Novel Therapeutic Targets in Liver Fibrosis

Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against live...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in molecular biosciences Vol. 8; p. 766855
Main Authors Zhang, Jinhang, Liu, Qinhui, He, Jinhan, Li, Yanping
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 05.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis.
AbstractList Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis.
Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis.Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis.
Author Liu, Qinhui
He, Jinhan
Zhang, Jinhang
Li, Yanping
AuthorAffiliation 2 Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan , China
1 Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan , China
AuthorAffiliation_xml – name: 2 Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan , China
– name: 1 Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan , China
Author_xml – sequence: 1
  givenname: Jinhang
  surname: Zhang
  fullname: Zhang, Jinhang
– sequence: 2
  givenname: Qinhui
  surname: Liu
  fullname: Liu, Qinhui
– sequence: 3
  givenname: Jinhan
  surname: He
  fullname: He, Jinhan
– sequence: 4
  givenname: Yanping
  surname: Li
  fullname: Li, Yanping
BookMark eNp9kU9PAyEQxYnR-P8DeNujiWmFWWDhYmKMVZNGLz14I8DOVsx2qbBt4rd3a41RD56YwLzfPOYdkd0udkjIGaPjslT6slnE1o2BAhtXUiohdsghgJYjpfTz7o_6gJzm_EopZYKWleT75KDkigqo5CG5eIxrbIvZCya7xFUffDGzaY59LkJXTMMaUzEJLsUc8gnZa2yb8fTrPCazye3s5n40fbp7uLmejjzn0I-cKoH7ugInuFC0QsSaWwvO11Z7qRWHRgtHUXgEzZy2ChhvpPKKMubKY_KwxdbRvpplCgub3k20wXxexDQ3Ng1GWzRCNYJVw7-cZdwD6sbVmiJrhGelZ2JgXW1Zy5VbYO2x65Ntf0F_v3Thxczj2ihJodIwAM6_ACm-rTD3ZhGyx7a1HcZVNiApVcClkkMr27b6YVs5YfM9hlGzicx8RmY2kZltZIOm-qPxobd9iBs3of1H-QH03p04
CitedBy_id crossref_primary_10_3390_pathogens11070756
crossref_primary_10_1155_2023_1387665
crossref_primary_10_11569_wcjd_v31_i21_889
crossref_primary_10_1016_j_addr_2022_114448
crossref_primary_10_1016_j_ijpharm_2025_125403
crossref_primary_10_1016_j_tox_2022_153397
crossref_primary_10_1016_j_lfs_2024_122966
crossref_primary_10_3390_cimb46070444
crossref_primary_10_3390_antiox11020412
crossref_primary_10_1016_j_jcmgh_2023_05_010
crossref_primary_10_1016_j_acra_2022_06_006
crossref_primary_10_3748_wjg_v28_i40_5818
crossref_primary_10_3389_fmed_2024_1418786
crossref_primary_10_1016_j_phymed_2024_155916
crossref_primary_10_1007_s10068_023_01440_9
crossref_primary_10_1177_09731296241228361
crossref_primary_10_3345_cep_2022_00367
crossref_primary_10_3390_biomedicines11123280
crossref_primary_10_1016_j_xops_2023_100448
crossref_primary_10_1111_jcmm_18140
crossref_primary_10_1016_j_jconrel_2025_02_051
crossref_primary_10_3390_ijms25147873
crossref_primary_10_1016_j_cca_2024_120102
crossref_primary_10_3389_jpps_2023_11808
crossref_primary_10_3390_ijms24119671
Cites_doi 10.1111/cts.12839
10.3390/ijms20205070
10.1038/cdd.2015.158
10.7150/thno.36942
10.1016/j.biochi.2013.09.003
10.1073/pnas.1001520107
10.1016/j.addr.2017.05.007
10.1038/nature17039
10.1016/j.taap.2019.114853
10.1111/bph.15289
10.1016/s0070-2153(10)92002-4
10.1080/13543784.2020.1718105
10.1126/sciimmunol.aar7754
10.1073/pnas.1119964109
10.1002/hep.29834
10.1080/15548627.2018.1503146
10.1136/gutjnl-2019-318918
10.3390/cells9040929
10.1016/j.gene.2017.03.008
10.1016/j.jcmgh.2019.12.006
10.1016/j.taap.2017.06.023
10.1007/s00018-019-03412-x
10.1038/s41418-020-0528-x
10.3892/mmr.2020.10997
10.1002/hep.26511
10.1111/bph.14873
10.3748/wjg.v23.i13.2330
10.1016/j.cell.2015.07.013
10.1016/j.aohep.2020.07.013
10.1016/j.celrep.2019.12.092
10.3389/fnins.2020.00267
10.1016/j.phymed.2018.12.003
10.1016/j.taap.2016.12.002
10.1007/s12325-008-0110-2
10.1038/nrgastro.2017.38
10.1177/1947601910393957
10.1038/s41575-020-00372-7
10.1016/j.jhep.2019.05.029
10.1038/s41467-017-00204-4
10.1016/j.jhep.2015.08.014
10.1016/j.toxlet.2018.07.013
10.1016/j.jhep.2020.04.037
10.1038/s41581-018-0078-3
10.1038/s41573-019-0040-5
10.1002/ijc.29287
10.1016/j.jhep.2017.10.017
10.1016/j.molimm.2019.01.004
10.1038/s41467-020-16092-0
10.1186/s13578-019-0363-2
10.1042/cbi20100321
10.3389/fcell.2016.00030
10.7150/thno.46360
10.1016/j.biochi.2019.05.014
10.3892/ijmm.2016.2630
10.1136/gutjnl-2016-312431
10.1016/j.jhep.2017.06.001
10.3390/metabo11020073
10.1002/path.2277
10.1111/bph.14573
10.1016/j.pharmthera.2013.09.005
10.1126/scitranslmed.aat9284
10.1080/14656566.2020.1774553
10.1016/j.jhep.2015.10.016
10.1002/wsbm.1499
10.1210/jc.2012-1221
10.1021/acs.jafc.8b05943
10.1016/j.biopha.2018.06.102
10.1016/j.cell.2017.05.016
10.1172/jci24282
10.1172/jci88881
10.1016/j.arr.2020.101063
10.1016/j.ebiom.2019.03.058
10.1016/j.bbadis.2017.12.001
10.1016/j.lfs.2017.03.012
10.3389/fphar.2018.00553
10.1016/j.bbadis.2016.12.009
10.1002/jcb.23017
10.1093/emboj/18.14.3964
10.1016/j.bbrc.2020.03.086
10.1016/j.jhep.2017.05.022
10.3390/ijms19103103
10.3390/cancers13061265
10.1002/hep.21237
10.1126/scitranslmed.aau6296
10.1053/j.gastro.2020.03.075
10.1016/j.taap.2015.11.012
10.1016/j.freeradbiomed.2012.05.007
10.1016/j.toxlet.2019.07.008
10.1080/13543776.2018.1549226
10.1136/gutjnl-2020-322526
10.1155/2016/8323747
10.3892/ijmm.2021.4964
10.1016/j.cmet.2020.10.026
10.1164/rccm.201707-1519oc
10.1053/j.gastro.2018.11.018
10.1002/hep.28431
10.1002/hep.30662
10.1172/jci119291
10.1016/j.bbamcr.2019.06.011
10.1002/hep.30975
10.1016/j.amjms.2019.02.003
10.1152/physrev.00030.2018
10.1126/scitranslmed.aat0344
10.1136/gutjnl-2016-311526
10.1038/nrneph.2016.48
10.1074/jbc.RA118.007212
10.1093/toxsci/kfaa185
10.1111/liv.14428
10.1016/j.cell.2019.03.032
10.1136/gutjnl-2019-320205
10.1038/s41575-019-0125-y
10.1084/jem.20190402
10.1016/j.jhep.2018.10.035
10.7150/thno.32710
10.1093/abbs/gmr079
10.1111/bph.15490
10.1002/hep.27376
10.1007/s00441-019-03110-x
10.1002/hep.1840060430
10.1080/17474124.2016.1251309
10.1038/nrgastro.2013.151
10.1002/ptr.6824
10.1053/j.gastro.2017.12.022
10.1016/j.jhep.2015.04.011
10.1016/j.critrevonc.2015.01.002
10.1053/j.gastro.2019.07.036
10.1016/j.semcdb.2019.11.013
10.1111/cas.12471
10.1021/acsnano.0c01007
10.1016/j.jhep.2015.04.013
10.1126/science.1244880
10.1016/j.jconrel.2019.04.022
10.1152/ajpgi.00153.2017
10.1007/s12072-017-9826-x
10.1016/j.jhep.2016.04.018
10.1053/j.gastro.2012.05.049
10.1038/s41419-018-1032-9
10.1016/j.jhep.2020.11.045
10.1038/s41374-018-0093-9
10.1002/hep.25769
10.1101/cshperspect.a022129
10.3892/mmr.2016.5926
10.1152/ajpgi.00311.2010
10.3390/cells9010024
10.7717/peerj.11374
10.1038/s41598-017-03175-0
10.1016/j.jhep.2018.09.014
10.1016/j.jhep.2016.07.009
10.1096/fj.202002694R
10.1111/liv.14863
10.1016/j.cmet.2016.09.016
10.1053/j.gastro.2008.03.003
10.1002/hep.30706
10.1016/j.ajpath.2019.09.011
10.1016/j.stem.2014.11.004
10.1002/cphy.c120035
10.2337/dbi20-0006
10.1002/adma.201904197
10.1038/s41423-020-00558-8
10.1080/15548627.2019.1687985
10.1016/j.jcmgh.2020.04.005
10.1016/j.gene.2018.06.053
10.7150/thno.45192
10.1002/hep4.1108
10.2741/reeves
10.3892/mmr.2021.11944
10.1002/hep.26754
10.1371/journal.pone.0016081
10.1016/j.jhep.2012.08.026
10.1136/gutjnl-2019-318812
10.1016/j.cellsig.2013.01.005
10.1016/j.intimp.2019.04.016
10.1002/hep.29752
10.1016/j.intimp.2015.02.012
10.1002/hep.30668
10.1101/gad.244772.114
10.7150/thno.38913
10.1093/cvr/cvy131
10.3389/fphys.2021.645857
10.2217/bmm-2016-0210
10.1002/hep.30810
10.1016/j.exger.2019.01.029
10.1016/j.cmet.2005.09.001
10.1016/j.ebiom.2015.10.010
10.1016/j.phrs.2020.104720
10.1002/iub.1518
10.1016/j.jcmgh.2018.09.005
10.1096/fj.202000494rr
10.1002/hep.26429
10.1111/hepr.13568
10.1186/s13287-018-1122-8
10.1164/rccm.201504-0780oc
10.1155/2019/2304931
10.1002/hep.31752
10.1016/j.phrs.2016.04.010
10.1016/j.toxlet.2021.04.018
10.1053/j.gastro.2012.07.115
10.1002/hep.31418
10.1016/j.redox.2020.101619
10.1002/hep.30928
10.1126/scitranslmed.aay8798
10.1038/s41388-018-0383-0
10.1017/s1462399409000994
10.1002/wdev.176
10.1080/15384101.2017.1325976
10.1053/j.gastro.2009.10.002
10.1111/liv.12577
10.1080/08923973.2020.1811308
10.1007/s00441-010-1024-2
10.3389/fphar.2021.634344
ContentType Journal Article
Copyright Copyright © 2021 Zhang, Liu, He and Li.
Copyright © 2021 Zhang, Liu, He and Li. 2021 Zhang, Liu, He and Li
Copyright_xml – notice: Copyright © 2021 Zhang, Liu, He and Li.
– notice: Copyright © 2021 Zhang, Liu, He and Li. 2021 Zhang, Liu, He and Li
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fmolb.2021.766855
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Zhang et al
EISSN 2296-889X
ExternalDocumentID oai_doaj_org_article_58f517150ba14c2e9fbd90e1f5c13c15
PMC8602792
10_3389_fmolb_2021_766855
GrantInformation_xml – fundername: ;
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c442t-b8324cd72b545807eeed4aa2bcda9c69842f95b0e5ce291b9a8214f68c8011b3
IEDL.DBID M48
ISSN 2296-889X
IngestDate Wed Aug 27 01:08:26 EDT 2025
Thu Aug 21 18:20:30 EDT 2025
Fri Jul 11 16:07:04 EDT 2025
Tue Jul 01 03:28:20 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-b8324cd72b545807eeed4aa2bcda9c69842f95b0e5ce291b9a8214f68c8011b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Sandra Torres, Goethe University Frankfurt, Germany
Sung Hwan Ki, Chosun University, South Korea
Sabine Klein, University Hospital Frankfurt, Germany
Edited by: Hua Wang, Anhui Medical University, China
Reviewed by: Bin Gao, National Institutes of Health (NIH), United States
This article was submitted to Molecular Diagnostics and Therapeutics, a section of the journal Frontiers in Molecular Biosciences
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmolb.2021.766855
PMID 34805276
PQID 2600824686
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_58f517150ba14c2e9fbd90e1f5c13c15
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8602792
proquest_miscellaneous_2600824686
crossref_primary_10_3389_fmolb_2021_766855
crossref_citationtrail_10_3389_fmolb_2021_766855
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-05
PublicationDateYYYYMMDD 2021-11-05
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-05
  day: 05
PublicationDecade 2020
PublicationTitle Frontiers in molecular biosciences
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Khomich (B83) 2019; 9
Jiayuan (B78) 2020; 387
Li (B106); 163
Lin (B110) 2019; 72
Liu (B114); 71
Ornitz (B135) 2015; 4
Li (B100); 21
Yang (B189); 295
Yang (B191) 2013; 25
Zhu (B209) 2018; 10
Cicchini (B28) 2015; 35
Seitz (B158) 2021; 41
Berumen (B18) 2021; 13
Jiang (B76) 2012; 53
Bian (B19) 2017; 1863
Xie (B185) 2015; 192
Marrone (B123) 2013; 58
Liu (B112); 71
Li (B104); 303
An (B4) 2020; 11
Espindola (B45) 2018; 197
Kisseleva (B85) 2021; 18
Hirschfield (B65) 2019; 70
Schumacher (B156) 2017; 330
Osawa (B136) 2015; 2
Zhang (B202); 16
Lambrecht (B94) 2020; 21
Tian (B168) 2021; 20
Chen (B27) 2012; 143
Lafoz (B93) 2020; 9
Liu (B111); 379
Huang (B70) 2021; 23
Zhang (B198) 2021; 73
Du (B38) 2020; 10
Kim (B84) 2021; 179
Alim (B2) 2019; 177
Lafdil (B92) 2006; 44
Lee (B96) 2020; 217
Xu (B187) 2016; 290
Zhou (B208) 2018; 98
Zhu (B210) 2020; 34
Tu (B171) 2017; 7
Rotman (B153) 2017; 66
Wang (B178) 2017; 23
Yu (B196) 2020; 12
Jalan-Sakrikar (B74) 2019; 70
Kumar (B90) 2019; 9
Kramann (B89) 2015; 16
Duan (B40) 2018; 68
Mooring (B131) 2020; 71
Ma (B117) 2017; 67
Senoo (B159) 2010; 34
Wang (B179); 70
Tsuchida (B170) 2017; 14
Smirne (B163) 2019; 2019
Sheng (B160) 2020; 42
Nusse (B134) 2017; 169
Roeb (B152) 2021; 12
Boyer-Diaz (B21) 2021; 74
Bataller (B14) 2005; 115
Wynn (B183) 2008; 214
Mantovani (B122) 2021; 11
Martin-Mateos (B125) 2019; 7
Petta (B142) 2016; 64
Georgescu (B55) 2008; 25
Wang (B174); 24
Wang (B175); 38
Akcora (B1) 2018; 1864
Hu (B69) 2014; 343
Puche (B145) 2013; 3
Liu (B115) 2021; 48
Barcena-Varela (B13) 2021; 70
Hewitson (B63) 2021; 12
Pan (B137) 2017; 16
Maity (B119) 2019; 295
Fu (B52) 2017; 618
Yang (B192) 2019; 11
Zhang (B204) 2018; 14
Chen (B25); 1866
Marrone (B124) 2016; 65
Para (B140) 2019; 357
Ramachandran (B147) 2012; 109
Poisson (B143) 2017; 66
Zhang (B199) 2017; 8
Lien (B109) 2014; 28
Reinehr (B150) 2012; 97
Du (B39) 2018; 154
Wu (B182) 2017; 315
Konishi (B86) 2018; 314
Karsdal (B82) 2016; 64
Duan (B41) 2017; 176
Asahara (B7) 1999; 18
Rao (B148) 2019; 9
Jarman (B75) 2020; 29
Luo (B116) 2019; 10
Deng (B35) 2011; 112
Wang (B176) 2015; 25
Friedman (B51) 2008; 134
Asrani (B8) 2019; 70
Mann (B120) 2010; 138
Liang (B108) 2019; 31
Haak (B59) 2019; 11
Pradere (B144) 2013; 58
Inagaki (B71) 2005; 2
Bai (B10) 2012; 56
Yu (B195) 2019; 107
Higashi (B64) 2017; 121
Li (B102); 40
Deng (B36) 2016; 14
Wen (B181) 2021; 18
Bellan (B17) 2016; 10
Jiang (B77) 2021; 11
Li (B101); 27
Alsamman (B3) 2020; 12
De (B33) 2011; 43
Reeves (B149) 2002; 7
El Taghdouini (B42) 2016; 10
Zhang (B203); 36
Meng (B128) 2016; 12
Attia (B9) 2021; 14
Bárcena (B12) 2015; 63
Itoh (B73) 2016; 4
Xie (B186) 2016; 23
Liu (B113); 70
Bates (B15) 2020; 73
Wang (B173) 2018; 674
Hu (B67) 2016; 108
Chen (B26) 2018; 9
Chen (B24); 119
Xie (B184) 2013; 58
Ge (B54) 2020; 177
Ding (B37) 2021; 9
Dat (B32) 2021; 73
Miao (B130) 2013; 95
Zhang (B197) 2021; 178
Lian (B107) 2016; 68
Lee (B95) 2019; 62
So (B164) 2018; 67
Li (B103) 2018; 106
Hardy (B60) 2017; 66
Lee (B97) 2021; 35
Bugyei-Twum (B22) 2018; 114
Kuro-o (B91) 2019; 15
Fan (B47) 2020; 10
Qi (B146) 2020; 190
Arechederra (B6) 2021; 13
Banales (B11) 2019; 16
Wang (B177) 2021; 70
Meng (B127) 2012; 143
Crawford (B29) 2018; 28
Murakami (B132) 2011; 6
Zhang (B200) 2019; 9
Andrew (B5) 2020; 100
Schumacher (B157) 2020; 71
Song (B166) 2020; 14
Cai (B23) 2020; 155
Koyama (B88) 2017; 127
Zhong (B206) 2020; 10
Dai (B31) 2020; 69
Zhang (B201) 2017; 9
DeLeve (B34) 2015; 61
Cui (B30) 2021; 70
Itoh (B72) 2010; 342
Kovall (B87) 2010; 92
Elssner (B43) 2019; 156
Fabre (B46) 2018; 3
Machado (B118) 2018; 68
Mannaerts (B121) 2015; 63
Gupta (B58) 2020; 159
Shrivastava (B161) 2016; 100
Song (B165) 2019; 176
Bouwens (B20) 1986; 6
Gu (B57) 2021; 35
Pan (B139) 2019; 9
Yang (B190); 37
Takebe (B167) 2014; 141
Xu (B188) 2020; 30
Zhao (B205) 2020; 19
Uriarte (B172) 2015; 136
You (B193) 2020; 77
McConnell (B126) 2018; 12
Schumacher (B155) 2016; 2016
Fan (B48) 2019; 157
Nishikawa (B133) 2018; 19
Li (B99); 526
Wang (B180); 42
Houglum (B66) 1997; 99
Richter (B151) 2020; 14
Hu (B68) 2020; 60
Henderson (B62) 2010; 107
Fourcot (B50) 2011; 300
Bellan (B16) 2019; 20
Zhou (B207) 2017; 1
Lenz (B98) 2014; 105
Park (B141) 2015; 162
Younossi (B194) 2016; 64
Zhu (B211) 2021; 178
Finnson (B49) 2020; 101
Esmail (B44) 2021; 347
Karin (B81) 2016; 529
Sica (B162) 2014; 59
Jühling (B80) 2021; 70
Li (B105); 313
Hayashi (B61) 2020; 50
Gandhi (B53) 2017; 67
Glaser (B56) 2009; 11
Pan (B138) 2018; 9
Mi (B129) 2019; 67
Jin (B79) 2011; 2
Schaap (B154) 2014; 11
Trivedi (B169) 2021; 33
References_xml – volume: 14
  start-page: 11
  year: 2021
  ident: B9
  article-title: Evolving Role for Pharmacotherapy in NAFLD/NASH
  publication-title: Clin. Transl Sci.
  doi: 10.1111/cts.12839
– volume: 20
  start-page: 5070
  year: 2019
  ident: B16
  article-title: Gas6/TAM System: A Key Modulator of the Interplay Between Inflammation and Fibrosis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20205070
– volume: 23
  start-page: 369
  year: 2016
  ident: B186
  article-title: Ferroptosis: Process and Function
  publication-title: Cel Death Differ.
  doi: 10.1038/cdd.2015.158
– volume: 9
  start-page: 7566
  year: 2019
  ident: B200
  article-title: The Hepatocyte-Specifically Expressed Lnc-HSER Alleviates Hepatic Fibrosis by Inhibiting Hepatocyte Apoptosis and Epithelial-Mesenchymal Transition
  publication-title: Theranostics.
  doi: 10.7150/thno.36942
– volume: 95
  start-page: 2326
  year: 2013
  ident: B130
  article-title: Wnt Signaling in Liver Fibrosis: Progress, Challenges and Potential Directions
  publication-title: Biochimie.
  doi: 10.1016/j.biochi.2013.09.003
– volume: 107
  start-page: 14309
  year: 2010
  ident: B62
  article-title: Inhibition of Wnt/-Catenin/CREB Binding Protein (CBP) Signaling Reverses Pulmonary Fibrosis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1001520107
– volume: 121
  start-page: 27
  year: 2017
  ident: B64
  article-title: Hepatic Stellate Cells as Key Target in Liver Fibrosis
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2017.05.007
– volume: 529
  start-page: 307
  year: 2016
  ident: B81
  article-title: Reparative Inflammation Takes Charge of Tissue Regeneration
  publication-title: Nature.
  doi: 10.1038/nature17039
– volume: 387
  start-page: 114853
  year: 2020
  ident: B78
  article-title: Gant61 Ameliorates CCl4-Induced Liver Fibrosis by Inhibition of Hedgehog Signaling Activity
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2019.114853
– volume: 178
  start-page: 2246
  year: 2021
  ident: B197
  article-title: Regulation of Hepatic Stellate Cell Contraction and Cirrhotic portal Hypertension by Wnt/β‐catenin Signalling via Interaction With Gli1
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.15289
– volume: 92
  start-page: 31
  year: 2010
  ident: B87
  article-title: Mechanistic Insights Into Notch Receptor Signaling From Structural and Biochemical Studies, in Notch Signaling
  publication-title: Curr. Top. Dev. Biol.
  doi: 10.1016/s0070-2153(10)92002-4
– volume: 29
  start-page: 179
  year: 2020
  ident: B75
  article-title: Targeting the Wnt Signaling Pathway: the challenge of Reducing Scarring Without Affecting Repair
  publication-title: Expert Opin. Investig. Drugs.
  doi: 10.1080/13543784.2020.1718105
– volume: 3
  start-page: eaar7754
  year: 2018
  ident: B46
  article-title: Type 3 Cytokines IL-17A and IL-22 Drive TGF-β-dependent Liver Fibrosis
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aar7754
– volume: 109
  start-page: E3186
  year: 2012
  ident: B147
  article-title: Differential Ly-6C Expression Identifies the Recruited Macrophage Phenotype, Which Orchestrates the Regression of Murine Liver Fibrosis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1119964109
– volume: 68
  start-page: 677
  year: 2018
  ident: B40
  article-title: Endothelial Notch Activation Reshapes the Angiocrine of Sinusoidal Endothelia to Aggravate Liver Fibrosis and Blunt Regeneration in Mice
  publication-title: Hepatology.
  doi: 10.1002/hep.29834
– volume: 14
  start-page: 2083
  year: 2018
  ident: B204
  article-title: Activation of Ferritinophagy Is Required for the RNA-Binding Protein ELAVL1/HuR to Regulate Ferroptosis in Hepatic Stellate Cells
  publication-title: Autophagy.
  doi: 10.1080/15548627.2018.1503146
– volume: 70
  start-page: 157
  year: 2021
  ident: B80
  article-title: Targeting Clinical Epigenetic Reprogramming for Chemoprevention of Metabolic and Viral Hepatocellular Carcinoma
  publication-title: Gut.
  doi: 10.1136/gutjnl-2019-318918
– volume: 9
  start-page: 929
  year: 2020
  ident: B93
  article-title: The Endothelium as a Driver of Liver Fibrosis and Regeneration
  publication-title: Cells.
  doi: 10.3390/cells9040929
– volume: 618
  start-page: 1
  year: 2017
  ident: B52
  article-title: LncRNA-ATB/microRNA-200a/β-Catenin Regulatory Axis Involved in the Progression of HCV-Related Hepatic Fibrosis
  publication-title: Gene.
  doi: 10.1016/j.gene.2017.03.008
– volume: 10
  start-page: 1
  year: 2020
  ident: B38
  article-title: Increased Glutaminolysis Marks Active Scarring in Nonalcoholic Steatohepatitis Progression
  publication-title: Cell Mol. Gastroenterol. Hepatol.
  doi: 10.1016/j.jcmgh.2019.12.006
– volume: 330
  start-page: 1
  year: 2017
  ident: B156
  article-title: The Effect of Fibroblast Growth Factor 15 Deficiency on the Development of High Fat Diet Induced Non-Alcoholic Steatohepatitis
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2017.06.023
– volume: 77
  start-page: 4143
  year: 2020
  ident: B193
  article-title: Dynein-Mediated Nuclear Translocation of Yes-Associated Protein Through Microtubule Acetylation Controls Fibroblast Activation
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-019-03412-x
– volume: 27
  start-page: 2635
  ident: B101
  article-title: Inhibitor of Apoptosis-Stimulating Protein of P53 Inhibits Ferroptosis and Alleviates Intestinal Ischemia/reperfusion-Induced Acute Lung Injury
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-020-0528-x
– volume: 21
  start-page: 1861
  ident: B100
  article-title: Gli3 Is a Novel Downstream Target of miR200a With an Anti-fibrotic Role for Progression of Liver Fibrosis In vivo and In Vitro
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2020.10997
– volume: 58
  start-page: 1801
  year: 2013
  ident: B184
  article-title: Cross-Talk Between Notch and Hedgehog Regulates Hepatic Stellate Cell Fate in Mice
  publication-title: Hepatology.
  doi: 10.1002/hep.26511
– volume: 177
  start-page: 372
  year: 2020
  ident: B54
  article-title: Costunolide Represses Hepatic Fibrosis Through WW Domain‐Containing Protein 2‐Mediated Notch3 Degradation
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.14873
– volume: 23
  start-page: 2330
  year: 2017
  ident: B178
  article-title: Notch Signaling Mediated by TGF-β/Smad Pathway in Concanavalin A-Induced Liver Fibrosis in Rats
  publication-title: Wjg.
  doi: 10.3748/wjg.v23.i13.2330
– volume: 162
  start-page: 780
  year: 2015
  ident: B141
  article-title: Alternative Wnt Signaling Activates YAP/TAZ
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.07.013
– volume: 20
  start-page: 100259
  year: 2021
  ident: B168
  article-title: Salvianolic Acid B Blocks Hepatic Stellate Cell Activation via FGF19/FGFR4 Signaling
  publication-title: Ann. Hepatol.
  doi: 10.1016/j.aohep.2020.07.013
– volume: 30
  start-page: 1310
  year: 2020
  ident: B188
  article-title: A Positive Feedback Loop of TET3 and TGF-Β1 Promotes Liver Fibrosis
  publication-title: Cel Rep.
  doi: 10.1016/j.celrep.2019.12.092
– volume: 14
  start-page: 267
  year: 2020
  ident: B166
  article-title: Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00267
– volume: 62
  start-page: 152780
  year: 2019
  ident: B95
  article-title: Liquiritigenin Inhibits Hepatic Fibrogenesis and TGF-β1/Smad With Hippo/YAP Signal
  publication-title: Phytomedicine.
  doi: 10.1016/j.phymed.2018.12.003
– volume: 315
  start-page: 35
  year: 2017
  ident: B182
  article-title: Methylation of Septin9 Mediated by DNMT3a Enhances Hepatic Stellate Cells Activation and Liver Fibrogenesis
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2016.12.002
– volume: 25
  start-page: 1141
  year: 2008
  ident: B55
  article-title: Angiotensin Receptor Blockers in the Treatment of NASH/NAFLD: Could They Be a First-Class Option?
  publication-title: Adv. Ther.
  doi: 10.1007/s12325-008-0110-2
– volume: 14
  start-page: 397
  year: 2017
  ident: B170
  article-title: Mechanisms of Hepatic Stellate Cell Activation
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2017.38
– volume: 2
  start-page: 607
  year: 2011
  ident: B79
  article-title: DNA Methylation: Superior or Subordinate in the Epigenetic Hierarchy?
  publication-title: Genes & Cancer
  doi: 10.1177/1947601910393957
– volume: 18
  start-page: 151
  year: 2021
  ident: B85
  article-title: Molecular and Cellular Mechanisms of Liver Fibrosis and its Regression
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-020-00372-7
– volume: 71
  start-page: 719
  ident: B114
  article-title: Activation of YAP Attenuates Hepatic Damage and Fibrosis in Liver Ischemia-Reperfusion Injury
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2019.05.029
– volume: 8
  start-page: 144
  year: 2017
  ident: B199
  article-title: The Liver-Enriched Lnc-LFAR1 Promotes Liver Fibrosis by Activating TGFβ and Notch Pathways
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00204-4
– volume: 64
  start-page: 103
  year: 2016
  ident: B82
  article-title: Collagen and Tissue Turnover as a Function of Age: Implications for Fibrosis
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2015.08.014
– volume: 295
  start-page: 325
  ident: B189
  article-title: DNMT1 Controls LncRNA H19/ERK Signal Pathway in Hepatic Stellate Cell Activation and Fibrosis
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2018.07.013
– volume: 73
  start-page: 896
  year: 2020
  ident: B15
  article-title: Acetyl-CoA Carboxylase Inhibition Disrupts Metabolic Reprogramming During Hepatic Stellate Cell Activation
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2020.04.037
– volume: 15
  start-page: 27
  year: 2019
  ident: B91
  article-title: The Klotho Proteins in Health and Disease
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-018-0078-3
– volume: 19
  start-page: 57
  year: 2020
  ident: B205
  article-title: Targeting Metabolic Dysregulation for Fibrosis Therapy
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-019-0040-5
– volume: 136
  start-page: 2469
  year: 2015
  ident: B172
  article-title: Ileal FGF15 Contributes to Fibrosis-Associated Hepatocellular Carcinoma Development
  publication-title: Int. J. Cancer.
  doi: 10.1002/ijc.29287
– volume: 68
  start-page: 550
  year: 2018
  ident: B118
  article-title: Hedgehog Signalling in Liver Pathophysiology
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2017.10.017
– volume: 107
  start-page: 29
  year: 2019
  ident: B195
  article-title: Blockade of YAP Alleviates Hepatic Fibrosis through Accelerating Apoptosis and Reversion of Activated Hepatic Stellate Cells
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2019.01.004
– volume: 11
  start-page: 2362
  year: 2020
  ident: B4
  article-title: Hepatocyte Mitochondria-Derived Danger Signals Directly Activate Hepatic Stellate Cells and Drive Progression of Liver Fibrosis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16092-0
– volume: 9
  start-page: 100
  year: 2019
  ident: B148
  article-title: PRC1 Promotes GLI1-Dependent Osteopontin Expression in Association With the Wnt/β-Catenin Signaling Pathway and Aggravates Liver Fibrosis
  publication-title: Cell Biosci.
  doi: 10.1186/s13578-019-0363-2
– volume: 34
  start-page: 1247
  year: 2010
  ident: B159
  article-title: Hepatic Stellate Cell (Vitamin A-Storing Cell) and its Relative - Past, Present and Future
  publication-title: Cell. Biol. Int.
  doi: 10.1042/cbi20100321
– volume: 4
  start-page: 30
  year: 2016
  ident: B73
  article-title: Roles of FGFs as Paracrine or Endocrine Signals in Liver Development, Health, and Disease
  publication-title: Front. Cel Dev. Biol.
  doi: 10.3389/fcell.2016.00030
– volume: 11
  start-page: 361
  year: 2021
  ident: B77
  article-title: Histone H3K27 Methyltransferase EZH2 and Demethylase JMJD3 Regulate Hepatic Stellate Cells Activation and Liver Fibrosis
  publication-title: Theranostics.
  doi: 10.7150/thno.46360
– volume: 163
  start-page: 94
  ident: B106
  article-title: CREB Family: A Significant Role in Liver Fibrosis
  publication-title: Biochimie.
  doi: 10.1016/j.biochi.2019.05.014
– volume: 38
  start-page: 521
  ident: B175
  article-title: p-CREB-1 Promotes Hepatic Fibrosis Through the Transactivation of Transforming Growth Factor-Β1 Expression in Rats
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2016.2630
– volume: 66
  start-page: 180
  year: 2017
  ident: B153
  article-title: Current and Upcoming Pharmacotherapy for Non-Alcoholic Fatty Liver Disease
  publication-title: Gut.
  doi: 10.1136/gutjnl-2016-312431
– volume: 67
  start-page: 1104
  year: 2017
  ident: B53
  article-title: Hepatic Stellate Cell Activation and Pro-Fibrogenic Signals
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2017.06.001
– volume: 11
  start-page: 73
  year: 2021
  ident: B122
  article-title: Glucagon-Like Peptide-1 Receptor Agonists for Treatment of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: An Updated Meta-Analysis of Randomized Controlled Trials
  publication-title: Metabolites.
  doi: 10.3390/metabo11020073
– volume: 214
  start-page: 199
  year: 2008
  ident: B183
  article-title: Cellular and Molecular Mechanisms of Fibrosis
  publication-title: J. Pathol.
  doi: 10.1002/path.2277
– volume: 176
  start-page: 1619
  year: 2019
  ident: B165
  article-title: Pterostilbene Prevents Hepatocyte Epithelial‐mesenchymal Transition in Fructose‐induced Liver Fibrosis through Suppressing miR‐34a/Sirt1/p53 and TGF‐β1/Smads Signalling
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.14573
– volume: 141
  start-page: 140
  year: 2014
  ident: B167
  article-title: Targeting Notch Signaling Pathway in Cancer: Clinical Development Advances and Challenges
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2013.09.005
– volume: 11
  start-page: eaat9284
  year: 2019
  ident: B192
  article-title: Hyaluronan Synthase 2-Mediated Hyaluronan Production Mediates Notch1 Activation and Liver Fibrosis
  publication-title: Sci. Transl Med.
  doi: 10.1126/scitranslmed.aat9284
– volume: 21
  start-page: 1637
  year: 2020
  ident: B94
  article-title: Current and Emerging Pharmacotherapeutic Interventions for the Treatment of Liver Fibrosis
  publication-title: Expert Opin. Pharmacother.
  doi: 10.1080/14656566.2020.1774553
– volume: 64
  start-page: 682
  year: 2016
  ident: B142
  article-title: MERTK Rs4374383 Polymorphism Affects the Severity of Fibrosis in Non-Alcoholic Fatty Liver Disease
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2015.10.016
– volume: 13
  start-page: e1499
  year: 2021
  ident: B18
  article-title: Liver Fibrosis: Pathophysiology and Clinical Implications
  publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med.
  doi: 10.1002/wsbm.1499
– volume: 97
  start-page: 2143
  year: 2012
  ident: B150
  article-title: Fibroblast Growth Factor 21 (FGF-21) and its Relation to Obesity, Metabolic Syndrome, and Nonalcoholic Fatty Liver in Children: a Longitudinal Analysis
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2012-1221
– volume: 67
  start-page: 1392
  year: 2019
  ident: B129
  article-title: Maltol Mitigates Thioacetamide-Induced Liver Fibrosis Through TGF-Β1-Mediated Activation of PI3K/Akt Signaling Pathway
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.8b05943
– volume: 106
  start-page: 83
  year: 2018
  ident: B103
  article-title: The Inhibition of Hippo/Yap Signaling Pathway Is Required for Magnesium Isoglycyrrhizinate to Ameliorate Hepatic Stellate Cell Inflammation and Activation
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.06.102
– volume: 169
  start-page: 985
  year: 2017
  ident: B134
  article-title: Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities
  publication-title: Cell.
  doi: 10.1016/j.cell.2017.05.016
– volume: 115
  start-page: 209
  year: 2005
  ident: B14
  article-title: Liver Fibrosis
  publication-title: J. Clin. Invest.
  doi: 10.1172/jci24282
– volume: 127
  start-page: 55
  year: 2017
  ident: B88
  article-title: Liver Inflammation and Fibrosis
  publication-title: J. Clin. Invest.
  doi: 10.1172/jci88881
– volume: 60
  start-page: 101063
  year: 2020
  ident: B68
  article-title: Wnt Signaling Pathway in Aging-Related Tissue Fibrosis and Therapies
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2020.101063
– volume: 42
  start-page: 458
  ident: B180
  article-title: TGF-β1/p65/MAT2A Pathway Regulates Liver Fibrogenesis via Intracellular SAM
  publication-title: EBioMedicine.
  doi: 10.1016/j.ebiom.2019.03.058
– volume: 1864
  start-page: 804
  year: 2018
  ident: B1
  article-title: Inhibition of Canonical WNT Signaling Pathway by β-Catenin/CBP Inhibitor ICG-001 Ameliorates Liver Fibrosis In Vivo Through Suppression of Stromal CXCL12
  publication-title: Biochim. Biophys. Acta (Bba) - Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2017.12.001
– volume: 176
  start-page: 42
  year: 2017
  ident: B41
  article-title: Palmitic Acid Elicits Hepatic Stellate Cell Activation Through Inflammasomes and Hedgehog Signaling
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2017.03.012
– volume: 9
  start-page: 553
  year: 2018
  ident: B138
  article-title: DNA Methylation of PTGIS Enhances Hepatic Stellate Cells Activation and Liver Fibrogenesis
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00553
– volume: 1863
  start-page: 674
  year: 2017
  ident: B19
  article-title: Hotair Facilitates Hepatic Stellate Cells Activation and Fibrogenesis in the Liver
  publication-title: Biochim. Biophys. Acta (Bba) - Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2016.12.009
– volume: 112
  start-page: 1046
  year: 2011
  ident: B35
  article-title: Effects of P-CREB-1 on Transforming Growth Factor-Β3 Auto-Regulation in Hepatic Stellate Cells
  publication-title: J. Cel. Biochem.
  doi: 10.1002/jcb.23017
– volume: 18
  start-page: 3964
  year: 1999
  ident: B7
  article-title: VEGF Contributes to Postnatal Neovascularization by Mobilizing Bone Marrow-Derived Endothelial Progenitor Cells
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.14.3964
– volume: 526
  start-page: 314
  ident: B99
  article-title: PAX6 Contributes to the Activation and Proliferation of Hepatic Stellate Cells via Activating Hedgehog/GLI1 Pathway
  publication-title: Biochem. Biophysical Res. Commun.
  doi: 10.1016/j.bbrc.2020.03.086
– volume: 67
  start-page: 770
  year: 2017
  ident: B117
  article-title: Cytotherapy with M1-Polarized Macrophages Ameliorates Liver Fibrosis by Modulating Immune Microenvironment in Mice
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2017.05.022
– volume: 19
  start-page: 3103
  year: 2018
  ident: B133
  article-title: Wnt/β-Catenin Signaling as a Potential Target for the Treatment of Liver Cirrhosis Using Antifibrotic Drugs
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19103103
– volume: 13
  start-page: 1265
  year: 2021
  ident: B6
  article-title: Epigenetic Biomarkers for the Diagnosis and Treatment of Liver Disease
  publication-title: Cancers (Basel).
  doi: 10.3390/cancers13061265
– volume: 44
  start-page: 228
  year: 2006
  ident: B92
  article-title: Induction of Gas6 Protein in CCl4-Induced Rat Liver Injury and Anti-Apoptotic Effect on Hepatic Stellate Cells
  publication-title: Hepatology.
  doi: 10.1002/hep.21237
– volume: 11
  start-page: eaau6296
  year: 2019
  ident: B59
  article-title: Selective YAP/TAZ Inhibition in Fibroblasts via Dopamine Receptor D1 Agonism Reverses Fibrosis
  publication-title: Sci. Transl Med.
  doi: 10.1126/scitranslmed.aau6296
– volume: 159
  start-page: 624
  year: 2020
  ident: B58
  article-title: Hedgehog Signaling Demarcates a Niche of Fibrogenic Peribiliary Mesenchymal Cells
  publication-title: Gastroenterology.
  doi: 10.1053/j.gastro.2020.03.075
– volume: 290
  start-page: 43
  year: 2016
  ident: B187
  article-title: Fibroblast Growth Factor 21 Attenuates Hepatic Fibrogenesis Through TGF-Β/smad2/3 and NF-Κb Signaling Pathways
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2015.11.012
– volume: 53
  start-page: 289
  year: 2012
  ident: B76
  article-title: Liver Fibrosis and Hepatocyte Apoptosis Are Attenuated by GKT137831, a Novel NOX4/NOX1 Inhibitor In Vivo
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.05.007
– volume: 313
  start-page: 178
  ident: B105
  article-title: Genetic Loss of Gas6/Mer Pathway Attenuates Silica-Induced Lung Inflammation and Fibrosis in Mice
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2019.07.008
– volume: 28
  start-page: 867
  year: 2018
  ident: B29
  article-title: Hippo Pathway Inhibition by Blocking the YAP/TAZ-TEAD Interface: a Patent Review
  publication-title: Expert Opin. Ther. Patents.
  doi: 10.1080/13543776.2018.1549226
– volume: 70
  start-page: 784
  year: 2021
  ident: B177
  article-title: MicroRNAs as Regulators, Biomarkers and Therapeutic Targets in Liver Diseases
  publication-title: Gut.
  doi: 10.1136/gutjnl-2020-322526
– volume: 2016
  start-page: 8323747
  year: 2016
  ident: B155
  article-title: Regulation of Hepatic Stellate Cells and Fibrogenesis by Fibroblast Growth Factors
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2016/8323747
– volume: 48
  start-page: 131
  year: 2021
  ident: B115
  article-title: Histone Deacetylase 2: A Potential Regulator and Therapeutic Target in Liver Disease (Review)
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2021.4964
– volume: 33
  start-page: 242
  year: 2021
  ident: B169
  article-title: The Power of Plasticity-Metabolic Regulation of Hepatic Stellate Cells
  publication-title: Cel Metab.
  doi: 10.1016/j.cmet.2020.10.026
– volume: 197
  start-page: 1443
  year: 2018
  ident: B45
  article-title: Targeting of TAM Receptors Ameliorates Fibrotic Mechanisms in Idiopathic Pulmonary Fibrosis
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201707-1519oc
– volume: 156
  start-page: 1190
  year: 2019
  ident: B43
  article-title: Nuclear Translocation of RELB Is Increased in Diseased Human Liver and Promotes Ductular Reaction and Biliary Fibrosis in Mice
  publication-title: Gastroenterology.
  doi: 10.1053/j.gastro.2018.11.018
– volume: 64
  start-page: 73
  year: 2016
  ident: B194
  article-title: Global Epidemiology of Nonalcoholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes
  publication-title: Hepatology.
  doi: 10.1002/hep.28431
– volume: 70
  start-page: 1317
  ident: B113
  article-title: Cholangiocyte‐Derived Exosomal Long Noncoding RNA H19 Promotes Hepatic Stellate Cell Activation and Cholestatic Liver Fibrosis
  publication-title: Hepatology.
  doi: 10.1002/hep.30662
– volume: 99
  start-page: 1322
  year: 1997
  ident: B66
  article-title: Proliferation of Hepatic Stellate Cells Is Inhibited by Phosphorylation of CREB on Serine 133
  publication-title: J. Clin. Invest.
  doi: 10.1172/jci119291
– volume: 1866
  start-page: 1663
  ident: B25
  article-title: Delta-Like Ligand 4/DLL4 Regulates the Capillarization of Liver Sinusoidal Endothelial Cell and Liver Fibrogenesis
  publication-title: Biochim. Biophys. Acta (Bba) - Mol. Cel Res.
  doi: 10.1016/j.bbamcr.2019.06.011
– volume: 71
  start-page: 2050
  ident: B112
  article-title: Probiotic Lactobacillus Rhamnosus GG Prevents Liver Fibrosis Through Inhibiting Hepatic Bile Acid Synthesis and Enhancing Bile Acid Excretion in Mice
  publication-title: Hepatology.
  doi: 10.1002/hep.30975
– volume: 357
  start-page: 394
  year: 2019
  ident: B140
  article-title: Metabolic Reprogramming as a Driver of Fibroblast Activation in PulmonaryFibrosis
  publication-title: Am. J. Med. Sci.
  doi: 10.1016/j.amjms.2019.02.003
– volume: 100
  start-page: 145
  year: 2020
  ident: B5
  article-title: SIRT6, a Mammalian Deacylase With Multitasking Abilities
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00030.2018
– volume: 10
  start-page: eaat0344
  year: 2018
  ident: B209
  article-title: Hepatocyte Notch Activation Induces Liver Fibrosis in Nonalcoholic Steatohepatitis
  publication-title: Sci. Transl Med.
  doi: 10.1126/scitranslmed.aat0344
– volume: 66
  start-page: 1321
  year: 2017
  ident: B60
  article-title: Plasma DNA Methylation: a Potential Biomarker for Stratification of Liver Fibrosis in Non-Alcoholic Fatty Liver Disease
  publication-title: Gut.
  doi: 10.1136/gutjnl-2016-311526
– volume: 12
  start-page: 325
  year: 2016
  ident: B128
  article-title: TGF-β: the Master Regulator of Fibrosis
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2016.48
– volume: 295
  start-page: 415
  year: 2019
  ident: B119
  article-title: Sirtuin 6 Deficiency Transcriptionally Up-Regulates TGF-β Signaling and Induces Fibrosis in Mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.007212
– volume: 179
  start-page: 241
  year: 2021
  ident: B84
  article-title: Transforming Growth Factor Beta-Induced Foxo3a Acts as a Profibrotic Mediator in Hepatic Stellate Cells
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfaa185
– volume: 40
  start-page: 1378
  ident: B102
  article-title: Targeting Ferroptosis Alleviates Methionine‐Choline Deficient (MCD)‐diet Induced NASH by Suppressing Liver Lipotoxicity
  publication-title: Liver Int.
  doi: 10.1111/liv.14428
– volume: 177
  start-page: 1262
  year: 2019
  ident: B2
  article-title: Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke
  publication-title: Cell.
  doi: 10.1016/j.cell.2019.03.032
– volume: 70
  start-page: 388
  year: 2021
  ident: B13
  article-title: Epigenetic Mechanisms and Metabolic Reprogramming in Fibrogenesis: Dual Targeting of G9a and DNMT1 for the Inhibition of Liver Fibrosis
  publication-title: Gut.
  doi: 10.1136/gutjnl-2019-320205
– volume: 16
  start-page: 269
  year: 2019
  ident: B11
  article-title: Cholangiocyte Pathobiology
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-019-0125-y
– volume: 217
  start-page: e20190402
  year: 2020
  ident: B96
  article-title: Hepatic Stellate Cell-Specific Knockout of Transcriptional Intermediary Factor 1γ Aggravates Liver Fibrosis
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20190402
– volume: 70
  start-page: 483
  year: 2019
  ident: B65
  article-title: Effect of NGM282, an FGF19 Analogue, in Primary Sclerosing Cholangitis: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Phase II Trial
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2018.10.035
– volume: 9
  start-page: 4308
  year: 2019
  ident: B139
  article-title: Methylation of RCAN1.4 Mediated by DNMT1 and DNMT3b Enhances Hepatic Stellate Cell Activation and Liver Fibrogenesis Through Calcineurin/NFAT3 Signaling
  publication-title: Theranostics.
  doi: 10.7150/thno.32710
– volume: 43
  start-page: 745
  year: 2011
  ident: B33
  article-title: Wnt/Ca2+ Signaling Pathway: a Brief Overview
  publication-title: Acta Biochim. Biophys. Sin (Shanghai).
  doi: 10.1093/abbs/gmr079
– volume: 178
  start-page: 3428
  year: 2021
  ident: B211
  article-title: Physalin B Attenuates Liver Fibrosis via Suppressing LAP2alpha-HDAC1-Mediated Deacetylation of the Transcription Factor GLI1 and Hepatic Stellate Cell Activation
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.15490
– volume: 61
  start-page: 1740
  year: 2015
  ident: B34
  article-title: Liver Sinusoidal Endothelial Cells in Hepatic Fibrosis
  publication-title: Hepatology.
  doi: 10.1002/hep.27376
– volume: 379
  start-page: 537
  ident: B111
  article-title: Wnt4 Negatively Regulates the TGF-Β1-Induced Human Dermal Fibroblast-To-Myofibroblast Transition via Targeting Smad3 and ERK
  publication-title: Cel Tissue Res.
  doi: 10.1007/s00441-019-03110-x
– volume: 6
  start-page: 718
  year: 1986
  ident: B20
  article-title: Quantitation, Tissue Distribution and Proliferation Kinetics of Kupffer Cells in Normal Rat Liver
  publication-title: Hepatology.
  doi: 10.1002/hep.1840060430
– volume: 10
  start-page: 1397
  year: 2016
  ident: B42
  article-title: Epigenetic Regulation of Hepatic Stellate Cell Activation and Liver Fibrosis
  publication-title: Expert Rev. Gastroenterol. Hepatol.
  doi: 10.1080/17474124.2016.1251309
– volume: 11
  start-page: 55
  year: 2014
  ident: B154
  article-title: Bile Acid Receptors as Targets for Drug Development
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2013.151
– volume: 35
  start-page: 452
  year: 2021
  ident: B97
  article-title: Apoptotic and Antihepatofibrotic Effect of Honokiol via Activation ofGSK3βand Suppression of Wnt/β‐catenin Pathway in Hepatic Stellate Cells
  publication-title: Phytotherapy Res.
  doi: 10.1002/ptr.6824
– volume: 154
  start-page: 1465
  year: 2018
  ident: B39
  article-title: Hedgehog-YAP Signaling Pathway Regulates Glutaminolysis to Control Activation of Hepatic Stellate Cells
  publication-title: Gastroenterology.
  doi: 10.1053/j.gastro.2017.12.022
– volume: 63
  start-page: 679
  year: 2015
  ident: B121
  article-title: The Hippo Pathway Effector YAP Controls Mouse Hepatic Stellate Cell Activation
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2015.04.011
– volume: 100
  start-page: 1
  year: 2016
  ident: B161
  article-title: Recent Developments in L-Asparaginase Discovery and its Potential as Anticancer Agent
  publication-title: Crit. Rev. Oncology/Hematology.
  doi: 10.1016/j.critrevonc.2015.01.002
– volume: 157
  start-page: 1352
  year: 2019
  ident: B48
  article-title: ECM1 Prevents Activation of Transforming Growth Factor β, Hepatic Stellate Cells, and Fibrogenesis in Mice
  publication-title: Gastroenterology.
  doi: 10.1053/j.gastro.2019.07.036
– volume: 101
  start-page: 115
  year: 2020
  ident: B49
  article-title: Non-Canonical (Non-Smad2/3) TGF-β Signaling in Fibrosis: Mechanisms and Targets
  publication-title: Semin. Cel Develop. Biol.
  doi: 10.1016/j.semcdb.2019.11.013
– volume: 105
  start-page: 1087
  year: 2014
  ident: B98
  article-title: Safely Targeting Cancer Stem Cells via Selective Catenin Coactivator Antagonism
  publication-title: Cancer Sci.
  doi: 10.1111/cas.12471
– volume: 14
  start-page: 6878
  year: 2020
  ident: B151
  article-title: Targeted Delivery of Notch Inhibitor Attenuates Obesity-Induced Glucose Intolerance and Liver Fibrosis
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.0c01007
– volume: 63
  start-page: 670
  year: 2015
  ident: B12
  article-title: Gas6/Axl Pathway Is Activated in Chronic Liver Disease and its Targeting Reduces Fibrosis via Hepatic Stellate Cell Inactivation
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2015.04.013
– volume: 343
  start-page: 416
  year: 2014
  ident: B69
  article-title: Endothelial Cell-Derived Angiopoietin-2 Controls Liver Regeneration as a Spatiotemporal Rheostat
  publication-title: Science.
  doi: 10.1126/science.1244880
– volume: 303
  start-page: 77
  ident: B104
  article-title: An Integrin-Based Nanoparticle That Targets Activated Hepatic Stellate Cells and Alleviates Liver Fibrosis
  publication-title: J. Controlled Release.
  doi: 10.1016/j.jconrel.2019.04.022
– volume: 314
  start-page: G471
  year: 2018
  ident: B86
  article-title: Proliferation of Hepatic Stellate Cells, Mediated by YAP and TAZ, Contributes to Liver Repair and Regeneration After Liver Ischemia-Reperfusion Injury
  publication-title: Am. J. Physiology-Gastrointestinal Liver Physiol.
  doi: 10.1152/ajpgi.00153.2017
– volume: 12
  start-page: 11
  year: 2018
  ident: B126
  article-title: Biology of Portal Hypertension
  publication-title: Hepatol. Int.
  doi: 10.1007/s12072-017-9826-x
– volume: 65
  start-page: 608
  year: 2016
  ident: B124
  article-title: Sinusoidal Communication in Liver Fibrosis and Regeneration
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2016.04.018
– volume: 143
  start-page: 765
  year: 2012
  ident: B127
  article-title: Interleukin-17 Signaling in Inflammatory, Kupffer Cells, and Hepatic Stellate Cells Exacerbates Liver Fibrosis in Mice
  publication-title: Gastroenterology.
  doi: 10.1053/j.gastro.2012.05.049
– volume: 9
  start-page: 1021
  year: 2018
  ident: B26
  article-title: Suppression of SUN2 by DNA Methylation Is Associated With HSCs Activation and Hepatic Fibrosis
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-1032-9
– volume: 12
  start-page: 397
  year: 2020
  ident: B196
  article-title: LRP6-CRISPR Prevents Activation of Hepatic Stellate Cells and Liver Fibrogenesis in Rats
  publication-title: Am. J. Transl Res.
– volume: 74
  start-page: 1188
  year: 2021
  ident: B21
  article-title: Pan-PPAR Agonist Lanifibranor Improves portal Hypertension and Hepatic Fibrosis in Experimental Advanced Chronic Liver Disease
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2020.11.045
– volume: 98
  start-page: 1449
  year: 2018
  ident: B208
  article-title: Knockout of Secretin Receptor Reduces Biliary Damage and Liver Fibrosis in Mdr2−/− Mice by Diminishing Senescence of Cholangiocytes
  publication-title: Lab. Invest.
  doi: 10.1038/s41374-018-0093-9
– volume: 56
  start-page: 1097
  year: 2012
  ident: B10
  article-title: Yes‐Associated Protein Regulates the Hepatic Response After Bile Duct Ligation
  publication-title: Hepatology.
  doi: 10.1002/hep.25769
– volume: 9
  start-page: a022129
  year: 2017
  ident: B201
  article-title: Non-Smad Signaling Pathways of the TGF-β Family
  publication-title: Cold Spring Harb Perspect. Biol.
  doi: 10.1101/cshperspect.a022129
– volume: 14
  start-page: 5751
  year: 2016
  ident: B36
  article-title: Post-Translational Modification of CREB-1 Decreases Collagen I Expression by Inhibiting the TGF-Β1 Signaling Pathway in Rat Hepatic Stellate Cells
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2016.5926
– volume: 300
  start-page: G1043
  year: 2011
  ident: B50
  article-title: Gas6 Deficiency Prevents Liver Inflammation, Steatohepatitis, and Fibrosis in Mice
  publication-title: Am. J. Physiology-Gastrointestinal Liver Physiol.
  doi: 10.1152/ajpgi.00311.2010
– volume: 9
  start-page: 24
  year: 2019
  ident: B83
  article-title: Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis
  publication-title: Cells.
  doi: 10.3390/cells9010024
– volume: 9
  start-page: e11374
  year: 2021
  ident: B37
  article-title: DZNep, an Inhibitor of the Histone Methyltransferase EZH2, Suppresses Hepatic Fibrosis Through Regulating miR-199a-5p/SOCS7 Pathway
  publication-title: PeerJ.
  doi: 10.7717/peerj.11374
– volume: 7
  start-page: 2957
  year: 2017
  ident: B171
  article-title: TGF-β-induced Hepatocyte lincRNA-P21 Contributes to Liver Fibrosis in Mice
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03175-0
– volume: 70
  start-page: 151
  year: 2019
  ident: B8
  article-title: Burden of Liver Diseases in the World
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2018.09.014
– volume: 66
  start-page: 212
  year: 2017
  ident: B143
  article-title: Liver Sinusoidal Endothelial Cells: Physiology and Role in Liver Diseases
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2016.07.009
– volume: 35
  start-page: e21571
  year: 2021
  ident: B57
  article-title: miR-30c Inhibits Angiogenesis by Targeting Delta-Like Ligand 4 in Liver Sinusoidal Endothelial Cell to Attenuate Liver Fibrosis
  publication-title: FASEB J.
  doi: 10.1096/fj.202002694R
– volume: 41
  start-page: 1201
  year: 2021
  ident: B158
  article-title: Role of Fibroblast Growth Factor Signalling in Hepatic Fibrosis
  publication-title: Liver Int.
  doi: 10.1111/liv.14863
– volume: 24
  start-page: 848
  ident: B174
  article-title: Hepatocyte TAZ/WWTR1 Promotes Inflammation and Fibrosis in Nonalcoholic Steatohepatitis
  publication-title: Cel Metab.
  doi: 10.1016/j.cmet.2016.09.016
– volume: 134
  start-page: 1655
  year: 2008
  ident: B51
  article-title: Mechanisms of Hepatic Fibrogenesis
  publication-title: Gastroenterology.
  doi: 10.1053/j.gastro.2008.03.003
– volume: 70
  start-page: 1674
  year: 2019
  ident: B74
  article-title: Proteasomal Degradation of Enhancer of Zeste Homologue 2 in Cholangiocytes Promotes Biliary Fibrosis
  publication-title: Hepatology.
  doi: 10.1002/hep.30706
– volume: 190
  start-page: 68
  year: 2020
  ident: B146
  article-title: Ferroptosis Affects the Progression of Nonalcoholic Steatohepatitis via the Modulation of Lipid Peroxidation-Mediated Cell Death in Mice
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2019.09.011
– volume: 16
  start-page: 51
  year: 2015
  ident: B89
  article-title: Perivascular Gli1+ Progenitors Are Key Contributors to Injury-Induced Organ Fibrosis
  publication-title: Cell Stem Cell.
  doi: 10.1016/j.stem.2014.11.004
– volume: 3
  start-page: 1473
  year: 2013
  ident: B145
  article-title: Hepatic Stellate Cells and Liver Fibrosis
  publication-title: Compr. Physiol.
  doi: 10.1002/cphy.c120035
– volume: 70
  start-page: 653
  year: 2021
  ident: B30
  article-title: Regulation of Hepatic Metabolism and Cell Growth by the ATF/CREB Family of Transcription Factors
  publication-title: Diabetes.
  doi: 10.2337/dbi20-0006
– volume: 31
  start-page: e1904197
  year: 2019
  ident: B108
  article-title: Recent Progress in Ferroptosis Inducers for Cancer Therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904197
– volume: 18
  start-page: 45
  year: 2021
  ident: B181
  article-title: Hepatic Macrophages in Liver Homeostasis and Diseases-Diversity, Plasticity and Therapeutic Opportunities
  publication-title: Cell Mol Immunol.
  doi: 10.1038/s41423-020-00558-8
– volume: 16
  start-page: 1482
  ident: B202
  article-title: RNA-Binding Protein ZFP36/TTP Protects Against Ferroptosis by Regulating Autophagy Signaling Pathway in Hepatic Stellate Cells
  publication-title: Autophagy.
  doi: 10.1080/15548627.2019.1687985
– volume: 10
  start-page: 341
  year: 2020
  ident: B206
  article-title: SIRT6 Protects against Liver Fibrosis by Deacetylation and Suppression of SMAD3 in Hepatic Stellate Cells
  publication-title: Cell Mol Gastroenterol Hepatol.
  doi: 10.1016/j.jcmgh.2020.04.005
– volume: 674
  start-page: 57
  year: 2018
  ident: B173
  article-title: Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Liver Fibrosis
  publication-title: Gene.
  doi: 10.1016/j.gene.2018.06.053
– volume: 10
  start-page: 7956
  year: 2020
  ident: B47
  article-title: Targeting the Notch and TGF-β Signaling Pathways to Prevent Retinal Fibrosis In Vitro and In Vivo
  publication-title: Theranostics.
  doi: 10.7150/thno.45192
– volume: 1
  start-page: 1024
  year: 2017
  ident: B207
  article-title: Engineered FGF19 Eliminates Bile Acid Toxicity and Lipotoxicity Leading to Resolution of Steatohepatitis and Fibrosis in Mice
  publication-title: Hepatol. Commun.
  doi: 10.1002/hep4.1108
– volume: 7
  start-page: d808
  year: 2002
  ident: B149
  article-title: Activation of Hepatic Stellate Cells - a Key Issue in Liver Fibrosis
  publication-title: Front. Biosci.
  doi: 10.2741/reeves
– volume: 23
  start-page: 305
  year: 2021
  ident: B70
  article-title: Histone Deacetylase Inhibitor Givinostat Alleviates Liver Fibrosis by Regulating Hepatic Stellate Cell Activation
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2021.11944
– volume: 59
  start-page: 2034
  year: 2014
  ident: B162
  article-title: Macrophage Plasticity and Polarization in Liver Homeostasis and Pathology
  publication-title: Hepatology.
  doi: 10.1002/hep.26754
– volume: 6
  start-page: e16081
  year: 2011
  ident: B132
  article-title: The Progression of Liver Fibrosis Is Related with Overexpression of the miR-199 and 200 Families
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0016081
– volume: 58
  start-page: 98
  year: 2013
  ident: B123
  article-title: The Transcription Factor KLF2 Mediates Hepatic Endothelial protection and Paracrine Endothelial-Stellate Cell Deactivation Induced by Statins
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2012.08.026
– volume: 69
  start-page: 1104
  year: 2020
  ident: B31
  article-title: Growth Differentiation Factor 11 Attenuates Liver Fibrosis via Expansion of Liver Progenitor Cells
  publication-title: Gut.
  doi: 10.1136/gutjnl-2019-318812
– volume: 25
  start-page: 1202
  year: 2013
  ident: B191
  article-title: DNA Methylation and MeCP2 Regulation of PTCH1 Expression During Rats Hepatic Fibrosis
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2013.01.005
– volume: 72
  start-page: 330
  year: 2019
  ident: B110
  article-title: Geniposide, a Sonic Hedgehog Signaling Inhibitor, Inhibits the Activation of Hepatic Stellate Cell
  publication-title: Int. Immunopharmacology.
  doi: 10.1016/j.intimp.2019.04.016
– volume: 67
  start-page: 2352
  year: 2018
  ident: B164
  article-title: Wnt/β-Catenin Signaling Controls Intrahepatic Biliary Network Formation in Zebrafish by Regulating Notch Activity
  publication-title: Hepatology.
  doi: 10.1002/hep.29752
– volume: 25
  start-page: 340
  year: 2015
  ident: B176
  article-title: Caffeine Protects against Alcohol-Induced Liver Fibrosis by Dampening the cAMP/PKA/CREB Pathway in Rat Hepatic Stellate Cells
  publication-title: Int. Immunopharmacology.
  doi: 10.1016/j.intimp.2015.02.012
– volume: 70
  start-page: 1409
  ident: B179
  article-title: p300 Acetyltransferase Is a Cytoplasm‐to‐Nucleus Shuttle for SMAD2/3 and TAZ Nuclear Transport in Transforming Growth Factor β-Stimulated Hepatic Stellate Cells
  publication-title: Hepatology.
  doi: 10.1002/hep.30668
– volume: 28
  start-page: 1517
  year: 2014
  ident: B109
  article-title: Wnt Some Lose Some: Transcriptional Governance of Stem Cells by Wnt/-Catenin Signaling
  publication-title: Genes Develop.
  doi: 10.1101/gad.244772.114
– volume: 9
  start-page: 7537
  year: 2019
  ident: B90
  article-title: The Use of Micelles to Deliver Potential Hedgehog Pathway Inhibitor for the Treatment of Liver Fibrosis
  publication-title: Theranostics.
  doi: 10.7150/thno.38913
– volume: 114
  start-page: 1629
  year: 2018
  ident: B22
  article-title: Sirtuin 1 Activation Attenuates Cardiac Fibrosis in a Rodent Pressure Overload Model by Modifying Smad2/3 Transactivation
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvy131
– volume: 12
  start-page: 645857
  year: 2021
  ident: B63
  article-title: A Metabolic Reprogramming of Glycolysis and Glutamine Metabolism Is a Requisite for Renal Fibrogenesis-Why and How?
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.645857
– volume: 10
  start-page: 1241
  year: 2016
  ident: B17
  article-title: Gas6 as a Putative Noninvasive Biomarker of Hepatic Fibrosis
  publication-title: Biomarkers Med.
  doi: 10.2217/bmm-2016-0210
– volume: 71
  start-page: 670
  year: 2020
  ident: B157
  article-title: Direct and Indirect Effects of Fibroblast Growth Factor (FGF) 15 and FGF19 on Liver Fibrosis Development
  publication-title: Hepatology.
  doi: 10.1002/hep.30810
– volume: 119
  start-page: 128
  ident: B24
  article-title: Exogenous Testosterone Alleviates Cardiac Fibrosis and Apoptosis via Gas6/Axl Pathway in the Senescent Mice
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2019.01.029
– volume: 2
  start-page: 217
  year: 2005
  ident: B71
  article-title: Fibroblast Growth Factor 15 Functions as an Enterohepatic Signal to Regulate Bile Acid Homeostasis
  publication-title: Cel Metab.
  doi: 10.1016/j.cmet.2005.09.001
– volume: 2
  start-page: 1751
  year: 2015
  ident: B136
  article-title: Inhibition of Cyclic Adenosine Monophosphate (cAMP)-Response Element-Binding Protein (CREB)-Binding Protein (CBP)/β-Catenin Reduces Liver Fibrosis in Mice
  publication-title: EBioMedicine.
  doi: 10.1016/j.ebiom.2015.10.010
– volume: 155
  start-page: 104720
  year: 2020
  ident: B23
  article-title: Intercellular Crosstalk of Hepatic Stellate Cells in Liver Fibrosis: New Insights Into Therapy
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2020.104720
– volume: 68
  start-page: 589
  year: 2016
  ident: B107
  article-title: Curcumin Inhibits Aerobic Glycolysis in Hepatic Stellate Cells Associated With Activation of Adenosine Monophosphate-Activated Protein Kinase
  publication-title: IUBMB Life.
  doi: 10.1002/iub.1518
– volume: 7
  start-page: 197
  year: 2019
  ident: B125
  article-title: Enhancer of Zeste Homologue 2 Inhibition Attenuates TGF-β Dependent Hepatic Stellate Cell Activation and Liver Fibrosis
  publication-title: Cell Mol. Gastroenterol. Hepatol.
  doi: 10.1016/j.jcmgh.2018.09.005
– volume: 34
  start-page: 14558
  year: 2020
  ident: B210
  article-title: Sennoside A Prevents Liver Fibrosis by Binding DNMT1 and Suppressing DNMT1‐Mediated PTEN Hypermethylation in HSC Activation and Proliferation
  publication-title: FASEB j.
  doi: 10.1096/fj.202000494rr
– volume: 58
  start-page: 1461
  year: 2013
  ident: B144
  article-title: Hepatic Macrophages but Not Dendritic Cells Contribute to Liver Fibrosis by Promoting the Survival of Activated Hepatic Stellate Cells in Mice
  publication-title: Hepatology.
  doi: 10.1002/hep.26429
– volume: 50
  start-page: 1337
  year: 2020
  ident: B61
  article-title: Serum Gas6 and Axl as Non‐Invasive Biomarkers of Advanced Histological Stage in Primary Biliary Cholangitis
  publication-title: Hepatol. Res.
  doi: 10.1111/hepr.13568
– volume: 10
  start-page: 16
  year: 2019
  ident: B116
  article-title: Transplantation of Bone Marrow Mesenchymal Stromal Cells Attenuates Liver Fibrosis in Mice by Regulating Macrophage Subtypes
  publication-title: Stem Cel Res Ther.
  doi: 10.1186/s13287-018-1122-8
– volume: 192
  start-page: 1462
  year: 2015
  ident: B185
  article-title: Glycolytic Reprogramming in Myofibroblast Differentiation and Lung Fibrosis
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201504-0780oc
– volume: 2019
  start-page: 2304931
  year: 2019
  ident: B163
  article-title: Gas6/TAM Signaling Components as Novel Biomarkers of Liver Fibrosis
  publication-title: Dis. Markers.
  doi: 10.1155/2019/2304931
– volume: 73
  start-page: 2527
  year: 2021
  ident: B32
  article-title: 6His-Tagged Recombinant Human Cytoglobin Deactivates Hepatic Stellate Cells and Inhibits Liver Fibrosis by Scavenging Reactive Oxygen Species
  publication-title: Hepatology.
  doi: 10.1002/hep.31752
– volume: 108
  start-page: 57
  year: 2016
  ident: B67
  article-title: Notch in Fibrosis and as a Target of Anti-fibrotic Therapy
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2016.04.010
– volume: 347
  start-page: 23
  year: 2021
  ident: B44
  article-title: The Ameliorative Effect of Niclosamide on Bile Duct Ligation Induced Liver Fibrosis via Suppression of NOTCH and Wnt Pathways
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2021.04.018
– volume: 143
  start-page: 1319
  year: 2012
  ident: B27
  article-title: Hedgehog Controls Hepatic Stellate Cell Fate by Regulating Metabolism
  publication-title: Gastroenterology.
  doi: 10.1053/j.gastro.2012.07.115
– volume: 73
  start-page: 1140
  year: 2021
  ident: B198
  article-title: Sirt6 Alleviated Liver Fibrosis by Deacetylating Conserved Lysine 54 on Smad2 in Hepatic Stellate Cells
  publication-title: Hepatology.
  doi: 10.1002/hep.31418
– volume: 36
  start-page: 101619
  ident: B203
  article-title: The BRD7-P53-Slc25a28 Axis Regulates Ferroptosis in Hepatic Stellate Cells
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101619
– volume: 71
  start-page: 1813
  year: 2020
  ident: B131
  article-title: Hepatocyte Stress Increases Expression of Yes‐Associated Protein and Transcriptional Coactivator With PDZ‐Binding Motif in Hepatocytes to Promote Parenchymal Inflammation and Fibrosis
  publication-title: Hepatology.
  doi: 10.1002/hep.30928
– volume: 12
  start-page: eaay8798
  year: 2020
  ident: B3
  article-title: Targeting Acid Ceramidase Inhibits YAP/TAZ Signaling to Reduce Fibrosis in Mice
  publication-title: Sci. Transl Med.
  doi: 10.1126/scitranslmed.aay8798
– volume: 37
  start-page: 6119
  ident: B190
  article-title: PSTPIP2 Connects DNA Methylation to Macrophage Polarization in CCL4-Induced Mouse Model of Hepatic Fibrosis
  publication-title: Oncogene.
  doi: 10.1038/s41388-018-0383-0
– volume: 11
  start-page: e7
  year: 2009
  ident: B56
  article-title: Cholangiocyte Proliferation and Liver Fibrosis
  publication-title: Expert Rev. Mol. Med.
  doi: 10.1017/s1462399409000994
– volume: 4
  start-page: 215
  year: 2015
  ident: B135
  article-title: The Fibroblast Growth Factor Signaling Pathway
  publication-title: Wires Dev. Biol.
  doi: 10.1002/wdev.176
– volume: 16
  start-page: 1357
  year: 2017
  ident: B137
  article-title: Lipopolysaccharide Induces the Differentiation of Hepatic Progenitor Cells Into Myofibroblasts via Activation of the Hedgehog Signaling Pathway
  publication-title: Cell Cycle.
  doi: 10.1080/15384101.2017.1325976
– volume: 138
  start-page: 705
  year: 2010
  ident: B120
  article-title: MeCP2 Controls an Epigenetic Pathway that Promotes Myofibroblast Transdifferentiation and Fibrosis
  publication-title: Gastroenterology.
  doi: 10.1053/j.gastro.2009.10.002
– volume: 35
  start-page: 302
  year: 2015
  ident: B28
  article-title: Molecular Mechanisms Controlling the Phenotype and the EMT/MET Dynamics of Hepatocyte
  publication-title: Liver Int.
  doi: 10.1111/liv.12577
– volume: 42
  start-page: 556
  year: 2020
  ident: B160
  article-title: Capsaicin Attenuates Liver Fibrosis by Targeting Notch Signaling to Inhibit TNF-α Secretion from M1 Macrophages
  publication-title: Immunopharmacology and Immunotoxicology.
  doi: 10.1080/08923973.2020.1811308
– volume: 342
  start-page: 1
  year: 2010
  ident: B72
  article-title: Hormone-like (Endocrine) Fgfs: Their Evolutionary History and Roles in Development, Metabolism, and Disease
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-010-1024-2
– volume: 12
  start-page: 634344
  year: 2021
  ident: B152
  article-title: Fructose and Non-Alcoholic Steatohepatitis
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2021.634344
SSID ssj0001503764
Score 2.3291698
SecondaryResourceType review_article
Snippet Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 766855
SubjectTerms hepatic stellate cells
liver fibrosis
Molecular Biosciences
molecular mechanism
non-alcocholic fatty liver disease
therapeutic targets
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hfRPCkRJPtPo8qliLaU4Telt3NBgslEdMK_ntnN2ltLnrxmuwmm28yzAwz8w1Cl7kotCHcxYlleUxkQmPNsIkZGGcL0Q_TgdTnZcxGr-RpQidro758TVhDD9wAd0tFQVMObovRsBs7WZhcJi4tKDzKhvZyDDZvLZhq-oMT0BzSpDEhCpMgpmpmIB7E6Q1nTPjWvjVDFPj6O05mt0RyzeYMd9B26yxGd80hd9GGK_fQZjM-8msfXY-rTzeLsp8WqigLhd11NC2jZ19xEQ0hHK7qaX2AsuFj9jCK2-EHsSUEz2MDqkZszrHxqa2EOzBmRGtsbK6lZVIQXEhqEketwzI1UguckoIJCzYnNYND1Cur0h2hiBUGfECOcW4TAujpARWGMy0ZLTQWoo-SJRDKtsTgfj7FTEGA4LFTATvlsVMNdn10tdry3rBi_Lb43qO7WugJrcMFELNqxaz-EnMfXSxlo0ABfFZDl65a1Moz7AtMmGB9xDtC67yxe6ecvgUqbT-Bi0t8_B9HPEFb_qtDoyI9Rb35x8KdgccyN-fh5_wGJHDpjw
  priority: 102
  providerName: Directory of Open Access Journals
Title Novel Therapeutic Targets in Liver Fibrosis
URI https://www.proquest.com/docview/2600824686
https://pubmed.ncbi.nlm.nih.gov/PMC8602792
https://doaj.org/article/58f517150ba14c2e9fbd90e1f5c13c15
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-ELyIT1wfSwVPSqWNeR5EVFwWUU8r7C0kaaoLS6vbVfTfO0m7akHEa5um7UyGbz4mmQ-hw0zk2hDu4sSyLCYyobFm2MQMwNkC-2E6NPW5u2f9B3IzpMM5NJO3agxY_UrtvJ7Uw2R88v7ycQ4Bf-YZJ-AteKAcG6B6OD3hjAlK59EiABP3ggZ3TbZfHxpOIJx8nRljyWIh5LCuc_4-SwupQkP_Vhba3kP5A5R6q2ilySaji9r9a2jOFetoqdaX_NhAx_flmxtHg-8zVtEg7PyuolER3fotGVEP-HJZjapNNOhdD676caOOEFtC8DQ2EIvEZhwbX_tKuAO0I1pjYzMtLZOC4FxSkzhqHZapkVrglORMWACl1JxuoYWiLNw2ilhuIEnkGGc2IbnJ9CkVhjMtGc01FqKDkpkhlG06h3sBi7ECBuFtp4LtlLedqm3XQUdfjzzXbTP-Gnzprfs10He8DhfKyaNqAkhRkdOUgwuNhlWEnYQPlYlLcwpLyqYwycHMNwoixJc9dOHK10r5FvwCEyZYB_GW01pvbN8pRk-h17aX6OIS7_xj9l207H8qHFSke2hhOnl1-5CxTE03MP1uWI2fck_p_Q
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Therapeutic+Targets+in+Liver+Fibrosis&rft.jtitle=Frontiers+in+molecular+biosciences&rft.au=Zhang%2C+Jinhang&rft.au=Liu%2C+Qinhui&rft.au=He%2C+Jinhan&rft.au=Li%2C+Yanping&rft.date=2021-11-05&rft.issn=2296-889X&rft.eissn=2296-889X&rft.volume=8&rft.spage=766855&rft_id=info:doi/10.3389%2Ffmolb.2021.766855&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-889X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-889X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-889X&client=summon