_c26) 2010; 132
(2023080308055086100_c45) 2015; 11
(2023080308055086100_c31) 2009; 130
(2023080308055086100_c8) 2011; 21
(2023080308055086100_c65) 2008; 4
(2023080308055086100_c57) 2015; 68
(2023080308055086100_c32) 2010; 114
(2023080308055086100_c21) 2006; 90
References_xml – volume: 6
  start-page: e1000810
  year: 2010
  ident: 2023080308055086100_c66
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000810
– volume: 111
  start-page: 7812
  year: 2007
  ident: 2023080308055086100_c29
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp071097f
– volume: 174
  start-page: 704
  year: 2006
  ident: 2023080308055086100_c55
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2005.10.005
– volume: 136
  start-page: 14554
  year: 2014
  ident: 2023080308055086100_c44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja507832e
– volume: 79
  start-page: 328
  year: 2000
  ident: 2023080308055086100_c86
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76295-3
– volume: 21
  start-page: 42
  year: 2011
  ident: 2023080308055086100_c16
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2010.10.003
– volume: 14
  start-page: 33
  year: 1996
  ident: 2023080308055086100_c47
  publication-title: J. Mol. Graphics
  doi: 10.1016/0263-7855(96)00018-5
– volume: 99
  start-page: 12562
  year: 2002
  ident: 2023080308055086100_c54
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.202427399
– volume: 80
  start-page: 157
  year: 2011
  ident: 2023080308055086100_c5
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-111910-091345
– volume: 104
  start-page: 190601
  year: 2010
  ident: 2023080308055086100_c78
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.190601
– volume: 21
  start-page: 4
  year: 2011
  ident: 2023080308055086100_c8
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2010.10.006
– volume: 12
  start-page: 095004
  year: 2010
  ident: 2023080308055086100_c33
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/9/095004
– volume: 4
  start-page: 435
  year: 2008
  ident: 2023080308055086100_c65
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700301q
– volume: 114
  start-page: 11207
  year: 2010
  ident: 2023080308055086100_c32
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp102543j
– volume: 11
  start-page: 2783
  year: 2015
  ident: 2023080308055086100_c43
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00056
– start-page: 331
  volume-title: Intermolecular Forces
  year: 1981
  ident: 2023080308055086100_c74
– volume: 100
  start-page: 1940
  year: 2011
  ident: 2023080308055086100_c50
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.02.041
– volume: 111
  start-page: 4453
  year: 1999
  ident: 2023080308055086100_c56
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479208
– volume: 25
  start-page: 1656
  year: 2004
  ident: 2023080308055086100_c51
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20090
– volume: 126
  start-page: 014101
  year: 2007
  ident: 2023080308055086100_c68
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 59
  start-page: 783
  year: 2005
  ident: 2023080308055086100_c25
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.20460
– volume: 10
  start-page: 676
  year: 2014
  ident: 2023080308055086100_c71
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400617g
– volume: 10
  start-page: 5081
  year: 2014
  ident: 2023080308055086100_c81
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5004803
– volume: 132
  start-page: 13129
  year: 2010
  ident: 2023080308055086100_c34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105206w
– volume: 29
  start-page: 4031
  year: 1990
  ident: 2023080308055086100_c15
  publication-title: Biochemistry
  doi: 10.1021/bi00469a001
– volume: 129
  start-page: 124105
  year: 2008
  ident: 2023080308055086100_c84
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2978177
– volume: 132
  start-page: 3452
  year: 2010
  ident: 2023080308055086100_c26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909347x
– volume: 18
  start-page: 1463
  year: 1997
  ident: 2023080308055086100_c75
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– volume: 5
  start-page: 3195
  year: 2009
  ident: 2023080308055086100_c42
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900313w
– volume: 63
  start-page: 1195
  year: 1989
  ident: 2023080308055086100_c61
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.1195
– volume: 130
  start-page: 235106
  year: 2009
  ident: 2023080308055086100_c31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3152842
– volume: 8
  start-page: 3750
  year: 2012
  ident: 2023080308055086100_c37
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200888u
– volume: 18
  start-page: S1221
  year: 2006
  ident: 2023080308055086100_c52
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/18/28/S07
– volume: 63
  start-page: 016701
  year: 2000
  ident: 2023080308055086100_c59
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.63.016701
– volume: 129
  start-page: 15174
  year: 2007
  ident: 2023080308055086100_c22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja073784q
– volume: 7
  start-page: 4175
  year: 2011
  ident: 2023080308055086100_c53
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200316w
– volume: 81
  start-page: 1141
  year: 2013
  ident: 2023080308055086100_c36
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.24263
– volume: 337
  start-page: 362
  year: 2012
  ident: 2023080308055086100_c7
  publication-title: Science
  doi: 10.1126/science.1217737
– volume: 18
  start-page: 425
  year: 2008
  ident: 2023080308055086100_c12
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2008.02.003
– volume: 13
  start-page: 121
  year: 1980
  ident: 2023080308055086100_c1
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583500001645
– volume: 140
  start-page: 115101
  year: 2014
  ident: 2023080308055086100_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4867465
– volume: 73
  start-page: 3078
  year: 1997
  ident: 2023080308055086100_c18
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(97)78335-8
– volume: 100
  start-page: 020603
  year: 2008
  ident: 2023080308055086100_c82
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.020603
– volume: 102
  start-page: 6771
  year: 2005
  ident: 2023080308055086100_c20
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0408135102
– volume: 100
  start-page: 2764
  year: 2011
  ident: 2023080308055086100_c35
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.03.056
– volume: 10
  start-page: 584
  year: 2013
  ident: 2023080308055086100_c6
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2472
– volume: 139
  start-page: 134906
  year: 2013
  ident: 2023080308055086100_c46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4823500
– volume: 114
  start-page: 779
  year: 2014
  ident: 2023080308055086100_c67
  publication-title: Chem. Rev.
  doi: 10.1021/cr300461d
– volume: 23
  start-page: 566
  year: 1995
  ident: 2023080308055086100_c58
  publication-title: Proteins: Struct., Funct., Genet.
  doi: 10.1002/prot.340230412
– volume: 8
  start-page: 2725
  year: 2012
  ident: 2023080308055086100_c10
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300323g
– volume: 31
  start-page: 1117
  year: 2010
  ident: 2023080308055086100_c73
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21396
– volume: 24
  start-page: 98
  year: 2014
  ident: 2023080308055086100_c11
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2013.12.006
– ident: 2023080308055086100_c83
– volume: 4
  start-page: 414
  year: 2003
  ident: 2023080308055086100_c4
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1102
– volume: 248
  start-page: 395
  year: 2014
  ident: 2023080308055086100_c28
  publication-title: J. Membr. Biol.
  doi: 10.1007/s00232-014-9738-9
– volume: 13
  start-page: 1011
  year: 1992
  ident: 2023080308055086100_c62
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540130812
– volume: 11
  start-page: 2144
  year: 2015
  ident: 2023080308055086100_c45
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00209
– volume: 128
  start-page: 13435
  year: 2006
  ident: 2023080308055086100_c77
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062463w
– volume: 9
  start-page: 115
  year: 1999
  ident: 2023080308055086100_c13
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(99)80015-3
– volume: 24
  start-page: 1624
  year: 2003
  ident: 2023080308055086100_c38
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10307
– volume: 103
  start-page: 8577
  year: 1995
  ident: 2023080308055086100_c76
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– volume: 53
  start-page: 595
  year: 1984
  ident: 2023080308055086100_c2
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.53.070184.003115
– volume: 4
  start-page: 819
  year: 2008
  ident: 2023080308055086100_c41
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700324x
– volume: 118
  start-page: 11225
  year: 1996
  ident: 2023080308055086100_c49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9621760
– volume: 33
  start-page: 453
  year: 2012
  ident: 2023080308055086100_c85
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21989
– volume: 99
  start-page: 1455
  year: 2010
  ident: 2023080308055086100_c23
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.05.039
– volume: 99
  start-page: 175
  year: 2010
  ident: 2023080308055086100_c24
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.04.015
– volume-title: Bootstrap Methods: A Guide for Practitioners and Researchers
  year: 2008
  ident: 2023080308055086100_c64
– volume: 90
  start-page: 2326
  year: 2006
  ident: 2023080308055086100_c21
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.073395
– volume: 8
  start-page: 2189
  year: 2012
  ident: 2023080308055086100_c79
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300297t
– volume: 23
  start-page: 187
  year: 1977
  ident: 2023080308055086100_c60
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90121-8
– volume: 99
  start-page: 1447
  year: 2010
  ident: 2023080308055086100_c48
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.05.042
– volume: 438
  start-page: 581
  year: 2005
  ident: 2023080308055086100_c14
  publication-title: Nature
  doi: 10.1038/nature04395
– volume: 86
  start-page: 3709
  year: 2004
  ident: 2023080308055086100_c19
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.103.035402
– volume: 47
  start-page: 11321
  year: 2008
  ident: 2023080308055086100_c30
  publication-title: Biochemistry
  doi: 10.1021/bi800642m
– volume: 228
  start-page: 6119
  year: 2009
  ident: 2023080308055086100_c63
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.05.011
– volume: 185
  start-page: 604
  year: 2014
  ident: 2023080308055086100_c80
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.09.018
– volume: 40
  start-page: 843
  year: 2011
  ident: 2023080308055086100_c72
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-011-0700-9
– volume: 35
  start-page: 1037
  year: 1996
  ident: 2023080308055086100_c17
  publication-title: Biochemistry
  doi: 10.1021/bi9519258
– volume: 68
  start-page: 7
  year: 2015
  ident: 2023080308055086100_c57
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2015.07.101
– volume: 9
  start-page: 687
  year: 2012
  ident: 2023080308055086100_c40
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300646g
– volume: 81
  start-page: 3684
  year: 1984
  ident: 2023080308055086100_c69
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 338
  start-page: 1042
  year: 2012
  ident: 2023080308055086100_c9
  publication-title: Science
  doi: 10.1126/science.1219021
– volume-title: Molecular Cell Biology
  year: 1990
  ident: 2023080308055086100_c3
– volume: 94
  start-page: 3393
  year: 2008
  ident: 2023080308055086100_c39
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.112805
– volume: 6
  start-page: 3713
  year: 2010
  ident: 2023080308055086100_c70
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100494z
SSID ssj0001724
Score 2.3566248
Snippet The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common...
The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA){sub n} (L)WWA, is a...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 243127
SubjectTerms Amino acids
Anchors
Cell Membrane - chemistry
Chains
COMPARATIVE EVALUATIONS
Computer simulation
COMPUTERIZED SIMULATION
COOPERATIVES
Dependence
Folding
FREE ENERGY
Helices
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Insertion
INTERFACES
LAYERS
Lipid Bilayers - chemistry
LIPIDS
MEMBRANE PROTEINS
MEMBRANES
Molecular Dynamics Simulation
PEPTIDES
Peptides - chemistry
POTENTIALS
PROBES
Protein Folding
Protein Structure, Secondary
Proteins
RESIDUES
STABILITY
THERMODYNAMICS
WATER
Title Folding and insertion thermodynamics of the transmembrane WALP peptide
URI https://www.ncbi.nlm.nih.gov/pubmed/26723612
https://www.proquest.com/docview/2123808744
https://www.proquest.com/docview/1753012936
https://www.osti.gov/biblio/22493374
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZythextZ9ZcuGN_YwCE5tS5bsx6xdKKUdhbW0TzO2JENhiUvivPSv750ly_HaQbcXExwnFrrT6af7-B0hX4o0LmMplV9oweCAEod-zjj1YfMRQZJTIST6IU9-8MNzdnQZXw4Gv7ayljZ1MZU399aV_I9U4R7IFatk_0Gy7k_hBnwG-cIVJAzXB8l4bkJHlkEJ4-pXxve_WlTKtJpft0kANW5KC72A0zHgyovZ8enkGjNaVC8XqKsUazCqbOkEjAOkc6lrwJqbRtZoJDoN-9aU-TSG_WI6mU8nB6utyEOZ66WqbYnN0dXCoWgNY296gDe1Q31fRBhjXkeUbNtXTPjggSW3NiY1SFJfcNMU1Nlcw81klctUUd8x5oCe0K8wZSnFc1W3Y7VR-j82Mpde2ATWOc3CzP70EdmJ4BgBdnBndnBy_NPt1QDfLE-3GXfLPcXpnntvD7EMK7C8fz-NNKjk7Dl5ZkXlzYxuvCADvdwlT_bbLn675PGpkdxLMrfa4oG2eE5bvL62eFWJd7yetnioLZ7VllfkfP79bP_Qt100fMlYVPuSaqa0KELKdKpkwUWgkIw4VGmR05iqqFQph7VcpmlcFDTRicqDUpWlClgRC_qaDJfVUr8lXqhKpgXleYwlcGGUc14GCqy6iHKdCzYiX9uZyqSlmMdOJ7-zOxIZkc_u0WvDq3LfQ2Oc7gzAIDIaS0z9knUGqDOlFF83bsWQ2VW5zhCKJQE2dRiRT-5rmHQMhMGUVZt1huy06IClfETeGPG5QURcIB9R9O4hA3xPnnbLYEyG9WqjPwBIrYuPVtNuAWMgj5g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Folding+and+insertion+thermodynamics+of+the+transmembrane+WALP+peptide&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Bereau%2C+Tristan&rft.au=Bennett%2C+W.+F.+Drew&rft.au=Pfaendtner%2C+Jim&rft.au=Deserno%2C+Markus&rft.date=2015-12-28&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=143&rft.issue=24&rft_id=info:doi/10.1063%2F1.4935487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4935487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon