Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance

The control in the heteroatom doping is critical for surface and electronic properties, but chemistry is more complicated when two or more heteratoms are incorporated. Herein, we have demonstrated the co-doping of sulfur (S) and phosphorus (P) atoms into the three-dimensional (3D) macroporous, activ...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 101; pp. 49 - 56
Main Authors Yu, Xu, Kang, Yingbo, Park, Ho Seok
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The control in the heteroatom doping is critical for surface and electronic properties, but chemistry is more complicated when two or more heteratoms are incorporated. Herein, we have demonstrated the co-doping of sulfur (S) and phosphorus (P) atoms into the three-dimensional (3D) macroporous, activated graphene aerogel (SP-AG). The C–S and C–PO bondings as major functional groups are simultaneously incorporated into the surface of SP-AG. Despite the high loading of S and P of 5.8 and 4.6%, respectively, the 3D macroporous continuity is preserved. The specific capacitance of SP-AG is 438 F/g at 10 mV/s is much greater than 347, 313, and 240 F/g of S-AG, P-AG, and AG, respectively. Moreover, the SP-AG delivers a specific capacitance of 381 F/g as a scan rate is increased to 500 mV/s, indicating the capacitance retention of 87.2%. After 10000 charging/discharging cycles at current density of 1 A/g, the SP-AG shows a greater electrochemical stability than AG with the capacitance retention ratio of 93.4%, due to the synergistic effect of S and P co-doing and 3D architecture. This synergistic effect of composition and structure is further confirmed by the enhanced energy and power densities in organic and ionic liquid electrolytes.
AbstractList The control in the heteroatom doping is critical for surface and electronic properties, but chemistry is more complicated when two or more heteratoms are incorporated. Herein, we have demonstrated the co-doping of sulfur (S) and phosphorus (P) atoms into the three-dimensional (3D) macroporous, activated graphene aerogel (SP-AG). The C–S and C–PO bondings as major functional groups are simultaneously incorporated into the surface of SP-AG. Despite the high loading of S and P of 5.8 and 4.6%, respectively, the 3D macroporous continuity is preserved. The specific capacitance of SP-AG is 438 F/g at 10 mV/s is much greater than 347, 313, and 240 F/g of S-AG, P-AG, and AG, respectively. Moreover, the SP-AG delivers a specific capacitance of 381 F/g as a scan rate is increased to 500 mV/s, indicating the capacitance retention of 87.2%. After 10000 charging/discharging cycles at current density of 1 A/g, the SP-AG shows a greater electrochemical stability than AG with the capacitance retention ratio of 93.4%, due to the synergistic effect of S and P co-doing and 3D architecture. This synergistic effect of composition and structure is further confirmed by the enhanced energy and power densities in organic and ionic liquid electrolytes.
The control in the heteroatom doping is critical for surface and electronic properties, but chemistry is more complicated when two or more heteratoms are incorporated. Herein, we have demonstrated the co-doping of sulfur (S) and phosphorus (P) atoms into the three-dimensional (3D) macroporous, activated graphene aerogel (SP-AG). The C–S and C–PO bondings as major functional groups are simultaneously incorporated into the surface of SP-AG. Despite the high loading of S and P of 5.8 and 4.6%, respectively, the 3D macroporous continuity is preserved. The specific capacitance of SP-AG is 438 F/g at 10 mV/s is much greater than 347, 313, and 240 F/g of S-AG, P-AG, and AG, respectively. Moreover, the SP-AG delivers a specific capacitance of 381 F/g as a scan rate is increased to 500 mV/s, indicating the capacitance retention of 87.2%. After 10000 charging/discharging cycles at current density of 1 A/g, the SP-AG shows a greater electrochemical stability than AG with the capacitance retention ratio of 93.4%, due to the synergistic effect of S and P co-doing and 3D architecture. This synergistic effect of composition and structure is further confirmed by the enhanced energy and power densities in organic and ionic liquid electrolytes.
Author Park, Ho Seok
Yu, Xu
Kang, Yingbo
Author_xml – sequence: 1
  givenname: Xu
  surname: Yu
  fullname: Yu, Xu
– sequence: 2
  givenname: Yingbo
  surname: Kang
  fullname: Kang, Yingbo
– sequence: 3
  givenname: Ho Seok
  surname: Park
  fullname: Park, Ho Seok
  email: phs0727@skku.edu
BookMark eNqFkEFv1DAQhS1UJLaFf8DBRy4JdpImXg5IqKJQqRIH4GyNJ-ONV1k72AlS_z2zWk4c6GE0enrvjTTftbiKKZIQb7WqtdL9-2ONkF2KdcOqVrpWQ_tC7LQZ2qo1e30ldkopU_VN074S16UcWXZGdztRvm-z37KEOMplSoUnb0Viqsa0hHiQycspUIaMU0CY5ye5pJw4csiwTBRJAuV0oLlIn7KkOEHEc7FsC2WEBTCsbLBg_8QmvRYvPcyF3vzdN-Ln_ecfd1-rx29fHu4-PVbYdc1aucH1feNQ7wcwTatB4R7Be2U6g-Sp9Upr7B2Q7wAGbEE7M7jRueF2f6vH9ka8u9xdcvq1UVntKRSkeYZI_IFtmEJjukH1HO0uUcyplEzeLjmcID9ZreyZsT3aC2N7ZmyVtsyYax_-qfGzsIYU1wxhfq788VJmdvSbGduCgZjPGDLhascU_n_gD-nKoKk
CitedBy_id crossref_primary_10_1016_j_cej_2022_140094
crossref_primary_10_1016_j_apsusc_2018_12_152
crossref_primary_10_1016_j_jpowsour_2025_236686
crossref_primary_10_1021_acsomega_2c06010
crossref_primary_10_1016_j_rechem_2021_100109
crossref_primary_10_1016_j_carbon_2019_07_085
crossref_primary_10_1039_C9NR07255A
crossref_primary_10_1016_j_est_2020_101549
crossref_primary_10_1016_j_scib_2017_06_001
crossref_primary_10_1016_j_ijhydene_2022_01_149
crossref_primary_10_1016_j_jclepro_2022_133464
crossref_primary_10_1088_1757_899X_490_2_022069
crossref_primary_10_1002_apj_2995
crossref_primary_10_1016_j_est_2025_116095
crossref_primary_10_1016_j_cej_2020_127669
crossref_primary_10_1007_s00339_021_04899_7
crossref_primary_10_1016_j_susmat_2020_e00153
crossref_primary_10_1039_C8NR07454B
crossref_primary_10_1016_j_gee_2019_06_001
crossref_primary_10_1016_j_cej_2023_144609
crossref_primary_10_1016_j_apsusc_2018_05_088
crossref_primary_10_1016_j_comptc_2023_114035
crossref_primary_10_1016_j_seppur_2023_124072
crossref_primary_10_1016_j_est_2023_109098
crossref_primary_10_20964_2020_12_32
crossref_primary_10_1149_2_0751805jes
crossref_primary_10_1088_1361_6528_ac0190
crossref_primary_10_1016_j_mattod_2020_04_010
crossref_primary_10_1016_j_carbon_2017_11_050
crossref_primary_10_1139_cjc_2020_0283
crossref_primary_10_1016_j_nanoen_2018_03_016
crossref_primary_10_1039_C6CP00159A
crossref_primary_10_1007_s10854_020_04648_1
crossref_primary_10_1039_D2TA04061A
crossref_primary_10_1002_ente_201900685
crossref_primary_10_1016_j_rser_2019_109656
crossref_primary_10_1016_j_jallcom_2023_170548
crossref_primary_10_23919_SAIEE_2021_9432895
crossref_primary_10_1016_j_jallcom_2017_11_310
crossref_primary_10_1515_zpch_2018_1170
crossref_primary_10_1016_j_electacta_2019_01_122
crossref_primary_10_3390_nano12071141
crossref_primary_10_1007_s10853_022_07215_7
crossref_primary_10_1016_j_carbon_2016_12_059
crossref_primary_10_1016_j_est_2022_104118
crossref_primary_10_1016_j_jpowsour_2017_02_011
crossref_primary_10_1007_s10853_018_2471_5
crossref_primary_10_1002_pssb_201800700
crossref_primary_10_1016_j_electacta_2020_137507
crossref_primary_10_1016_j_jcis_2023_06_159
crossref_primary_10_1016_j_eurpolymj_2023_112552
crossref_primary_10_1002_cssc_201903440
crossref_primary_10_1016_j_jpowsour_2017_09_016
crossref_primary_10_1016_j_jpowsour_2017_05_031
crossref_primary_10_1016_j_jscs_2019_08_005
crossref_primary_10_1002_slct_201803413
crossref_primary_10_1007_s11581_018_2785_y
crossref_primary_10_1016_j_cej_2020_126352
crossref_primary_10_1016_j_mtchem_2021_100480
crossref_primary_10_3390_nano9091189
crossref_primary_10_1021_acsomega_9b01916
crossref_primary_10_1002_celc_201901204
crossref_primary_10_1016_j_apsusc_2022_152549
crossref_primary_10_1016_j_matchemphys_2020_123666
crossref_primary_10_1016_j_electacta_2019_04_087
crossref_primary_10_1002_aoc_5014
crossref_primary_10_1016_j_electacta_2018_04_084
crossref_primary_10_1002_smll_202005255
crossref_primary_10_1021_acsami_1c08187
crossref_primary_10_1016_j_compscitech_2019_107698
crossref_primary_10_1002_celc_201800230
crossref_primary_10_1016_j_compositesa_2021_106293
crossref_primary_10_1016_j_ijhydene_2020_03_059
crossref_primary_10_1021_acsami_8b13281
crossref_primary_10_1021_acs_chemrev_0c00083
crossref_primary_10_1021_acs_langmuir_8b02562
crossref_primary_10_1021_acs_energyfuels_3c01634
crossref_primary_10_1016_j_carbon_2020_03_033
crossref_primary_10_1038_srep27713
crossref_primary_10_1016_j_electacta_2017_01_099
crossref_primary_10_1038_s41598_019_43312_5
crossref_primary_10_1016_j_apcatb_2017_03_014
crossref_primary_10_1016_j_apcata_2018_08_013
crossref_primary_10_1007_s11581_021_03916_2
crossref_primary_10_1039_C7TA02653F
crossref_primary_10_1016_j_diamond_2020_107882
crossref_primary_10_1016_j_electacta_2019_135348
crossref_primary_10_1016_j_jallcom_2017_08_229
crossref_primary_10_1016_j_jpowsour_2021_230941
crossref_primary_10_1002_celc_201700066
crossref_primary_10_1016_j_jpowsour_2017_04_016
crossref_primary_10_1039_D1NR00126D
crossref_primary_10_1016_j_electacta_2016_08_074
crossref_primary_10_1016_j_jclepro_2024_141956
crossref_primary_10_1016_j_jssc_2020_121451
crossref_primary_10_1007_s10854_019_00710_9
crossref_primary_10_1016_j_jpowsour_2020_228799
crossref_primary_10_1016_j_ijhydene_2022_06_136
crossref_primary_10_1016_j_jcis_2021_06_020
crossref_primary_10_1039_C6NR09959A
crossref_primary_10_1016_j_cclet_2019_01_009
crossref_primary_10_1039_C9SE00142E
crossref_primary_10_1016_j_apsusc_2020_147022
crossref_primary_10_1016_j_flatc_2017_08_002
crossref_primary_10_1016_j_apt_2019_07_001
crossref_primary_10_1039_C8RA01715H
crossref_primary_10_1016_j_jelechem_2021_115939
crossref_primary_10_1016_j_carbon_2017_04_050
crossref_primary_10_1002_ente_201900247
crossref_primary_10_1016_j_electacta_2017_08_106
crossref_primary_10_1038_s41598_023_39553_0
crossref_primary_10_1021_acs_chemrev_9b00466
crossref_primary_10_1007_s13233_021_9075_7
crossref_primary_10_1016_j_apmt_2017_07_006
crossref_primary_10_1016_j_jpowsour_2018_02_069
crossref_primary_10_1080_1536383X_2023_2213359
crossref_primary_10_1016_j_jallcom_2019_04_138
crossref_primary_10_1021_acs_energyfuels_2c04111
crossref_primary_10_1039_C8CC08391F
crossref_primary_10_1021_acs_chemrev_3c00937
crossref_primary_10_1007_s11595_020_2330_5
crossref_primary_10_1039_C9MH01353A
crossref_primary_10_1016_j_electacta_2016_10_184
crossref_primary_10_1021_acsomega_0c02021
crossref_primary_10_1016_j_diamond_2021_108696
crossref_primary_10_1016_j_compositesb_2018_11_085
crossref_primary_10_1039_D0RA00458H
crossref_primary_10_1016_j_apsusc_2018_06_213
crossref_primary_10_1007_s10854_017_8323_2
crossref_primary_10_1149_1945_7111_abf5a2
crossref_primary_10_3390_c9020060
crossref_primary_10_1002_cey2_107
crossref_primary_10_1021_acssuschemeng_9b00725
crossref_primary_10_1016_j_apcata_2017_12_014
crossref_primary_10_1016_j_electacta_2019_135207
crossref_primary_10_1002_adfm_201909035
crossref_primary_10_1002_batt_202400021
crossref_primary_10_1021_acssuschemeng_7b03777
crossref_primary_10_3389_fchem_2019_00272
crossref_primary_10_3390_coatings10090892
crossref_primary_10_1002_eem2_12102
crossref_primary_10_1016_j_molliq_2022_120008
crossref_primary_10_1007_s11664_021_08812_z
crossref_primary_10_1016_j_apsusc_2018_01_221
crossref_primary_10_1007_s11581_019_03105_2
crossref_primary_10_1016_j_jallcom_2018_12_013
crossref_primary_10_1021_acsami_7b09866
crossref_primary_10_1016_j_jcis_2018_05_022
crossref_primary_10_1021_acsaem_9b00777
crossref_primary_10_1016_j_carbon_2020_08_079
crossref_primary_10_1002_adma_201706054
crossref_primary_10_1016_j_jece_2024_113933
crossref_primary_10_1016_j_electacta_2018_05_018
crossref_primary_10_1002_admi_201801296
crossref_primary_10_1007_s42823_024_00827_w
crossref_primary_10_1016_j_gee_2025_02_007
crossref_primary_10_1039_C8TA04561E
crossref_primary_10_1021_acsaem_9b02032
crossref_primary_10_1039_C6TA08482F
crossref_primary_10_1002_er_5047
crossref_primary_10_1016_j_jallcom_2024_174484
crossref_primary_10_1016_j_ijhydene_2023_03_326
crossref_primary_10_1016_j_jpowsour_2019_01_092
crossref_primary_10_1002_ente_202300499
crossref_primary_10_1016_j_jpowsour_2018_02_016
crossref_primary_10_1039_D1EE00166C
crossref_primary_10_1016_j_jallcom_2019_151932
crossref_primary_10_1002_smll_201903780
crossref_primary_10_1021_acs_biomac_1c00706
crossref_primary_10_1016_j_apsusc_2021_151042
crossref_primary_10_1016_j_jiec_2024_06_025
crossref_primary_10_1016_j_matchemphys_2019_121932
crossref_primary_10_1007_s10854_017_8269_4
crossref_primary_10_1016_j_apsusc_2020_146770
crossref_primary_10_1016_j_cplett_2017_08_058
crossref_primary_10_1039_D2TC02233H
crossref_primary_10_1016_j_apcatb_2018_08_068
crossref_primary_10_1016_j_electacta_2019_04_021
crossref_primary_10_1007_s40195_023_01532_9
crossref_primary_10_1007_s42823_021_00245_2
crossref_primary_10_1039_C6RA17231H
crossref_primary_10_1016_j_est_2021_103149
crossref_primary_10_1016_j_pnsc_2022_05_003
crossref_primary_10_1002_celc_201700406
crossref_primary_10_1002_ente_202300026
crossref_primary_10_1016_j_partic_2021_03_001
crossref_primary_10_1002_celc_201700525
crossref_primary_10_1007_s12274_021_3300_8
crossref_primary_10_1039_C8RA07308B
crossref_primary_10_1016_j_carbon_2018_11_053
crossref_primary_10_1016_j_jallcom_2022_166856
crossref_primary_10_1007_s10008_017_3683_3
crossref_primary_10_1016_j_carbon_2019_09_064
crossref_primary_10_1016_j_electacta_2020_137223
crossref_primary_10_1002_pc_28871
crossref_primary_10_1016_j_jallcom_2020_156853
crossref_primary_10_1016_j_cej_2025_161224
crossref_primary_10_1016_j_electacta_2018_08_137
crossref_primary_10_1002_celc_201801395
crossref_primary_10_1016_j_jelechem_2020_114478
crossref_primary_10_1007_s10008_018_3926_y
crossref_primary_10_1016_j_jpowsour_2021_229666
crossref_primary_10_1002_aenm_202001239
crossref_primary_10_1016_j_ces_2020_115496
crossref_primary_10_1016_j_electacta_2018_07_211
crossref_primary_10_1016_j_jcis_2019_06_031
crossref_primary_10_1002_aesr_202000052
crossref_primary_10_1007_s11581_019_03322_9
crossref_primary_10_1016_j_apsusc_2023_159060
crossref_primary_10_1016_j_matchemphys_2022_126825
crossref_primary_10_1016_j_ijbiomac_2018_04_012
crossref_primary_10_1016_j_micromeso_2018_12_007
crossref_primary_10_1016_j_jcis_2020_07_016
crossref_primary_10_1016_j_surfin_2021_101025
crossref_primary_10_1016_j_apmt_2017_01_004
crossref_primary_10_1021_acs_energyfuels_4c01220
crossref_primary_10_1016_j_carbon_2019_04_110
crossref_primary_10_1016_j_inoche_2024_112257
crossref_primary_10_1016_j_jallcom_2018_12_057
crossref_primary_10_1021_acsami_7b05965
crossref_primary_10_1039_D1DT02199K
crossref_primary_10_1007_s10853_017_1453_3
crossref_primary_10_1016_j_electacta_2018_11_046
crossref_primary_10_3390_molecules26123499
crossref_primary_10_1039_C8NJ00652K
crossref_primary_10_1016_j_carbon_2022_11_054
crossref_primary_10_1016_j_jpowsour_2017_10_082
crossref_primary_10_1016_j_jpowsour_2016_08_011
crossref_primary_10_1016_j_nanoen_2020_104666
crossref_primary_10_23919_SAIEE_2019_8732797
crossref_primary_10_3390_coatings12091312
crossref_primary_10_1142_S179329201950142X
crossref_primary_10_1007_s11706_022_0603_y
crossref_primary_10_1016_j_ijhydene_2022_11_070
crossref_primary_10_1016_j_electacta_2020_137209
crossref_primary_10_1088_2053_1591_ab29bc
crossref_primary_10_1007_s12039_020_01849_3
crossref_primary_10_1039_D2PY00971D
crossref_primary_10_1016_j_jpowsour_2016_10_109
crossref_primary_10_1002_cplu_201700288
crossref_primary_10_1039_D0QM00392A
crossref_primary_10_1007_s11249_016_0792_6
crossref_primary_10_1016_j_electacta_2019_05_021
crossref_primary_10_1021_acs_iecr_6b00362
crossref_primary_10_1088_2053_1591_abc125
crossref_primary_10_1039_C6RA27734A
crossref_primary_10_1016_j_cej_2019_122305
crossref_primary_10_1002_admi_201701261
crossref_primary_10_1016_j_cej_2019_04_100
crossref_primary_10_1016_j_apmt_2017_05_002
crossref_primary_10_1016_j_apsusc_2023_158191
crossref_primary_10_1016_j_electacta_2018_07_237
crossref_primary_10_1021_acsami_0c12414
crossref_primary_10_1016_j_electacta_2018_12_096
crossref_primary_10_1039_D0NJ03163A
crossref_primary_10_1039_C6MH00358C
crossref_primary_10_3390_nano10091731
crossref_primary_10_1016_j_cej_2017_07_064
crossref_primary_10_1016_j_cej_2019_123511
crossref_primary_10_1016_j_indcrop_2024_119813
crossref_primary_10_1016_j_susmat_2024_e00830
crossref_primary_10_1016_j_electacta_2024_144581
crossref_primary_10_1016_j_est_2022_105494
crossref_primary_10_1039_C6RA23236A
crossref_primary_10_1021_acsaem_8b01131
crossref_primary_10_1039_D0AN01653E
crossref_primary_10_1016_j_matlet_2017_12_015
crossref_primary_10_1016_j_nanoms_2021_01_002
crossref_primary_10_1246_bcsj_20210027
crossref_primary_10_1016_j_jpowsour_2017_02_040
crossref_primary_10_1021_jacs_8b11181
crossref_primary_10_1039_C6TA08169J
crossref_primary_10_1016_j_jpowsour_2018_04_057
crossref_primary_10_1016_j_jpowsour_2020_228151
crossref_primary_10_1016_j_cej_2023_147211
Cites_doi 10.1039/C3CS60401B
10.1021/nl102661q
10.1016/j.nanoen.2015.05.010
10.1039/c2ee24203f
10.1016/S0378-7753(02)00013-7
10.1039/C5CP01904D
10.1039/C5TA04773K
10.1039/c3ee41444b
10.1021/nn2041279
10.1016/j.jpowsour.2013.01.165
10.1016/j.jpowsour.2013.12.004
10.1016/j.carbon.2014.07.002
10.1021/ja01539a017
10.1039/c1ee01354h
10.1021/acsnano.5b00582
10.1016/j.electacta.2015.10.011
10.1039/c3nr34003a
10.1039/C1CS15060J
10.1021/nl300901a
10.1016/j.carbon.2014.05.002
10.1002/adma.201201948
10.1021/jz4014163
10.1039/C5TA06394A
10.1021/ja809265m
10.1149/1.1393627
10.1039/c3ee41847b
10.1016/j.carbon.2013.05.067
10.1063/1.3069277
10.1038/nmat2297
10.1021/nn3021234
10.1039/C3TA13462H
10.1039/c2ee03092f
10.1039/C5TA07963B
10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
10.1126/science.1200770
10.1021/nn202020w
10.1016/S0008-6223(00)00183-4
10.1039/c3ee41638k
10.1016/j.jpowsour.2014.12.102
10.1039/c3ee41182f
10.1126/science.1158736
10.1002/adma.201304137
10.1039/c3ta01648j
10.1039/C4RA10885J
10.1021/nn101926g
10.1021/nn203393d
10.1002/adfm.201200186
10.1038/srep09591
10.1021/nn100145x
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.carbon.2016.01.073
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
EndPage 56
ExternalDocumentID 10_1016_j_carbon_2016_01_073
S0008622316300616
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c442t-b7b662bc197a8231a0c9caff0848cefe3f011c6baef4aa7c3a1b87bdbb75951d3
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Tue Aug 05 10:45:13 EDT 2025
Tue Jul 01 01:14:45 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
Fri Feb 23 02:25:56 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-b7b662bc197a8231a0c9caff0848cefe3f011c6baef4aa7c3a1b87bdbb75951d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000284706
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2000284706
crossref_primary_10_1016_j_carbon_2016_01_073
crossref_citationtrail_10_1016_j_carbon_2016_01_073
elsevier_sciencedirect_doi_10_1016_j_carbon_2016_01_073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Carbon (New York)
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yu, Park (bib32) 2014; 77
Su, Zhang, Zhuang, Li, Wu, Zhang (bib37) 2013; 62
Zhang, Jiang, Li, Zhao (bib49) 2011; 4
Béguin, Presser, Balducci, Frackowiak (bib6) 2014; 26
Miller, Simon (bib1) 2008; 321
Frackowiak, Béguin (bib3) 2001; 39
Eckmann, Felten, Mishchenko, Britnell, Krupke, Novoselov (bib45) 2012; 12
Liu, Nie, Yang, Zhang, Jin, Lu (bib38) 2013; 5
García-Gómez, Moreno-Fernández, Lobato, Centeno (bib10) 2015; 17
Wang, Zhang, Zhang (bib4) 2012; 41
Cong, Ren, Wang, Yu (bib14) 2013; 6
Yu, Kim, Hong, Jung, Kwon, Kong (bib27) 2015; 15
Wu, Winter, Chen, Sun, Turchanin, Feng (bib31) 2012; 24
Parveen, Ansari, Ansari, Cho (bib46) 2015; 4
Meyers, Doyle, Darling, Newman (bib48) 2000; 147
Liu, Yu, Neff, Zhamu, Jang (bib9) 2010; 10
Kong, Chen, Chen (bib24) 2014; 43
Li, Liao (bib34) 2013; 6
Wang, Wang, Wu, Xia, Jia (bib35) 2015; 5
Chen, Shen, Sukcharoenchoke, Zhou (bib19) 2009; 94
Choi, Hong, Hong, Hammond, Park (bib47) 2011; 5
Reddy, Srivastava, Gowda, Gullapalli, Dubey, Ajayan (bib29) 2010; 4
Hummers, Offeman (bib43) 1958; 80
An, Kim, Park, Moon, Bae, Lim (bib8) 2001; 11
Choi, Park, Woo (bib36) 2012; 6
Paraknowitsch, Thomas (bib25) 2013; 6
Bairi, Nasini, Kumar Ramasahayam, Bourdo, Viswanathan (bib40) 2015; 182
Qie, Chen, Xu, Xiong, Jiang, Zou (bib7) 2013; 6
Choi, Chung, Kwon, Park, Woo (bib39) 2013; 1
Hulicova-Jurcakova, Puziy, Poddubnaya, Suárez-García, Tascón, Lu (bib20) 2009; 131
Choi, Park, Park, Yang, Kim, Jang (bib44) 2010; 4
Yang, Zhi, Tang, Feng, Maier, Müllen (bib30) 2012; 22
Huang, Candelaria, Li, Li, Tian, Zhang (bib21) 2014; 252
Yang, Yao, Li, Fang, Nie, Liu (bib28) 2012; 6
Yu, Park, Yeon, Park (bib26) 2015; 278
Mahmood, Yun, Kim, Park (bib18) 2013; 235
Guan, Liu, Wang, Mao, Fan, Shen (bib16) 2015; 9
Wu, Fang, Jiang, Holze (bib22) 2002; 108
Wang, Sun, Zhuo, Zhang, Wang (bib42) 2014; 4
Wang, Lu, Lei, Song (bib15) 2014; 2
Gu, Sevilla, Magasinski, Fuertes, Yushin (bib23) 2013; 6
Razmjooei, Singh, Song, Yu (bib41) 2014; 78
Kondrat, Pérez, Presser, Gogotsi, Kornyshev (bib11) 2012; 5
Feng, Li, Presser, Cummings (bib12) 2013; 4
Schneider, Suchomski, Sommer, Janek, Brezesinski (bib33) 2015; 3
Yuan, Lu, Xiao, Zhai, Dai, Zhang (bib17) 2012; 6
Zhu, Murali, Stoller, Ganesh, Cai, Ferreira (bib5) 2011; 332
Ewert, Weingarth, Denner, Friedrich, Zeiger, Schreiber (bib13) 2015; 3
Simon, Gogotsi (bib2) 2008; 7
Yang (10.1016/j.carbon.2016.01.073_bib30) 2012; 22
Kong (10.1016/j.carbon.2016.01.073_bib24) 2014; 43
Parveen (10.1016/j.carbon.2016.01.073_bib46) 2015; 4
Yu (10.1016/j.carbon.2016.01.073_bib26) 2015; 278
Guan (10.1016/j.carbon.2016.01.073_bib16) 2015; 9
Huang (10.1016/j.carbon.2016.01.073_bib21) 2014; 252
Hulicova-Jurcakova (10.1016/j.carbon.2016.01.073_bib20) 2009; 131
Mahmood (10.1016/j.carbon.2016.01.073_bib18) 2013; 235
Gu (10.1016/j.carbon.2016.01.073_bib23) 2013; 6
Chen (10.1016/j.carbon.2016.01.073_bib19) 2009; 94
Yu (10.1016/j.carbon.2016.01.073_bib32) 2014; 77
Kondrat (10.1016/j.carbon.2016.01.073_bib11) 2012; 5
Wu (10.1016/j.carbon.2016.01.073_bib31) 2012; 24
Miller (10.1016/j.carbon.2016.01.073_bib1) 2008; 321
Eckmann (10.1016/j.carbon.2016.01.073_bib45) 2012; 12
Hummers (10.1016/j.carbon.2016.01.073_bib43) 1958; 80
Wang (10.1016/j.carbon.2016.01.073_bib35) 2015; 5
Razmjooei (10.1016/j.carbon.2016.01.073_bib41) 2014; 78
Wang (10.1016/j.carbon.2016.01.073_bib42) 2014; 4
Liu (10.1016/j.carbon.2016.01.073_bib38) 2013; 5
Zhang (10.1016/j.carbon.2016.01.073_bib49) 2011; 4
Béguin (10.1016/j.carbon.2016.01.073_bib6) 2014; 26
Liu (10.1016/j.carbon.2016.01.073_bib9) 2010; 10
Ewert (10.1016/j.carbon.2016.01.073_bib13) 2015; 3
Paraknowitsch (10.1016/j.carbon.2016.01.073_bib25) 2013; 6
Cong (10.1016/j.carbon.2016.01.073_bib14) 2013; 6
Choi (10.1016/j.carbon.2016.01.073_bib36) 2012; 6
Meyers (10.1016/j.carbon.2016.01.073_bib48) 2000; 147
Feng (10.1016/j.carbon.2016.01.073_bib12) 2013; 4
Yang (10.1016/j.carbon.2016.01.073_bib28) 2012; 6
Wang (10.1016/j.carbon.2016.01.073_bib4) 2012; 41
Wang (10.1016/j.carbon.2016.01.073_bib15) 2014; 2
Choi (10.1016/j.carbon.2016.01.073_bib39) 2013; 1
Choi (10.1016/j.carbon.2016.01.073_bib44) 2010; 4
Bairi (10.1016/j.carbon.2016.01.073_bib40) 2015; 182
An (10.1016/j.carbon.2016.01.073_bib8) 2001; 11
Yu (10.1016/j.carbon.2016.01.073_bib27) 2015; 15
Zhu (10.1016/j.carbon.2016.01.073_bib5) 2011; 332
García-Gómez (10.1016/j.carbon.2016.01.073_bib10) 2015; 17
Frackowiak (10.1016/j.carbon.2016.01.073_bib3) 2001; 39
Yuan (10.1016/j.carbon.2016.01.073_bib17) 2012; 6
Schneider (10.1016/j.carbon.2016.01.073_bib33) 2015; 3
Su (10.1016/j.carbon.2016.01.073_bib37) 2013; 62
Choi (10.1016/j.carbon.2016.01.073_bib47) 2011; 5
Simon (10.1016/j.carbon.2016.01.073_bib2) 2008; 7
Wu (10.1016/j.carbon.2016.01.073_bib22) 2002; 108
Reddy (10.1016/j.carbon.2016.01.073_bib29) 2010; 4
Li (10.1016/j.carbon.2016.01.073_bib34) 2013; 6
Qie (10.1016/j.carbon.2016.01.073_bib7) 2013; 6
References_xml – volume: 182
  start-page: 987
  year: 2015
  end-page: 994
  ident: bib40
  article-title: Electrocatalytic and supercapacitor performance of phosphorous and nitrogen co-doped porous carbons synthesized from aminated tannins
  publication-title: Electrochimica Acta
– volume: 131
  start-page: 5026
  year: 2009
  end-page: 5027
  ident: bib20
  article-title: Highly stable performance of supercapacitors from phosphorus-enriched carbons
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 54060
  year: 2014
  end-page: 54065
  ident: bib42
  article-title: Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application
  publication-title: RSC Adv.
– volume: 77
  start-page: 59
  year: 2014
  end-page: 65
  ident: bib32
  article-title: Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors
  publication-title: Carbon
– volume: 6
  start-page: 7084
  year: 2012
  end-page: 7091
  ident: bib36
  article-title: Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity
  publication-title: ACS Nano
– volume: 4
  start-page: 3367
  year: 2013
  end-page: 3376
  ident: bib12
  article-title: Molecular insights into carbon supercapacitors based on room-temperature ionic liquids
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 2497
  year: 2013
  end-page: 2504
  ident: bib7
  article-title: Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 387
  year: 2001
  end-page: 392
  ident: bib8
  article-title: Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes
  publication-title: Adv. Funct. Mater
– volume: 1
  start-page: 3694
  year: 2013
  ident: bib39
  article-title: B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 656
  year: 2012
  end-page: 661
  ident: bib17
  article-title: Flexible solid-state supercapacitors based on carbon nanoparticles/MnO
  publication-title: ACS Nano
– volume: 10
  start-page: 4863
  year: 2010
  end-page: 4868
  ident: bib9
  article-title: Graphene-based supercapacitor with an ultrahigh energy density
  publication-title: Nano Lett.
– volume: 321
  start-page: 651
  year: 2008
  end-page: 652
  ident: bib1
  article-title: Electrochemical capacitors for energy management
  publication-title: Science
– volume: 332
  start-page: 1537
  year: 2011
  end-page: 1541
  ident: bib5
  article-title: Carbon-based supercapacitors produced by activation of graphene
  publication-title: Science
– volume: 6
  start-page: 2839
  year: 2013
  ident: bib25
  article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 20482
  year: 2015
  end-page: 20486
  ident: bib33
  article-title: Free-standing and binder-free highly N-doped carbon/sulfur cathodes with tailorable loading for high-areal-capacity lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 108
  start-page: 245
  year: 2002
  end-page: 249
  ident: bib22
  article-title: Effects of doped sulfur on electrochemical performance of carbon anode
  publication-title: J. Power Sources
– volume: 6
  start-page: 2892
  year: 2013
  ident: bib34
  article-title: Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 233
  year: 2015
  end-page: 240
  ident: bib46
  article-title: Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials
  publication-title: J. Mater. Chem. A
– volume: 80
  year: 1958
  ident: bib43
  article-title: Preparation of graphitic oxide
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 6474
  year: 2012
  end-page: 6479
  ident: bib11
  article-title: Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 5130
  year: 2012
  end-page: 5135
  ident: bib31
  article-title: Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors
  publication-title: Adv. Mater
– volume: 39
  start-page: 937
  year: 2001
  end-page: 950
  ident: bib3
  article-title: Carbon materials for the electrochemical storage of energy in capacitors
  publication-title: Carbon
– volume: 235
  start-page: 187
  year: 2013
  end-page: 192
  ident: bib18
  article-title: Highly uniform deposition of MoO
  publication-title: J. Power Sources
– volume: 5
  start-page: 3283
  year: 2013
  end-page: 3288
  ident: bib38
  article-title: Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions
  publication-title: Nanoscale
– volume: 12
  start-page: 3925
  year: 2012
  end-page: 3930
  ident: bib45
  article-title: Probing the nature of defects in graphene by Raman spectroscopy
  publication-title: Nano Lett.
– volume: 26
  start-page: 2219
  year: 2014
  end-page: 2251
  ident: bib6
  article-title: Carbons and electrolytes for advanced supercapacitors
  publication-title: Adv. Mater
– volume: 4
  start-page: 6337
  year: 2010
  end-page: 6342
  ident: bib29
  article-title: Synthesis of nitrogen-doped graphene films for lithium battery application
  publication-title: ACS Nano
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  ident: bib2
  article-title: Materials for electrochemical capacitors
  publication-title: Nat. Mater
– volume: 5
  start-page: 9591
  year: 2015
  ident: bib35
  article-title: Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor
  publication-title: Sci. Rep.
– volume: 4
  start-page: 2910
  year: 2010
  end-page: 2918
  ident: bib44
  article-title: Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors
  publication-title: ACS Nano
– volume: 6
  start-page: 1185
  year: 2013
  end-page: 1191
  ident: bib14
  article-title: Flexible graphene–polyaniline composite paper for high-performance supercapacitor
  publication-title: Energy Environ. Sci.
– volume: 94
  start-page: 043113
  year: 2009
  ident: bib19
  article-title: Flexible and transparent supercapacitor based on In
  publication-title: Appl. Phys. Lett.
– volume: 252
  start-page: 90
  year: 2014
  end-page: 97
  ident: bib21
  article-title: Sulfurized activated carbon for high energy density supercapacitors
  publication-title: J. Power Sources
– volume: 3
  start-page: 18906
  year: 2015
  end-page: 18912
  ident: bib13
  article-title: Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 4491
  year: 2014
  end-page: 4509
  ident: bib15
  article-title: Graphene-based polyaniline nanocomposites: preparation, properties and applications
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 576
  year: 2015
  end-page: 586
  ident: bib27
  article-title: Elucidating surface redox charge storage of phosphorus-incorporated graphenes with hierarchical architectures
  publication-title: Nano Energy
– volume: 43
  start-page: 2841
  year: 2014
  end-page: 2857
  ident: bib24
  article-title: Doped graphene for metal-free catalysis
  publication-title: Chem. Soc. Rev.
– volume: 147
  start-page: 2930
  year: 2000
  end-page: 2940
  ident: bib48
  article-title: The impedance response of a porous electrode composed of intercalation particles,
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 5198
  year: 2015
  end-page: 5207
  ident: bib16
  article-title: Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability
  publication-title: ACS Nano
– volume: 78
  start-page: 257
  year: 2014
  end-page: 267
  ident: bib41
  article-title: Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study
  publication-title: Carbon
– volume: 17
  start-page: 15687
  year: 2015
  end-page: 15690
  ident: bib10
  article-title: Constant capacitance in nanopores of carbon monoliths
  publication-title: Phys. Chem. Chem. Phys.
– volume: 41
  start-page: 797
  year: 2012
  end-page: 828
  ident: bib4
  article-title: A review of electrode materials for electrochemical supercapacitors
  publication-title: Chem. Soc. Rev.
– volume: 278
  start-page: 484
  year: 2015
  end-page: 489
  ident: bib26
  article-title: Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes
  publication-title: J. Power Sources
– volume: 4
  start-page: 4009
  year: 2011
  end-page: 4015
  ident: bib49
  article-title: A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 205
  year: 2012
  end-page: 211
  ident: bib28
  article-title: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction
  publication-title: ACS Nano
– volume: 22
  start-page: 3634
  year: 2012
  end-page: 3640
  ident: bib30
  article-title: Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions
  publication-title: Adv. Funct. Mater
– volume: 6
  start-page: 2465
  year: 2013
  ident: bib23
  article-title: Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection
  publication-title: Energy Environ. Sci.
– volume: 62
  start-page: 296
  year: 2013
  end-page: 301
  ident: bib37
  article-title: Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction
  publication-title: Carbon
– volume: 5
  start-page: 7205
  year: 2011
  end-page: 7213
  ident: bib47
  article-title: Facilitated ion transport in all-solid-state flexible supercapacitors
  publication-title: ACS Nano
– volume: 43
  start-page: 2841
  year: 2014
  ident: 10.1016/j.carbon.2016.01.073_bib24
  article-title: Doped graphene for metal-free catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60401B
– volume: 10
  start-page: 4863
  year: 2010
  ident: 10.1016/j.carbon.2016.01.073_bib9
  article-title: Graphene-based supercapacitor with an ultrahigh energy density
  publication-title: Nano Lett.
  doi: 10.1021/nl102661q
– volume: 15
  start-page: 576
  year: 2015
  ident: 10.1016/j.carbon.2016.01.073_bib27
  article-title: Elucidating surface redox charge storage of phosphorus-incorporated graphenes with hierarchical architectures
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.05.010
– volume: 6
  start-page: 1185
  year: 2013
  ident: 10.1016/j.carbon.2016.01.073_bib14
  article-title: Flexible graphene–polyaniline composite paper for high-performance supercapacitor
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee24203f
– volume: 108
  start-page: 245
  year: 2002
  ident: 10.1016/j.carbon.2016.01.073_bib22
  article-title: Effects of doped sulfur on electrochemical performance of carbon anode
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00013-7
– volume: 17
  start-page: 15687
  year: 2015
  ident: 10.1016/j.carbon.2016.01.073_bib10
  article-title: Constant capacitance in nanopores of carbon monoliths
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP01904D
– volume: 3
  start-page: 18906
  year: 2015
  ident: 10.1016/j.carbon.2016.01.073_bib13
  article-title: Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04773K
– volume: 6
  start-page: 2839
  year: 2013
  ident: 10.1016/j.carbon.2016.01.073_bib25
  article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41444b
– volume: 6
  start-page: 656
  year: 2012
  ident: 10.1016/j.carbon.2016.01.073_bib17
  article-title: Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure
  publication-title: ACS Nano
  doi: 10.1021/nn2041279
– volume: 235
  start-page: 187
  year: 2013
  ident: 10.1016/j.carbon.2016.01.073_bib18
  article-title: Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved performance of supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.165
– volume: 252
  start-page: 90
  year: 2014
  ident: 10.1016/j.carbon.2016.01.073_bib21
  article-title: Sulfurized activated carbon for high energy density supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.004
– volume: 78
  start-page: 257
  year: 2014
  ident: 10.1016/j.carbon.2016.01.073_bib41
  article-title: Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.07.002
– volume: 80
  year: 1958
  ident: 10.1016/j.carbon.2016.01.073_bib43
  article-title: Preparation of graphitic oxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
– volume: 4
  start-page: 4009
  year: 2011
  ident: 10.1016/j.carbon.2016.01.073_bib49
  article-title: A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01354h
– volume: 9
  start-page: 5198
  year: 2015
  ident: 10.1016/j.carbon.2016.01.073_bib16
  article-title: Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00582
– volume: 182
  start-page: 987
  year: 2015
  ident: 10.1016/j.carbon.2016.01.073_bib40
  article-title: Electrocatalytic and supercapacitor performance of phosphorous and nitrogen co-doped porous carbons synthesized from aminated tannins
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2015.10.011
– volume: 5
  start-page: 3283
  year: 2013
  ident: 10.1016/j.carbon.2016.01.073_bib38
  article-title: Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions
  publication-title: Nanoscale
  doi: 10.1039/c3nr34003a
– volume: 41
  start-page: 797
  year: 2012
  ident: 10.1016/j.carbon.2016.01.073_bib4
  article-title: A review of electrode materials for electrochemical supercapacitors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15060J
– volume: 12
  start-page: 3925
  year: 2012
  ident: 10.1016/j.carbon.2016.01.073_bib45
  article-title: Probing the nature of defects in graphene by Raman spectroscopy
  publication-title: Nano Lett.
  doi: 10.1021/nl300901a
– volume: 77
  start-page: 59
  year: 2014
  ident: 10.1016/j.carbon.2016.01.073_bib32
  article-title: Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.05.002
– volume: 24
  start-page: 5130
  year: 2012
  ident: 10.1016/j.carbon.2016.01.073_bib31
  article-title: Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors
  publication-title: Adv. Mater
  doi: 10.1002/adma.201201948
– volume: 4
  start-page: 3367
  year: 2013
  ident: 10.1016/j.carbon.2016.01.073_bib12
  article-title: Molecular insights into carbon supercapacitors based on room-temperature ionic liquids
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz4014163
– volume: 3
  start-page: 20482
  year: 2015
  ident: 10.1016/j.carbon.2016.01.073_bib33
  article-title: Free-standing and binder-free highly N-doped carbon/sulfur cathodes with tailorable loading for high-areal-capacity lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06394A
– volume: 131
  start-page: 5026
  year: 2009
  ident: 10.1016/j.carbon.2016.01.073_bib20
  article-title: Highly stable performance of supercapacitors from phosphorus-enriched carbons
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809265m
– volume: 147
  start-page: 2930
  year: 2000
  ident: 10.1016/j.carbon.2016.01.073_bib48
  article-title: The impedance response of a porous electrode composed of intercalation particles,
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393627
– volume: 6
  start-page: 2892
  year: 2013
  ident: 10.1016/j.carbon.2016.01.073_bib34
  article-title: Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41847b
– volume: 62
  start-page: 296
  year: 2013
  ident: 10.1016/j.carbon.2016.01.073_bib37
  article-title: Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.05.067
– volume: 94
  start-page: 043113
  year: 2009
  ident: 10.1016/j.carbon.2016.01.073_bib19
  article-title: Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3069277
– volume: 7
  start-page: 845
  year: 2008
  ident: 10.1016/j.carbon.2016.01.073_bib2
  article-title: Materials for electrochemical capacitors
  publication-title: Nat. Mater
  doi: 10.1038/nmat2297
– volume: 6
  start-page: 7084
  year: 2012
  ident: 10.1016/j.carbon.2016.01.073_bib36
  article-title: Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity
  publication-title: ACS Nano
  doi: 10.1021/nn3021234
– volume: 2
  start-page: 4491
  year: 2014
  ident: 10.1016/j.carbon.2016.01.073_bib15
  article-title: Graphene-based polyaniline nanocomposites: preparation, properties and applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13462H
– volume: 5
  start-page: 6474
  year: 2012
  ident: 10.1016/j.carbon.2016.01.073_bib11
  article-title: Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03092f
– volume: 4
  start-page: 233
  year: 2015
  ident: 10.1016/j.carbon.2016.01.073_bib46
  article-title: Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA07963B
– volume: 11
  start-page: 387
  year: 2001
  ident: 10.1016/j.carbon.2016.01.073_bib8
  article-title: Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes
  publication-title: Adv. Funct. Mater
  doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
– volume: 332
  start-page: 1537
  year: 2011
  ident: 10.1016/j.carbon.2016.01.073_bib5
  article-title: Carbon-based supercapacitors produced by activation of graphene
  publication-title: Science
  doi: 10.1126/science.1200770
– volume: 5
  start-page: 7205
  year: 2011
  ident: 10.1016/j.carbon.2016.01.073_bib47
  article-title: Facilitated ion transport in all-solid-state flexible supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/nn202020w
– volume: 39
  start-page: 937
  year: 2001
  ident: 10.1016/j.carbon.2016.01.073_bib3
  article-title: Carbon materials for the electrochemical storage of energy in capacitors
  publication-title: Carbon
  doi: 10.1016/S0008-6223(00)00183-4
– volume: 6
  start-page: 2497
  year: 2013
  ident: 10.1016/j.carbon.2016.01.073_bib7
  article-title: Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41638k
– volume: 278
  start-page: 484
  year: 2015
  ident: 10.1016/j.carbon.2016.01.073_bib26
  article-title: Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.102
– volume: 6
  start-page: 2465
  year: 2013
  ident: 10.1016/j.carbon.2016.01.073_bib23
  article-title: Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41182f
– volume: 321
  start-page: 651
  year: 2008
  ident: 10.1016/j.carbon.2016.01.073_bib1
  article-title: Electrochemical capacitors for energy management
  publication-title: Science
  doi: 10.1126/science.1158736
– volume: 26
  start-page: 2219
  year: 2014
  ident: 10.1016/j.carbon.2016.01.073_bib6
  article-title: Carbons and electrolytes for advanced supercapacitors
  publication-title: Adv. Mater
  doi: 10.1002/adma.201304137
– volume: 1
  start-page: 3694
  year: 2013
  ident: 10.1016/j.carbon.2016.01.073_bib39
  article-title: B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta01648j
– volume: 4
  start-page: 54060
  year: 2014
  ident: 10.1016/j.carbon.2016.01.073_bib42
  article-title: Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application
  publication-title: RSC Adv.
  doi: 10.1039/C4RA10885J
– volume: 4
  start-page: 6337
  year: 2010
  ident: 10.1016/j.carbon.2016.01.073_bib29
  article-title: Synthesis of nitrogen-doped graphene films for lithium battery application
  publication-title: ACS Nano
  doi: 10.1021/nn101926g
– volume: 6
  start-page: 205
  year: 2012
  ident: 10.1016/j.carbon.2016.01.073_bib28
  article-title: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction
  publication-title: ACS Nano
  doi: 10.1021/nn203393d
– volume: 22
  start-page: 3634
  year: 2012
  ident: 10.1016/j.carbon.2016.01.073_bib30
  article-title: Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.201200186
– volume: 5
  start-page: 9591
  year: 2015
  ident: 10.1016/j.carbon.2016.01.073_bib35
  article-title: Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor
  publication-title: Sci. Rep.
  doi: 10.1038/srep09591
– volume: 4
  start-page: 2910
  year: 2010
  ident: 10.1016/j.carbon.2016.01.073_bib44
  article-title: Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors
  publication-title: ACS Nano
  doi: 10.1021/nn100145x
SSID ssj0004814
Score 2.609347
Snippet The control in the heteroatom doping is critical for surface and electronic properties, but chemistry is more complicated when two or more heteratoms are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms capacitance
electrochemistry
energy
graphene
ionic liquids
phosphorus
porous media
sulfur
Title Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance
URI https://dx.doi.org/10.1016/j.carbon.2016.01.073
https://www.proquest.com/docview/2000284706
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT3wTwWt1u02T9rgsyqroRQVvIZkmPlja0t0evPjbnelDURDBQw8tSQkzycwXZuYbxk7CTEGaxSqQPonwgoJ2ME0MBKGC0GTSqbbC--ZWTh7E1WP8uMDGfS0MpVV2tr-16Y217r6cddI8K19eqMaX4DjiE2KNkiHRbguhaJefvn-leYik5femMD-N7svnmhwvMJUtiAU1lA15p4p-c08_DHXjfS7W2GoHG_moXdk6W3D5Blse993aNtnsrp76uuImz3j5XMzwqeoZhyLImpIoXnhOba-bwAHqZfrGEXnjtZ83lNVo8bhxVfGEa-GIY7nLn4mJAyfO6tJVgD4V8PBXvPyqNNhiDxfn9-NJ0DVUCECI4Tywyko5tBCmylD4zwwgBeM9ceqD8y7yeNpBWuO8MEZBZEKbKJtZq2JEYlm0zRbzInc7jMcKcZVJpRNxKoSJkiFkqVeJhzgxStldFvVy1NCxjVPTi6nu08pedSt9TdLXg1Cj9HdZ8DmrbNk2_hivehXpb7tGo0P4Y-Zxr1GNmqIoickdSp36cg7IZw_k3r__vs9W6K1NjDxgi_OqdocIXub2qNmdR2xpdHk9uf0AmcPyJw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwEB2VsigbxFOUp5FgGXpz49jJggUqVLf0saGVujP2xG6LrpIouRHqhp_qD3YmDyqQUCWkLrJJbMs6dmaO5ZkzAO_iQmNepDpSIUvogEJ2MM8sRrHG2BbK6yHD--BQLY7l15P0ZA0up1wYDqscbf9g03trPb7ZGtHcqs_POceX6TjxE1aNUrEaIyv3_MVPOre1H3c_0yK_n893vhxtL6KxtECEUs5XkdNOqbnDONeWL8LsDHO0IbC6PPrgk0D7HpWzPkhrNSY2dpl2hXM6JU5SJDTuHbgryVxw2YQPv67jSmQ2CIpzXAFPb8rX64PK0DauYtnVWPVqoTr5lz_8yzP07m7nAdwfear4NEDxENZ8-Qg2tqfycI-h_dYtQ9cIWxaiPqtaepquFVhFRZ-DJaoguM52f1NBG2F5IYjqV9Sk18gmEyusb6pTmosg4ix8ecbSH9Sx7WrfIDlxJGvTiPo6teEJHN8KzE9hvaxK_wxEqonI2Vx5meZSWsIdizzoLGCaWa3dJiQTjgZHeXOusrE0UxzbDzOgbxh9M4sNob8J0e9e9SDvcUN7PS2R-WObGvJAN_R8O62ooZXiaxlbekKdC4HOmCTM1PP_Hv0NbCyODvbN_u7h3gu4x1-GqMyXsL5qOv-KmNPKve53qoDvt_1rXAHXAzAU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfur+and+phosphorus+co-doping+of+hierarchically+porous+graphene+aerogels+for+enhancing+supercapacitor+performance&rft.jtitle=Carbon+%28New+York%29&rft.au=Yu%2C+Xu&rft.au=Kang%2C+Yingbo&rft.au=Park%2C+Ho+Seok&rft.date=2016-05-01&rft.pub=Elsevier+Ltd&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=101&rft.spage=49&rft.epage=56&rft_id=info:doi/10.1016%2Fj.carbon.2016.01.073&rft.externalDocID=S0008622316300616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon