Identification of tool wear using acoustic emission signal and machine learning methods
The work concerns the monitoring of the edge condition based on acoustic emission (AE) signals. The tool edge condition was determined by the wear width on the flank face. The processed material was an aluminum-ceramic composite containing 10% SiC. A carbide milling cutter with a diamond coating was...
Saved in:
Published in | Precision engineering Vol. 72; pp. 738 - 744 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The work concerns the monitoring of the edge condition based on acoustic emission (AE) signals. The tool edge condition was determined by the wear width on the flank face. The processed material was an aluminum-ceramic composite containing 10% SiC. A carbide milling cutter with a diamond coating was used as the tool. Based on the AE signals, appropriate measures were developed that were correlated with the edge condition. Machine learning methods were used to assess the milling cutter's degree of wear based on AE signals. The applied approach using a decision tree allowed the prediction error of the tool condition class with a value below 6%. The method was also compared with other machine learning methods such as neural networks and the k-nearest neighbor algorithm.
•Tool condition identification based on acoustic emission spectra•Machine learning methods for diagnostic decision system.•Identification of usability/unsuitability of end mills.•Easy-to-build system for identifying the condition of the cutting tool based on AE measurement [1–25].•The decision trees methods like diagnostic supervision system. |
---|---|
AbstractList | The work concerns the monitoring of the edge condition based on acoustic emission (AE) signals. The tool edge condition was determined by the wear width on the flank face. The processed material was an aluminum-ceramic composite containing 10% SiC. A carbide milling cutter with a diamond coating was used as the tool. Based on the AE signals, appropriate measures were developed that were correlated with the edge condition. Machine learning methods were used to assess the milling cutter's degree of wear based on AE signals. The applied approach using a decision tree allowed the prediction error of the tool condition class with a value below 6%. The method was also compared with other machine learning methods such as neural networks and the k-nearest neighbor algorithm.
•Tool condition identification based on acoustic emission spectra•Machine learning methods for diagnostic decision system.•Identification of usability/unsuitability of end mills.•Easy-to-build system for identifying the condition of the cutting tool based on AE measurement [1–25].•The decision trees methods like diagnostic supervision system. |
Author | Wiciak – Pikuła, Martyna Felusiak-Czyryca, Agata Twardowski, Paweł Tabaszewski, Maciej |
Author_xml | – sequence: 1 givenname: Paweł surname: Twardowski fullname: Twardowski, Paweł organization: Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, 3 Piotrowo St., 60-965, Poznan, Poland – sequence: 2 givenname: Maciej surname: Tabaszewski fullname: Tabaszewski, Maciej organization: Faculty of Mechanical Engineering, Institute of Applied Mechanics, Poznan University of Technology, 3 Piotrowo St., 60-965, Poznan, Poland – sequence: 3 givenname: Martyna surname: Wiciak – Pikuła fullname: Wiciak – Pikuła, Martyna email: martyna.r.wiciak@doctorate.put.poznan.pl organization: Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, 3 Piotrowo St., 60-965, Poznan, Poland – sequence: 4 givenname: Agata surname: Felusiak-Czyryca fullname: Felusiak-Czyryca, Agata organization: Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, 3 Piotrowo St., 60-965, Poznan, Poland |
