Novel Therapeutic Targets in Liver Fibrosis
Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against live...
Saved in:
Published in | Frontiers in molecular biosciences Vol. 8; p. 766855 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
05.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis. |
---|---|
AbstractList | Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis. Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis.Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis. |
Author | Liu, Qinhui He, Jinhan Zhang, Jinhang Li, Yanping |
AuthorAffiliation | 2 Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan , China 1 Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan , China |
AuthorAffiliation_xml | – name: 2 Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan , China – name: 1 Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan , China |
Author_xml | – sequence: 1 givenname: Jinhang surname: Zhang fullname: Zhang, Jinhang – sequence: 2 givenname: Qinhui surname: Liu fullname: Liu, Qinhui – sequence: 3 givenname: Jinhan surname: He fullname: He, Jinhan – sequence: 4 givenname: Yanping surname: Li fullname: Li, Yanping |
BookMark | eNp9kU9PAyEQxYnR-P8DeNujiWmFWWDhYmKMVZNGLz14I8DOVsx2qbBt4rd3a41RD56YwLzfPOYdkd0udkjIGaPjslT6slnE1o2BAhtXUiohdsghgJYjpfTz7o_6gJzm_EopZYKWleT75KDkigqo5CG5eIxrbIvZCya7xFUffDGzaY59LkJXTMMaUzEJLsUc8gnZa2yb8fTrPCazye3s5n40fbp7uLmejjzn0I-cKoH7ugInuFC0QsSaWwvO11Z7qRWHRgtHUXgEzZy2ChhvpPKKMubKY_KwxdbRvpplCgub3k20wXxexDQ3Ng1GWzRCNYJVw7-cZdwD6sbVmiJrhGelZ2JgXW1Zy5VbYO2x65Ntf0F_v3Thxczj2ihJodIwAM6_ACm-rTD3ZhGyx7a1HcZVNiApVcClkkMr27b6YVs5YfM9hlGzicx8RmY2kZltZIOm-qPxobd9iBs3of1H-QH03p04 |
CitedBy_id | crossref_primary_10_3390_pathogens11070756 crossref_primary_10_1155_2023_1387665 crossref_primary_10_11569_wcjd_v31_i21_889 crossref_primary_10_1016_j_addr_2022_114448 crossref_primary_10_1016_j_ijpharm_2025_125403 crossref_primary_10_1016_j_tox_2022_153397 crossref_primary_10_1016_j_lfs_2024_122966 crossref_primary_10_3390_cimb46070444 crossref_primary_10_3390_antiox11020412 crossref_primary_10_1016_j_jcmgh_2023_05_010 crossref_primary_10_1016_j_acra_2022_06_006 crossref_primary_10_3748_wjg_v28_i40_5818 crossref_primary_10_3389_fmed_2024_1418786 crossref_primary_10_1016_j_phymed_2024_155916 crossref_primary_10_1007_s10068_023_01440_9 crossref_primary_10_1177_09731296241228361 crossref_primary_10_3345_cep_2022_00367 crossref_primary_10_3390_biomedicines11123280 crossref_primary_10_1016_j_xops_2023_100448 crossref_primary_10_1111_jcmm_18140 crossref_primary_10_1016_j_jconrel_2025_02_051 crossref_primary_10_3390_ijms25147873 crossref_primary_10_1016_j_cca_2024_120102 crossref_primary_10_3389_jpps_2023_11808 crossref_primary_10_3390_ijms24119671 |
Cites_doi | 10.1111/cts.12839 10.3390/ijms20205070 10.1038/cdd.2015.158 10.7150/thno.36942 10.1016/j.biochi.2013.09.003 10.1073/pnas.1001520107 10.1016/j.addr.2017.05.007 10.1038/nature17039 10.1016/j.taap.2019.114853 10.1111/bph.15289 10.1016/s0070-2153(10)92002-4 10.1080/13543784.2020.1718105 10.1126/sciimmunol.aar7754 10.1073/pnas.1119964109 10.1002/hep.29834 10.1080/15548627.2018.1503146 10.1136/gutjnl-2019-318918 10.3390/cells9040929 10.1016/j.gene.2017.03.008 10.1016/j.jcmgh.2019.12.006 10.1016/j.taap.2017.06.023 10.1007/s00018-019-03412-x 10.1038/s41418-020-0528-x 10.3892/mmr.2020.10997 10.1002/hep.26511 10.1111/bph.14873 10.3748/wjg.v23.i13.2330 10.1016/j.cell.2015.07.013 10.1016/j.aohep.2020.07.013 10.1016/j.celrep.2019.12.092 10.3389/fnins.2020.00267 10.1016/j.phymed.2018.12.003 10.1016/j.taap.2016.12.002 10.1007/s12325-008-0110-2 10.1038/nrgastro.2017.38 10.1177/1947601910393957 10.1038/s41575-020-00372-7 10.1016/j.jhep.2019.05.029 10.1038/s41467-017-00204-4 10.1016/j.jhep.2015.08.014 10.1016/j.toxlet.2018.07.013 10.1016/j.jhep.2020.04.037 10.1038/s41581-018-0078-3 10.1038/s41573-019-0040-5 10.1002/ijc.29287 10.1016/j.jhep.2017.10.017 10.1016/j.molimm.2019.01.004 10.1038/s41467-020-16092-0 10.1186/s13578-019-0363-2 10.1042/cbi20100321 10.3389/fcell.2016.00030 10.7150/thno.46360 10.1016/j.biochi.2019.05.014 10.3892/ijmm.2016.2630 10.1136/gutjnl-2016-312431 10.1016/j.jhep.2017.06.001 10.3390/metabo11020073 10.1002/path.2277 10.1111/bph.14573 10.1016/j.pharmthera.2013.09.005 10.1126/scitranslmed.aat9284 10.1080/14656566.2020.1774553 10.1016/j.jhep.2015.10.016 10.1002/wsbm.1499 10.1210/jc.2012-1221 10.1021/acs.jafc.8b05943 10.1016/j.biopha.2018.06.102 10.1016/j.cell.2017.05.016 10.1172/jci24282 10.1172/jci88881 10.1016/j.arr.2020.101063 10.1016/j.ebiom.2019.03.058 10.1016/j.bbadis.2017.12.001 10.1016/j.lfs.2017.03.012 10.3389/fphar.2018.00553 10.1016/j.bbadis.2016.12.009 10.1002/jcb.23017 10.1093/emboj/18.14.3964 10.1016/j.bbrc.2020.03.086 10.1016/j.jhep.2017.05.022 10.3390/ijms19103103 10.3390/cancers13061265 10.1002/hep.21237 10.1126/scitranslmed.aau6296 10.1053/j.gastro.2020.03.075 10.1016/j.taap.2015.11.012 10.1016/j.freeradbiomed.2012.05.007 10.1016/j.toxlet.2019.07.008 10.1080/13543776.2018.1549226 10.1136/gutjnl-2020-322526 10.1155/2016/8323747 10.3892/ijmm.2021.4964 10.1016/j.cmet.2020.10.026 10.1164/rccm.201707-1519oc 10.1053/j.gastro.2018.11.018 10.1002/hep.28431 10.1002/hep.30662 10.1172/jci119291 10.1016/j.bbamcr.2019.06.011 10.1002/hep.30975 10.1016/j.amjms.2019.02.003 10.1152/physrev.00030.2018 10.1126/scitranslmed.aat0344 10.1136/gutjnl-2016-311526 10.1038/nrneph.2016.48 10.1074/jbc.RA118.007212 10.1093/toxsci/kfaa185 10.1111/liv.14428 10.1016/j.cell.2019.03.032 10.1136/gutjnl-2019-320205 10.1038/s41575-019-0125-y 10.1084/jem.20190402 10.1016/j.jhep.2018.10.035 10.7150/thno.32710 10.1093/abbs/gmr079 10.1111/bph.15490 10.1002/hep.27376 10.1007/s00441-019-03110-x 10.1002/hep.1840060430 10.1080/17474124.2016.1251309 10.1038/nrgastro.2013.151 10.1002/ptr.6824 10.1053/j.gastro.2017.12.022 10.1016/j.jhep.2015.04.011 10.1016/j.critrevonc.2015.01.002 10.1053/j.gastro.2019.07.036 10.1016/j.semcdb.2019.11.013 10.1111/cas.12471 10.1021/acsnano.0c01007 10.1016/j.jhep.2015.04.013 10.1126/science.1244880 10.1016/j.jconrel.2019.04.022 10.1152/ajpgi.00153.2017 10.1007/s12072-017-9826-x 10.1016/j.jhep.2016.04.018 10.1053/j.gastro.2012.05.049 10.1038/s41419-018-1032-9 10.1016/j.jhep.2020.11.045 10.1038/s41374-018-0093-9 10.1002/hep.25769 10.1101/cshperspect.a022129 10.3892/mmr.2016.5926 10.1152/ajpgi.00311.2010 10.3390/cells9010024 10.7717/peerj.11374 10.1038/s41598-017-03175-0 10.1016/j.jhep.2018.09.014 10.1016/j.jhep.2016.07.009 10.1096/fj.202002694R 10.1111/liv.14863 10.1016/j.cmet.2016.09.016 10.1053/j.gastro.2008.03.003 10.1002/hep.30706 10.1016/j.ajpath.2019.09.011 10.1016/j.stem.2014.11.004 10.1002/cphy.c120035 10.2337/dbi20-0006 10.1002/adma.201904197 10.1038/s41423-020-00558-8 10.1080/15548627.2019.1687985 10.1016/j.jcmgh.2020.04.005 10.1016/j.gene.2018.06.053 10.7150/thno.45192 10.1002/hep4.1108 10.2741/reeves 10.3892/mmr.2021.11944 10.1002/hep.26754 10.1371/journal.pone.0016081 10.1016/j.jhep.2012.08.026 10.1136/gutjnl-2019-318812 10.1016/j.cellsig.2013.01.005 10.1016/j.intimp.2019.04.016 10.1002/hep.29752 10.1016/j.intimp.2015.02.012 10.1002/hep.30668 10.1101/gad.244772.114 10.7150/thno.38913 10.1093/cvr/cvy131 10.3389/fphys.2021.645857 10.2217/bmm-2016-0210 10.1002/hep.30810 10.1016/j.exger.2019.01.029 10.1016/j.cmet.2005.09.001 10.1016/j.ebiom.2015.10.010 10.1016/j.phrs.2020.104720 10.1002/iub.1518 10.1016/j.jcmgh.2018.09.005 10.1096/fj.202000494rr 10.1002/hep.26429 10.1111/hepr.13568 10.1186/s13287-018-1122-8 10.1164/rccm.201504-0780oc 10.1155/2019/2304931 10.1002/hep.31752 10.1016/j.phrs.2016.04.010 10.1016/j.toxlet.2021.04.018 10.1053/j.gastro.2012.07.115 10.1002/hep.31418 10.1016/j.redox.2020.101619 10.1002/hep.30928 10.1126/scitranslmed.aay8798 10.1038/s41388-018-0383-0 10.1017/s1462399409000994 10.1002/wdev.176 10.1080/15384101.2017.1325976 10.1053/j.gastro.2009.10.002 10.1111/liv.12577 10.1080/08923973.2020.1811308 10.1007/s00441-010-1024-2 10.3389/fphar.2021.634344 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Zhang, Liu, He and Li. Copyright © 2021 Zhang, Liu, He and Li. 2021 Zhang, Liu, He and Li |
Copyright_xml | – notice: Copyright © 2021 Zhang, Liu, He and Li. – notice: Copyright © 2021 Zhang, Liu, He and Li. 2021 Zhang, Liu, He and Li |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fmolb.2021.766855 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Zhang et al |
EISSN | 2296-889X |
ExternalDocumentID | oai_doaj_org_article_58f517150ba14c2e9fbd90e1f5c13c15 PMC8602792 10_3389_fmolb_2021_766855 |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION GROUPED_DOAJ HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
ID | FETCH-LOGICAL-c442t-b8324cd72b545807eeed4aa2bcda9c69842f95b0e5ce291b9a8214f68c8011b3 |
IEDL.DBID | M48 |
ISSN | 2296-889X |
IngestDate | Wed Aug 27 01:08:26 EDT 2025 Thu Aug 21 18:20:30 EDT 2025 Fri Jul 11 16:07:04 EDT 2025 Tue Jul 01 03:28:20 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-b8324cd72b545807eeed4aa2bcda9c69842f95b0e5ce291b9a8214f68c8011b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Sandra Torres, Goethe University Frankfurt, Germany Sung Hwan Ki, Chosun University, South Korea Sabine Klein, University Hospital Frankfurt, Germany Edited by: Hua Wang, Anhui Medical University, China Reviewed by: Bin Gao, National Institutes of Health (NIH), United States This article was submitted to Molecular Diagnostics and Therapeutics, a section of the journal Frontiers in Molecular Biosciences |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmolb.2021.766855 |
PMID | 34805276 |
PQID | 2600824686 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_58f517150ba14c2e9fbd90e1f5c13c15 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8602792 proquest_miscellaneous_2600824686 crossref_primary_10_3389_fmolb_2021_766855 crossref_citationtrail_10_3389_fmolb_2021_766855 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-05 |
PublicationDateYYYYMMDD | 2021-11-05 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in molecular biosciences |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Khomich (B83) 2019; 9 Jiayuan (B78) 2020; 387 Li (B106); 163 Lin (B110) 2019; 72 Liu (B114); 71 Ornitz (B135) 2015; 4 Li (B100); 21 Yang (B189); 295 Yang (B191) 2013; 25 Zhu (B209) 2018; 10 Cicchini (B28) 2015; 35 Seitz (B158) 2021; 41 Berumen (B18) 2021; 13 Jiang (B76) 2012; 53 Bian (B19) 2017; 1863 Xie (B185) 2015; 192 Marrone (B123) 2013; 58 Liu (B112); 71 Li (B104); 303 An (B4) 2020; 11 Espindola (B45) 2018; 197 Kisseleva (B85) 2021; 18 Hirschfield (B65) 2019; 70 Schumacher (B156) 2017; 330 Osawa (B136) 2015; 2 Zhang (B202); 16 Lambrecht (B94) 2020; 21 Tian (B168) 2021; 20 Chen (B27) 2012; 143 Lafoz (B93) 2020; 9 Liu (B111); 379 Huang (B70) 2021; 23 Zhang (B198) 2021; 73 Du (B38) 2020; 10 Kim (B84) 2021; 179 Alim (B2) 2019; 177 Lafdil (B92) 2006; 44 Lee (B96) 2020; 217 Xu (B187) 2016; 290 Zhou (B208) 2018; 98 Zhu (B210) 2020; 34 Tu (B171) 2017; 7 Rotman (B153) 2017; 66 Wang (B178) 2017; 23 Yu (B196) 2020; 12 Jalan-Sakrikar (B74) 2019; 70 Kumar (B90) 2019; 9 Kramann (B89) 2015; 16 Duan (B40) 2018; 68 Mooring (B131) 2020; 71 Ma (B117) 2017; 67 Senoo (B159) 2010; 34 Wang (B179); 70 Tsuchida (B170) 2017; 14 Smirne (B163) 2019; 2019 Sheng (B160) 2020; 42 Nusse (B134) 2017; 169 Roeb (B152) 2021; 12 Boyer-Diaz (B21) 2021; 74 Bataller (B14) 2005; 115 Wynn (B183) 2008; 214 Mantovani (B122) 2021; 11 Martin-Mateos (B125) 2019; 7 Petta (B142) 2016; 64 Georgescu (B55) 2008; 25 Wang (B174); 24 Wang (B175); 38 Akcora (B1) 2018; 1864 Hu (B69) 2014; 343 Puche (B145) 2013; 3 Liu (B115) 2021; 48 Barcena-Varela (B13) 2021; 70 Hewitson (B63) 2021; 12 Pan (B137) 2017; 16 Maity (B119) 2019; 295 Fu (B52) 2017; 618 Yang (B192) 2019; 11 Zhang (B204) 2018; 14 Chen (B25); 1866 Marrone (B124) 2016; 65 Para (B140) 2019; 357 Ramachandran (B147) 2012; 109 Poisson (B143) 2017; 66 Zhang (B199) 2017; 8 Lien (B109) 2014; 28 Reinehr (B150) 2012; 97 Du (B39) 2018; 154 Wu (B182) 2017; 315 Konishi (B86) 2018; 314 Karsdal (B82) 2016; 64 Duan (B41) 2017; 176 Asahara (B7) 1999; 18 Rao (B148) 2019; 9 Jarman (B75) 2020; 29 Luo (B116) 2019; 10 Deng (B35) 2011; 112 Wang (B176) 2015; 25 Friedman (B51) 2008; 134 Asrani (B8) 2019; 70 Mann (B120) 2010; 138 Liang (B108) 2019; 31 Haak (B59) 2019; 11 Pradere (B144) 2013; 58 Inagaki (B71) 2005; 2 Bai (B10) 2012; 56 Yu (B195) 2019; 107 Higashi (B64) 2017; 121 Li (B102); 40 Deng (B36) 2016; 14 Wen (B181) 2021; 18 Bellan (B17) 2016; 10 Jiang (B77) 2021; 11 Li (B101); 27 Alsamman (B3) 2020; 12 De (B33) 2011; 43 Reeves (B149) 2002; 7 El Taghdouini (B42) 2016; 10 Zhang (B203); 36 Meng (B128) 2016; 12 Attia (B9) 2021; 14 Bárcena (B12) 2015; 63 Itoh (B73) 2016; 4 Xie (B186) 2016; 23 Liu (B113); 70 Bates (B15) 2020; 73 Wang (B173) 2018; 674 Hu (B67) 2016; 108 Chen (B26) 2018; 9 Chen (B24); 119 Xie (B184) 2013; 58 Ge (B54) 2020; 177 Ding (B37) 2021; 9 Dat (B32) 2021; 73 Miao (B130) 2013; 95 Zhang (B197) 2021; 178 Lian (B107) 2016; 68 Lee (B95) 2019; 62 So (B164) 2018; 67 Li (B103) 2018; 106 Hardy (B60) 2017; 66 Lee (B97) 2021; 35 Bugyei-Twum (B22) 2018; 114 Kuro-o (B91) 2019; 15 Fan (B47) 2020; 10 Qi (B146) 2020; 190 Arechederra (B6) 2021; 13 Banales (B11) 2019; 16 Wang (B177) 2021; 70 Meng (B127) 2012; 143 Crawford (B29) 2018; 28 Murakami (B132) 2011; 6 Zhang (B200) 2019; 9 Andrew (B5) 2020; 100 Schumacher (B157) 2020; 71 Song (B166) 2020; 14 Cai (B23) 2020; 155 Koyama (B88) 2017; 127 Zhong (B206) 2020; 10 Dai (B31) 2020; 69 Zhang (B201) 2017; 9 DeLeve (B34) 2015; 61 Cui (B30) 2021; 70 Itoh (B72) 2010; 342 Kovall (B87) 2010; 92 Elssner (B43) 2019; 156 Fabre (B46) 2018; 3 Machado (B118) 2018; 68 Mannaerts (B121) 2015; 63 Gupta (B58) 2020; 159 Shrivastava (B161) 2016; 100 Song (B165) 2019; 176 Bouwens (B20) 1986; 6 Gu (B57) 2021; 35 Pan (B139) 2019; 9 Yang (B190); 37 Takebe (B167) 2014; 141 Xu (B188) 2020; 30 Zhao (B205) 2020; 19 Uriarte (B172) 2015; 136 You (B193) 2020; 77 McConnell (B126) 2018; 12 Schumacher (B155) 2016; 2016 Fan (B48) 2019; 157 Nishikawa (B133) 2018; 19 Li (B99); 526 Wang (B180); 42 Houglum (B66) 1997; 99 Richter (B151) 2020; 14 Hu (B68) 2020; 60 Henderson (B62) 2010; 107 Fourcot (B50) 2011; 300 Bellan (B16) 2019; 20 Zhou (B207) 2017; 1 Lenz (B98) 2014; 105 Park (B141) 2015; 162 Younossi (B194) 2016; 64 Zhu (B211) 2021; 178 Finnson (B49) 2020; 101 Esmail (B44) 2021; 347 Karin (B81) 2016; 529 Sica (B162) 2014; 59 Jühling (B80) 2021; 70 Li (B105); 313 Hayashi (B61) 2020; 50 Gandhi (B53) 2017; 67 Glaser (B56) 2009; 11 Pan (B138) 2018; 9 Mi (B129) 2019; 67 Jin (B79) 2011; 2 Schaap (B154) 2014; 11 Trivedi (B169) 2021; 33 |
References_xml | – volume: 14 start-page: 11 year: 2021 ident: B9 article-title: Evolving Role for Pharmacotherapy in NAFLD/NASH publication-title: Clin. Transl Sci. doi: 10.1111/cts.12839 – volume: 20 start-page: 5070 year: 2019 ident: B16 article-title: Gas6/TAM System: A Key Modulator of the Interplay Between Inflammation and Fibrosis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20205070 – volume: 23 start-page: 369 year: 2016 ident: B186 article-title: Ferroptosis: Process and Function publication-title: Cel Death Differ. doi: 10.1038/cdd.2015.158 – volume: 9 start-page: 7566 year: 2019 ident: B200 article-title: The Hepatocyte-Specifically Expressed Lnc-HSER Alleviates Hepatic Fibrosis by Inhibiting Hepatocyte Apoptosis and Epithelial-Mesenchymal Transition publication-title: Theranostics. doi: 10.7150/thno.36942 – volume: 95 start-page: 2326 year: 2013 ident: B130 article-title: Wnt Signaling in Liver Fibrosis: Progress, Challenges and Potential Directions publication-title: Biochimie. doi: 10.1016/j.biochi.2013.09.003 – volume: 107 start-page: 14309 year: 2010 ident: B62 article-title: Inhibition of Wnt/-Catenin/CREB Binding Protein (CBP) Signaling Reverses Pulmonary Fibrosis publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1001520107 – volume: 121 start-page: 27 year: 2017 ident: B64 article-title: Hepatic Stellate Cells as Key Target in Liver Fibrosis publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2017.05.007 – volume: 529 start-page: 307 year: 2016 ident: B81 article-title: Reparative Inflammation Takes Charge of Tissue Regeneration publication-title: Nature. doi: 10.1038/nature17039 – volume: 387 start-page: 114853 year: 2020 ident: B78 article-title: Gant61 Ameliorates CCl4-Induced Liver Fibrosis by Inhibition of Hedgehog Signaling Activity publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2019.114853 – volume: 178 start-page: 2246 year: 2021 ident: B197 article-title: Regulation of Hepatic Stellate Cell Contraction and Cirrhotic portal Hypertension by Wnt/β‐catenin Signalling via Interaction With Gli1 publication-title: Br. J. Pharmacol. doi: 10.1111/bph.15289 – volume: 92 start-page: 31 year: 2010 ident: B87 article-title: Mechanistic Insights Into Notch Receptor Signaling From Structural and Biochemical Studies, in Notch Signaling publication-title: Curr. Top. Dev. Biol. doi: 10.1016/s0070-2153(10)92002-4 – volume: 29 start-page: 179 year: 2020 ident: B75 article-title: Targeting the Wnt Signaling Pathway: the challenge of Reducing Scarring Without Affecting Repair publication-title: Expert Opin. Investig. Drugs. doi: 10.1080/13543784.2020.1718105 – volume: 3 start-page: eaar7754 year: 2018 ident: B46 article-title: Type 3 Cytokines IL-17A and IL-22 Drive TGF-β-dependent Liver Fibrosis publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aar7754 – volume: 109 start-page: E3186 year: 2012 ident: B147 article-title: Differential Ly-6C Expression Identifies the Recruited Macrophage Phenotype, Which Orchestrates the Regression of Murine Liver Fibrosis publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1119964109 – volume: 68 start-page: 677 year: 2018 ident: B40 article-title: Endothelial Notch Activation Reshapes the Angiocrine of Sinusoidal Endothelia to Aggravate Liver Fibrosis and Blunt Regeneration in Mice publication-title: Hepatology. doi: 10.1002/hep.29834 – volume: 14 start-page: 2083 year: 2018 ident: B204 article-title: Activation of Ferritinophagy Is Required for the RNA-Binding Protein ELAVL1/HuR to Regulate Ferroptosis in Hepatic Stellate Cells publication-title: Autophagy. doi: 10.1080/15548627.2018.1503146 – volume: 70 start-page: 157 year: 2021 ident: B80 article-title: Targeting Clinical Epigenetic Reprogramming for Chemoprevention of Metabolic and Viral Hepatocellular Carcinoma publication-title: Gut. doi: 10.1136/gutjnl-2019-318918 – volume: 9 start-page: 929 year: 2020 ident: B93 article-title: The Endothelium as a Driver of Liver Fibrosis and Regeneration publication-title: Cells. doi: 10.3390/cells9040929 – volume: 618 start-page: 1 year: 2017 ident: B52 article-title: LncRNA-ATB/microRNA-200a/β-Catenin Regulatory Axis Involved in the Progression of HCV-Related Hepatic Fibrosis publication-title: Gene. doi: 10.1016/j.gene.2017.03.008 – volume: 10 start-page: 1 year: 2020 ident: B38 article-title: Increased Glutaminolysis Marks Active Scarring in Nonalcoholic Steatohepatitis Progression publication-title: Cell Mol. Gastroenterol. Hepatol. doi: 10.1016/j.jcmgh.2019.12.006 – volume: 330 start-page: 1 year: 2017 ident: B156 article-title: The Effect of Fibroblast Growth Factor 15 Deficiency on the Development of High Fat Diet Induced Non-Alcoholic Steatohepatitis publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2017.06.023 – volume: 77 start-page: 4143 year: 2020 ident: B193 article-title: Dynein-Mediated Nuclear Translocation of Yes-Associated Protein Through Microtubule Acetylation Controls Fibroblast Activation publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-019-03412-x – volume: 27 start-page: 2635 ident: B101 article-title: Inhibitor of Apoptosis-Stimulating Protein of P53 Inhibits Ferroptosis and Alleviates Intestinal Ischemia/reperfusion-Induced Acute Lung Injury publication-title: Cell Death Differ. doi: 10.1038/s41418-020-0528-x – volume: 21 start-page: 1861 ident: B100 article-title: Gli3 Is a Novel Downstream Target of miR200a With an Anti-fibrotic Role for Progression of Liver Fibrosis In vivo and In Vitro publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2020.10997 – volume: 58 start-page: 1801 year: 2013 ident: B184 article-title: Cross-Talk Between Notch and Hedgehog Regulates Hepatic Stellate Cell Fate in Mice publication-title: Hepatology. doi: 10.1002/hep.26511 – volume: 177 start-page: 372 year: 2020 ident: B54 article-title: Costunolide Represses Hepatic Fibrosis Through WW Domain‐Containing Protein 2‐Mediated Notch3 Degradation publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14873 – volume: 23 start-page: 2330 year: 2017 ident: B178 article-title: Notch Signaling Mediated by TGF-β/Smad Pathway in Concanavalin A-Induced Liver Fibrosis in Rats publication-title: Wjg. doi: 10.3748/wjg.v23.i13.2330 – volume: 162 start-page: 780 year: 2015 ident: B141 article-title: Alternative Wnt Signaling Activates YAP/TAZ publication-title: Cell. doi: 10.1016/j.cell.2015.07.013 – volume: 20 start-page: 100259 year: 2021 ident: B168 article-title: Salvianolic Acid B Blocks Hepatic Stellate Cell Activation via FGF19/FGFR4 Signaling publication-title: Ann. Hepatol. doi: 10.1016/j.aohep.2020.07.013 – volume: 30 start-page: 1310 year: 2020 ident: B188 article-title: A Positive Feedback Loop of TET3 and TGF-Β1 Promotes Liver Fibrosis publication-title: Cel Rep. doi: 10.1016/j.celrep.2019.12.092 – volume: 14 start-page: 267 year: 2020 ident: B166 article-title: Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00267 – volume: 62 start-page: 152780 year: 2019 ident: B95 article-title: Liquiritigenin Inhibits Hepatic Fibrogenesis and TGF-β1/Smad With Hippo/YAP Signal publication-title: Phytomedicine. doi: 10.1016/j.phymed.2018.12.003 – volume: 315 start-page: 35 year: 2017 ident: B182 article-title: Methylation of Septin9 Mediated by DNMT3a Enhances Hepatic Stellate Cells Activation and Liver Fibrogenesis publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2016.12.002 – volume: 25 start-page: 1141 year: 2008 ident: B55 article-title: Angiotensin Receptor Blockers in the Treatment of NASH/NAFLD: Could They Be a First-Class Option? publication-title: Adv. Ther. doi: 10.1007/s12325-008-0110-2 – volume: 14 start-page: 397 year: 2017 ident: B170 article-title: Mechanisms of Hepatic Stellate Cell Activation publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.38 – volume: 2 start-page: 607 year: 2011 ident: B79 article-title: DNA Methylation: Superior or Subordinate in the Epigenetic Hierarchy? publication-title: Genes & Cancer doi: 10.1177/1947601910393957 – volume: 18 start-page: 151 year: 2021 ident: B85 article-title: Molecular and Cellular Mechanisms of Liver Fibrosis and its Regression publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-020-00372-7 – volume: 71 start-page: 719 ident: B114 article-title: Activation of YAP Attenuates Hepatic Damage and Fibrosis in Liver Ischemia-Reperfusion Injury publication-title: J. Hepatol. doi: 10.1016/j.jhep.2019.05.029 – volume: 8 start-page: 144 year: 2017 ident: B199 article-title: The Liver-Enriched Lnc-LFAR1 Promotes Liver Fibrosis by Activating TGFβ and Notch Pathways publication-title: Nat. Commun. doi: 10.1038/s41467-017-00204-4 – volume: 64 start-page: 103 year: 2016 ident: B82 article-title: Collagen and Tissue Turnover as a Function of Age: Implications for Fibrosis publication-title: J. Hepatol. doi: 10.1016/j.jhep.2015.08.014 – volume: 295 start-page: 325 ident: B189 article-title: DNMT1 Controls LncRNA H19/ERK Signal Pathway in Hepatic Stellate Cell Activation and Fibrosis publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2018.07.013 – volume: 73 start-page: 896 year: 2020 ident: B15 article-title: Acetyl-CoA Carboxylase Inhibition Disrupts Metabolic Reprogramming During Hepatic Stellate Cell Activation publication-title: J. Hepatol. doi: 10.1016/j.jhep.2020.04.037 – volume: 15 start-page: 27 year: 2019 ident: B91 article-title: The Klotho Proteins in Health and Disease publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-018-0078-3 – volume: 19 start-page: 57 year: 2020 ident: B205 article-title: Targeting Metabolic Dysregulation for Fibrosis Therapy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0040-5 – volume: 136 start-page: 2469 year: 2015 ident: B172 article-title: Ileal FGF15 Contributes to Fibrosis-Associated Hepatocellular Carcinoma Development publication-title: Int. J. Cancer. doi: 10.1002/ijc.29287 – volume: 68 start-page: 550 year: 2018 ident: B118 article-title: Hedgehog Signalling in Liver Pathophysiology publication-title: J. Hepatol. doi: 10.1016/j.jhep.2017.10.017 – volume: 107 start-page: 29 year: 2019 ident: B195 article-title: Blockade of YAP Alleviates Hepatic Fibrosis through Accelerating Apoptosis and Reversion of Activated Hepatic Stellate Cells publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2019.01.004 – volume: 11 start-page: 2362 year: 2020 ident: B4 article-title: Hepatocyte Mitochondria-Derived Danger Signals Directly Activate Hepatic Stellate Cells and Drive Progression of Liver Fibrosis publication-title: Nat. Commun. doi: 10.1038/s41467-020-16092-0 – volume: 9 start-page: 100 year: 2019 ident: B148 article-title: PRC1 Promotes GLI1-Dependent Osteopontin Expression in Association With the Wnt/β-Catenin Signaling Pathway and Aggravates Liver Fibrosis publication-title: Cell Biosci. doi: 10.1186/s13578-019-0363-2 – volume: 34 start-page: 1247 year: 2010 ident: B159 article-title: Hepatic Stellate Cell (Vitamin A-Storing Cell) and its Relative - Past, Present and Future publication-title: Cell. Biol. Int. doi: 10.1042/cbi20100321 – volume: 4 start-page: 30 year: 2016 ident: B73 article-title: Roles of FGFs as Paracrine or Endocrine Signals in Liver Development, Health, and Disease publication-title: Front. Cel Dev. Biol. doi: 10.3389/fcell.2016.00030 – volume: 11 start-page: 361 year: 2021 ident: B77 article-title: Histone H3K27 Methyltransferase EZH2 and Demethylase JMJD3 Regulate Hepatic Stellate Cells Activation and Liver Fibrosis publication-title: Theranostics. doi: 10.7150/thno.46360 – volume: 163 start-page: 94 ident: B106 article-title: CREB Family: A Significant Role in Liver Fibrosis publication-title: Biochimie. doi: 10.1016/j.biochi.2019.05.014 – volume: 38 start-page: 521 ident: B175 article-title: p-CREB-1 Promotes Hepatic Fibrosis Through the Transactivation of Transforming Growth Factor-Β1 Expression in Rats publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2016.2630 – volume: 66 start-page: 180 year: 2017 ident: B153 article-title: Current and Upcoming Pharmacotherapy for Non-Alcoholic Fatty Liver Disease publication-title: Gut. doi: 10.1136/gutjnl-2016-312431 – volume: 67 start-page: 1104 year: 2017 ident: B53 article-title: Hepatic Stellate Cell Activation and Pro-Fibrogenic Signals publication-title: J. Hepatol. doi: 10.1016/j.jhep.2017.06.001 – volume: 11 start-page: 73 year: 2021 ident: B122 article-title: Glucagon-Like Peptide-1 Receptor Agonists for Treatment of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: An Updated Meta-Analysis of Randomized Controlled Trials publication-title: Metabolites. doi: 10.3390/metabo11020073 – volume: 214 start-page: 199 year: 2008 ident: B183 article-title: Cellular and Molecular Mechanisms of Fibrosis publication-title: J. Pathol. doi: 10.1002/path.2277 – volume: 176 start-page: 1619 year: 2019 ident: B165 article-title: Pterostilbene Prevents Hepatocyte Epithelial‐mesenchymal Transition in Fructose‐induced Liver Fibrosis through Suppressing miR‐34a/Sirt1/p53 and TGF‐β1/Smads Signalling publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14573 – volume: 141 start-page: 140 year: 2014 ident: B167 article-title: Targeting Notch Signaling Pathway in Cancer: Clinical Development Advances and Challenges publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2013.09.005 – volume: 11 start-page: eaat9284 year: 2019 ident: B192 article-title: Hyaluronan Synthase 2-Mediated Hyaluronan Production Mediates Notch1 Activation and Liver Fibrosis publication-title: Sci. Transl Med. doi: 10.1126/scitranslmed.aat9284 – volume: 21 start-page: 1637 year: 2020 ident: B94 article-title: Current and Emerging Pharmacotherapeutic Interventions for the Treatment of Liver Fibrosis publication-title: Expert Opin. Pharmacother. doi: 10.1080/14656566.2020.1774553 – volume: 64 start-page: 682 year: 2016 ident: B142 article-title: MERTK Rs4374383 Polymorphism Affects the Severity of Fibrosis in Non-Alcoholic Fatty Liver Disease publication-title: J. Hepatol. doi: 10.1016/j.jhep.2015.10.016 – volume: 13 start-page: e1499 year: 2021 ident: B18 article-title: Liver Fibrosis: Pathophysiology and Clinical Implications publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med. doi: 10.1002/wsbm.1499 – volume: 97 start-page: 2143 year: 2012 ident: B150 article-title: Fibroblast Growth Factor 21 (FGF-21) and its Relation to Obesity, Metabolic Syndrome, and Nonalcoholic Fatty Liver in Children: a Longitudinal Analysis publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2012-1221 – volume: 67 start-page: 1392 year: 2019 ident: B129 article-title: Maltol Mitigates Thioacetamide-Induced Liver Fibrosis Through TGF-Β1-Mediated Activation of PI3K/Akt Signaling Pathway publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b05943 – volume: 106 start-page: 83 year: 2018 ident: B103 article-title: The Inhibition of Hippo/Yap Signaling Pathway Is Required for Magnesium Isoglycyrrhizinate to Ameliorate Hepatic Stellate Cell Inflammation and Activation publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.06.102 – volume: 169 start-page: 985 year: 2017 ident: B134 article-title: Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities publication-title: Cell. doi: 10.1016/j.cell.2017.05.016 – volume: 115 start-page: 209 year: 2005 ident: B14 article-title: Liver Fibrosis publication-title: J. Clin. Invest. doi: 10.1172/jci24282 – volume: 127 start-page: 55 year: 2017 ident: B88 article-title: Liver Inflammation and Fibrosis publication-title: J. Clin. Invest. doi: 10.1172/jci88881 – volume: 60 start-page: 101063 year: 2020 ident: B68 article-title: Wnt Signaling Pathway in Aging-Related Tissue Fibrosis and Therapies publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2020.101063 – volume: 42 start-page: 458 ident: B180 article-title: TGF-β1/p65/MAT2A Pathway Regulates Liver Fibrogenesis via Intracellular SAM publication-title: EBioMedicine. doi: 10.1016/j.ebiom.2019.03.058 – volume: 1864 start-page: 804 year: 2018 ident: B1 article-title: Inhibition of Canonical WNT Signaling Pathway by β-Catenin/CBP Inhibitor ICG-001 Ameliorates Liver Fibrosis In Vivo Through Suppression of Stromal CXCL12 publication-title: Biochim. Biophys. Acta (Bba) - Mol. Basis Dis. doi: 10.1016/j.bbadis.2017.12.001 – volume: 176 start-page: 42 year: 2017 ident: B41 article-title: Palmitic Acid Elicits Hepatic Stellate Cell Activation Through Inflammasomes and Hedgehog Signaling publication-title: Life Sci. doi: 10.1016/j.lfs.2017.03.012 – volume: 9 start-page: 553 year: 2018 ident: B138 article-title: DNA Methylation of PTGIS Enhances Hepatic Stellate Cells Activation and Liver Fibrogenesis publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00553 – volume: 1863 start-page: 674 year: 2017 ident: B19 article-title: Hotair Facilitates Hepatic Stellate Cells Activation and Fibrogenesis in the Liver publication-title: Biochim. Biophys. Acta (Bba) - Mol. Basis Dis. doi: 10.1016/j.bbadis.2016.12.009 – volume: 112 start-page: 1046 year: 2011 ident: B35 article-title: Effects of P-CREB-1 on Transforming Growth Factor-Β3 Auto-Regulation in Hepatic Stellate Cells publication-title: J. Cel. Biochem. doi: 10.1002/jcb.23017 – volume: 18 start-page: 3964 year: 1999 ident: B7 article-title: VEGF Contributes to Postnatal Neovascularization by Mobilizing Bone Marrow-Derived Endothelial Progenitor Cells publication-title: EMBO J. doi: 10.1093/emboj/18.14.3964 – volume: 526 start-page: 314 ident: B99 article-title: PAX6 Contributes to the Activation and Proliferation of Hepatic Stellate Cells via Activating Hedgehog/GLI1 Pathway publication-title: Biochem. Biophysical Res. Commun. doi: 10.1016/j.bbrc.2020.03.086 – volume: 67 start-page: 770 year: 2017 ident: B117 article-title: Cytotherapy with M1-Polarized Macrophages Ameliorates Liver Fibrosis by Modulating Immune Microenvironment in Mice publication-title: J. Hepatol. doi: 10.1016/j.jhep.2017.05.022 – volume: 19 start-page: 3103 year: 2018 ident: B133 article-title: Wnt/β-Catenin Signaling as a Potential Target for the Treatment of Liver Cirrhosis Using Antifibrotic Drugs publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19103103 – volume: 13 start-page: 1265 year: 2021 ident: B6 article-title: Epigenetic Biomarkers for the Diagnosis and Treatment of Liver Disease publication-title: Cancers (Basel). doi: 10.3390/cancers13061265 – volume: 44 start-page: 228 year: 2006 ident: B92 article-title: Induction of Gas6 Protein in CCl4-Induced Rat Liver Injury and Anti-Apoptotic Effect on Hepatic Stellate Cells publication-title: Hepatology. doi: 10.1002/hep.21237 – volume: 11 start-page: eaau6296 year: 2019 ident: B59 article-title: Selective YAP/TAZ Inhibition in Fibroblasts via Dopamine Receptor D1 Agonism Reverses Fibrosis publication-title: Sci. Transl Med. doi: 10.1126/scitranslmed.aau6296 – volume: 159 start-page: 624 year: 2020 ident: B58 article-title: Hedgehog Signaling Demarcates a Niche of Fibrogenic Peribiliary Mesenchymal Cells publication-title: Gastroenterology. doi: 10.1053/j.gastro.2020.03.075 – volume: 290 start-page: 43 year: 2016 ident: B187 article-title: Fibroblast Growth Factor 21 Attenuates Hepatic Fibrogenesis Through TGF-Β/smad2/3 and NF-Κb Signaling Pathways publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2015.11.012 – volume: 53 start-page: 289 year: 2012 ident: B76 article-title: Liver Fibrosis and Hepatocyte Apoptosis Are Attenuated by GKT137831, a Novel NOX4/NOX1 Inhibitor In Vivo publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.05.007 – volume: 313 start-page: 178 ident: B105 article-title: Genetic Loss of Gas6/Mer Pathway Attenuates Silica-Induced Lung Inflammation and Fibrosis in Mice publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2019.07.008 – volume: 28 start-page: 867 year: 2018 ident: B29 article-title: Hippo Pathway Inhibition by Blocking the YAP/TAZ-TEAD Interface: a Patent Review publication-title: Expert Opin. Ther. Patents. doi: 10.1080/13543776.2018.1549226 – volume: 70 start-page: 784 year: 2021 ident: B177 article-title: MicroRNAs as Regulators, Biomarkers and Therapeutic Targets in Liver Diseases publication-title: Gut. doi: 10.1136/gutjnl-2020-322526 – volume: 2016 start-page: 8323747 year: 2016 ident: B155 article-title: Regulation of Hepatic Stellate Cells and Fibrogenesis by Fibroblast Growth Factors publication-title: Biomed. Res. Int. doi: 10.1155/2016/8323747 – volume: 48 start-page: 131 year: 2021 ident: B115 article-title: Histone Deacetylase 2: A Potential Regulator and Therapeutic Target in Liver Disease (Review) publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2021.4964 – volume: 33 start-page: 242 year: 2021 ident: B169 article-title: The Power of Plasticity-Metabolic Regulation of Hepatic Stellate Cells publication-title: Cel Metab. doi: 10.1016/j.cmet.2020.10.026 – volume: 197 start-page: 1443 year: 2018 ident: B45 article-title: Targeting of TAM Receptors Ameliorates Fibrotic Mechanisms in Idiopathic Pulmonary Fibrosis publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201707-1519oc – volume: 156 start-page: 1190 year: 2019 ident: B43 article-title: Nuclear Translocation of RELB Is Increased in Diseased Human Liver and Promotes Ductular Reaction and Biliary Fibrosis in Mice publication-title: Gastroenterology. doi: 10.1053/j.gastro.2018.11.018 – volume: 64 start-page: 73 year: 2016 ident: B194 article-title: Global Epidemiology of Nonalcoholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes publication-title: Hepatology. doi: 10.1002/hep.28431 – volume: 70 start-page: 1317 ident: B113 article-title: Cholangiocyte‐Derived Exosomal Long Noncoding RNA H19 Promotes Hepatic Stellate Cell Activation and Cholestatic Liver Fibrosis publication-title: Hepatology. doi: 10.1002/hep.30662 – volume: 99 start-page: 1322 year: 1997 ident: B66 article-title: Proliferation of Hepatic Stellate Cells Is Inhibited by Phosphorylation of CREB on Serine 133 publication-title: J. Clin. Invest. doi: 10.1172/jci119291 – volume: 1866 start-page: 1663 ident: B25 article-title: Delta-Like Ligand 4/DLL4 Regulates the Capillarization of Liver Sinusoidal Endothelial Cell and Liver Fibrogenesis publication-title: Biochim. Biophys. Acta (Bba) - Mol. Cel Res. doi: 10.1016/j.bbamcr.2019.06.011 – volume: 71 start-page: 2050 ident: B112 article-title: Probiotic Lactobacillus Rhamnosus GG Prevents Liver Fibrosis Through Inhibiting Hepatic Bile Acid Synthesis and Enhancing Bile Acid Excretion in Mice publication-title: Hepatology. doi: 10.1002/hep.30975 – volume: 357 start-page: 394 year: 2019 ident: B140 article-title: Metabolic Reprogramming as a Driver of Fibroblast Activation in PulmonaryFibrosis publication-title: Am. J. Med. Sci. doi: 10.1016/j.amjms.2019.02.003 – volume: 100 start-page: 145 year: 2020 ident: B5 article-title: SIRT6, a Mammalian Deacylase With Multitasking Abilities publication-title: Physiol. Rev. doi: 10.1152/physrev.00030.2018 – volume: 10 start-page: eaat0344 year: 2018 ident: B209 article-title: Hepatocyte Notch Activation Induces Liver Fibrosis in Nonalcoholic Steatohepatitis publication-title: Sci. Transl Med. doi: 10.1126/scitranslmed.aat0344 – volume: 66 start-page: 1321 year: 2017 ident: B60 article-title: Plasma DNA Methylation: a Potential Biomarker for Stratification of Liver Fibrosis in Non-Alcoholic Fatty Liver Disease publication-title: Gut. doi: 10.1136/gutjnl-2016-311526 – volume: 12 start-page: 325 year: 2016 ident: B128 article-title: TGF-β: the Master Regulator of Fibrosis publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2016.48 – volume: 295 start-page: 415 year: 2019 ident: B119 article-title: Sirtuin 6 Deficiency Transcriptionally Up-Regulates TGF-β Signaling and Induces Fibrosis in Mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.007212 – volume: 179 start-page: 241 year: 2021 ident: B84 article-title: Transforming Growth Factor Beta-Induced Foxo3a Acts as a Profibrotic Mediator in Hepatic Stellate Cells publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfaa185 – volume: 40 start-page: 1378 ident: B102 article-title: Targeting Ferroptosis Alleviates Methionine‐Choline Deficient (MCD)‐diet Induced NASH by Suppressing Liver Lipotoxicity publication-title: Liver Int. doi: 10.1111/liv.14428 – volume: 177 start-page: 1262 year: 2019 ident: B2 article-title: Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke publication-title: Cell. doi: 10.1016/j.cell.2019.03.032 – volume: 70 start-page: 388 year: 2021 ident: B13 article-title: Epigenetic Mechanisms and Metabolic Reprogramming in Fibrogenesis: Dual Targeting of G9a and DNMT1 for the Inhibition of Liver Fibrosis publication-title: Gut. doi: 10.1136/gutjnl-2019-320205 – volume: 16 start-page: 269 year: 2019 ident: B11 article-title: Cholangiocyte Pathobiology publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-019-0125-y – volume: 217 start-page: e20190402 year: 2020 ident: B96 article-title: Hepatic Stellate Cell-Specific Knockout of Transcriptional Intermediary Factor 1γ Aggravates Liver Fibrosis publication-title: J. Exp. Med. doi: 10.1084/jem.20190402 – volume: 70 start-page: 483 year: 2019 ident: B65 article-title: Effect of NGM282, an FGF19 Analogue, in Primary Sclerosing Cholangitis: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Phase II Trial publication-title: J. Hepatol. doi: 10.1016/j.jhep.2018.10.035 – volume: 9 start-page: 4308 year: 2019 ident: B139 article-title: Methylation of RCAN1.4 Mediated by DNMT1 and DNMT3b Enhances Hepatic Stellate Cell Activation and Liver Fibrogenesis Through Calcineurin/NFAT3 Signaling publication-title: Theranostics. doi: 10.7150/thno.32710 – volume: 43 start-page: 745 year: 2011 ident: B33 article-title: Wnt/Ca2+ Signaling Pathway: a Brief Overview publication-title: Acta Biochim. Biophys. Sin (Shanghai). doi: 10.1093/abbs/gmr079 – volume: 178 start-page: 3428 year: 2021 ident: B211 article-title: Physalin B Attenuates Liver Fibrosis via Suppressing LAP2alpha-HDAC1-Mediated Deacetylation of the Transcription Factor GLI1 and Hepatic Stellate Cell Activation publication-title: Br. J. Pharmacol. doi: 10.1111/bph.15490 – volume: 61 start-page: 1740 year: 2015 ident: B34 article-title: Liver Sinusoidal Endothelial Cells in Hepatic Fibrosis publication-title: Hepatology. doi: 10.1002/hep.27376 – volume: 379 start-page: 537 ident: B111 article-title: Wnt4 Negatively Regulates the TGF-Β1-Induced Human Dermal Fibroblast-To-Myofibroblast Transition via Targeting Smad3 and ERK publication-title: Cel Tissue Res. doi: 10.1007/s00441-019-03110-x – volume: 6 start-page: 718 year: 1986 ident: B20 article-title: Quantitation, Tissue Distribution and Proliferation Kinetics of Kupffer Cells in Normal Rat Liver publication-title: Hepatology. doi: 10.1002/hep.1840060430 – volume: 10 start-page: 1397 year: 2016 ident: B42 article-title: Epigenetic Regulation of Hepatic Stellate Cell Activation and Liver Fibrosis publication-title: Expert Rev. Gastroenterol. Hepatol. doi: 10.1080/17474124.2016.1251309 – volume: 11 start-page: 55 year: 2014 ident: B154 article-title: Bile Acid Receptors as Targets for Drug Development publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2013.151 – volume: 35 start-page: 452 year: 2021 ident: B97 article-title: Apoptotic and Antihepatofibrotic Effect of Honokiol via Activation ofGSK3βand Suppression of Wnt/β‐catenin Pathway in Hepatic Stellate Cells publication-title: Phytotherapy Res. doi: 10.1002/ptr.6824 – volume: 154 start-page: 1465 year: 2018 ident: B39 article-title: Hedgehog-YAP Signaling Pathway Regulates Glutaminolysis to Control Activation of Hepatic Stellate Cells publication-title: Gastroenterology. doi: 10.1053/j.gastro.2017.12.022 – volume: 63 start-page: 679 year: 2015 ident: B121 article-title: The Hippo Pathway Effector YAP Controls Mouse Hepatic Stellate Cell Activation publication-title: J. Hepatol. doi: 10.1016/j.jhep.2015.04.011 – volume: 100 start-page: 1 year: 2016 ident: B161 article-title: Recent Developments in L-Asparaginase Discovery and its Potential as Anticancer Agent publication-title: Crit. Rev. Oncology/Hematology. doi: 10.1016/j.critrevonc.2015.01.002 – volume: 157 start-page: 1352 year: 2019 ident: B48 article-title: ECM1 Prevents Activation of Transforming Growth Factor β, Hepatic Stellate Cells, and Fibrogenesis in Mice publication-title: Gastroenterology. doi: 10.1053/j.gastro.2019.07.036 – volume: 101 start-page: 115 year: 2020 ident: B49 article-title: Non-Canonical (Non-Smad2/3) TGF-β Signaling in Fibrosis: Mechanisms and Targets publication-title: Semin. Cel Develop. Biol. doi: 10.1016/j.semcdb.2019.11.013 – volume: 105 start-page: 1087 year: 2014 ident: B98 article-title: Safely Targeting Cancer Stem Cells via Selective Catenin Coactivator Antagonism publication-title: Cancer Sci. doi: 10.1111/cas.12471 – volume: 14 start-page: 6878 year: 2020 ident: B151 article-title: Targeted Delivery of Notch Inhibitor Attenuates Obesity-Induced Glucose Intolerance and Liver Fibrosis publication-title: ACS Nano. doi: 10.1021/acsnano.0c01007 – volume: 63 start-page: 670 year: 2015 ident: B12 article-title: Gas6/Axl Pathway Is Activated in Chronic Liver Disease and its Targeting Reduces Fibrosis via Hepatic Stellate Cell Inactivation publication-title: J. Hepatol. doi: 10.1016/j.jhep.2015.04.013 – volume: 343 start-page: 416 year: 2014 ident: B69 article-title: Endothelial Cell-Derived Angiopoietin-2 Controls Liver Regeneration as a Spatiotemporal Rheostat publication-title: Science. doi: 10.1126/science.1244880 – volume: 303 start-page: 77 ident: B104 article-title: An Integrin-Based Nanoparticle That Targets Activated Hepatic Stellate Cells and Alleviates Liver Fibrosis publication-title: J. Controlled Release. doi: 10.1016/j.jconrel.2019.04.022 – volume: 314 start-page: G471 year: 2018 ident: B86 article-title: Proliferation of Hepatic Stellate Cells, Mediated by YAP and TAZ, Contributes to Liver Repair and Regeneration After Liver Ischemia-Reperfusion Injury publication-title: Am. J. Physiology-Gastrointestinal Liver Physiol. doi: 10.1152/ajpgi.00153.2017 – volume: 12 start-page: 11 year: 2018 ident: B126 article-title: Biology of Portal Hypertension publication-title: Hepatol. Int. doi: 10.1007/s12072-017-9826-x – volume: 65 start-page: 608 year: 2016 ident: B124 article-title: Sinusoidal Communication in Liver Fibrosis and Regeneration publication-title: J. Hepatol. doi: 10.1016/j.jhep.2016.04.018 – volume: 143 start-page: 765 year: 2012 ident: B127 article-title: Interleukin-17 Signaling in Inflammatory, Kupffer Cells, and Hepatic Stellate Cells Exacerbates Liver Fibrosis in Mice publication-title: Gastroenterology. doi: 10.1053/j.gastro.2012.05.049 – volume: 9 start-page: 1021 year: 2018 ident: B26 article-title: Suppression of SUN2 by DNA Methylation Is Associated With HSCs Activation and Hepatic Fibrosis publication-title: Cell Death Dis. doi: 10.1038/s41419-018-1032-9 – volume: 12 start-page: 397 year: 2020 ident: B196 article-title: LRP6-CRISPR Prevents Activation of Hepatic Stellate Cells and Liver Fibrogenesis in Rats publication-title: Am. J. Transl Res. – volume: 74 start-page: 1188 year: 2021 ident: B21 article-title: Pan-PPAR Agonist Lanifibranor Improves portal Hypertension and Hepatic Fibrosis in Experimental Advanced Chronic Liver Disease publication-title: J. Hepatol. doi: 10.1016/j.jhep.2020.11.045 – volume: 98 start-page: 1449 year: 2018 ident: B208 article-title: Knockout of Secretin Receptor Reduces Biliary Damage and Liver Fibrosis in Mdr2−/− Mice by Diminishing Senescence of Cholangiocytes publication-title: Lab. Invest. doi: 10.1038/s41374-018-0093-9 – volume: 56 start-page: 1097 year: 2012 ident: B10 article-title: Yes‐Associated Protein Regulates the Hepatic Response After Bile Duct Ligation publication-title: Hepatology. doi: 10.1002/hep.25769 – volume: 9 start-page: a022129 year: 2017 ident: B201 article-title: Non-Smad Signaling Pathways of the TGF-β Family publication-title: Cold Spring Harb Perspect. Biol. doi: 10.1101/cshperspect.a022129 – volume: 14 start-page: 5751 year: 2016 ident: B36 article-title: Post-Translational Modification of CREB-1 Decreases Collagen I Expression by Inhibiting the TGF-Β1 Signaling Pathway in Rat Hepatic Stellate Cells publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2016.5926 – volume: 300 start-page: G1043 year: 2011 ident: B50 article-title: Gas6 Deficiency Prevents Liver Inflammation, Steatohepatitis, and Fibrosis in Mice publication-title: Am. J. Physiology-Gastrointestinal Liver Physiol. doi: 10.1152/ajpgi.00311.2010 – volume: 9 start-page: 24 year: 2019 ident: B83 article-title: Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis publication-title: Cells. doi: 10.3390/cells9010024 – volume: 9 start-page: e11374 year: 2021 ident: B37 article-title: DZNep, an Inhibitor of the Histone Methyltransferase EZH2, Suppresses Hepatic Fibrosis Through Regulating miR-199a-5p/SOCS7 Pathway publication-title: PeerJ. doi: 10.7717/peerj.11374 – volume: 7 start-page: 2957 year: 2017 ident: B171 article-title: TGF-β-induced Hepatocyte lincRNA-P21 Contributes to Liver Fibrosis in Mice publication-title: Sci. Rep. doi: 10.1038/s41598-017-03175-0 – volume: 70 start-page: 151 year: 2019 ident: B8 article-title: Burden of Liver Diseases in the World publication-title: J. Hepatol. doi: 10.1016/j.jhep.2018.09.014 – volume: 66 start-page: 212 year: 2017 ident: B143 article-title: Liver Sinusoidal Endothelial Cells: Physiology and Role in Liver Diseases publication-title: J. Hepatol. doi: 10.1016/j.jhep.2016.07.009 – volume: 35 start-page: e21571 year: 2021 ident: B57 article-title: miR-30c Inhibits Angiogenesis by Targeting Delta-Like Ligand 4 in Liver Sinusoidal Endothelial Cell to Attenuate Liver Fibrosis publication-title: FASEB J. doi: 10.1096/fj.202002694R – volume: 41 start-page: 1201 year: 2021 ident: B158 article-title: Role of Fibroblast Growth Factor Signalling in Hepatic Fibrosis publication-title: Liver Int. doi: 10.1111/liv.14863 – volume: 24 start-page: 848 ident: B174 article-title: Hepatocyte TAZ/WWTR1 Promotes Inflammation and Fibrosis in Nonalcoholic Steatohepatitis publication-title: Cel Metab. doi: 10.1016/j.cmet.2016.09.016 – volume: 134 start-page: 1655 year: 2008 ident: B51 article-title: Mechanisms of Hepatic Fibrogenesis publication-title: Gastroenterology. doi: 10.1053/j.gastro.2008.03.003 – volume: 70 start-page: 1674 year: 2019 ident: B74 article-title: Proteasomal Degradation of Enhancer of Zeste Homologue 2 in Cholangiocytes Promotes Biliary Fibrosis publication-title: Hepatology. doi: 10.1002/hep.30706 – volume: 190 start-page: 68 year: 2020 ident: B146 article-title: Ferroptosis Affects the Progression of Nonalcoholic Steatohepatitis via the Modulation of Lipid Peroxidation-Mediated Cell Death in Mice publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2019.09.011 – volume: 16 start-page: 51 year: 2015 ident: B89 article-title: Perivascular Gli1+ Progenitors Are Key Contributors to Injury-Induced Organ Fibrosis publication-title: Cell Stem Cell. doi: 10.1016/j.stem.2014.11.004 – volume: 3 start-page: 1473 year: 2013 ident: B145 article-title: Hepatic Stellate Cells and Liver Fibrosis publication-title: Compr. Physiol. doi: 10.1002/cphy.c120035 – volume: 70 start-page: 653 year: 2021 ident: B30 article-title: Regulation of Hepatic Metabolism and Cell Growth by the ATF/CREB Family of Transcription Factors publication-title: Diabetes. doi: 10.2337/dbi20-0006 – volume: 31 start-page: e1904197 year: 2019 ident: B108 article-title: Recent Progress in Ferroptosis Inducers for Cancer Therapy publication-title: Adv. Mater. doi: 10.1002/adma.201904197 – volume: 18 start-page: 45 year: 2021 ident: B181 article-title: Hepatic Macrophages in Liver Homeostasis and Diseases-Diversity, Plasticity and Therapeutic Opportunities publication-title: Cell Mol Immunol. doi: 10.1038/s41423-020-00558-8 – volume: 16 start-page: 1482 ident: B202 article-title: RNA-Binding Protein ZFP36/TTP Protects Against Ferroptosis by Regulating Autophagy Signaling Pathway in Hepatic Stellate Cells publication-title: Autophagy. doi: 10.1080/15548627.2019.1687985 – volume: 10 start-page: 341 year: 2020 ident: B206 article-title: SIRT6 Protects against Liver Fibrosis by Deacetylation and Suppression of SMAD3 in Hepatic Stellate Cells publication-title: Cell Mol Gastroenterol Hepatol. doi: 10.1016/j.jcmgh.2020.04.005 – volume: 674 start-page: 57 year: 2018 ident: B173 article-title: Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Liver Fibrosis publication-title: Gene. doi: 10.1016/j.gene.2018.06.053 – volume: 10 start-page: 7956 year: 2020 ident: B47 article-title: Targeting the Notch and TGF-β Signaling Pathways to Prevent Retinal Fibrosis In Vitro and In Vivo publication-title: Theranostics. doi: 10.7150/thno.45192 – volume: 1 start-page: 1024 year: 2017 ident: B207 article-title: Engineered FGF19 Eliminates Bile Acid Toxicity and Lipotoxicity Leading to Resolution of Steatohepatitis and Fibrosis in Mice publication-title: Hepatol. Commun. doi: 10.1002/hep4.1108 – volume: 7 start-page: d808 year: 2002 ident: B149 article-title: Activation of Hepatic Stellate Cells - a Key Issue in Liver Fibrosis publication-title: Front. Biosci. doi: 10.2741/reeves – volume: 23 start-page: 305 year: 2021 ident: B70 article-title: Histone Deacetylase Inhibitor Givinostat Alleviates Liver Fibrosis by Regulating Hepatic Stellate Cell Activation publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2021.11944 – volume: 59 start-page: 2034 year: 2014 ident: B162 article-title: Macrophage Plasticity and Polarization in Liver Homeostasis and Pathology publication-title: Hepatology. doi: 10.1002/hep.26754 – volume: 6 start-page: e16081 year: 2011 ident: B132 article-title: The Progression of Liver Fibrosis Is Related with Overexpression of the miR-199 and 200 Families publication-title: PLoS One. doi: 10.1371/journal.pone.0016081 – volume: 58 start-page: 98 year: 2013 ident: B123 article-title: The Transcription Factor KLF2 Mediates Hepatic Endothelial protection and Paracrine Endothelial-Stellate Cell Deactivation Induced by Statins publication-title: J. Hepatol. doi: 10.1016/j.jhep.2012.08.026 – volume: 69 start-page: 1104 year: 2020 ident: B31 article-title: Growth Differentiation Factor 11 Attenuates Liver Fibrosis via Expansion of Liver Progenitor Cells publication-title: Gut. doi: 10.1136/gutjnl-2019-318812 – volume: 25 start-page: 1202 year: 2013 ident: B191 article-title: DNA Methylation and MeCP2 Regulation of PTCH1 Expression During Rats Hepatic Fibrosis publication-title: Cell Signal. doi: 10.1016/j.cellsig.2013.01.005 – volume: 72 start-page: 330 year: 2019 ident: B110 article-title: Geniposide, a Sonic Hedgehog Signaling Inhibitor, Inhibits the Activation of Hepatic Stellate Cell publication-title: Int. Immunopharmacology. doi: 10.1016/j.intimp.2019.04.016 – volume: 67 start-page: 2352 year: 2018 ident: B164 article-title: Wnt/β-Catenin Signaling Controls Intrahepatic Biliary Network Formation in Zebrafish by Regulating Notch Activity publication-title: Hepatology. doi: 10.1002/hep.29752 – volume: 25 start-page: 340 year: 2015 ident: B176 article-title: Caffeine Protects against Alcohol-Induced Liver Fibrosis by Dampening the cAMP/PKA/CREB Pathway in Rat Hepatic Stellate Cells publication-title: Int. Immunopharmacology. doi: 10.1016/j.intimp.2015.02.012 – volume: 70 start-page: 1409 ident: B179 article-title: p300 Acetyltransferase Is a Cytoplasm‐to‐Nucleus Shuttle for SMAD2/3 and TAZ Nuclear Transport in Transforming Growth Factor β-Stimulated Hepatic Stellate Cells publication-title: Hepatology. doi: 10.1002/hep.30668 – volume: 28 start-page: 1517 year: 2014 ident: B109 article-title: Wnt Some Lose Some: Transcriptional Governance of Stem Cells by Wnt/-Catenin Signaling publication-title: Genes Develop. doi: 10.1101/gad.244772.114 – volume: 9 start-page: 7537 year: 2019 ident: B90 article-title: The Use of Micelles to Deliver Potential Hedgehog Pathway Inhibitor for the Treatment of Liver Fibrosis publication-title: Theranostics. doi: 10.7150/thno.38913 – volume: 114 start-page: 1629 year: 2018 ident: B22 article-title: Sirtuin 1 Activation Attenuates Cardiac Fibrosis in a Rodent Pressure Overload Model by Modifying Smad2/3 Transactivation publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvy131 – volume: 12 start-page: 645857 year: 2021 ident: B63 article-title: A Metabolic Reprogramming of Glycolysis and Glutamine Metabolism Is a Requisite for Renal Fibrogenesis-Why and How? publication-title: Front. Physiol. doi: 10.3389/fphys.2021.645857 – volume: 10 start-page: 1241 year: 2016 ident: B17 article-title: Gas6 as a Putative Noninvasive Biomarker of Hepatic Fibrosis publication-title: Biomarkers Med. doi: 10.2217/bmm-2016-0210 – volume: 71 start-page: 670 year: 2020 ident: B157 article-title: Direct and Indirect Effects of Fibroblast Growth Factor (FGF) 15 and FGF19 on Liver Fibrosis Development publication-title: Hepatology. doi: 10.1002/hep.30810 – volume: 119 start-page: 128 ident: B24 article-title: Exogenous Testosterone Alleviates Cardiac Fibrosis and Apoptosis via Gas6/Axl Pathway in the Senescent Mice publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2019.01.029 – volume: 2 start-page: 217 year: 2005 ident: B71 article-title: Fibroblast Growth Factor 15 Functions as an Enterohepatic Signal to Regulate Bile Acid Homeostasis publication-title: Cel Metab. doi: 10.1016/j.cmet.2005.09.001 – volume: 2 start-page: 1751 year: 2015 ident: B136 article-title: Inhibition of Cyclic Adenosine Monophosphate (cAMP)-Response Element-Binding Protein (CREB)-Binding Protein (CBP)/β-Catenin Reduces Liver Fibrosis in Mice publication-title: EBioMedicine. doi: 10.1016/j.ebiom.2015.10.010 – volume: 155 start-page: 104720 year: 2020 ident: B23 article-title: Intercellular Crosstalk of Hepatic Stellate Cells in Liver Fibrosis: New Insights Into Therapy publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2020.104720 – volume: 68 start-page: 589 year: 2016 ident: B107 article-title: Curcumin Inhibits Aerobic Glycolysis in Hepatic Stellate Cells Associated With Activation of Adenosine Monophosphate-Activated Protein Kinase publication-title: IUBMB Life. doi: 10.1002/iub.1518 – volume: 7 start-page: 197 year: 2019 ident: B125 article-title: Enhancer of Zeste Homologue 2 Inhibition Attenuates TGF-β Dependent Hepatic Stellate Cell Activation and Liver Fibrosis publication-title: Cell Mol. Gastroenterol. Hepatol. doi: 10.1016/j.jcmgh.2018.09.005 – volume: 34 start-page: 14558 year: 2020 ident: B210 article-title: Sennoside A Prevents Liver Fibrosis by Binding DNMT1 and Suppressing DNMT1‐Mediated PTEN Hypermethylation in HSC Activation and Proliferation publication-title: FASEB j. doi: 10.1096/fj.202000494rr – volume: 58 start-page: 1461 year: 2013 ident: B144 article-title: Hepatic Macrophages but Not Dendritic Cells Contribute to Liver Fibrosis by Promoting the Survival of Activated Hepatic Stellate Cells in Mice publication-title: Hepatology. doi: 10.1002/hep.26429 – volume: 50 start-page: 1337 year: 2020 ident: B61 article-title: Serum Gas6 and Axl as Non‐Invasive Biomarkers of Advanced Histological Stage in Primary Biliary Cholangitis publication-title: Hepatol. Res. doi: 10.1111/hepr.13568 – volume: 10 start-page: 16 year: 2019 ident: B116 article-title: Transplantation of Bone Marrow Mesenchymal Stromal Cells Attenuates Liver Fibrosis in Mice by Regulating Macrophage Subtypes publication-title: Stem Cel Res Ther. doi: 10.1186/s13287-018-1122-8 – volume: 192 start-page: 1462 year: 2015 ident: B185 article-title: Glycolytic Reprogramming in Myofibroblast Differentiation and Lung Fibrosis publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201504-0780oc – volume: 2019 start-page: 2304931 year: 2019 ident: B163 article-title: Gas6/TAM Signaling Components as Novel Biomarkers of Liver Fibrosis publication-title: Dis. Markers. doi: 10.1155/2019/2304931 – volume: 73 start-page: 2527 year: 2021 ident: B32 article-title: 6His-Tagged Recombinant Human Cytoglobin Deactivates Hepatic Stellate Cells and Inhibits Liver Fibrosis by Scavenging Reactive Oxygen Species publication-title: Hepatology. doi: 10.1002/hep.31752 – volume: 108 start-page: 57 year: 2016 ident: B67 article-title: Notch in Fibrosis and as a Target of Anti-fibrotic Therapy publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2016.04.010 – volume: 347 start-page: 23 year: 2021 ident: B44 article-title: The Ameliorative Effect of Niclosamide on Bile Duct Ligation Induced Liver Fibrosis via Suppression of NOTCH and Wnt Pathways publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2021.04.018 – volume: 143 start-page: 1319 year: 2012 ident: B27 article-title: Hedgehog Controls Hepatic Stellate Cell Fate by Regulating Metabolism publication-title: Gastroenterology. doi: 10.1053/j.gastro.2012.07.115 – volume: 73 start-page: 1140 year: 2021 ident: B198 article-title: Sirt6 Alleviated Liver Fibrosis by Deacetylating Conserved Lysine 54 on Smad2 in Hepatic Stellate Cells publication-title: Hepatology. doi: 10.1002/hep.31418 – volume: 36 start-page: 101619 ident: B203 article-title: The BRD7-P53-Slc25a28 Axis Regulates Ferroptosis in Hepatic Stellate Cells publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101619 – volume: 71 start-page: 1813 year: 2020 ident: B131 article-title: Hepatocyte Stress Increases Expression of Yes‐Associated Protein and Transcriptional Coactivator With PDZ‐Binding Motif in Hepatocytes to Promote Parenchymal Inflammation and Fibrosis publication-title: Hepatology. doi: 10.1002/hep.30928 – volume: 12 start-page: eaay8798 year: 2020 ident: B3 article-title: Targeting Acid Ceramidase Inhibits YAP/TAZ Signaling to Reduce Fibrosis in Mice publication-title: Sci. Transl Med. doi: 10.1126/scitranslmed.aay8798 – volume: 37 start-page: 6119 ident: B190 article-title: PSTPIP2 Connects DNA Methylation to Macrophage Polarization in CCL4-Induced Mouse Model of Hepatic Fibrosis publication-title: Oncogene. doi: 10.1038/s41388-018-0383-0 – volume: 11 start-page: e7 year: 2009 ident: B56 article-title: Cholangiocyte Proliferation and Liver Fibrosis publication-title: Expert Rev. Mol. Med. doi: 10.1017/s1462399409000994 – volume: 4 start-page: 215 year: 2015 ident: B135 article-title: The Fibroblast Growth Factor Signaling Pathway publication-title: Wires Dev. Biol. doi: 10.1002/wdev.176 – volume: 16 start-page: 1357 year: 2017 ident: B137 article-title: Lipopolysaccharide Induces the Differentiation of Hepatic Progenitor Cells Into Myofibroblasts via Activation of the Hedgehog Signaling Pathway publication-title: Cell Cycle. doi: 10.1080/15384101.2017.1325976 – volume: 138 start-page: 705 year: 2010 ident: B120 article-title: MeCP2 Controls an Epigenetic Pathway that Promotes Myofibroblast Transdifferentiation and Fibrosis publication-title: Gastroenterology. doi: 10.1053/j.gastro.2009.10.002 – volume: 35 start-page: 302 year: 2015 ident: B28 article-title: Molecular Mechanisms Controlling the Phenotype and the EMT/MET Dynamics of Hepatocyte publication-title: Liver Int. doi: 10.1111/liv.12577 – volume: 42 start-page: 556 year: 2020 ident: B160 article-title: Capsaicin Attenuates Liver Fibrosis by Targeting Notch Signaling to Inhibit TNF-α Secretion from M1 Macrophages publication-title: Immunopharmacology and Immunotoxicology. doi: 10.1080/08923973.2020.1811308 – volume: 342 start-page: 1 year: 2010 ident: B72 article-title: Hormone-like (Endocrine) Fgfs: Their Evolutionary History and Roles in Development, Metabolism, and Disease publication-title: Cell Tissue Res. doi: 10.1007/s00441-010-1024-2 – volume: 12 start-page: 634344 year: 2021 ident: B152 article-title: Fructose and Non-Alcoholic Steatohepatitis publication-title: Front. Pharmacol. doi: 10.3389/fphar.2021.634344 |
SSID | ssj0001503764 |
Score | 2.3291698 |
SecondaryResourceType | review_article |
Snippet | Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 766855 |
SubjectTerms | hepatic stellate cells liver fibrosis Molecular Biosciences molecular mechanism non-alcocholic fatty liver disease therapeutic targets |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hfRPCkRJPtPo8qliLaU4Telt3NBgslEdMK_ntnN2ltLnrxmuwmm28yzAwz8w1Cl7kotCHcxYlleUxkQmPNsIkZGGcL0Q_TgdTnZcxGr-RpQidro758TVhDD9wAd0tFQVMObovRsBs7WZhcJi4tKDzKhvZyDDZvLZhq-oMT0BzSpDEhCpMgpmpmIB7E6Q1nTPjWvjVDFPj6O05mt0RyzeYMd9B26yxGd80hd9GGK_fQZjM-8msfXY-rTzeLsp8WqigLhd11NC2jZ19xEQ0hHK7qaX2AsuFj9jCK2-EHsSUEz2MDqkZszrHxqa2EOzBmRGtsbK6lZVIQXEhqEketwzI1UguckoIJCzYnNYND1Cur0h2hiBUGfECOcW4TAujpARWGMy0ZLTQWoo-SJRDKtsTgfj7FTEGA4LFTATvlsVMNdn10tdry3rBi_Lb43qO7WugJrcMFELNqxaz-EnMfXSxlo0ABfFZDl65a1Moz7AtMmGB9xDtC67yxe6ecvgUqbT-Bi0t8_B9HPEFb_qtDoyI9Rb35x8KdgccyN-fh5_wGJHDpjw priority: 102 providerName: Directory of Open Access Journals |
Title | Novel Therapeutic Targets in Liver Fibrosis |
URI | https://www.proquest.com/docview/2600824686 https://pubmed.ncbi.nlm.nih.gov/PMC8602792 https://doaj.org/article/58f517150ba14c2e9fbd90e1f5c13c15 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-ELyIT1wfSwVPSqWNeR5EVFwWUU8r7C0kaaoLS6vbVfTfO0m7akHEa5um7UyGbz4mmQ-hw0zk2hDu4sSyLCYyobFm2MQMwNkC-2E6NPW5u2f9B3IzpMM5NJO3agxY_UrtvJ7Uw2R88v7ycQ4Bf-YZJ-AteKAcG6B6OD3hjAlK59EiABP3ggZ3TbZfHxpOIJx8nRljyWIh5LCuc_4-SwupQkP_Vhba3kP5A5R6q2ilySaji9r9a2jOFetoqdaX_NhAx_flmxtHg-8zVtEg7PyuolER3fotGVEP-HJZjapNNOhdD676caOOEFtC8DQ2EIvEZhwbX_tKuAO0I1pjYzMtLZOC4FxSkzhqHZapkVrglORMWACl1JxuoYWiLNw2ilhuIEnkGGc2IbnJ9CkVhjMtGc01FqKDkpkhlG06h3sBi7ECBuFtp4LtlLedqm3XQUdfjzzXbTP-Gnzprfs10He8DhfKyaNqAkhRkdOUgwuNhlWEnYQPlYlLcwpLyqYwycHMNwoixJc9dOHK10r5FvwCEyZYB_GW01pvbN8pRk-h17aX6OIS7_xj9l207H8qHFSke2hhOnl1-5CxTE03MP1uWI2fck_p_Q |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Therapeutic+Targets+in+Liver+Fibrosis&rft.jtitle=Frontiers+in+molecular+biosciences&rft.au=Zhang%2C+Jinhang&rft.au=Liu%2C+Qinhui&rft.au=He%2C+Jinhan&rft.au=Li%2C+Yanping&rft.date=2021-11-05&rft.issn=2296-889X&rft.eissn=2296-889X&rft.volume=8&rft.spage=766855&rft_id=info:doi/10.3389%2Ffmolb.2021.766855&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-889X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-889X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-889X&client=summon |