The Cable Fault Diagnosis for XLPE Cable Based on 1DCNNs-BiLSTM Network

Diagnosing the fault type accurately from a variety of faults is very essential to ensure a stable electricity supply when a short-circuit fault occurs. In this paper, a hybrid classification model combining the one-dimensional convolutional neural network (1D-CNN) and the bidirectional long short-t...

Full description

Saved in:
Bibliographic Details
Published inJournal of control science and engineering Vol. 2023; pp. 1 - 10
Main Authors Wang, Qianyu, Cao, Dong, Zhang, Shuyuan, Zhou, Yuzan, Yao, Lina
Format Journal Article
LanguageEnglish
Published New York Hindawi 19.01.2023
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diagnosing the fault type accurately from a variety of faults is very essential to ensure a stable electricity supply when a short-circuit fault occurs. In this paper, a hybrid classification model combining the one-dimensional convolutional neural network (1D-CNN) and the bidirectional long short-term memory network (BiLSTM) is proposed for the classification of cable short-circuit faults to improve the accuracy of fault diagnosis. Sample sets of the current signal for single-phase grounding short circuit, two-phase grounding short circuit, two-phase to phase short circuit, and three-phase grounding short-circuit are obtained by the simulink model, and the signal is input to this network model. The local features of the cable fault signals are extracted using 1D-CNN and the fault signal timing information is captured using BiLSTM, which enables the diagnosis of cable faults based on the automatically extracted features. The experimental results of the simulation show that the model can obtain a good recognition performance and can achieve an overall accuracy of 99.45% in classifying the four short-circuit faults with 500 iterations. In addition, the analysis of loss function curves and accuracy curves shows that the method performs better than networks with only temporal feature extraction, such as 1D-CNN and LSTM.
AbstractList Diagnosing the fault type accurately from a variety of faults is very essential to ensure a stable electricity supply when a short-circuit fault occurs. In this paper, a hybrid classification model combining the one-dimensional convolutional neural network (1D-CNN) and the bidirectional long short-term memory network (BiLSTM) is proposed for the classification of cable short-circuit faults to improve the accuracy of fault diagnosis. Sample sets of the current signal for single-phase grounding short circuit, two-phase grounding short circuit, two-phase to phase short circuit, and three-phase grounding short-circuit are obtained by the simulink model, and the signal is input to this network model. The local features of the cable fault signals are extracted using 1D-CNN and the fault signal timing information is captured using BiLSTM, which enables the diagnosis of cable faults based on the automatically extracted features. The experimental results of the simulation show that the model can obtain a good recognition performance and can achieve an overall accuracy of 99.45% in classifying the four short-circuit faults with 500 iterations. In addition, the analysis of loss function curves and accuracy curves shows that the method performs better than networks with only temporal feature extraction, such as 1D-CNN and LSTM.
Author Zhang, Shuyuan
Cao, Dong
Yao, Lina
Wang, Qianyu
Zhou, Yuzan
Author_xml – sequence: 1
  givenname: Qianyu
  surname: Wang
  fullname: Wang, Qianyu
  organization: School of Electrical EngineeringZhengzhou UniversityZhengzhou 450001Chinazzu.edu.cn
– sequence: 2
  givenname: Dong
  surname: Cao
  fullname: Cao, Dong
  organization: School of Electrical EngineeringZhengzhou UniversityZhengzhou 450001Chinazzu.edu.cn
– sequence: 3
  givenname: Shuyuan
  surname: Zhang
  fullname: Zhang, Shuyuan
  organization: School of Electrical EngineeringZhengzhou UniversityZhengzhou 450001Chinazzu.edu.cn
– sequence: 4
  givenname: Yuzan
  surname: Zhou
  fullname: Zhou, Yuzan
  organization: Meihua Jianan Engineering Group Co., Ltd.Changyuan 453400China
– sequence: 5
  givenname: Lina
  orcidid: 0000-0003-3819-5643
  surname: Yao
  fullname: Yao, Lina
  organization: School of Electrical EngineeringZhengzhou UniversityZhengzhou 450001Chinazzu.edu.cn
BookMark eNp9kE9LAzEQxYMoWKs3P8CCR12bv5vdo7a1CrUKVvAWZjeJpq4bTbaI396trR4EPc0w83uPx9tD241vDEKHBJ8SIsSAYsoGBGc5lvkW6pEsl6mgQm7_7LzYRQcxuhILLBkTmPfQZP5kkiGUtUkuYFm3ycjBY-Oji4n1IXmY3o4373OIRie-SchoOJvF9NxN7-bXycy07z4876MdC3U0B5vZR_cX4_nwMp3eTK6GZ9O04py2aVmCkVBhrbWwhEhgPBeaCSKzsuRSUy4pz60uKBPcgLCYmk5RcQuWFKVkfXS19tUeFuo1uBcIH8qDU18HHx4VhNZVtVESbJ4DBgu54bqTZ1oWXDMomDGYQud1tPZ6Df5taWKrFn4Zmi6-olJiwUSW8Y6ia6oKPsZgrKpcC63zTRvA1YpgtepfrfpXm_470ckv0XfUP_DjNf7kGg3v7n_6E7VSkXw
CitedBy_id crossref_primary_10_3390_app15073440
crossref_primary_10_3390_cancers15051492
Cites_doi 10.1109/access.2022.3170145
10.1016/j.neucom.2021.07.021
10.3390/en10030406
10.1016/j.ijepes.2014.10.026
10.1007/s41870-021-00686-y
10.1016/j.compeleceng.2018.07.043
10.1109/tgrs.2019.2901945
10.32604/cmc.2022.023211
10.1109/access.2020.3004207
10.1109/tpwrd.2021.3065342
10.3390/s21175936
10.1016/j.jesit.2014.12.003
ContentType Journal Article
Copyright Copyright © 2023 Qianyu Wang et al.
Copyright © 2023 Qianyu Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2023 Qianyu Wang et al.
– notice: Copyright © 2023 Qianyu Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1155/2023/1068078
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-5257
Editor Sarker, Subrata Kumar
Editor_xml – sequence: 1
  givenname: Subrata Kumar
  surname: Sarker
  fullname: Sarker, Subrata Kumar
EndPage 10
ExternalDocumentID oai_doaj_org_article_7af88a0afa8e4df196d794d3a93ee02a
10_1155_2023_1068078
GrantInformation_xml – fundername: Excellent Youth Foundation of He’nan Scientific Committee
  grantid: 222300420019
– fundername: National Natural Science Foundation of China
  grantid: 61973278
GroupedDBID 188
2WC
3V.
4.4
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABJCF
ABUWG
ACIWK
ADBBV
ADDVE
AFKRA
AFPKN
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
CWDGH
DWQXO
E3Z
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RHU
RHW
RHX
TR2
0R~
24P
AAYXX
ACCMX
CITATION
H13
ICD
PHGZM
PHGZT
7SP
7XB
8AL
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c442t-bbae7ac0ddd5f117a3485d35176bb47d247248fd92354ea5f02eae7c4faf19b73
IEDL.DBID RHX
ISSN 1687-5249
IngestDate Wed Aug 27 01:30:26 EDT 2025
Fri Jul 25 12:23:03 EDT 2025
Tue Jul 01 03:19:11 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Sun Jun 02 19:19:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-bbae7ac0ddd5f117a3485d35176bb47d247248fd92354ea5f02eae7c4faf19b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3819-5643
OpenAccessLink https://dx.doi.org/10.1155/2023/1068078
PQID 2770535664
PQPubID 237793
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_7af88a0afa8e4df196d794d3a93ee02a
proquest_journals_2770535664
crossref_citationtrail_10_1155_2023_1068078
crossref_primary_10_1155_2023_1068078
hindawi_primary_10_1155_2023_1068078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-19
  day: 19
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of control science and engineering
PublicationYear 2023
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 12
13
14
F. Yang (15) 2018; 38
17
W. Lin (11) 2022; 51
18
Z. Ren (6) 2015; 27
19
B. Z. Wu (7) 2018; 35
3
5
W. Zhang (2) 2021; 24
Y. Zhu (10)
8
H. Xia (1) 2021; 2021
9
Y. Wang (16) 2020; 48
D. U. Hongchao (4) 2013; 26
20
21
References_xml – ident: 17
  doi: 10.1109/access.2022.3170145
– ident: 19
  doi: 10.1016/j.neucom.2021.07.021
– ident: 20
  doi: 10.3390/en10030406
– volume: 26
  start-page: 110
  issue: 9
  year: 2013
  ident: 4
  article-title: Research on signal feature extraction in wire and cable fault based on wavelet analysis[J]
  publication-title: Electronic Science and Technology
– volume: 2021
  start-page: 72
  issue: 07
  year: 2021
  ident: 1
  article-title: Research on distribution cable fault diagnosis method [J]
  publication-title: Electrical Engineering Technology
– ident: 10
  article-title: fault phase identification method based on convolutional neural network for double circuit transmission lines[C]
– volume: 24
  start-page: 23
  issue: 11
  year: 2021
  ident: 2
  article-title: Research and application of LIRA in transmission cable fault diagnosis [J]
  publication-title: Power Big Data
– volume: 51
  start-page: 62
  issue: 01
  year: 2022
  ident: 11
  article-title: Fault identification of large aircraft cables based on deep learning algorithm [J]
  publication-title: Mechanical Design and Manufacturing Engineering
– ident: 5
  doi: 10.1016/j.ijepes.2014.10.026
– volume: 27
  start-page: 1044
  issue: 05
  year: 2015
  ident: 6
  article-title: Energy entropy and IPSO-BP algorithm for underground cable fault diagnosis [J]
  publication-title: Journal of System Simulation
– ident: 21
  doi: 10.1007/s41870-021-00686-y
– volume: 38
  start-page: 123
  issue: 05
  year: 2018
  ident: 15
  article-title: Convolutional neural network-based partial discharge pattern recognition for high-voltage cables[J]
  publication-title: Power Automation Equipment
– ident: 9
  doi: 10.1016/j.compeleceng.2018.07.043
– ident: 12
  doi: 10.1109/tgrs.2019.2901945
– volume: 35
  start-page: 43
  issue: 2
  year: 2018
  ident: 7
  article-title: Research on short-term load forecasting method of power grid based on deep learning [J]
  publication-title: Modern Electricity
– ident: 8
  doi: 10.32604/cmc.2022.023211
– ident: 18
  doi: 10.1109/access.2020.3004207
– ident: 14
  doi: 10.1109/tpwrd.2021.3065342
– ident: 13
  doi: 10.3390/s21175936
– ident: 3
  doi: 10.1016/j.jesit.2014.12.003
– volume: 48
  start-page: 10
  issue: 07
  year: 2020
  ident: 16
  article-title: Early fault classification identification of cables based on optimal convolutional neural network[J]
  publication-title: Power System Protection and Control
SSID ssib050733504
ssj0057788
Score 2.3014886
Snippet Diagnosing the fault type accurately from a variety of faults is very essential to ensure a stable electricity supply when a short-circuit fault occurs. In...
SourceID doaj
proquest
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Cables
Circuits
Classification
Deep learning
Electricity distribution
Fault diagnosis
Faults
Feature extraction
Neural networks
Short circuits
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFB6kJz2IK1arzKGeJJhlthztZpG2CLbQW5gVC6UVm-Lf902SlopIL14zk8zwvZe3DG--h1CTmThykWOBo6kJiFYp2EEdB0lqtAu1joTy952HI9afkJcpne60-vI1YSU9cAncI5dOCBlKJ4UlxoHCGFAhk8g0sTaMi9AIfN4mmSptMOWQ2W3K3Cn1GX4C9oF5cvUfDqjg6YfQ990nwF-zXwa58DK9E3RchYf4qdzWKTqwizN0tEMaeI6eQbK47W884Z5cz3PcKavlZisMASieDl671XALPJTBywWOOu3RaBW0ZoO38RCPysrvCzTpdcftflC1Qwg0IXEeKCUtlzo0xlAXRVwmRFCT0IgzpQg3MeExEc5AyEaJldSFsYU3NHESYFM8uUS1xXJhrxCmymgGY0ZQR6z_lGBcQu7lwP4ZweroYYNRpiuucN-yYp4VOQOlmUc0qxCto_vt7I-SI-OPeS0P93aOZ7YuHoC8s0re2T5511GzEtaetRobSWbVX7nKYs49nQ1j5Po_tnKDDv2S_kAmShuoln-u7S2EKLm6K7TxG75M4Fk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELba5dIeqkJbdVtAPtBTFREnfuVUdZfdIgQRKiDtLfITVkK7wC7q3-9M4kBRRXuNHSeasT_PjMffELInfcEiizKLovIZd7YCHHRFVlbexdw5pi3edz6p5eEFP5qJWQq4rVJaZY-JLVD7pcMY-X6hFFKRSMm_3dxmWDUKT1dTCY2XZAMgWOsB2RhN6tOf_YwSWJKw5S_vsFko1VaiZBKWlgDPo0-FFwKjACVgiEQC9iebVMvlD-bxFTrJv-Z_gXa7E03fkjfJhKTfO51vkhdhsUVe_0Es-I78AO3TMd6KolNzf72mB11G3XxFwUils-PTSWoewS7m6XJB2cG4rlfZaH58dn5C6y47_D25mE7Ox4dZKpmQOc6LdWatCcq43HsvImPKlFwLXwqmpLVc-YKrguvowawTPBgR8yLAG45HE1llVfmBDBbLRfhIqLDeSWjzWkQecCgtlQH_LAJGei2H5Gsvo8YlPnEsa3HdtH6FEA1KtEkSHZIvD71vOh6NZ_qNUNwPfZD9un2wvLts0mJqlIlam9xEowP38OPSA6z40lRlCHlhhmQvKes_39ruNdmklbtqHufZp383fyavcDAMx7BqmwzWd_dhBwyUtd1Ns_A3X6rdbw
  priority: 102
  providerName: ProQuest
Title The Cable Fault Diagnosis for XLPE Cable Based on 1DCNNs-BiLSTM Network
URI https://dx.doi.org/10.1155/2023/1068078
https://www.proquest.com/docview/2770535664
https://doaj.org/article/7af88a0afa8e4df196d794d3a93ee02a
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS-xAEG5cLnoQt4fjMvRBT49AOuktR2dHNIhPcW6hV97AMIoz4t-3OukRF0RPodOdTqiqrqov6XyF0Cm3GfHE88SzwibU6AL8oMmSvLDGp8YQqcP_zlclH93RizEbR5Kk-ddP-BDtAjzPocEDM_oqWgUDC6B8NF6aDQt1B2uS8sYBMyHqcpOEw_phAC-W-90_zfUhEtWE_ZAD_w9I-GXyxTPX4WawjbZinojPG8XuoBU320Wb79gD99AQVIy74dcnPFDP0wXuNdvmJnMMmSgeX173Y3cHQpXFDzNMet2ynCedyeW_2ytcNlvA99HdoH_bHSWxLkJiKM0WidbKCWVSay3zhAiVU8lszojgWlNhMyoyKr2F3I1Rp5hPMwdXGOqVJ4UW-R-0NnuYuQOEmbaGQ5-VzFMXppJcKABhHhyhlbyF_i5lVJlIGh5qV0yrGjwwVgWJVlGiLXT2NvqxIcv4ZlwniPttTKC4rk-A2qu4YiqhvJQqVV5JRy08OLfgO2yuity5NFMtdBqV9cO9jpearOLynFeZEIHXhnN6-LtZjtBGaIZ3L6Q4RmuLp2d3AtnIQrfBIgfDNlrv9MvrGzh273vDUbvG9u3aTl8BeaDWww
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHxFOkFPChPaEVa68fuweESNI0pckKiVTKbfETIlVJ26Sq-FP8Rmb2UUAIOPUae73RePzNjHfmG0L2lOcssqiSKAufCGcLwEHHk6zwLqbOsdxivfO0VOMT8WEu51vke1cLg2mVHSbWQO1XDu_I33CtkYpEKfHu7DzBrlH4dbVrodGoxXH4dgUh2_rt0RD2d5_z0cFsME7argKJE4JvEmtN0Mal3nsZGdMmE7n0mWRaWSu050JzkUcPno8UwciY8gBPOBFNZIXVGax7i9wWGVhyrEwfHXb6K7EBYs2W3lgCqXXd95IpOMgS4pwu8V5KvHPIALEU0r3_ZhLrzgHgjH_FkPxq8YeJqO3e6AG53zqs9H2jYQ_JVlg-Ivd-oTF8TA5B1-gAa7DoyFyebuiwyd9brCm4xHQ--XjQDvfBZnq6WlI2HJTlOukvJp9mU1o2uehPyMmNiPIp2V6uluEZodJ6p2DM5zKKgEvlShuIBiMgss9Vj7zuZFS5lr0cm2icVnUUI2WFEq1aifbI_vXss4a14y_z-iju6znItV3_sLr4UrVHt9Im5rlJTTR5EB7-uPIAYj4zRRZCyk2P7LWb9Z937XY7WbU4sa5-avXOv4dfkTvj2XRSTY7K4-fkLi6MF0Gs2CXbm4vL8AJco419WesjJZ9v-gD8AMV4GjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzVpQV8aE8o6trxIzkgxL5o6TZaQSvtLTh-wErVbtvdquKv8euYSZwCQsCp19hxovHnb2bs8Qwhu8pxFlhQSZC5S4StcuBBy5M0dzb0rGVZhfedjwt1cCo-zORsg3xv78JgWGXLiTVRu6XFPfJ9rjWmIlFK7IcYFjEdjt-eXyRYQQpPWttyGg1Ejvy3a3DfVm8OhzDXe5yPRyeDgyRWGEisEHydVJXx2tiec04GxrRJRSZdKplWVSW040JzkQUHVpAU3sjQ4x7esCKYwPJKpzDuHbKp0SvqkM3-qJh-bNEssRxinTu90QtS67oKJlOwrCV4PW0YvpS4A5ECfylM_v6bgqzrCIBp_hUd9Ov5Hwqj1oLjh-RBNF_puwZvj8iGXzwm939JaviEvAfk0QHeyKJjc3W2psMmmm--omAg09lkOorNfdCgji4XlA0HRbFK-vPJp5NjWjSR6U_J6a0I8xnpLJYLv0WorJxV0OYyGYTHoTKlDfiGAfjZZapLXrcyKm3MZY4lNc7K2qeRskSJllGiXbJ30_u8yeHxl359FPdNH8y8XT9YXn4p40IutQlZZnommMwLBz-uHFCaS02eet_jpkt242T951s77UyWkTVW5U-MP_938ytyF8BfTg6Lo21yD8fFXSGW75DO-vLKvwA7aV29jICk5PNtr4Ef8cAfxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Cable+Fault+Diagnosis+for+XLPE+Cable+Based+on+1DCNNs-BiLSTM+Network&rft.jtitle=Journal+of+control+science+and+engineering&rft.au=Wang%2C+Qianyu&rft.au=Cao%2C+Dong&rft.au=Zhang%2C+Shuyuan&rft.au=Zhou%2C+Yuzan&rft.date=2023-01-19&rft.pub=Hindawi&rft.issn=1687-5249&rft.eissn=1687-5257&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F1068078&rft.externalDocID=10_1155_2023_1068078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5249&client=summon