BookMark | eNqNkMtKAzEUhoNUsK2-Q3A_Y25zc6XUKxTcKC5DeibTpswkJUkV396MdSGuujpw-P_vcL4ZmlhnNUKXlOSU0PJqm--8BhNMWtt1zgijOalyQpsTNKV1xTPGKzZBU0IFzUpeNGdoFsKWEFLVREzR-3OrbTSdARUTBLsOR-d6_KmVx_tg7BorcPsQDWA9mDBewsGsreqxsi0eFGyM1bhPeTumBx03rg3n6LRTfdAXv3OO3h7uXxdP2fLl8Xlxu8xACBYzoLoUBVBesrprxIoXwDpG-YpUlVIlgCiZ4l3BQTNBRF0WtKa1AmhSAVjN5-j6wAXvQvC6kztvBuW_JCVyVCS38q8iOSqSpJJJUSrf_CuDiT8eolemPw5xd0Do9OSH0V4GMNqCbk2qRNk6cwzmG7hzj-g |
CitedBy_id | crossref_primary_10_3390_technologies12030030 crossref_primary_10_1016_j_compind_2022_103782 crossref_primary_10_3390_coatings14020193 crossref_primary_10_1115_1_4056490 crossref_primary_10_1177_09544054231166781 crossref_primary_10_1007_s00170_024_13959_0 crossref_primary_10_1016_j_jmapro_2023_04_036 crossref_primary_10_3390_math11030719 crossref_primary_10_1080_10910344_2025_2472350 crossref_primary_10_3390_jmmp8030108 crossref_primary_10_2139_ssrn_4657889 crossref_primary_10_1016_j_wear_2023_204652 crossref_primary_10_3390_s24113432 crossref_primary_10_1111_ijac_14364 crossref_primary_10_3390_app13021107 crossref_primary_10_1016_j_measurement_2024_115546 crossref_primary_10_1016_j_measurement_2025_116899 crossref_primary_10_1016_j_measurement_2023_113787 crossref_primary_10_1177_13506501241311174 crossref_primary_10_2474_trol_17_86 crossref_primary_10_1016_j_engfailanal_2022_106164 crossref_primary_10_1007_s12206_024_0419_z crossref_primary_10_1007_s42417_023_01135_9 crossref_primary_10_1016_j_procir_2023_08_009 crossref_primary_10_1007_s12541_024_01144_y crossref_primary_10_1016_j_cirpj_2024_05_001 crossref_primary_10_1016_j_jmapro_2023_11_046 crossref_primary_10_1016_j_jmrt_2025_03_103 crossref_primary_10_1016_j_measurement_2023_113825 crossref_primary_10_1007_s12200_023_00070_7 crossref_primary_10_1088_2631_8695_ad78a6 crossref_primary_10_1515_htmp_2024_0020 crossref_primary_10_1016_j_jmapro_2022_11_017 crossref_primary_10_1016_j_jmapro_2022_07_055 crossref_primary_10_3390_machines11111032 crossref_primary_10_1007_s00170_023_11305_4 crossref_primary_10_1088_1361_6501_ad633c crossref_primary_10_1007_s00170_023_10820_8 crossref_primary_10_2139_ssrn_4004827 crossref_primary_10_3390_ndt3010003 crossref_primary_10_3390_pr12102094 crossref_primary_10_1016_j_eswa_2024_124169 crossref_primary_10_3390_s24165300 crossref_primary_10_1038_s41598_025_92178_3 crossref_primary_10_1016_j_jmsy_2023_02_017 crossref_primary_10_1016_j_rico_2024_100491 crossref_primary_10_1016_j_jmapro_2023_02_009 crossref_primary_10_1007_s12206_022_1229_9 crossref_primary_10_1016_j_aei_2025_103234 crossref_primary_10_1016_j_measurement_2022_110722 crossref_primary_10_1016_j_wear_2024_205529 crossref_primary_10_1016_j_measurement_2022_111814 crossref_primary_10_1007_s00170_024_13340_1 crossref_primary_10_1016_j_cirpj_2024_01_012 crossref_primary_10_1016_j_jmapro_2022_04_066 crossref_primary_10_1016_j_ymssp_2024_112128 crossref_primary_10_1016_j_ijmachtools_2024_104209 crossref_primary_10_3390_ma15124359 crossref_primary_10_1016_j_rcim_2024_102901 crossref_primary_10_1007_s12008_023_01270_3 crossref_primary_10_1177_09544054231185155 crossref_primary_10_3390_app112412041 crossref_primary_10_1007_s00170_024_13586_9 crossref_primary_10_1007_s40544_024_0879_2 crossref_primary_10_1007_s10845_024_02410_6 crossref_primary_10_1007_s12206_022_0912_1 crossref_primary_10_18311_jmmf_2024_45398 crossref_primary_10_3390_lubricants12110380 crossref_primary_10_1007_s00170_023_10963_8 crossref_primary_10_3390_s24237466 crossref_primary_10_3390_coatings14070827 crossref_primary_10_1007_s42417_024_01706_4 crossref_primary_10_1016_j_ijmecsci_2023_108769 crossref_primary_10_1088_1361_6501_ad166d crossref_primary_10_3390_app142210404 crossref_primary_10_1016_j_jmapro_2023_05_023 crossref_primary_10_3390_min15020110 crossref_primary_10_1016_j_jmapro_2022_10_002 crossref_primary_10_1115_1_4054992 crossref_primary_10_1016_j_precisioneng_2024_01_010 crossref_primary_10_3390_jmmp6020042 |
Cites_doi | 10.1016/j.ins.2013.06.010 10.1016/j.cirp.2010.05.010 10.1016/j.triboint.2015.07.024 10.1016/j.ymssp.2012.05.001 10.1016/j.measurement.2015.03.035 10.1177/0263092316644090 10.3390/s20205798 10.1016/j.ymssp.2017.12.035 10.1007/s10845-013-0774-6 10.1007/s00170-006-0523-5 10.1016/j.eswa.2009.01.065 10.17531/ein.2020.2.16 10.1016/j.cirp.2008.03.053 10.1016/j.apacoust.2016.11.007 10.1016/j.ymssp.2016.08.035 10.1016/j.measurement.2016.06.006 10.1016/0888-3270(92)90033-F 10.1115/1.2899578 10.1016/j.ymssp.2017.01.048 10.1007/s00170-017-1460-1 10.1016/j.ijmachtools.2004.04.003 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.precisioneng.2021.07.019 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2372 |
EndPage | 744 |
ExternalDocumentID | 10_1016_j_precisioneng_2021_07_019 S0141635921001884 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c442t-c1e645c13628f94b35c2f213b077aa6cc462a3f53ce24048651818acc9628c283 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Tue Jul 01 02:13:03 EDT 2025 Thu Apr 24 23:03:13 EDT 2025 Fri Feb 23 02:42:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Acoustic emission End milling Tool wear Machine learning |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-c1e645c13628f94b35c2f213b077aa6cc462a3f53ce24048651818acc9628c283 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0141635921001884 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_precisioneng_2021_07_019 crossref_citationtrail_10_1016_j_precisioneng_2021_07_019 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2021_07_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Precision engineering |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Teti, Jemielniak, O'Donnell, Dornfeld (bib11) 2010; 59 Lei, He, Zi (bib14) 2009; 36 Lahrache, Cocconcelli, Rubini (bib19) 2017; 18 Potočnik, Govekar (bib16) 2017; 93 Géron (bib22) 2017 Rangwala, Dornfeld (bib12) 1990; 112 Sun, Rahman, Wong, Hong (bib24) 2004; 44 Neslušan, Micieta, Micietov, Cillikova, Mrkvica (bib3) 2015; 70 Bhuiyan, Choudhury, Dahari, Nukman, Dawal (bib8) 2016; 92 Henrique, Mendes, Vasconcelos, Falco, Machado (bib4) 2015; 92 Xiaozhi, Beizhi (bib2) 2007; 33 Kothuru, Nooka, Liu (bib25) 2018; 95 Filippov, Rubtsov, Tarasov (bib5) 2017; 117 Tabaszewski, Szymański (bib18) 2020; 22 Mechefske, Mathew (bib15) 1992; 6 Benkedjouh, Medjaher, Zerhouni, Rechak (bib23) 2015; 26 Madhusudana, Budati, Gangadhar, Kumar, Narendranath (bib1) 2016; 35 Kannatey-Asibu, Yum, Kim (bib10) 2017; 85 Larose (bib20) 2005 Ren, Balazinski, Baron, Jemielniak, Botez, Achiche (bib7) 2014; 255 Wiciak-Pikuła, Felusiak-Czyryca, Twardowski (bib13) 2020; 20 Ruiz, Mujica, Alférez, Acho, Tutivén, Vidal, Rodellar, Pozo (bib17) 2018; 107 Jemielniak, Bombinski, Aristimuno (bib9) 2008; 57 Yen, Lu, Chen (bib6) 2013; 34 (bib21) 2010 Henrique (10.1016/j.precisioneng.2021.07.019_bib4) 2015; 92 Lei (10.1016/j.precisioneng.2021.07.019_bib14) 2009; 36 (10.1016/j.precisioneng.2021.07.019_bib21) 2010 Benkedjouh (10.1016/j.precisioneng.2021.07.019_bib23) 2015; 26 Yen (10.1016/j.precisioneng.2021.07.019_bib6) 2013; 34 Neslušan (10.1016/j.precisioneng.2021.07.019_bib3) 2015; 70 Bhuiyan (10.1016/j.precisioneng.2021.07.019_bib8) 2016; 92 Rangwala (10.1016/j.precisioneng.2021.07.019_bib12) 1990; 112 Larose (10.1016/j.precisioneng.2021.07.019_bib20) 2005 Géron (10.1016/j.precisioneng.2021.07.019_bib22) 2017 Tabaszewski (10.1016/j.precisioneng.2021.07.019_bib18) 2020; 22 Ren (10.1016/j.precisioneng.2021.07.019_bib7) 2014; 255 Wiciak-Pikuła (10.1016/j.precisioneng.2021.07.019_bib13) 2020; 20 Mechefske (10.1016/j.precisioneng.2021.07.019_bib15) 1992; 6 Sun (10.1016/j.precisioneng.2021.07.019_bib24) 2004; 44 Jemielniak (10.1016/j.precisioneng.2021.07.019_bib9) 2008; 57 Madhusudana (10.1016/j.precisioneng.2021.07.019_bib1) 2016; 35 Filippov (10.1016/j.precisioneng.2021.07.019_bib5) 2017; 117 Potočnik (10.1016/j.precisioneng.2021.07.019_bib16) 2017; 93 Teti (10.1016/j.precisioneng.2021.07.019_bib11) 2010; 59 Lahrache (10.1016/j.precisioneng.2021.07.019_bib19) 2017; 18 Kothuru (10.1016/j.precisioneng.2021.07.019_bib25) 2018; 95 Kannatey-Asibu (10.1016/j.precisioneng.2021.07.019_bib10) 2017; 85 Xiaozhi (10.1016/j.precisioneng.2021.07.019_bib2) 2007; 33 Ruiz (10.1016/j.precisioneng.2021.07.019_bib17) 2018; 107 |
References_xml | – volume: 117 start-page: 106 year: 2017 end-page: 112 ident: bib5 article-title: Acoustic emission study of surface deterioration in tribocontacting publication-title: Appl Acoust – volume: 20 start-page: 5798 year: 2020 ident: bib13 article-title: Tool wear prediction based on artificial neural network during aluminium matrix composite milling publication-title: Sensors – volume: 18 start-page: 21 year: 2017 end-page: 29 ident: bib19 article-title: Anomaly detection in a cutting tool by K-means clustering and Support Vector Machines publication-title: Diagnostyka – volume: 35 start-page: 128 year: 2016 end-page: 138 ident: bib1 article-title: Fault diagnosis studies of face milling cutter using machine learning approach publication-title: J Low Freq Noise Vib Act Contr – volume: 95 start-page: 3797 year: 2018 end-page: 3808 ident: bib25 article-title: Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling publication-title: Int J Adv Manuf Technol – start-page: 1285 year: 2010 ident: bib21 publication-title: Data mining and knowledge Discovery handbook – volume: 92 start-page: 519 year: 2015 end-page: 532 ident: bib4 article-title: A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission publication-title: Tribol Int – volume: 92 start-page: 208 year: 2016 end-page: 217 ident: bib8 article-title: Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring publication-title: Measurement – volume: 112 start-page: 219 year: 1990 end-page: 228 ident: bib12 article-title: Sensor integration using neural networks for intelligent tool condition monitoring publication-title: Trans. ASME J Eng. Ind. – start-page: 574 year: 2017 ident: bib22 article-title: Hands-on machine learning with Scikit-learn and TensorFlow – volume: 85 start-page: 651 year: 2017 end-page: 661 ident: bib10 article-title: Monitoring tool wear using classifier fusion publication-title: Mech Syst Signal Process – volume: 22 start-page: 331 year: 2020 end-page: 339 ident: bib18 article-title: Engine valve clearance diagnostics based on vibration signals and machine learning methods publication-title: Eksploatacja i Niezawodnosc – Mainten. Reliab. – volume: 255 start-page: 121 year: 2014 end-page: 134 ident: bib7 article-title: Type-2 fuzzy tool condition monitoring system based on acoustic emission in micro milling publication-title: Inf Sci – start-page: 227 year: 2005 ident: bib20 article-title: Discovering knowledge in data. An introduction to DATA MINING – volume: 26 start-page: 213 year: 2015 end-page: 223 ident: bib23 article-title: HealthAssessment and life prediction of cutting tools based on support VectorRegression publication-title: J Intell Manuf – volume: 6 start-page: 309 year: 1992 end-page: 316 ident: bib15 article-title: Fault detection and diagnosis in low speed rolling element bearings Part II: the use of nearest neighbour classification publication-title: Mech Syst Signal Process – volume: 59 start-page: 717 year: 2010 end-page: 739 ident: bib11 article-title: Advanced monitoring of machining operations publication-title: CIRP Ann Manuf Technol – volume: 107 start-page: 149 year: 2018 end-page: 167 ident: bib17 article-title: Wind turbine fault detection and classification by means of image texture analysis publication-title: Mech Syst Signal Process – volume: 36 start-page: 9941 year: 2009 end-page: 9948 ident: bib14 article-title: Application of an intelligent classification method to mechanical fault diagnosis publication-title: Expert Syst Appl – volume: 93 start-page: 51 year: 2017 end-page: 65 ident: bib16 article-title: Semi-supervised vibration-based classification and condition monitoring of compressors publication-title: Mech Syst Signal Process – volume: 33 start-page: 968 year: 2007 end-page: 976 ident: bib2 article-title: Acoustic emission method for tool condition monitoring based on wavelet analysis publication-title: Int J Adv Manuf Technol – volume: 44 start-page: 1179 year: 2004 end-page: 1187 ident: bib24 article-title: Multiclassification of tool wear with support vector machine by manufacturing loss consideration publication-title: Int J Mach Tool Manufact – volume: 34 start-page: 353 year: 2013 end-page: 366 ident: bib6 article-title: Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting publication-title: Mech Syst Signal Process – volume: 57 start-page: 121 year: 2008 end-page: 124 ident: bib9 article-title: Tool condition monitoring in micromilling based on hierarchical integration of signal measures publication-title: CIRP Ann - Manuf Technol – volume: 70 start-page: 1 year: 2015 end-page: 13 ident: bib3 article-title: Detection of tool breakage during hard turning through acoustic emission at low removal rates publication-title: Measurement – volume: 255 start-page: 121 year: 2014 ident: 10.1016/j.precisioneng.2021.07.019_bib7 article-title: Type-2 fuzzy tool condition monitoring system based on acoustic emission in micro milling publication-title: Inf Sci doi: 10.1016/j.ins.2013.06.010 – volume: 59 start-page: 717 year: 2010 ident: 10.1016/j.precisioneng.2021.07.019_bib11 article-title: Advanced monitoring of machining operations publication-title: CIRP Ann Manuf Technol doi: 10.1016/j.cirp.2010.05.010 – volume: 92 start-page: 519 year: 2015 ident: 10.1016/j.precisioneng.2021.07.019_bib4 article-title: A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission publication-title: Tribol Int doi: 10.1016/j.triboint.2015.07.024 – volume: 34 start-page: 353 year: 2013 ident: 10.1016/j.precisioneng.2021.07.019_bib6 article-title: Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2012.05.001 – volume: 70 start-page: 1 year: 2015 ident: 10.1016/j.precisioneng.2021.07.019_bib3 article-title: Detection of tool breakage during hard turning through acoustic emission at low removal rates publication-title: Measurement doi: 10.1016/j.measurement.2015.03.035 – start-page: 574 year: 2017 ident: 10.1016/j.precisioneng.2021.07.019_bib22 – volume: 35 start-page: 128 issue: 2 year: 2016 ident: 10.1016/j.precisioneng.2021.07.019_bib1 article-title: Fault diagnosis studies of face milling cutter using machine learning approach publication-title: J Low Freq Noise Vib Act Contr doi: 10.1177/0263092316644090 – volume: 20 start-page: 5798 year: 2020 ident: 10.1016/j.precisioneng.2021.07.019_bib13 article-title: Tool wear prediction based on artificial neural network during aluminium matrix composite milling publication-title: Sensors doi: 10.3390/s20205798 – volume: 107 start-page: 149 year: 2018 ident: 10.1016/j.precisioneng.2021.07.019_bib17 article-title: Wind turbine fault detection and classification by means of image texture analysis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.12.035 – volume: 26 start-page: 213 issue: 2 year: 2015 ident: 10.1016/j.precisioneng.2021.07.019_bib23 article-title: HealthAssessment and life prediction of cutting tools based on support VectorRegression publication-title: J Intell Manuf doi: 10.1007/s10845-013-0774-6 – start-page: 227 year: 2005 ident: 10.1016/j.precisioneng.2021.07.019_bib20 – start-page: 1285 year: 2010 ident: 10.1016/j.precisioneng.2021.07.019_bib21 – volume: 33 start-page: 968 year: 2007 ident: 10.1016/j.precisioneng.2021.07.019_bib2 article-title: Acoustic emission method for tool condition monitoring based on wavelet analysis publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-006-0523-5 – volume: 36 start-page: 9941 year: 2009 ident: 10.1016/j.precisioneng.2021.07.019_bib14 article-title: Application of an intelligent classification method to mechanical fault diagnosis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.01.065 – volume: 22 start-page: 331 issue: 2 year: 2020 ident: 10.1016/j.precisioneng.2021.07.019_bib18 article-title: Engine valve clearance diagnostics based on vibration signals and machine learning methods publication-title: Eksploatacja i Niezawodnosc – Mainten. Reliab. doi: 10.17531/ein.2020.2.16 – volume: 18 start-page: 21 year: 2017 ident: 10.1016/j.precisioneng.2021.07.019_bib19 article-title: Anomaly detection in a cutting tool by K-means clustering and Support Vector Machines publication-title: Diagnostyka – volume: 57 start-page: 121 year: 2008 ident: 10.1016/j.precisioneng.2021.07.019_bib9 article-title: Tool condition monitoring in micromilling based on hierarchical integration of signal measures publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirp.2008.03.053 – volume: 117 start-page: 106 year: 2017 ident: 10.1016/j.precisioneng.2021.07.019_bib5 article-title: Acoustic emission study of surface deterioration in tribocontacting publication-title: Appl Acoust doi: 10.1016/j.apacoust.2016.11.007 – volume: 85 start-page: 651 year: 2017 ident: 10.1016/j.precisioneng.2021.07.019_bib10 article-title: Monitoring tool wear using classifier fusion publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.08.035 – volume: 92 start-page: 208 year: 2016 ident: 10.1016/j.precisioneng.2021.07.019_bib8 article-title: Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring publication-title: Measurement doi: 10.1016/j.measurement.2016.06.006 – volume: 6 start-page: 309 year: 1992 ident: 10.1016/j.precisioneng.2021.07.019_bib15 article-title: Fault detection and diagnosis in low speed rolling element bearings Part II: the use of nearest neighbour classification publication-title: Mech Syst Signal Process doi: 10.1016/0888-3270(92)90033-F – volume: 112 start-page: 219 year: 1990 ident: 10.1016/j.precisioneng.2021.07.019_bib12 article-title: Sensor integration using neural networks for intelligent tool condition monitoring publication-title: Trans. ASME J Eng. Ind. doi: 10.1115/1.2899578 – volume: 93 start-page: 51 year: 2017 ident: 10.1016/j.precisioneng.2021.07.019_bib16 article-title: Semi-supervised vibration-based classification and condition monitoring of compressors publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.01.048 – volume: 95 start-page: 3797 year: 2018 ident: 10.1016/j.precisioneng.2021.07.019_bib25 article-title: Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-1460-1 – volume: 44 start-page: 1179 issue: 11 year: 2004 ident: 10.1016/j.precisioneng.2021.07.019_bib24 article-title: Multiclassification of tool wear with support vector machine by manufacturing loss consideration publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2004.04.003 |
SSID | ssj0007804 |
Score | 2.585123 |
Snippet | The work concerns the monitoring of the edge condition based on acoustic emission (AE) signals. The tool edge condition was determined by the wear width on the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 738 |
SubjectTerms | Acoustic emission End milling Machine learning Tool wear |
Title | Identification of tool wear using acoustic emission signal and machine learning methods |
URI | https://dx.doi.org/10.1016/j.precisioneng.2021.07.019 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWqssCA-BTlo_LAahondhwPDFVFVUB0oqKb5ThOVVTSqgSx8dvxJQ4UiQGJMVEuss6nu0v87j2ELmPXtQWZoSShwhJmaEoSyTNCY6utSKWmGZzoPozj0YTdTfm0hQbNLAzAKn3ur3N6la39nZ73Zm81n_cAluSaCS5DoBFKEuAEZUxAlF99fMM8gGCnhjFSAk83xKMVxmu1boRsipn7VgxpReQJrDu_FamNwjPcQ7u-Y8T9elH7qGWLA7SzwSN4iJ7qcdvc_3_DyxyXy-UCv7swxoBsn2GX-CrdLgz6brAWDMgN915dZPilQlRa7CUkZrjWlX49QpPhzeNgRLxiAjGMhSUx1MaMG-qqUpJLlkbchHlIozQQQuvYGBaHOsp5ZKyr5CyJuSvwiTZGOgPjOo1j1C6cN04QNhlIwchUhJlmWWBkziw3IoKDRqop7yDZuEgZTycOqhYL1eDGntWmexW4VwVCOfd2UPRlu6pJNf5kdd3shPoRIspl_z_Yn_7T_gxtw1U9iHiO2uX6zV64jqRMu1XIddFW__Z-NP4EelbjUA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVKGYAB8SnKpwdW0zqxk3hgQBVVgbZTK7pZjuNURSWtShAbvx1f4kCRGCqxJrnIulzuLvG79xC6DmzX1ko0JRENDWGaxiQSPCE0MMqEsVA0gR3d_iDojtjjmI9rqF3NwgCs0uX-MqcX2dodaTpvNhfTaRNgSbaZ4MIDGqEoYhtok9nXF2QMbj5_cB7AsFPiGCmByyvm0QLktVhWSjbZxH4serRg8gTanb-q1Erl6eyhXdcy4rtyVfuoZrIDtLNCJHiInst529T9gMPzFOfz-Qx_2DjGAG2fYJv5CuEuDAJvsBYM0A17X5Ul-LWAVBrsNCQmuBSWfjtCo879sN0lTjKBaMa8nGhqAsY1tWUpSgWLfa691KN-3ApDpQKtWeApP-W-NraUsyjgtsJHSmthDbRtNY5RPbPeOEFYJ6AFI-LQSxRLWlqkzHAd-rDTSBXlDSQqF0nt-MRB1mImK-DYi1x1rwT3ylYorXsbyP-2XZSsGmtZ3VZPQv6KEWnT_xr2p_-0v0Jb3WG_J3sPg6cztA1nyqnEc1TPl-_mwrYneXxZhN8Xv73k3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+tool+wear+using+acoustic+emission+signal+and+machine+learning+methods&rft.jtitle=Precision+engineering&rft.au=Twardowski%2C+Pawe%C5%82&rft.au=Tabaszewski%2C+Maciej&rft.au=Wiciak+%E2%80%93+Piku%C5%82a%2C+Martyna&rft.au=Felusiak-Czyryca%2C+Agata&rft.date=2021-11-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.eissn=1873-2372&rft.volume=72&rft.spage=738&rft.epage=744&rft_id=info:doi/10.1016%2Fj.precisioneng.2021.07.019&rft.externalDocID=S0141635921001884 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |