Identification of tool wear using acoustic emission signal and machine learning methods

The work concerns the monitoring of the edge condition based on acoustic emission (AE) signals. The tool edge condition was determined by the wear width on the flank face. The processed material was an aluminum-ceramic composite containing 10% SiC. A carbide milling cutter with a diamond coating was...

Full description

Saved in:
Bibliographic Details
Published inPrecision engineering Vol. 72; pp. 738 - 744
Main Authors Twardowski, Paweł, Tabaszewski, Maciej, Wiciak – Pikuła, Martyna, Felusiak-Czyryca, Agata
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The work concerns the monitoring of the edge condition based on acoustic emission (AE) signals. The tool edge condition was determined by the wear width on the flank face. The processed material was an aluminum-ceramic composite containing 10% SiC. A carbide milling cutter with a diamond coating was used as the tool. Based on the AE signals, appropriate measures were developed that were correlated with the edge condition. Machine learning methods were used to assess the milling cutter's degree of wear based on AE signals. The applied approach using a decision tree allowed the prediction error of the tool condition class with a value below 6%. The method was also compared with other machine learning methods such as neural networks and the k-nearest neighbor algorithm. •Tool condition identification based on acoustic emission spectra•Machine learning methods for diagnostic decision system.•Identification of usability/unsuitability of end mills.•Easy-to-build system for identifying the condition of the cutting tool based on AE measurement [1–25].•The decision trees methods like diagnostic supervision system.
AbstractList The work concerns the monitoring of the edge condition based on acoustic emission (AE) signals. The tool edge condition was determined by the wear width on the flank face. The processed material was an aluminum-ceramic composite containing 10% SiC. A carbide milling cutter with a diamond coating was used as the tool. Based on the AE signals, appropriate measures were developed that were correlated with the edge condition. Machine learning methods were used to assess the milling cutter's degree of wear based on AE signals. The applied approach using a decision tree allowed the prediction error of the tool condition class with a value below 6%. The method was also compared with other machine learning methods such as neural networks and the k-nearest neighbor algorithm. •Tool condition identification based on acoustic emission spectra•Machine learning methods for diagnostic decision system.•Identification of usability/unsuitability of end mills.•Easy-to-build system for identifying the condition of the cutting tool based on AE measurement [1–25].•The decision trees methods like diagnostic supervision system.
Author Wiciak – Pikuła, Martyna
Felusiak-Czyryca, Agata
Twardowski, Paweł
Tabaszewski, Maciej
Author_xml – sequence: 1
  givenname: Paweł
  surname: Twardowski
  fullname: Twardowski, Paweł
  organization: Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, 3 Piotrowo St., 60-965, Poznan, Poland
– sequence: 2
  givenname: Maciej
  surname: Tabaszewski
  fullname: Tabaszewski, Maciej
  organization: Faculty of Mechanical Engineering, Institute of Applied Mechanics, Poznan University of Technology, 3 Piotrowo St., 60-965, Poznan, Poland
– sequence: 3
  givenname: Martyna
  surname: Wiciak – Pikuła
  fullname: Wiciak – Pikuła, Martyna
  email: martyna.r.wiciak@doctorate.put.poznan.pl
  organization: Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, 3 Piotrowo St., 60-965, Poznan, Poland
– sequence: 4
  givenname: Agata
  surname: Felusiak-Czyryca
  fullname: Felusiak-Czyryca, Agata
  organization: Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, 3 Piotrowo St., 60-965, Poznan, Poland
BookMark eNqNkMtKAzEUhoNUsK2-Q3A_Y25zc6XUKxTcKC5DeibTpswkJUkV396MdSGuujpw-P_vcL4ZmlhnNUKXlOSU0PJqm--8BhNMWtt1zgijOalyQpsTNKV1xTPGKzZBU0IFzUpeNGdoFsKWEFLVREzR-3OrbTSdARUTBLsOR-d6_KmVx_tg7BorcPsQDWA9mDBewsGsreqxsi0eFGyM1bhPeTumBx03rg3n6LRTfdAXv3OO3h7uXxdP2fLl8Xlxu8xACBYzoLoUBVBesrprxIoXwDpG-YpUlVIlgCiZ4l3BQTNBRF0WtKa1AmhSAVjN5-j6wAXvQvC6kztvBuW_JCVyVCS38q8iOSqSpJJJUSrf_CuDiT8eolemPw5xd0Do9OSH0V4GMNqCbk2qRNk6cwzmG7hzj-g
CitedBy_id crossref_primary_10_3390_technologies12030030
crossref_primary_10_1016_j_compind_2022_103782
crossref_primary_10_3390_coatings14020193
crossref_primary_10_1115_1_4056490
crossref_primary_10_1177_09544054231166781
crossref_primary_10_1007_s00170_024_13959_0
crossref_primary_10_1016_j_jmapro_2023_04_036
crossref_primary_10_3390_math11030719
crossref_primary_10_1080_10910344_2025_2472350
crossref_primary_10_3390_jmmp8030108
crossref_primary_10_2139_ssrn_4657889
crossref_primary_10_1016_j_wear_2023_204652
crossref_primary_10_3390_s24113432
crossref_primary_10_1111_ijac_14364
crossref_primary_10_3390_app13021107
crossref_primary_10_1016_j_measurement_2024_115546
crossref_primary_10_1016_j_measurement_2025_116899
crossref_primary_10_1016_j_measurement_2023_113787
crossref_primary_10_1177_13506501241311174
crossref_primary_10_2474_trol_17_86
crossref_primary_10_1016_j_engfailanal_2022_106164
crossref_primary_10_1007_s12206_024_0419_z
crossref_primary_10_1007_s42417_023_01135_9
crossref_primary_10_1016_j_procir_2023_08_009
crossref_primary_10_1007_s12541_024_01144_y
crossref_primary_10_1016_j_cirpj_2024_05_001
crossref_primary_10_1016_j_jmapro_2023_11_046
crossref_primary_10_1016_j_jmrt_2025_03_103
crossref_primary_10_1016_j_measurement_2023_113825
crossref_primary_10_1007_s12200_023_00070_7
crossref_primary_10_1088_2631_8695_ad78a6
crossref_primary_10_1515_htmp_2024_0020
crossref_primary_10_1016_j_jmapro_2022_11_017
crossref_primary_10_1016_j_jmapro_2022_07_055
crossref_primary_10_3390_machines11111032
crossref_primary_10_1007_s00170_023_11305_4
crossref_primary_10_1088_1361_6501_ad633c
crossref_primary_10_1007_s00170_023_10820_8
crossref_primary_10_2139_ssrn_4004827
crossref_primary_10_3390_ndt3010003
crossref_primary_10_3390_pr12102094
crossref_primary_10_1016_j_eswa_2024_124169
crossref_primary_10_3390_s24165300
crossref_primary_10_1038_s41598_025_92178_3
crossref_primary_10_1016_j_jmsy_2023_02_017
crossref_primary_10_1016_j_rico_2024_100491
crossref_primary_10_1016_j_jmapro_2023_02_009
crossref_primary_10_1007_s12206_022_1229_9
crossref_primary_10_1016_j_aei_2025_103234
crossref_primary_10_1016_j_measurement_2022_110722
crossref_primary_10_1016_j_wear_2024_205529
crossref_primary_10_1016_j_measurement_2022_111814
crossref_primary_10_1007_s00170_024_13340_1
crossref_primary_10_1016_j_cirpj_2024_01_012
crossref_primary_10_1016_j_jmapro_2022_04_066
crossref_primary_10_1016_j_ymssp_2024_112128
crossref_primary_10_1016_j_ijmachtools_2024_104209
crossref_primary_10_3390_ma15124359
crossref_primary_10_1016_j_rcim_2024_102901
crossref_primary_10_1007_s12008_023_01270_3
crossref_primary_10_1177_09544054231185155
crossref_primary_10_3390_app112412041
crossref_primary_10_1007_s00170_024_13586_9
crossref_primary_10_1007_s40544_024_0879_2
crossref_primary_10_1007_s10845_024_02410_6
crossref_primary_10_1007_s12206_022_0912_1
crossref_primary_10_18311_jmmf_2024_45398
crossref_primary_10_3390_lubricants12110380
crossref_primary_10_1007_s00170_023_10963_8
crossref_primary_10_3390_s24237466
crossref_primary_10_3390_coatings14070827
crossref_primary_10_1007_s42417_024_01706_4
crossref_primary_10_1016_j_ijmecsci_2023_108769
crossref_primary_10_1088_1361_6501_ad166d
crossref_primary_10_3390_app142210404
crossref_primary_10_1016_j_jmapro_2023_05_023
crossref_primary_10_3390_min15020110
crossref_primary_10_1016_j_jmapro_2022_10_002
crossref_primary_10_1115_1_4054992
crossref_primary_10_1016_j_precisioneng_2024_01_010
crossref_primary_10_3390_jmmp6020042
Cites_doi 10.1016/j.ins.2013.06.010
10.1016/j.cirp.2010.05.010
10.1016/j.triboint.2015.07.024
10.1016/j.ymssp.2012.05.001
10.1016/j.measurement.2015.03.035
10.1177/0263092316644090
10.3390/s20205798
10.1016/j.ymssp.2017.12.035
10.1007/s10845-013-0774-6
10.1007/s00170-006-0523-5
10.1016/j.eswa.2009.01.065
10.17531/ein.2020.2.16
10.1016/j.cirp.2008.03.053
10.1016/j.apacoust.2016.11.007
10.1016/j.ymssp.2016.08.035
10.1016/j.measurement.2016.06.006
10.1016/0888-3270(92)90033-F
10.1115/1.2899578
10.1016/j.ymssp.2017.01.048
10.1007/s00170-017-1460-1
10.1016/j.ijmachtools.2004.04.003
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.precisioneng.2021.07.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2372
EndPage 744
ExternalDocumentID 10_1016_j_precisioneng_2021_07_019
S0141635921001884
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c442t-c1e645c13628f94b35c2f213b077aa6cc462a3f53ce24048651818acc9628c283
IEDL.DBID .~1
ISSN 0141-6359
IngestDate Tue Jul 01 02:13:03 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Fri Feb 23 02:42:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Acoustic emission
End milling
Tool wear
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-c1e645c13628f94b35c2f213b077aa6cc462a3f53ce24048651818acc9628c283
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0141635921001884
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_precisioneng_2021_07_019
crossref_citationtrail_10_1016_j_precisioneng_2021_07_019
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2021_07_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Precision engineering
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Teti, Jemielniak, O'Donnell, Dornfeld (bib11) 2010; 59
Lei, He, Zi (bib14) 2009; 36
Lahrache, Cocconcelli, Rubini (bib19) 2017; 18
Potočnik, Govekar (bib16) 2017; 93
Géron (bib22) 2017
Rangwala, Dornfeld (bib12) 1990; 112
Sun, Rahman, Wong, Hong (bib24) 2004; 44
Neslušan, Micieta, Micietov, Cillikova, Mrkvica (bib3) 2015; 70
Bhuiyan, Choudhury, Dahari, Nukman, Dawal (bib8) 2016; 92
Henrique, Mendes, Vasconcelos, Falco, Machado (bib4) 2015; 92
Xiaozhi, Beizhi (bib2) 2007; 33
Kothuru, Nooka, Liu (bib25) 2018; 95
Filippov, Rubtsov, Tarasov (bib5) 2017; 117
Tabaszewski, Szymański (bib18) 2020; 22
Mechefske, Mathew (bib15) 1992; 6
Benkedjouh, Medjaher, Zerhouni, Rechak (bib23) 2015; 26
Madhusudana, Budati, Gangadhar, Kumar, Narendranath (bib1) 2016; 35
Kannatey-Asibu, Yum, Kim (bib10) 2017; 85
Larose (bib20) 2005
Ren, Balazinski, Baron, Jemielniak, Botez, Achiche (bib7) 2014; 255
Wiciak-Pikuła, Felusiak-Czyryca, Twardowski (bib13) 2020; 20
Ruiz, Mujica, Alférez, Acho, Tutivén, Vidal, Rodellar, Pozo (bib17) 2018; 107
Jemielniak, Bombinski, Aristimuno (bib9) 2008; 57
Yen, Lu, Chen (bib6) 2013; 34
(bib21) 2010
Henrique (10.1016/j.precisioneng.2021.07.019_bib4) 2015; 92
Lei (10.1016/j.precisioneng.2021.07.019_bib14) 2009; 36
(10.1016/j.precisioneng.2021.07.019_bib21) 2010
Benkedjouh (10.1016/j.precisioneng.2021.07.019_bib23) 2015; 26
Yen (10.1016/j.precisioneng.2021.07.019_bib6) 2013; 34
Neslušan (10.1016/j.precisioneng.2021.07.019_bib3) 2015; 70
Bhuiyan (10.1016/j.precisioneng.2021.07.019_bib8) 2016; 92
Rangwala (10.1016/j.precisioneng.2021.07.019_bib12) 1990; 112
Larose (10.1016/j.precisioneng.2021.07.019_bib20) 2005
Géron (10.1016/j.precisioneng.2021.07.019_bib22) 2017
Tabaszewski (10.1016/j.precisioneng.2021.07.019_bib18) 2020; 22
Ren (10.1016/j.precisioneng.2021.07.019_bib7) 2014; 255
Wiciak-Pikuła (10.1016/j.precisioneng.2021.07.019_bib13) 2020; 20
Mechefske (10.1016/j.precisioneng.2021.07.019_bib15) 1992; 6
Sun (10.1016/j.precisioneng.2021.07.019_bib24) 2004; 44
Jemielniak (10.1016/j.precisioneng.2021.07.019_bib9) 2008; 57
Madhusudana (10.1016/j.precisioneng.2021.07.019_bib1) 2016; 35
Filippov (10.1016/j.precisioneng.2021.07.019_bib5) 2017; 117
Potočnik (10.1016/j.precisioneng.2021.07.019_bib16) 2017; 93
Teti (10.1016/j.precisioneng.2021.07.019_bib11) 2010; 59
Lahrache (10.1016/j.precisioneng.2021.07.019_bib19) 2017; 18
Kothuru (10.1016/j.precisioneng.2021.07.019_bib25) 2018; 95
Kannatey-Asibu (10.1016/j.precisioneng.2021.07.019_bib10) 2017; 85
Xiaozhi (10.1016/j.precisioneng.2021.07.019_bib2) 2007; 33
Ruiz (10.1016/j.precisioneng.2021.07.019_bib17) 2018; 107
References_xml – volume: 117
  start-page: 106
  year: 2017
  end-page: 112
  ident: bib5
  article-title: Acoustic emission study of surface deterioration in tribocontacting
  publication-title: Appl Acoust
– volume: 20
  start-page: 5798
  year: 2020
  ident: bib13
  article-title: Tool wear prediction based on artificial neural network during aluminium matrix composite milling
  publication-title: Sensors
– volume: 18
  start-page: 21
  year: 2017
  end-page: 29
  ident: bib19
  article-title: Anomaly detection in a cutting tool by K-means clustering and Support Vector Machines
  publication-title: Diagnostyka
– volume: 35
  start-page: 128
  year: 2016
  end-page: 138
  ident: bib1
  article-title: Fault diagnosis studies of face milling cutter using machine learning approach
  publication-title: J Low Freq Noise Vib Act Contr
– volume: 95
  start-page: 3797
  year: 2018
  end-page: 3808
  ident: bib25
  article-title: Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling
  publication-title: Int J Adv Manuf Technol
– start-page: 1285
  year: 2010
  ident: bib21
  publication-title: Data mining and knowledge Discovery handbook
– volume: 92
  start-page: 519
  year: 2015
  end-page: 532
  ident: bib4
  article-title: A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission
  publication-title: Tribol Int
– volume: 92
  start-page: 208
  year: 2016
  end-page: 217
  ident: bib8
  article-title: Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring
  publication-title: Measurement
– volume: 112
  start-page: 219
  year: 1990
  end-page: 228
  ident: bib12
  article-title: Sensor integration using neural networks for intelligent tool condition monitoring
  publication-title: Trans. ASME J Eng. Ind.
– start-page: 574
  year: 2017
  ident: bib22
  article-title: Hands-on machine learning with Scikit-learn and TensorFlow
– volume: 85
  start-page: 651
  year: 2017
  end-page: 661
  ident: bib10
  article-title: Monitoring tool wear using classifier fusion
  publication-title: Mech Syst Signal Process
– volume: 22
  start-page: 331
  year: 2020
  end-page: 339
  ident: bib18
  article-title: Engine valve clearance diagnostics based on vibration signals and machine learning methods
  publication-title: Eksploatacja i Niezawodnosc – Mainten. Reliab.
– volume: 255
  start-page: 121
  year: 2014
  end-page: 134
  ident: bib7
  article-title: Type-2 fuzzy tool condition monitoring system based on acoustic emission in micro milling
  publication-title: Inf Sci
– start-page: 227
  year: 2005
  ident: bib20
  article-title: Discovering knowledge in data. An introduction to DATA MINING
– volume: 26
  start-page: 213
  year: 2015
  end-page: 223
  ident: bib23
  article-title: HealthAssessment and life prediction of cutting tools based on support VectorRegression
  publication-title: J Intell Manuf
– volume: 6
  start-page: 309
  year: 1992
  end-page: 316
  ident: bib15
  article-title: Fault detection and diagnosis in low speed rolling element bearings Part II: the use of nearest neighbour classification
  publication-title: Mech Syst Signal Process
– volume: 59
  start-page: 717
  year: 2010
  end-page: 739
  ident: bib11
  article-title: Advanced monitoring of machining operations
  publication-title: CIRP Ann Manuf Technol
– volume: 107
  start-page: 149
  year: 2018
  end-page: 167
  ident: bib17
  article-title: Wind turbine fault detection and classification by means of image texture analysis
  publication-title: Mech Syst Signal Process
– volume: 36
  start-page: 9941
  year: 2009
  end-page: 9948
  ident: bib14
  article-title: Application of an intelligent classification method to mechanical fault diagnosis
  publication-title: Expert Syst Appl
– volume: 93
  start-page: 51
  year: 2017
  end-page: 65
  ident: bib16
  article-title: Semi-supervised vibration-based classification and condition monitoring of compressors
  publication-title: Mech Syst Signal Process
– volume: 33
  start-page: 968
  year: 2007
  end-page: 976
  ident: bib2
  article-title: Acoustic emission method for tool condition monitoring based on wavelet analysis
  publication-title: Int J Adv Manuf Technol
– volume: 44
  start-page: 1179
  year: 2004
  end-page: 1187
  ident: bib24
  article-title: Multiclassification of tool wear with support vector machine by manufacturing loss consideration
  publication-title: Int J Mach Tool Manufact
– volume: 34
  start-page: 353
  year: 2013
  end-page: 366
  ident: bib6
  article-title: Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting
  publication-title: Mech Syst Signal Process
– volume: 57
  start-page: 121
  year: 2008
  end-page: 124
  ident: bib9
  article-title: Tool condition monitoring in micromilling based on hierarchical integration of signal measures
  publication-title: CIRP Ann - Manuf Technol
– volume: 70
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib3
  article-title: Detection of tool breakage during hard turning through acoustic emission at low removal rates
  publication-title: Measurement
– volume: 255
  start-page: 121
  year: 2014
  ident: 10.1016/j.precisioneng.2021.07.019_bib7
  article-title: Type-2 fuzzy tool condition monitoring system based on acoustic emission in micro milling
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.06.010
– volume: 59
  start-page: 717
  year: 2010
  ident: 10.1016/j.precisioneng.2021.07.019_bib11
  article-title: Advanced monitoring of machining operations
  publication-title: CIRP Ann Manuf Technol
  doi: 10.1016/j.cirp.2010.05.010
– volume: 92
  start-page: 519
  year: 2015
  ident: 10.1016/j.precisioneng.2021.07.019_bib4
  article-title: A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2015.07.024
– volume: 34
  start-page: 353
  year: 2013
  ident: 10.1016/j.precisioneng.2021.07.019_bib6
  article-title: Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2012.05.001
– volume: 70
  start-page: 1
  year: 2015
  ident: 10.1016/j.precisioneng.2021.07.019_bib3
  article-title: Detection of tool breakage during hard turning through acoustic emission at low removal rates
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.03.035
– start-page: 574
  year: 2017
  ident: 10.1016/j.precisioneng.2021.07.019_bib22
– volume: 35
  start-page: 128
  issue: 2
  year: 2016
  ident: 10.1016/j.precisioneng.2021.07.019_bib1
  article-title: Fault diagnosis studies of face milling cutter using machine learning approach
  publication-title: J Low Freq Noise Vib Act Contr
  doi: 10.1177/0263092316644090
– volume: 20
  start-page: 5798
  year: 2020
  ident: 10.1016/j.precisioneng.2021.07.019_bib13
  article-title: Tool wear prediction based on artificial neural network during aluminium matrix composite milling
  publication-title: Sensors
  doi: 10.3390/s20205798
– volume: 107
  start-page: 149
  year: 2018
  ident: 10.1016/j.precisioneng.2021.07.019_bib17
  article-title: Wind turbine fault detection and classification by means of image texture analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.12.035
– volume: 26
  start-page: 213
  issue: 2
  year: 2015
  ident: 10.1016/j.precisioneng.2021.07.019_bib23
  article-title: HealthAssessment and life prediction of cutting tools based on support VectorRegression
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-013-0774-6
– start-page: 227
  year: 2005
  ident: 10.1016/j.precisioneng.2021.07.019_bib20
– start-page: 1285
  year: 2010
  ident: 10.1016/j.precisioneng.2021.07.019_bib21
– volume: 33
  start-page: 968
  year: 2007
  ident: 10.1016/j.precisioneng.2021.07.019_bib2
  article-title: Acoustic emission method for tool condition monitoring based on wavelet analysis
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-006-0523-5
– volume: 36
  start-page: 9941
  year: 2009
  ident: 10.1016/j.precisioneng.2021.07.019_bib14
  article-title: Application of an intelligent classification method to mechanical fault diagnosis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.01.065
– volume: 22
  start-page: 331
  issue: 2
  year: 2020
  ident: 10.1016/j.precisioneng.2021.07.019_bib18
  article-title: Engine valve clearance diagnostics based on vibration signals and machine learning methods
  publication-title: Eksploatacja i Niezawodnosc – Mainten. Reliab.
  doi: 10.17531/ein.2020.2.16
– volume: 18
  start-page: 21
  year: 2017
  ident: 10.1016/j.precisioneng.2021.07.019_bib19
  article-title: Anomaly detection in a cutting tool by K-means clustering and Support Vector Machines
  publication-title: Diagnostyka
– volume: 57
  start-page: 121
  year: 2008
  ident: 10.1016/j.precisioneng.2021.07.019_bib9
  article-title: Tool condition monitoring in micromilling based on hierarchical integration of signal measures
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/j.cirp.2008.03.053
– volume: 117
  start-page: 106
  year: 2017
  ident: 10.1016/j.precisioneng.2021.07.019_bib5
  article-title: Acoustic emission study of surface deterioration in tribocontacting
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2016.11.007
– volume: 85
  start-page: 651
  year: 2017
  ident: 10.1016/j.precisioneng.2021.07.019_bib10
  article-title: Monitoring tool wear using classifier fusion
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.08.035
– volume: 92
  start-page: 208
  year: 2016
  ident: 10.1016/j.precisioneng.2021.07.019_bib8
  article-title: Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.06.006
– volume: 6
  start-page: 309
  year: 1992
  ident: 10.1016/j.precisioneng.2021.07.019_bib15
  article-title: Fault detection and diagnosis in low speed rolling element bearings Part II: the use of nearest neighbour classification
  publication-title: Mech Syst Signal Process
  doi: 10.1016/0888-3270(92)90033-F
– volume: 112
  start-page: 219
  year: 1990
  ident: 10.1016/j.precisioneng.2021.07.019_bib12
  article-title: Sensor integration using neural networks for intelligent tool condition monitoring
  publication-title: Trans. ASME J Eng. Ind.
  doi: 10.1115/1.2899578
– volume: 93
  start-page: 51
  year: 2017
  ident: 10.1016/j.precisioneng.2021.07.019_bib16
  article-title: Semi-supervised vibration-based classification and condition monitoring of compressors
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.01.048
– volume: 95
  start-page: 3797
  year: 2018
  ident: 10.1016/j.precisioneng.2021.07.019_bib25
  article-title: Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-017-1460-1
– volume: 44
  start-page: 1179
  issue: 11
  year: 2004
  ident: 10.1016/j.precisioneng.2021.07.019_bib24
  article-title: Multiclassification of tool wear with support vector machine by manufacturing loss consideration
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2004.04.003
SSID ssj0007804
Score 2.585123
Snippet The work concerns the monitoring of the edge condition based on acoustic emission (AE) signals. The tool edge condition was determined by the wear width on the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 738
SubjectTerms Acoustic emission
End milling
Machine learning
Tool wear
Title Identification of tool wear using acoustic emission signal and machine learning methods
URI https://dx.doi.org/10.1016/j.precisioneng.2021.07.019
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWqssCA-BTlo_LAahondhwPDFVFVUB0oqKb5ThOVVTSqgSx8dvxJQ4UiQGJMVEuss6nu0v87j2ELmPXtQWZoSShwhJmaEoSyTNCY6utSKWmGZzoPozj0YTdTfm0hQbNLAzAKn3ur3N6la39nZ73Zm81n_cAluSaCS5DoBFKEuAEZUxAlF99fMM8gGCnhjFSAk83xKMVxmu1boRsipn7VgxpReQJrDu_FamNwjPcQ7u-Y8T9elH7qGWLA7SzwSN4iJ7qcdvc_3_DyxyXy-UCv7swxoBsn2GX-CrdLgz6brAWDMgN915dZPilQlRa7CUkZrjWlX49QpPhzeNgRLxiAjGMhSUx1MaMG-qqUpJLlkbchHlIozQQQuvYGBaHOsp5ZKyr5CyJuSvwiTZGOgPjOo1j1C6cN04QNhlIwchUhJlmWWBkziw3IoKDRqop7yDZuEgZTycOqhYL1eDGntWmexW4VwVCOfd2UPRlu6pJNf5kdd3shPoRIspl_z_Yn_7T_gxtw1U9iHiO2uX6zV64jqRMu1XIddFW__Z-NP4EelbjUA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVKGYAB8SnKpwdW0zqxk3hgQBVVgbZTK7pZjuNURSWtShAbvx1f4kCRGCqxJrnIulzuLvG79xC6DmzX1ko0JRENDWGaxiQSPCE0MMqEsVA0gR3d_iDojtjjmI9rqF3NwgCs0uX-MqcX2dodaTpvNhfTaRNgSbaZ4MIDGqEoYhtok9nXF2QMbj5_cB7AsFPiGCmByyvm0QLktVhWSjbZxH4serRg8gTanb-q1Erl6eyhXdcy4rtyVfuoZrIDtLNCJHiInst529T9gMPzFOfz-Qx_2DjGAG2fYJv5CuEuDAJvsBYM0A17X5Ul-LWAVBrsNCQmuBSWfjtCo879sN0lTjKBaMa8nGhqAsY1tWUpSgWLfa691KN-3ApDpQKtWeApP-W-NraUsyjgtsJHSmthDbRtNY5RPbPeOEFYJ6AFI-LQSxRLWlqkzHAd-rDTSBXlDSQqF0nt-MRB1mImK-DYi1x1rwT3ylYorXsbyP-2XZSsGmtZ3VZPQv6KEWnT_xr2p_-0v0Jb3WG_J3sPg6cztA1nyqnEc1TPl-_mwrYneXxZhN8Xv73k3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+tool+wear+using+acoustic+emission+signal+and+machine+learning+methods&rft.jtitle=Precision+engineering&rft.au=Twardowski%2C+Pawe%C5%82&rft.au=Tabaszewski%2C+Maciej&rft.au=Wiciak+%E2%80%93+Piku%C5%82a%2C+Martyna&rft.au=Felusiak-Czyryca%2C+Agata&rft.date=2021-11-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.eissn=1873-2372&rft.volume=72&rft.spage=738&rft.epage=744&rft_id=info:doi/10.1016%2Fj.precisioneng.2021.07.019&rft.externalDocID=S0141635921001884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon