Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance
The control in the heteroatom doping is critical for surface and electronic properties, but chemistry is more complicated when two or more heteratoms are incorporated. Herein, we have demonstrated the co-doping of sulfur (S) and phosphorus (P) atoms into the three-dimensional (3D) macroporous, activ...
Saved in:
Published in | Carbon (New York) Vol. 101; pp. 49 - 56 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The control in the heteroatom doping is critical for surface and electronic properties, but chemistry is more complicated when two or more heteratoms are incorporated. Herein, we have demonstrated the co-doping of sulfur (S) and phosphorus (P) atoms into the three-dimensional (3D) macroporous, activated graphene aerogel (SP-AG). The C–S and C–PO bondings as major functional groups are simultaneously incorporated into the surface of SP-AG. Despite the high loading of S and P of 5.8 and 4.6%, respectively, the 3D macroporous continuity is preserved. The specific capacitance of SP-AG is 438 F/g at 10 mV/s is much greater than 347, 313, and 240 F/g of S-AG, P-AG, and AG, respectively. Moreover, the SP-AG delivers a specific capacitance of 381 F/g as a scan rate is increased to 500 mV/s, indicating the capacitance retention of 87.2%. After 10000 charging/discharging cycles at current density of 1 A/g, the SP-AG shows a greater electrochemical stability than AG with the capacitance retention ratio of 93.4%, due to the synergistic effect of S and P co-doing and 3D architecture. This synergistic effect of composition and structure is further confirmed by the enhanced energy and power densities in organic and ionic liquid electrolytes. |
---|---|
AbstractList | The control in the heteroatom doping is critical for surface and electronic properties, but chemistry is more complicated when two or more heteratoms are incorporated. Herein, we have demonstrated the co-doping of sulfur (S) and phosphorus (P) atoms into the three-dimensional (3D) macroporous, activated graphene aerogel (SP-AG). The C–S and C–PO bondings as major functional groups are simultaneously incorporated into the surface of SP-AG. Despite the high loading of S and P of 5.8 and 4.6%, respectively, the 3D macroporous continuity is preserved. The specific capacitance of SP-AG is 438 F/g at 10 mV/s is much greater than 347, 313, and 240 F/g of S-AG, P-AG, and AG, respectively. Moreover, the SP-AG delivers a specific capacitance of 381 F/g as a scan rate is increased to 500 mV/s, indicating the capacitance retention of 87.2%. After 10000 charging/discharging cycles at current density of 1 A/g, the SP-AG shows a greater electrochemical stability than AG with the capacitance retention ratio of 93.4%, due to the synergistic effect of S and P co-doing and 3D architecture. This synergistic effect of composition and structure is further confirmed by the enhanced energy and power densities in organic and ionic liquid electrolytes. The control in the heteroatom doping is critical for surface and electronic properties, but chemistry is more complicated when two or more heteratoms are incorporated. Herein, we have demonstrated the co-doping of sulfur (S) and phosphorus (P) atoms into the three-dimensional (3D) macroporous, activated graphene aerogel (SP-AG). The C–S and C–PO bondings as major functional groups are simultaneously incorporated into the surface of SP-AG. Despite the high loading of S and P of 5.8 and 4.6%, respectively, the 3D macroporous continuity is preserved. The specific capacitance of SP-AG is 438 F/g at 10 mV/s is much greater than 347, 313, and 240 F/g of S-AG, P-AG, and AG, respectively. Moreover, the SP-AG delivers a specific capacitance of 381 F/g as a scan rate is increased to 500 mV/s, indicating the capacitance retention of 87.2%. After 10000 charging/discharging cycles at current density of 1 A/g, the SP-AG shows a greater electrochemical stability than AG with the capacitance retention ratio of 93.4%, due to the synergistic effect of S and P co-doing and 3D architecture. This synergistic effect of composition and structure is further confirmed by the enhanced energy and power densities in organic and ionic liquid electrolytes. |
Author | Park, Ho Seok Yu, Xu Kang, Yingbo |
Author_xml | – sequence: 1 givenname: Xu surname: Yu fullname: Yu, Xu – sequence: 2 givenname: Yingbo surname: Kang fullname: Kang, Yingbo – sequence: 3 givenname: Ho Seok surname: Park fullname: Park, Ho Seok email: phs0727@skku.edu |
BookMark | eNqFkEFv1DAQhS1UJLaFf8DBRy4JdpImXg5IqKJQqRIH4GyNJ-ONV1k72AlS_z2zWk4c6GE0enrvjTTftbiKKZIQb7WqtdL9-2ONkF2KdcOqVrpWQ_tC7LQZ2qo1e30ldkopU_VN074S16UcWXZGdztRvm-z37KEOMplSoUnb0Viqsa0hHiQycspUIaMU0CY5ye5pJw4csiwTBRJAuV0oLlIn7KkOEHEc7FsC2WEBTCsbLBg_8QmvRYvPcyF3vzdN-Ln_ecfd1-rx29fHu4-PVbYdc1aucH1feNQ7wcwTatB4R7Be2U6g-Sp9Upr7B2Q7wAGbEE7M7jRueF2f6vH9ka8u9xdcvq1UVntKRSkeYZI_IFtmEJjukH1HO0uUcyplEzeLjmcID9ZreyZsT3aC2N7ZmyVtsyYax_-qfGzsIYU1wxhfq788VJmdvSbGduCgZjPGDLhascU_n_gD-nKoKk |
CitedBy_id | crossref_primary_10_1016_j_cej_2022_140094 crossref_primary_10_1016_j_apsusc_2018_12_152 crossref_primary_10_1016_j_jpowsour_2025_236686 crossref_primary_10_1021_acsomega_2c06010 crossref_primary_10_1016_j_rechem_2021_100109 crossref_primary_10_1016_j_carbon_2019_07_085 crossref_primary_10_1039_C9NR07255A crossref_primary_10_1016_j_est_2020_101549 crossref_primary_10_1016_j_scib_2017_06_001 crossref_primary_10_1016_j_ijhydene_2022_01_149 crossref_primary_10_1016_j_jclepro_2022_133464 crossref_primary_10_1088_1757_899X_490_2_022069 crossref_primary_10_1002_apj_2995 crossref_primary_10_1016_j_est_2025_116095 crossref_primary_10_1016_j_cej_2020_127669 crossref_primary_10_1007_s00339_021_04899_7 crossref_primary_10_1016_j_susmat_2020_e00153 crossref_primary_10_1039_C8NR07454B crossref_primary_10_1016_j_gee_2019_06_001 crossref_primary_10_1016_j_cej_2023_144609 crossref_primary_10_1016_j_apsusc_2018_05_088 crossref_primary_10_1016_j_comptc_2023_114035 crossref_primary_10_1016_j_seppur_2023_124072 crossref_primary_10_1016_j_est_2023_109098 crossref_primary_10_20964_2020_12_32 crossref_primary_10_1149_2_0751805jes crossref_primary_10_1088_1361_6528_ac0190 crossref_primary_10_1016_j_mattod_2020_04_010 crossref_primary_10_1016_j_carbon_2017_11_050 crossref_primary_10_1139_cjc_2020_0283 crossref_primary_10_1016_j_nanoen_2018_03_016 crossref_primary_10_1039_C6CP00159A crossref_primary_10_1007_s10854_020_04648_1 crossref_primary_10_1039_D2TA04061A crossref_primary_10_1002_ente_201900685 crossref_primary_10_1016_j_rser_2019_109656 crossref_primary_10_1016_j_jallcom_2023_170548 crossref_primary_10_23919_SAIEE_2021_9432895 crossref_primary_10_1016_j_jallcom_2017_11_310 crossref_primary_10_1515_zpch_2018_1170 crossref_primary_10_1016_j_electacta_2019_01_122 crossref_primary_10_3390_nano12071141 crossref_primary_10_1007_s10853_022_07215_7 crossref_primary_10_1016_j_carbon_2016_12_059 crossref_primary_10_1016_j_est_2022_104118 crossref_primary_10_1016_j_jpowsour_2017_02_011 crossref_primary_10_1007_s10853_018_2471_5 crossref_primary_10_1002_pssb_201800700 crossref_primary_10_1016_j_electacta_2020_137507 crossref_primary_10_1016_j_jcis_2023_06_159 crossref_primary_10_1016_j_eurpolymj_2023_112552 crossref_primary_10_1002_cssc_201903440 crossref_primary_10_1016_j_jpowsour_2017_09_016 crossref_primary_10_1016_j_jpowsour_2017_05_031 crossref_primary_10_1016_j_jscs_2019_08_005 crossref_primary_10_1002_slct_201803413 crossref_primary_10_1007_s11581_018_2785_y crossref_primary_10_1016_j_cej_2020_126352 crossref_primary_10_1016_j_mtchem_2021_100480 crossref_primary_10_3390_nano9091189 crossref_primary_10_1021_acsomega_9b01916 crossref_primary_10_1002_celc_201901204 crossref_primary_10_1016_j_apsusc_2022_152549 crossref_primary_10_1016_j_matchemphys_2020_123666 crossref_primary_10_1016_j_electacta_2019_04_087 crossref_primary_10_1002_aoc_5014 crossref_primary_10_1016_j_electacta_2018_04_084 crossref_primary_10_1002_smll_202005255 crossref_primary_10_1021_acsami_1c08187 crossref_primary_10_1016_j_compscitech_2019_107698 crossref_primary_10_1002_celc_201800230 crossref_primary_10_1016_j_compositesa_2021_106293 crossref_primary_10_1016_j_ijhydene_2020_03_059 crossref_primary_10_1021_acsami_8b13281 crossref_primary_10_1021_acs_chemrev_0c00083 crossref_primary_10_1021_acs_langmuir_8b02562 crossref_primary_10_1021_acs_energyfuels_3c01634 crossref_primary_10_1016_j_carbon_2020_03_033 crossref_primary_10_1038_srep27713 crossref_primary_10_1016_j_electacta_2017_01_099 crossref_primary_10_1038_s41598_019_43312_5 crossref_primary_10_1016_j_apcatb_2017_03_014 crossref_primary_10_1016_j_apcata_2018_08_013 crossref_primary_10_1007_s11581_021_03916_2 crossref_primary_10_1039_C7TA02653F crossref_primary_10_1016_j_diamond_2020_107882 crossref_primary_10_1016_j_electacta_2019_135348 crossref_primary_10_1016_j_jallcom_2017_08_229 crossref_primary_10_1016_j_jpowsour_2021_230941 crossref_primary_10_1002_celc_201700066 crossref_primary_10_1016_j_jpowsour_2017_04_016 crossref_primary_10_1039_D1NR00126D crossref_primary_10_1016_j_electacta_2016_08_074 crossref_primary_10_1016_j_jclepro_2024_141956 crossref_primary_10_1016_j_jssc_2020_121451 crossref_primary_10_1007_s10854_019_00710_9 crossref_primary_10_1016_j_jpowsour_2020_228799 crossref_primary_10_1016_j_ijhydene_2022_06_136 crossref_primary_10_1016_j_jcis_2021_06_020 crossref_primary_10_1039_C6NR09959A crossref_primary_10_1016_j_cclet_2019_01_009 crossref_primary_10_1039_C9SE00142E crossref_primary_10_1016_j_apsusc_2020_147022 crossref_primary_10_1016_j_flatc_2017_08_002 crossref_primary_10_1016_j_apt_2019_07_001 crossref_primary_10_1039_C8RA01715H crossref_primary_10_1016_j_jelechem_2021_115939 crossref_primary_10_1016_j_carbon_2017_04_050 crossref_primary_10_1002_ente_201900247 crossref_primary_10_1016_j_electacta_2017_08_106 crossref_primary_10_1038_s41598_023_39553_0 crossref_primary_10_1021_acs_chemrev_9b00466 crossref_primary_10_1007_s13233_021_9075_7 crossref_primary_10_1016_j_apmt_2017_07_006 crossref_primary_10_1016_j_jpowsour_2018_02_069 crossref_primary_10_1080_1536383X_2023_2213359 crossref_primary_10_1016_j_jallcom_2019_04_138 crossref_primary_10_1021_acs_energyfuels_2c04111 crossref_primary_10_1039_C8CC08391F crossref_primary_10_1021_acs_chemrev_3c00937 crossref_primary_10_1007_s11595_020_2330_5 crossref_primary_10_1039_C9MH01353A crossref_primary_10_1016_j_electacta_2016_10_184 crossref_primary_10_1021_acsomega_0c02021 crossref_primary_10_1016_j_diamond_2021_108696 crossref_primary_10_1016_j_compositesb_2018_11_085 crossref_primary_10_1039_D0RA00458H crossref_primary_10_1016_j_apsusc_2018_06_213 crossref_primary_10_1007_s10854_017_8323_2 crossref_primary_10_1149_1945_7111_abf5a2 crossref_primary_10_3390_c9020060 crossref_primary_10_1002_cey2_107 crossref_primary_10_1021_acssuschemeng_9b00725 crossref_primary_10_1016_j_apcata_2017_12_014 crossref_primary_10_1016_j_electacta_2019_135207 crossref_primary_10_1002_adfm_201909035 crossref_primary_10_1002_batt_202400021 crossref_primary_10_1021_acssuschemeng_7b03777 crossref_primary_10_3389_fchem_2019_00272 crossref_primary_10_3390_coatings10090892 crossref_primary_10_1002_eem2_12102 crossref_primary_10_1016_j_molliq_2022_120008 crossref_primary_10_1007_s11664_021_08812_z crossref_primary_10_1016_j_apsusc_2018_01_221 crossref_primary_10_1007_s11581_019_03105_2 crossref_primary_10_1016_j_jallcom_2018_12_013 crossref_primary_10_1021_acsami_7b09866 crossref_primary_10_1016_j_jcis_2018_05_022 crossref_primary_10_1021_acsaem_9b00777 crossref_primary_10_1016_j_carbon_2020_08_079 crossref_primary_10_1002_adma_201706054 crossref_primary_10_1016_j_jece_2024_113933 crossref_primary_10_1016_j_electacta_2018_05_018 crossref_primary_10_1002_admi_201801296 crossref_primary_10_1007_s42823_024_00827_w crossref_primary_10_1016_j_gee_2025_02_007 crossref_primary_10_1039_C8TA04561E crossref_primary_10_1021_acsaem_9b02032 crossref_primary_10_1039_C6TA08482F crossref_primary_10_1002_er_5047 crossref_primary_10_1016_j_jallcom_2024_174484 crossref_primary_10_1016_j_ijhydene_2023_03_326 crossref_primary_10_1016_j_jpowsour_2019_01_092 crossref_primary_10_1002_ente_202300499 crossref_primary_10_1016_j_jpowsour_2018_02_016 crossref_primary_10_1039_D1EE00166C crossref_primary_10_1016_j_jallcom_2019_151932 crossref_primary_10_1002_smll_201903780 crossref_primary_10_1021_acs_biomac_1c00706 crossref_primary_10_1016_j_apsusc_2021_151042 crossref_primary_10_1016_j_jiec_2024_06_025 crossref_primary_10_1016_j_matchemphys_2019_121932 crossref_primary_10_1007_s10854_017_8269_4 crossref_primary_10_1016_j_apsusc_2020_146770 crossref_primary_10_1016_j_cplett_2017_08_058 crossref_primary_10_1039_D2TC02233H crossref_primary_10_1016_j_apcatb_2018_08_068 crossref_primary_10_1016_j_electacta_2019_04_021 crossref_primary_10_1007_s40195_023_01532_9 crossref_primary_10_1007_s42823_021_00245_2 crossref_primary_10_1039_C6RA17231H crossref_primary_10_1016_j_est_2021_103149 crossref_primary_10_1016_j_pnsc_2022_05_003 crossref_primary_10_1002_celc_201700406 crossref_primary_10_1002_ente_202300026 crossref_primary_10_1016_j_partic_2021_03_001 crossref_primary_10_1002_celc_201700525 crossref_primary_10_1007_s12274_021_3300_8 crossref_primary_10_1039_C8RA07308B crossref_primary_10_1016_j_carbon_2018_11_053 crossref_primary_10_1016_j_jallcom_2022_166856 crossref_primary_10_1007_s10008_017_3683_3 crossref_primary_10_1016_j_carbon_2019_09_064 crossref_primary_10_1016_j_electacta_2020_137223 crossref_primary_10_1002_pc_28871 crossref_primary_10_1016_j_jallcom_2020_156853 crossref_primary_10_1016_j_cej_2025_161224 crossref_primary_10_1016_j_electacta_2018_08_137 crossref_primary_10_1002_celc_201801395 crossref_primary_10_1016_j_jelechem_2020_114478 crossref_primary_10_1007_s10008_018_3926_y crossref_primary_10_1016_j_jpowsour_2021_229666 crossref_primary_10_1002_aenm_202001239 crossref_primary_10_1016_j_ces_2020_115496 crossref_primary_10_1016_j_electacta_2018_07_211 crossref_primary_10_1016_j_jcis_2019_06_031 crossref_primary_10_1002_aesr_202000052 crossref_primary_10_1007_s11581_019_03322_9 crossref_primary_10_1016_j_apsusc_2023_159060 crossref_primary_10_1016_j_matchemphys_2022_126825 crossref_primary_10_1016_j_ijbiomac_2018_04_012 crossref_primary_10_1016_j_micromeso_2018_12_007 crossref_primary_10_1016_j_jcis_2020_07_016 crossref_primary_10_1016_j_surfin_2021_101025 crossref_primary_10_1016_j_apmt_2017_01_004 crossref_primary_10_1021_acs_energyfuels_4c01220 crossref_primary_10_1016_j_carbon_2019_04_110 crossref_primary_10_1016_j_inoche_2024_112257 crossref_primary_10_1016_j_jallcom_2018_12_057 crossref_primary_10_1021_acsami_7b05965 crossref_primary_10_1039_D1DT02199K crossref_primary_10_1007_s10853_017_1453_3 crossref_primary_10_1016_j_electacta_2018_11_046 crossref_primary_10_3390_molecules26123499 crossref_primary_10_1039_C8NJ00652K crossref_primary_10_1016_j_carbon_2022_11_054 crossref_primary_10_1016_j_jpowsour_2017_10_082 crossref_primary_10_1016_j_jpowsour_2016_08_011 crossref_primary_10_1016_j_nanoen_2020_104666 crossref_primary_10_23919_SAIEE_2019_8732797 crossref_primary_10_3390_coatings12091312 crossref_primary_10_1142_S179329201950142X crossref_primary_10_1007_s11706_022_0603_y crossref_primary_10_1016_j_ijhydene_2022_11_070 crossref_primary_10_1016_j_electacta_2020_137209 crossref_primary_10_1088_2053_1591_ab29bc crossref_primary_10_1007_s12039_020_01849_3 crossref_primary_10_1039_D2PY00971D crossref_primary_10_1016_j_jpowsour_2016_10_109 crossref_primary_10_1002_cplu_201700288 crossref_primary_10_1039_D0QM00392A crossref_primary_10_1007_s11249_016_0792_6 crossref_primary_10_1016_j_electacta_2019_05_021 crossref_primary_10_1021_acs_iecr_6b00362 crossref_primary_10_1088_2053_1591_abc125 crossref_primary_10_1039_C6RA27734A crossref_primary_10_1016_j_cej_2019_122305 crossref_primary_10_1002_admi_201701261 crossref_primary_10_1016_j_cej_2019_04_100 crossref_primary_10_1016_j_apmt_2017_05_002 crossref_primary_10_1016_j_apsusc_2023_158191 crossref_primary_10_1016_j_electacta_2018_07_237 crossref_primary_10_1021_acsami_0c12414 crossref_primary_10_1016_j_electacta_2018_12_096 crossref_primary_10_1039_D0NJ03163A crossref_primary_10_1039_C6MH00358C crossref_primary_10_3390_nano10091731 crossref_primary_10_1016_j_cej_2017_07_064 crossref_primary_10_1016_j_cej_2019_123511 crossref_primary_10_1016_j_indcrop_2024_119813 crossref_primary_10_1016_j_susmat_2024_e00830 crossref_primary_10_1016_j_electacta_2024_144581 crossref_primary_10_1016_j_est_2022_105494 crossref_primary_10_1039_C6RA23236A crossref_primary_10_1021_acsaem_8b01131 crossref_primary_10_1039_D0AN01653E crossref_primary_10_1016_j_matlet_2017_12_015 crossref_primary_10_1016_j_nanoms_2021_01_002 crossref_primary_10_1246_bcsj_20210027 crossref_primary_10_1016_j_jpowsour_2017_02_040 crossref_primary_10_1021_jacs_8b11181 crossref_primary_10_1039_C6TA08169J crossref_primary_10_1016_j_jpowsour_2018_04_057 crossref_primary_10_1016_j_jpowsour_2020_228151 crossref_primary_10_1016_j_cej_2023_147211 |
Cites_doi | 10.1039/C3CS60401B 10.1021/nl102661q 10.1016/j.nanoen.2015.05.010 10.1039/c2ee24203f 10.1016/S0378-7753(02)00013-7 10.1039/C5CP01904D 10.1039/C5TA04773K 10.1039/c3ee41444b 10.1021/nn2041279 10.1016/j.jpowsour.2013.01.165 10.1016/j.jpowsour.2013.12.004 10.1016/j.carbon.2014.07.002 10.1021/ja01539a017 10.1039/c1ee01354h 10.1021/acsnano.5b00582 10.1016/j.electacta.2015.10.011 10.1039/c3nr34003a 10.1039/C1CS15060J 10.1021/nl300901a 10.1016/j.carbon.2014.05.002 10.1002/adma.201201948 10.1021/jz4014163 10.1039/C5TA06394A 10.1021/ja809265m 10.1149/1.1393627 10.1039/c3ee41847b 10.1016/j.carbon.2013.05.067 10.1063/1.3069277 10.1038/nmat2297 10.1021/nn3021234 10.1039/C3TA13462H 10.1039/c2ee03092f 10.1039/C5TA07963B 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G 10.1126/science.1200770 10.1021/nn202020w 10.1016/S0008-6223(00)00183-4 10.1039/c3ee41638k 10.1016/j.jpowsour.2014.12.102 10.1039/c3ee41182f 10.1126/science.1158736 10.1002/adma.201304137 10.1039/c3ta01648j 10.1039/C4RA10885J 10.1021/nn101926g 10.1021/nn203393d 10.1002/adfm.201200186 10.1038/srep09591 10.1021/nn100145x |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.carbon.2016.01.073 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3891 |
EndPage | 56 |
ExternalDocumentID | 10_1016_j_carbon_2016_01_073 S0008622316300616 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c442t-b7b662bc197a8231a0c9caff0848cefe3f011c6baef4aa7c3a1b87bdbb75951d3 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Tue Aug 05 10:45:13 EDT 2025 Tue Jul 01 01:14:45 EDT 2025 Thu Apr 24 23:12:48 EDT 2025 Fri Feb 23 02:25:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-b7b662bc197a8231a0c9caff0848cefe3f011c6baef4aa7c3a1b87bdbb75951d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000284706 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000284706 crossref_primary_10_1016_j_carbon_2016_01_073 crossref_citationtrail_10_1016_j_carbon_2016_01_073 elsevier_sciencedirect_doi_10_1016_j_carbon_2016_01_073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Carbon (New York) |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yu, Park (bib32) 2014; 77 Su, Zhang, Zhuang, Li, Wu, Zhang (bib37) 2013; 62 Zhang, Jiang, Li, Zhao (bib49) 2011; 4 Béguin, Presser, Balducci, Frackowiak (bib6) 2014; 26 Miller, Simon (bib1) 2008; 321 Frackowiak, Béguin (bib3) 2001; 39 Eckmann, Felten, Mishchenko, Britnell, Krupke, Novoselov (bib45) 2012; 12 Liu, Nie, Yang, Zhang, Jin, Lu (bib38) 2013; 5 García-Gómez, Moreno-Fernández, Lobato, Centeno (bib10) 2015; 17 Wang, Zhang, Zhang (bib4) 2012; 41 Cong, Ren, Wang, Yu (bib14) 2013; 6 Yu, Kim, Hong, Jung, Kwon, Kong (bib27) 2015; 15 Wu, Winter, Chen, Sun, Turchanin, Feng (bib31) 2012; 24 Parveen, Ansari, Ansari, Cho (bib46) 2015; 4 Meyers, Doyle, Darling, Newman (bib48) 2000; 147 Liu, Yu, Neff, Zhamu, Jang (bib9) 2010; 10 Kong, Chen, Chen (bib24) 2014; 43 Li, Liao (bib34) 2013; 6 Wang, Wang, Wu, Xia, Jia (bib35) 2015; 5 Chen, Shen, Sukcharoenchoke, Zhou (bib19) 2009; 94 Choi, Hong, Hong, Hammond, Park (bib47) 2011; 5 Reddy, Srivastava, Gowda, Gullapalli, Dubey, Ajayan (bib29) 2010; 4 Hummers, Offeman (bib43) 1958; 80 An, Kim, Park, Moon, Bae, Lim (bib8) 2001; 11 Choi, Park, Woo (bib36) 2012; 6 Paraknowitsch, Thomas (bib25) 2013; 6 Bairi, Nasini, Kumar Ramasahayam, Bourdo, Viswanathan (bib40) 2015; 182 Qie, Chen, Xu, Xiong, Jiang, Zou (bib7) 2013; 6 Choi, Chung, Kwon, Park, Woo (bib39) 2013; 1 Hulicova-Jurcakova, Puziy, Poddubnaya, Suárez-García, Tascón, Lu (bib20) 2009; 131 Choi, Park, Park, Yang, Kim, Jang (bib44) 2010; 4 Yang, Zhi, Tang, Feng, Maier, Müllen (bib30) 2012; 22 Huang, Candelaria, Li, Li, Tian, Zhang (bib21) 2014; 252 Yang, Yao, Li, Fang, Nie, Liu (bib28) 2012; 6 Yu, Park, Yeon, Park (bib26) 2015; 278 Mahmood, Yun, Kim, Park (bib18) 2013; 235 Guan, Liu, Wang, Mao, Fan, Shen (bib16) 2015; 9 Wu, Fang, Jiang, Holze (bib22) 2002; 108 Wang, Sun, Zhuo, Zhang, Wang (bib42) 2014; 4 Wang, Lu, Lei, Song (bib15) 2014; 2 Gu, Sevilla, Magasinski, Fuertes, Yushin (bib23) 2013; 6 Razmjooei, Singh, Song, Yu (bib41) 2014; 78 Kondrat, Pérez, Presser, Gogotsi, Kornyshev (bib11) 2012; 5 Feng, Li, Presser, Cummings (bib12) 2013; 4 Schneider, Suchomski, Sommer, Janek, Brezesinski (bib33) 2015; 3 Yuan, Lu, Xiao, Zhai, Dai, Zhang (bib17) 2012; 6 Zhu, Murali, Stoller, Ganesh, Cai, Ferreira (bib5) 2011; 332 Ewert, Weingarth, Denner, Friedrich, Zeiger, Schreiber (bib13) 2015; 3 Simon, Gogotsi (bib2) 2008; 7 Yang (10.1016/j.carbon.2016.01.073_bib30) 2012; 22 Kong (10.1016/j.carbon.2016.01.073_bib24) 2014; 43 Parveen (10.1016/j.carbon.2016.01.073_bib46) 2015; 4 Yu (10.1016/j.carbon.2016.01.073_bib26) 2015; 278 Guan (10.1016/j.carbon.2016.01.073_bib16) 2015; 9 Huang (10.1016/j.carbon.2016.01.073_bib21) 2014; 252 Hulicova-Jurcakova (10.1016/j.carbon.2016.01.073_bib20) 2009; 131 Mahmood (10.1016/j.carbon.2016.01.073_bib18) 2013; 235 Gu (10.1016/j.carbon.2016.01.073_bib23) 2013; 6 Chen (10.1016/j.carbon.2016.01.073_bib19) 2009; 94 Yu (10.1016/j.carbon.2016.01.073_bib32) 2014; 77 Kondrat (10.1016/j.carbon.2016.01.073_bib11) 2012; 5 Wu (10.1016/j.carbon.2016.01.073_bib31) 2012; 24 Miller (10.1016/j.carbon.2016.01.073_bib1) 2008; 321 Eckmann (10.1016/j.carbon.2016.01.073_bib45) 2012; 12 Hummers (10.1016/j.carbon.2016.01.073_bib43) 1958; 80 Wang (10.1016/j.carbon.2016.01.073_bib35) 2015; 5 Razmjooei (10.1016/j.carbon.2016.01.073_bib41) 2014; 78 Wang (10.1016/j.carbon.2016.01.073_bib42) 2014; 4 Liu (10.1016/j.carbon.2016.01.073_bib38) 2013; 5 Zhang (10.1016/j.carbon.2016.01.073_bib49) 2011; 4 Béguin (10.1016/j.carbon.2016.01.073_bib6) 2014; 26 Liu (10.1016/j.carbon.2016.01.073_bib9) 2010; 10 Ewert (10.1016/j.carbon.2016.01.073_bib13) 2015; 3 Paraknowitsch (10.1016/j.carbon.2016.01.073_bib25) 2013; 6 Cong (10.1016/j.carbon.2016.01.073_bib14) 2013; 6 Choi (10.1016/j.carbon.2016.01.073_bib36) 2012; 6 Meyers (10.1016/j.carbon.2016.01.073_bib48) 2000; 147 Feng (10.1016/j.carbon.2016.01.073_bib12) 2013; 4 Yang (10.1016/j.carbon.2016.01.073_bib28) 2012; 6 Wang (10.1016/j.carbon.2016.01.073_bib4) 2012; 41 Wang (10.1016/j.carbon.2016.01.073_bib15) 2014; 2 Choi (10.1016/j.carbon.2016.01.073_bib39) 2013; 1 Choi (10.1016/j.carbon.2016.01.073_bib44) 2010; 4 Bairi (10.1016/j.carbon.2016.01.073_bib40) 2015; 182 An (10.1016/j.carbon.2016.01.073_bib8) 2001; 11 Yu (10.1016/j.carbon.2016.01.073_bib27) 2015; 15 Zhu (10.1016/j.carbon.2016.01.073_bib5) 2011; 332 García-Gómez (10.1016/j.carbon.2016.01.073_bib10) 2015; 17 Frackowiak (10.1016/j.carbon.2016.01.073_bib3) 2001; 39 Yuan (10.1016/j.carbon.2016.01.073_bib17) 2012; 6 Schneider (10.1016/j.carbon.2016.01.073_bib33) 2015; 3 Su (10.1016/j.carbon.2016.01.073_bib37) 2013; 62 Choi (10.1016/j.carbon.2016.01.073_bib47) 2011; 5 Simon (10.1016/j.carbon.2016.01.073_bib2) 2008; 7 Wu (10.1016/j.carbon.2016.01.073_bib22) 2002; 108 Reddy (10.1016/j.carbon.2016.01.073_bib29) 2010; 4 Li (10.1016/j.carbon.2016.01.073_bib34) 2013; 6 Qie (10.1016/j.carbon.2016.01.073_bib7) 2013; 6 |
References_xml | – volume: 182 start-page: 987 year: 2015 end-page: 994 ident: bib40 article-title: Electrocatalytic and supercapacitor performance of phosphorous and nitrogen co-doped porous carbons synthesized from aminated tannins publication-title: Electrochimica Acta – volume: 131 start-page: 5026 year: 2009 end-page: 5027 ident: bib20 article-title: Highly stable performance of supercapacitors from phosphorus-enriched carbons publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 54060 year: 2014 end-page: 54065 ident: bib42 article-title: Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application publication-title: RSC Adv. – volume: 77 start-page: 59 year: 2014 end-page: 65 ident: bib32 article-title: Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors publication-title: Carbon – volume: 6 start-page: 7084 year: 2012 end-page: 7091 ident: bib36 article-title: Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity publication-title: ACS Nano – volume: 4 start-page: 3367 year: 2013 end-page: 3376 ident: bib12 article-title: Molecular insights into carbon supercapacitors based on room-temperature ionic liquids publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 2497 year: 2013 end-page: 2504 ident: bib7 article-title: Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors publication-title: Energy Environ. Sci. – volume: 11 start-page: 387 year: 2001 end-page: 392 ident: bib8 article-title: Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes publication-title: Adv. Funct. Mater – volume: 1 start-page: 3694 year: 2013 ident: bib39 article-title: B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media publication-title: J. Mater. Chem. A – volume: 6 start-page: 656 year: 2012 end-page: 661 ident: bib17 article-title: Flexible solid-state supercapacitors based on carbon nanoparticles/MnO publication-title: ACS Nano – volume: 10 start-page: 4863 year: 2010 end-page: 4868 ident: bib9 article-title: Graphene-based supercapacitor with an ultrahigh energy density publication-title: Nano Lett. – volume: 321 start-page: 651 year: 2008 end-page: 652 ident: bib1 article-title: Electrochemical capacitors for energy management publication-title: Science – volume: 332 start-page: 1537 year: 2011 end-page: 1541 ident: bib5 article-title: Carbon-based supercapacitors produced by activation of graphene publication-title: Science – volume: 6 start-page: 2839 year: 2013 ident: bib25 article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications publication-title: Energy Environ. Sci. – volume: 3 start-page: 20482 year: 2015 end-page: 20486 ident: bib33 article-title: Free-standing and binder-free highly N-doped carbon/sulfur cathodes with tailorable loading for high-areal-capacity lithium–sulfur batteries publication-title: J. Mater. Chem. A – volume: 108 start-page: 245 year: 2002 end-page: 249 ident: bib22 article-title: Effects of doped sulfur on electrochemical performance of carbon anode publication-title: J. Power Sources – volume: 6 start-page: 2892 year: 2013 ident: bib34 article-title: Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels publication-title: Energy Environ. Sci. – volume: 4 start-page: 233 year: 2015 end-page: 240 ident: bib46 article-title: Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials publication-title: J. Mater. Chem. A – volume: 80 year: 1958 ident: bib43 article-title: Preparation of graphitic oxide publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 6474 year: 2012 end-page: 6479 ident: bib11 article-title: Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors publication-title: Energy Environ. Sci. – volume: 24 start-page: 5130 year: 2012 end-page: 5135 ident: bib31 article-title: Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors publication-title: Adv. Mater – volume: 39 start-page: 937 year: 2001 end-page: 950 ident: bib3 article-title: Carbon materials for the electrochemical storage of energy in capacitors publication-title: Carbon – volume: 235 start-page: 187 year: 2013 end-page: 192 ident: bib18 article-title: Highly uniform deposition of MoO publication-title: J. Power Sources – volume: 5 start-page: 3283 year: 2013 end-page: 3288 ident: bib38 article-title: Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions publication-title: Nanoscale – volume: 12 start-page: 3925 year: 2012 end-page: 3930 ident: bib45 article-title: Probing the nature of defects in graphene by Raman spectroscopy publication-title: Nano Lett. – volume: 26 start-page: 2219 year: 2014 end-page: 2251 ident: bib6 article-title: Carbons and electrolytes for advanced supercapacitors publication-title: Adv. Mater – volume: 4 start-page: 6337 year: 2010 end-page: 6342 ident: bib29 article-title: Synthesis of nitrogen-doped graphene films for lithium battery application publication-title: ACS Nano – volume: 7 start-page: 845 year: 2008 end-page: 854 ident: bib2 article-title: Materials for electrochemical capacitors publication-title: Nat. Mater – volume: 5 start-page: 9591 year: 2015 ident: bib35 article-title: Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor publication-title: Sci. Rep. – volume: 4 start-page: 2910 year: 2010 end-page: 2918 ident: bib44 article-title: Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors publication-title: ACS Nano – volume: 6 start-page: 1185 year: 2013 end-page: 1191 ident: bib14 article-title: Flexible graphene–polyaniline composite paper for high-performance supercapacitor publication-title: Energy Environ. Sci. – volume: 94 start-page: 043113 year: 2009 ident: bib19 article-title: Flexible and transparent supercapacitor based on In publication-title: Appl. Phys. Lett. – volume: 252 start-page: 90 year: 2014 end-page: 97 ident: bib21 article-title: Sulfurized activated carbon for high energy density supercapacitors publication-title: J. Power Sources – volume: 3 start-page: 18906 year: 2015 end-page: 18912 ident: bib13 article-title: Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids publication-title: J. Mater. Chem. A – volume: 2 start-page: 4491 year: 2014 end-page: 4509 ident: bib15 article-title: Graphene-based polyaniline nanocomposites: preparation, properties and applications publication-title: J. Mater. Chem. A – volume: 15 start-page: 576 year: 2015 end-page: 586 ident: bib27 article-title: Elucidating surface redox charge storage of phosphorus-incorporated graphenes with hierarchical architectures publication-title: Nano Energy – volume: 43 start-page: 2841 year: 2014 end-page: 2857 ident: bib24 article-title: Doped graphene for metal-free catalysis publication-title: Chem. Soc. Rev. – volume: 147 start-page: 2930 year: 2000 end-page: 2940 ident: bib48 article-title: The impedance response of a porous electrode composed of intercalation particles, publication-title: J. Electrochem. Soc. – volume: 9 start-page: 5198 year: 2015 end-page: 5207 ident: bib16 article-title: Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability publication-title: ACS Nano – volume: 78 start-page: 257 year: 2014 end-page: 267 ident: bib41 article-title: Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study publication-title: Carbon – volume: 17 start-page: 15687 year: 2015 end-page: 15690 ident: bib10 article-title: Constant capacitance in nanopores of carbon monoliths publication-title: Phys. Chem. Chem. Phys. – volume: 41 start-page: 797 year: 2012 end-page: 828 ident: bib4 article-title: A review of electrode materials for electrochemical supercapacitors publication-title: Chem. Soc. Rev. – volume: 278 start-page: 484 year: 2015 end-page: 489 ident: bib26 article-title: Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes publication-title: J. Power Sources – volume: 4 start-page: 4009 year: 2011 end-page: 4015 ident: bib49 article-title: A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes publication-title: Energy Environ. Sci. – volume: 6 start-page: 205 year: 2012 end-page: 211 ident: bib28 article-title: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction publication-title: ACS Nano – volume: 22 start-page: 3634 year: 2012 end-page: 3640 ident: bib30 article-title: Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions publication-title: Adv. Funct. Mater – volume: 6 start-page: 2465 year: 2013 ident: bib23 article-title: Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection publication-title: Energy Environ. Sci. – volume: 62 start-page: 296 year: 2013 end-page: 301 ident: bib37 article-title: Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction publication-title: Carbon – volume: 5 start-page: 7205 year: 2011 end-page: 7213 ident: bib47 article-title: Facilitated ion transport in all-solid-state flexible supercapacitors publication-title: ACS Nano – volume: 43 start-page: 2841 year: 2014 ident: 10.1016/j.carbon.2016.01.073_bib24 article-title: Doped graphene for metal-free catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60401B – volume: 10 start-page: 4863 year: 2010 ident: 10.1016/j.carbon.2016.01.073_bib9 article-title: Graphene-based supercapacitor with an ultrahigh energy density publication-title: Nano Lett. doi: 10.1021/nl102661q – volume: 15 start-page: 576 year: 2015 ident: 10.1016/j.carbon.2016.01.073_bib27 article-title: Elucidating surface redox charge storage of phosphorus-incorporated graphenes with hierarchical architectures publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.05.010 – volume: 6 start-page: 1185 year: 2013 ident: 10.1016/j.carbon.2016.01.073_bib14 article-title: Flexible graphene–polyaniline composite paper for high-performance supercapacitor publication-title: Energy Environ. Sci. doi: 10.1039/c2ee24203f – volume: 108 start-page: 245 year: 2002 ident: 10.1016/j.carbon.2016.01.073_bib22 article-title: Effects of doped sulfur on electrochemical performance of carbon anode publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00013-7 – volume: 17 start-page: 15687 year: 2015 ident: 10.1016/j.carbon.2016.01.073_bib10 article-title: Constant capacitance in nanopores of carbon monoliths publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP01904D – volume: 3 start-page: 18906 year: 2015 ident: 10.1016/j.carbon.2016.01.073_bib13 article-title: Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04773K – volume: 6 start-page: 2839 year: 2013 ident: 10.1016/j.carbon.2016.01.073_bib25 article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41444b – volume: 6 start-page: 656 year: 2012 ident: 10.1016/j.carbon.2016.01.073_bib17 article-title: Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure publication-title: ACS Nano doi: 10.1021/nn2041279 – volume: 235 start-page: 187 year: 2013 ident: 10.1016/j.carbon.2016.01.073_bib18 article-title: Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved performance of supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.165 – volume: 252 start-page: 90 year: 2014 ident: 10.1016/j.carbon.2016.01.073_bib21 article-title: Sulfurized activated carbon for high energy density supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.12.004 – volume: 78 start-page: 257 year: 2014 ident: 10.1016/j.carbon.2016.01.073_bib41 article-title: Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study publication-title: Carbon doi: 10.1016/j.carbon.2014.07.002 – volume: 80 year: 1958 ident: 10.1016/j.carbon.2016.01.073_bib43 article-title: Preparation of graphitic oxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 4 start-page: 4009 year: 2011 ident: 10.1016/j.carbon.2016.01.073_bib49 article-title: A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01354h – volume: 9 start-page: 5198 year: 2015 ident: 10.1016/j.carbon.2016.01.073_bib16 article-title: Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability publication-title: ACS Nano doi: 10.1021/acsnano.5b00582 – volume: 182 start-page: 987 year: 2015 ident: 10.1016/j.carbon.2016.01.073_bib40 article-title: Electrocatalytic and supercapacitor performance of phosphorous and nitrogen co-doped porous carbons synthesized from aminated tannins publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2015.10.011 – volume: 5 start-page: 3283 year: 2013 ident: 10.1016/j.carbon.2016.01.073_bib38 article-title: Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions publication-title: Nanoscale doi: 10.1039/c3nr34003a – volume: 41 start-page: 797 year: 2012 ident: 10.1016/j.carbon.2016.01.073_bib4 article-title: A review of electrode materials for electrochemical supercapacitors publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15060J – volume: 12 start-page: 3925 year: 2012 ident: 10.1016/j.carbon.2016.01.073_bib45 article-title: Probing the nature of defects in graphene by Raman spectroscopy publication-title: Nano Lett. doi: 10.1021/nl300901a – volume: 77 start-page: 59 year: 2014 ident: 10.1016/j.carbon.2016.01.073_bib32 article-title: Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors publication-title: Carbon doi: 10.1016/j.carbon.2014.05.002 – volume: 24 start-page: 5130 year: 2012 ident: 10.1016/j.carbon.2016.01.073_bib31 article-title: Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors publication-title: Adv. Mater doi: 10.1002/adma.201201948 – volume: 4 start-page: 3367 year: 2013 ident: 10.1016/j.carbon.2016.01.073_bib12 article-title: Molecular insights into carbon supercapacitors based on room-temperature ionic liquids publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz4014163 – volume: 3 start-page: 20482 year: 2015 ident: 10.1016/j.carbon.2016.01.073_bib33 article-title: Free-standing and binder-free highly N-doped carbon/sulfur cathodes with tailorable loading for high-areal-capacity lithium–sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06394A – volume: 131 start-page: 5026 year: 2009 ident: 10.1016/j.carbon.2016.01.073_bib20 article-title: Highly stable performance of supercapacitors from phosphorus-enriched carbons publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809265m – volume: 147 start-page: 2930 year: 2000 ident: 10.1016/j.carbon.2016.01.073_bib48 article-title: The impedance response of a porous electrode composed of intercalation particles, publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393627 – volume: 6 start-page: 2892 year: 2013 ident: 10.1016/j.carbon.2016.01.073_bib34 article-title: Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41847b – volume: 62 start-page: 296 year: 2013 ident: 10.1016/j.carbon.2016.01.073_bib37 article-title: Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction publication-title: Carbon doi: 10.1016/j.carbon.2013.05.067 – volume: 94 start-page: 043113 year: 2009 ident: 10.1016/j.carbon.2016.01.073_bib19 article-title: Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3069277 – volume: 7 start-page: 845 year: 2008 ident: 10.1016/j.carbon.2016.01.073_bib2 article-title: Materials for electrochemical capacitors publication-title: Nat. Mater doi: 10.1038/nmat2297 – volume: 6 start-page: 7084 year: 2012 ident: 10.1016/j.carbon.2016.01.073_bib36 article-title: Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity publication-title: ACS Nano doi: 10.1021/nn3021234 – volume: 2 start-page: 4491 year: 2014 ident: 10.1016/j.carbon.2016.01.073_bib15 article-title: Graphene-based polyaniline nanocomposites: preparation, properties and applications publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13462H – volume: 5 start-page: 6474 year: 2012 ident: 10.1016/j.carbon.2016.01.073_bib11 article-title: Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03092f – volume: 4 start-page: 233 year: 2015 ident: 10.1016/j.carbon.2016.01.073_bib46 article-title: Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials publication-title: J. Mater. Chem. A doi: 10.1039/C5TA07963B – volume: 11 start-page: 387 year: 2001 ident: 10.1016/j.carbon.2016.01.073_bib8 article-title: Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes publication-title: Adv. Funct. Mater doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G – volume: 332 start-page: 1537 year: 2011 ident: 10.1016/j.carbon.2016.01.073_bib5 article-title: Carbon-based supercapacitors produced by activation of graphene publication-title: Science doi: 10.1126/science.1200770 – volume: 5 start-page: 7205 year: 2011 ident: 10.1016/j.carbon.2016.01.073_bib47 article-title: Facilitated ion transport in all-solid-state flexible supercapacitors publication-title: ACS Nano doi: 10.1021/nn202020w – volume: 39 start-page: 937 year: 2001 ident: 10.1016/j.carbon.2016.01.073_bib3 article-title: Carbon materials for the electrochemical storage of energy in capacitors publication-title: Carbon doi: 10.1016/S0008-6223(00)00183-4 – volume: 6 start-page: 2497 year: 2013 ident: 10.1016/j.carbon.2016.01.073_bib7 article-title: Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41638k – volume: 278 start-page: 484 year: 2015 ident: 10.1016/j.carbon.2016.01.073_bib26 article-title: Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.102 – volume: 6 start-page: 2465 year: 2013 ident: 10.1016/j.carbon.2016.01.073_bib23 article-title: Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41182f – volume: 321 start-page: 651 year: 2008 ident: 10.1016/j.carbon.2016.01.073_bib1 article-title: Electrochemical capacitors for energy management publication-title: Science doi: 10.1126/science.1158736 – volume: 26 start-page: 2219 year: 2014 ident: 10.1016/j.carbon.2016.01.073_bib6 article-title: Carbons and electrolytes for advanced supercapacitors publication-title: Adv. Mater doi: 10.1002/adma.201304137 – volume: 1 start-page: 3694 year: 2013 ident: 10.1016/j.carbon.2016.01.073_bib39 article-title: B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media publication-title: J. Mater. Chem. A doi: 10.1039/c3ta01648j – volume: 4 start-page: 54060 year: 2014 ident: 10.1016/j.carbon.2016.01.073_bib42 article-title: Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application publication-title: RSC Adv. doi: 10.1039/C4RA10885J – volume: 4 start-page: 6337 year: 2010 ident: 10.1016/j.carbon.2016.01.073_bib29 article-title: Synthesis of nitrogen-doped graphene films for lithium battery application publication-title: ACS Nano doi: 10.1021/nn101926g – volume: 6 start-page: 205 year: 2012 ident: 10.1016/j.carbon.2016.01.073_bib28 article-title: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction publication-title: ACS Nano doi: 10.1021/nn203393d – volume: 22 start-page: 3634 year: 2012 ident: 10.1016/j.carbon.2016.01.073_bib30 article-title: Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions publication-title: Adv. Funct. Mater doi: 10.1002/adfm.201200186 – volume: 5 start-page: 9591 year: 2015 ident: 10.1016/j.carbon.2016.01.073_bib35 article-title: Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor publication-title: Sci. Rep. doi: 10.1038/srep09591 – volume: 4 start-page: 2910 year: 2010 ident: 10.1016/j.carbon.2016.01.073_bib44 article-title: Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors publication-title: ACS Nano doi: 10.1021/nn100145x |
SSID | ssj0004814 |
Score | 2.609347 |
Snippet | The control in the heteroatom doping is critical for surface and electronic properties, but chemistry is more complicated when two or more heteratoms are... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 49 |
SubjectTerms | capacitance electrochemistry energy graphene ionic liquids phosphorus porous media sulfur |
Title | Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance |
URI | https://dx.doi.org/10.1016/j.carbon.2016.01.073 https://www.proquest.com/docview/2000284706 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT3wTwWt1u02T9rgsyqroRQVvIZkmPlja0t0evPjbnelDURDBQw8tSQkzycwXZuYbxk7CTEGaxSqQPonwgoJ2ME0MBKGC0GTSqbbC--ZWTh7E1WP8uMDGfS0MpVV2tr-16Y217r6cddI8K19eqMaX4DjiE2KNkiHRbguhaJefvn-leYik5femMD-N7svnmhwvMJUtiAU1lA15p4p-c08_DHXjfS7W2GoHG_moXdk6W3D5Blse993aNtnsrp76uuImz3j5XMzwqeoZhyLImpIoXnhOba-bwAHqZfrGEXnjtZ83lNVo8bhxVfGEa-GIY7nLn4mJAyfO6tJVgD4V8PBXvPyqNNhiDxfn9-NJ0DVUCECI4Tywyko5tBCmylD4zwwgBeM9ceqD8y7yeNpBWuO8MEZBZEKbKJtZq2JEYlm0zRbzInc7jMcKcZVJpRNxKoSJkiFkqVeJhzgxStldFvVy1NCxjVPTi6nu08pedSt9TdLXg1Cj9HdZ8DmrbNk2_hivehXpb7tGo0P4Y-Zxr1GNmqIoickdSp36cg7IZw_k3r__vs9W6K1NjDxgi_OqdocIXub2qNmdR2xpdHk9uf0AmcPyJw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwEB2VsigbxFOUp5FgGXpz49jJggUqVLf0saGVujP2xG6LrpIouRHqhp_qD3YmDyqQUCWkLrJJbMs6dmaO5ZkzAO_iQmNepDpSIUvogEJ2MM8sRrHG2BbK6yHD--BQLY7l15P0ZA0up1wYDqscbf9g03trPb7ZGtHcqs_POceX6TjxE1aNUrEaIyv3_MVPOre1H3c_0yK_n893vhxtL6KxtECEUs5XkdNOqbnDONeWL8LsDHO0IbC6PPrgk0D7HpWzPkhrNSY2dpl2hXM6JU5SJDTuHbgryVxw2YQPv67jSmQ2CIpzXAFPb8rX64PK0DauYtnVWPVqoTr5lz_8yzP07m7nAdwfear4NEDxENZ8-Qg2tqfycI-h_dYtQ9cIWxaiPqtaepquFVhFRZ-DJaoguM52f1NBG2F5IYjqV9Sk18gmEyusb6pTmosg4ix8ecbSH9Sx7WrfIDlxJGvTiPo6teEJHN8KzE9hvaxK_wxEqonI2Vx5meZSWsIdizzoLGCaWa3dJiQTjgZHeXOusrE0UxzbDzOgbxh9M4sNob8J0e9e9SDvcUN7PS2R-WObGvJAN_R8O62ooZXiaxlbekKdC4HOmCTM1PP_Hv0NbCyODvbN_u7h3gu4x1-GqMyXsL5qOv-KmNPKve53qoDvt_1rXAHXAzAU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfur+and+phosphorus+co-doping+of+hierarchically+porous+graphene+aerogels+for+enhancing+supercapacitor+performance&rft.jtitle=Carbon+%28New+York%29&rft.au=Yu%2C+Xu&rft.au=Kang%2C+Yingbo&rft.au=Park%2C+Ho+Seok&rft.date=2016-05-01&rft.pub=Elsevier+Ltd&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=101&rft.spage=49&rft.epage=56&rft_id=info:doi/10.1016%2Fj.carbon.2016.01.073&rft.externalDocID=S0008622316300616 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |