The Cable Fault Diagnosis for XLPE Cable Based on 1DCNNs-BiLSTM Network
Diagnosing the fault type accurately from a variety of faults is very essential to ensure a stable electricity supply when a short-circuit fault occurs. In this paper, a hybrid classification model combining the one-dimensional convolutional neural network (1D-CNN) and the bidirectional long short-t...
Saved in:
Published in | Journal of control science and engineering Vol. 2023; pp. 1 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
19.01.2023
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diagnosing the fault type accurately from a variety of faults is very essential to ensure a stable electricity supply when a short-circuit fault occurs. In this paper, a hybrid classification model combining the one-dimensional convolutional neural network (1D-CNN) and the bidirectional long short-term memory network (BiLSTM) is proposed for the classification of cable short-circuit faults to improve the accuracy of fault diagnosis. Sample sets of the current signal for single-phase grounding short circuit, two-phase grounding short circuit, two-phase to phase short circuit, and three-phase grounding short-circuit are obtained by the simulink model, and the signal is input to this network model. The local features of the cable fault signals are extracted using 1D-CNN and the fault signal timing information is captured using BiLSTM, which enables the diagnosis of cable faults based on the automatically extracted features. The experimental results of the simulation show that the model can obtain a good recognition performance and can achieve an overall accuracy of 99.45% in classifying the four short-circuit faults with 500 iterations. In addition, the analysis of loss function curves and accuracy curves shows that the method performs better than networks with only temporal feature extraction, such as 1D-CNN and LSTM. |
---|---|
AbstractList | Diagnosing the fault type accurately from a variety of faults is very essential to ensure a stable electricity supply when a short-circuit fault occurs. In this paper, a hybrid classification model combining the one-dimensional convolutional neural network (1D-CNN) and the bidirectional long short-term memory network (BiLSTM) is proposed for the classification of cable short-circuit faults to improve the accuracy of fault diagnosis. Sample sets of the current signal for single-phase grounding short circuit, two-phase grounding short circuit, two-phase to phase short circuit, and three-phase grounding short-circuit are obtained by the simulink model, and the signal is input to this network model. The local features of the cable fault signals are extracted using 1D-CNN and the fault signal timing information is captured using BiLSTM, which enables the diagnosis of cable faults based on the automatically extracted features. The experimental results of the simulation show that the model can obtain a good recognition performance and can achieve an overall accuracy of 99.45% in classifying the four short-circuit faults with 500 iterations. In addition, the analysis of loss function curves and accuracy curves shows that the method performs better than networks with only temporal feature extraction, such as 1D-CNN and LSTM. |
Author | Zhang, Shuyuan Cao, Dong Yao, Lina Wang, Qianyu Zhou, Yuzan |
Author_xml | – sequence: 1 givenname: Qianyu surname: Wang fullname: Wang, Qianyu organization: School of Electrical EngineeringZhengzhou UniversityZhengzhou 450001Chinazzu.edu.cn – sequence: 2 givenname: Dong surname: Cao fullname: Cao, Dong organization: School of Electrical EngineeringZhengzhou UniversityZhengzhou 450001Chinazzu.edu.cn – sequence: 3 givenname: Shuyuan surname: Zhang fullname: Zhang, Shuyuan organization: School of Electrical EngineeringZhengzhou UniversityZhengzhou 450001Chinazzu.edu.cn – sequence: 4 givenname: Yuzan surname: Zhou fullname: Zhou, Yuzan organization: Meihua Jianan Engineering Group Co., Ltd.Changyuan 453400China – sequence: 5 givenname: Lina orcidid: 0000-0003-3819-5643 surname: Yao fullname: Yao, Lina organization: School of Electrical EngineeringZhengzhou UniversityZhengzhou 450001Chinazzu.edu.cn |
BookMark | eNp9kE9LAzEQxYMoWKs3P8CCR12bv5vdo7a1CrUKVvAWZjeJpq4bTbaI396trR4EPc0w83uPx9tD241vDEKHBJ8SIsSAYsoGBGc5lvkW6pEsl6mgQm7_7LzYRQcxuhILLBkTmPfQZP5kkiGUtUkuYFm3ycjBY-Oji4n1IXmY3o4373OIRie-SchoOJvF9NxN7-bXycy07z4876MdC3U0B5vZR_cX4_nwMp3eTK6GZ9O04py2aVmCkVBhrbWwhEhgPBeaCSKzsuRSUy4pz60uKBPcgLCYmk5RcQuWFKVkfXS19tUeFuo1uBcIH8qDU18HHx4VhNZVtVESbJ4DBgu54bqTZ1oWXDMomDGYQud1tPZ6Df5taWKrFn4Zmi6-olJiwUSW8Y6ia6oKPsZgrKpcC63zTRvA1YpgtepfrfpXm_470ckv0XfUP_DjNf7kGg3v7n_6E7VSkXw |
CitedBy_id | crossref_primary_10_3390_app15073440 crossref_primary_10_3390_cancers15051492 |
Cites_doi | 10.1109/access.2022.3170145 10.1016/j.neucom.2021.07.021 10.3390/en10030406 10.1016/j.ijepes.2014.10.026 10.1007/s41870-021-00686-y 10.1016/j.compeleceng.2018.07.043 10.1109/tgrs.2019.2901945 10.32604/cmc.2022.023211 10.1109/access.2020.3004207 10.1109/tpwrd.2021.3065342 10.3390/s21175936 10.1016/j.jesit.2014.12.003 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Qianyu Wang et al. Copyright © 2023 Qianyu Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2023 Qianyu Wang et al. – notice: Copyright © 2023 Qianyu Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 3V. 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1155/2023/1068078 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Middle East & Africa Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-5257 |
Editor | Sarker, Subrata Kumar |
Editor_xml | – sequence: 1 givenname: Subrata Kumar surname: Sarker fullname: Sarker, Subrata Kumar |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_7af88a0afa8e4df196d794d3a93ee02a 10_1155_2023_1068078 |
GrantInformation_xml | – fundername: Excellent Youth Foundation of He’nan Scientific Committee grantid: 222300420019 – fundername: National Natural Science Foundation of China grantid: 61973278 |
GroupedDBID | 188 2WC 3V. 4.4 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY AAKPC ABJCF ABUWG ACIWK ADBBV ADDVE AFKRA AFPKN AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH DWQXO E3Z EBS ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ITC J9A K6V K7- KQ8 L6V M0N M7S OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X RHU RHW RHX TR2 0R~ 24P AAYXX ACCMX CITATION H13 ICD PHGZM PHGZT 7SP 7XB 8AL 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c442t-bbae7ac0ddd5f117a3485d35176bb47d247248fd92354ea5f02eae7c4faf19b73 |
IEDL.DBID | RHX |
ISSN | 1687-5249 |
IngestDate | Wed Aug 27 01:30:26 EDT 2025 Fri Jul 25 12:23:03 EDT 2025 Tue Jul 01 03:19:11 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Sun Jun 02 19:19:08 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-bbae7ac0ddd5f117a3485d35176bb47d247248fd92354ea5f02eae7c4faf19b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3819-5643 |
OpenAccessLink | https://dx.doi.org/10.1155/2023/1068078 |
PQID | 2770535664 |
PQPubID | 237793 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7af88a0afa8e4df196d794d3a93ee02a proquest_journals_2770535664 crossref_citationtrail_10_1155_2023_1068078 crossref_primary_10_1155_2023_1068078 hindawi_primary_10_1155_2023_1068078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-19 |
PublicationDateYYYYMMDD | 2023-01-19 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of control science and engineering |
PublicationYear | 2023 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 12 13 14 F. Yang (15) 2018; 38 17 W. Lin (11) 2022; 51 18 Z. Ren (6) 2015; 27 19 B. Z. Wu (7) 2018; 35 3 5 W. Zhang (2) 2021; 24 Y. Zhu (10) 8 H. Xia (1) 2021; 2021 9 Y. Wang (16) 2020; 48 D. U. Hongchao (4) 2013; 26 20 21 |
References_xml | – ident: 17 doi: 10.1109/access.2022.3170145 – ident: 19 doi: 10.1016/j.neucom.2021.07.021 – ident: 20 doi: 10.3390/en10030406 – volume: 26 start-page: 110 issue: 9 year: 2013 ident: 4 article-title: Research on signal feature extraction in wire and cable fault based on wavelet analysis[J] publication-title: Electronic Science and Technology – volume: 2021 start-page: 72 issue: 07 year: 2021 ident: 1 article-title: Research on distribution cable fault diagnosis method [J] publication-title: Electrical Engineering Technology – ident: 10 article-title: fault phase identification method based on convolutional neural network for double circuit transmission lines[C] – volume: 24 start-page: 23 issue: 11 year: 2021 ident: 2 article-title: Research and application of LIRA in transmission cable fault diagnosis [J] publication-title: Power Big Data – volume: 51 start-page: 62 issue: 01 year: 2022 ident: 11 article-title: Fault identification of large aircraft cables based on deep learning algorithm [J] publication-title: Mechanical Design and Manufacturing Engineering – ident: 5 doi: 10.1016/j.ijepes.2014.10.026 – volume: 27 start-page: 1044 issue: 05 year: 2015 ident: 6 article-title: Energy entropy and IPSO-BP algorithm for underground cable fault diagnosis [J] publication-title: Journal of System Simulation – ident: 21 doi: 10.1007/s41870-021-00686-y – volume: 38 start-page: 123 issue: 05 year: 2018 ident: 15 article-title: Convolutional neural network-based partial discharge pattern recognition for high-voltage cables[J] publication-title: Power Automation Equipment – ident: 9 doi: 10.1016/j.compeleceng.2018.07.043 – ident: 12 doi: 10.1109/tgrs.2019.2901945 – volume: 35 start-page: 43 issue: 2 year: 2018 ident: 7 article-title: Research on short-term load forecasting method of power grid based on deep learning [J] publication-title: Modern Electricity – ident: 8 doi: 10.32604/cmc.2022.023211 – ident: 18 doi: 10.1109/access.2020.3004207 – ident: 14 doi: 10.1109/tpwrd.2021.3065342 – ident: 13 doi: 10.3390/s21175936 – ident: 3 doi: 10.1016/j.jesit.2014.12.003 – volume: 48 start-page: 10 issue: 07 year: 2020 ident: 16 article-title: Early fault classification identification of cables based on optimal convolutional neural network[J] publication-title: Power System Protection and Control |
SSID | ssib050733504 ssj0057788 |
Score | 2.3014886 |
Snippet | Diagnosing the fault type accurately from a variety of faults is very essential to ensure a stable electricity supply when a short-circuit fault occurs. In... |
SourceID | doaj proquest crossref hindawi |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks Cables Circuits Classification Deep learning Electricity distribution Fault diagnosis Faults Feature extraction Neural networks Short circuits |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFB6kJz2IK1arzKGeJJhlthztZpG2CLbQW5gVC6UVm-Lf902SlopIL14zk8zwvZe3DG--h1CTmThykWOBo6kJiFYp2EEdB0lqtAu1joTy952HI9afkJcpne60-vI1YSU9cAncI5dOCBlKJ4UlxoHCGFAhk8g0sTaMi9AIfN4mmSptMOWQ2W3K3Cn1GX4C9oF5cvUfDqjg6YfQ990nwF-zXwa58DK9E3RchYf4qdzWKTqwizN0tEMaeI6eQbK47W884Z5cz3PcKavlZisMASieDl671XALPJTBywWOOu3RaBW0ZoO38RCPysrvCzTpdcftflC1Qwg0IXEeKCUtlzo0xlAXRVwmRFCT0IgzpQg3MeExEc5AyEaJldSFsYU3NHESYFM8uUS1xXJhrxCmymgGY0ZQR6z_lGBcQu7lwP4ZweroYYNRpiuucN-yYp4VOQOlmUc0qxCto_vt7I-SI-OPeS0P93aOZ7YuHoC8s0re2T5511GzEtaetRobSWbVX7nKYs49nQ1j5Po_tnKDDv2S_kAmShuoln-u7S2EKLm6K7TxG75M4Fk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELba5dIeqkJbdVtAPtBTFREnfuVUdZfdIgQRKiDtLfITVkK7wC7q3-9M4kBRRXuNHSeasT_PjMffELInfcEiizKLovIZd7YCHHRFVlbexdw5pi3edz6p5eEFP5qJWQq4rVJaZY-JLVD7pcMY-X6hFFKRSMm_3dxmWDUKT1dTCY2XZAMgWOsB2RhN6tOf_YwSWJKw5S_vsFko1VaiZBKWlgDPo0-FFwKjACVgiEQC9iebVMvlD-bxFTrJv-Z_gXa7E03fkjfJhKTfO51vkhdhsUVe_0Es-I78AO3TMd6KolNzf72mB11G3XxFwUils-PTSWoewS7m6XJB2cG4rlfZaH58dn5C6y47_D25mE7Ox4dZKpmQOc6LdWatCcq43HsvImPKlFwLXwqmpLVc-YKrguvowawTPBgR8yLAG45HE1llVfmBDBbLRfhIqLDeSWjzWkQecCgtlQH_LAJGei2H5Gsvo8YlPnEsa3HdtH6FEA1KtEkSHZIvD71vOh6NZ_qNUNwPfZD9un2wvLts0mJqlIlam9xEowP38OPSA6z40lRlCHlhhmQvKes_39ruNdmklbtqHufZp383fyavcDAMx7BqmwzWd_dhBwyUtd1Ns_A3X6rdbw priority: 102 providerName: ProQuest |
Title | The Cable Fault Diagnosis for XLPE Cable Based on 1DCNNs-BiLSTM Network |
URI | https://dx.doi.org/10.1155/2023/1068078 https://www.proquest.com/docview/2770535664 https://doaj.org/article/7af88a0afa8e4df196d794d3a93ee02a |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS-xAEG5cLnoQt4fjMvRBT49AOuktR2dHNIhPcW6hV97AMIoz4t-3OukRF0RPodOdTqiqrqov6XyF0Cm3GfHE88SzwibU6AL8oMmSvLDGp8YQqcP_zlclH93RizEbR5Kk-ddP-BDtAjzPocEDM_oqWgUDC6B8NF6aDQt1B2uS8sYBMyHqcpOEw_phAC-W-90_zfUhEtWE_ZAD_w9I-GXyxTPX4WawjbZinojPG8XuoBU320Wb79gD99AQVIy74dcnPFDP0wXuNdvmJnMMmSgeX173Y3cHQpXFDzNMet2ynCedyeW_2ytcNlvA99HdoH_bHSWxLkJiKM0WidbKCWVSay3zhAiVU8lszojgWlNhMyoyKr2F3I1Rp5hPMwdXGOqVJ4UW-R-0NnuYuQOEmbaGQ5-VzFMXppJcKABhHhyhlbyF_i5lVJlIGh5qV0yrGjwwVgWJVlGiLXT2NvqxIcv4ZlwniPttTKC4rk-A2qu4YiqhvJQqVV5JRy08OLfgO2yuity5NFMtdBqV9cO9jpearOLynFeZEIHXhnN6-LtZjtBGaIZ3L6Q4RmuLp2d3AtnIQrfBIgfDNlrv9MvrGzh273vDUbvG9u3aTl8BeaDWww |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHxFOkFPChPaEVa68fuweESNI0pckKiVTKbfETIlVJ26Sq-FP8Rmb2UUAIOPUae73RePzNjHfmG0L2lOcssqiSKAufCGcLwEHHk6zwLqbOsdxivfO0VOMT8WEu51vke1cLg2mVHSbWQO1XDu_I33CtkYpEKfHu7DzBrlH4dbVrodGoxXH4dgUh2_rt0RD2d5_z0cFsME7argKJE4JvEmtN0Mal3nsZGdMmE7n0mWRaWSu050JzkUcPno8UwciY8gBPOBFNZIXVGax7i9wWGVhyrEwfHXb6K7EBYs2W3lgCqXXd95IpOMgS4pwu8V5KvHPIALEU0r3_ZhLrzgHgjH_FkPxq8YeJqO3e6AG53zqs9H2jYQ_JVlg-Ivd-oTF8TA5B1-gAa7DoyFyebuiwyd9brCm4xHQ--XjQDvfBZnq6WlI2HJTlOukvJp9mU1o2uehPyMmNiPIp2V6uluEZodJ6p2DM5zKKgEvlShuIBiMgss9Vj7zuZFS5lr0cm2icVnUUI2WFEq1aifbI_vXss4a14y_z-iju6znItV3_sLr4UrVHt9Im5rlJTTR5EB7-uPIAYj4zRRZCyk2P7LWb9Z937XY7WbU4sa5-avXOv4dfkTvj2XRSTY7K4-fkLi6MF0Gs2CXbm4vL8AJco419WesjJZ9v-gD8AMV4GjQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzVpQV8aE8o6trxIzkgxL5o6TZaQSvtLTh-wErVbtvdquKv8euYSZwCQsCp19hxovHnb2bs8Qwhu8pxFlhQSZC5S4StcuBBy5M0dzb0rGVZhfedjwt1cCo-zORsg3xv78JgWGXLiTVRu6XFPfJ9rjWmIlFK7IcYFjEdjt-eXyRYQQpPWttyGg1Ejvy3a3DfVm8OhzDXe5yPRyeDgyRWGEisEHydVJXx2tiec04GxrRJRSZdKplWVSW040JzkQUHVpAU3sjQ4x7esCKYwPJKpzDuHbKp0SvqkM3-qJh-bNEssRxinTu90QtS67oKJlOwrCV4PW0YvpS4A5ECfylM_v6bgqzrCIBp_hUd9Ov5Hwqj1oLjh-RBNF_puwZvj8iGXzwm939JaviEvAfk0QHeyKJjc3W2psMmmm--omAg09lkOorNfdCgji4XlA0HRbFK-vPJp5NjWjSR6U_J6a0I8xnpLJYLv0WorJxV0OYyGYTHoTKlDfiGAfjZZapLXrcyKm3MZY4lNc7K2qeRskSJllGiXbJ30_u8yeHxl359FPdNH8y8XT9YXn4p40IutQlZZnommMwLBz-uHFCaS02eet_jpkt242T951s77UyWkTVW5U-MP_938ytyF8BfTg6Lo21yD8fFXSGW75DO-vLKvwA7aV29jICk5PNtr4Ef8cAfxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Cable+Fault+Diagnosis+for+XLPE+Cable+Based+on+1DCNNs-BiLSTM+Network&rft.jtitle=Journal+of+control+science+and+engineering&rft.au=Wang%2C+Qianyu&rft.au=Cao%2C+Dong&rft.au=Zhang%2C+Shuyuan&rft.au=Zhou%2C+Yuzan&rft.date=2023-01-19&rft.pub=Hindawi&rft.issn=1687-5249&rft.eissn=1687-5257&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F1068078&rft.externalDocID=10_1155_2023_1068078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5249&client=summon |