A Murine Viral Outgrowth Assay to Detect Residual HIV Type 1 in Patients With Undetectable Viral Loads
Background. Sensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to determine whether eradication strategies are effective. The gold standard quantitative viral outgrowth assay (QVOA) underestimates the magnitude of...
Saved in:
Published in | The Journal of infectious diseases Vol. 212; no. 9; pp. 1387 - 1396 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background. Sensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to determine whether eradication strategies are effective. The gold standard quantitative viral outgrowth assay (QVOA) underestimates the magnitude of the viral reservoir. We sought to determine whether xenograft of leukocytes from HIV type 1 (HIV)-infected patients with undetectable plasma viral loads into immunocompromised mice would result in viral amplification. Methods. Peripheral blood mononuclear cells or purified CD4⁺ T cells from HIV or simian immunodeficiency virus (SIV)-infected subjects with undetectable plasma viral loads were adoptively transferred into NOD.Cg-PrkdcscidIl2rgtmlWjl/SzJ (NSG) mice. The mice were monitored for viremia following depletion of human CD8⁺ T cells to minimize antiviral activity. In some cases, humanized mice were also treated with activating anti-CD3 antibody. Results. With this murine viral outgrowth assay (MVOA), we successfully amplified replication-competent HIV or SIV from all subjects tested, including 5 HIV-positive patients receiving suppressive antiretroviral therapy (ART) and 6 elite controllers or suppressors who were maintaining undetectable viral loads without ART, including an elite suppressor from whom we were unable to recover virus by QVOA. Conclusions. Our results suggest that the MVOA has the potential to serve as a powerful tool to identify residual HIV in patients with undetectable viral loads. |
---|---|
AbstractList | Background. Sensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to determine whether eradication strategies are effective. The gold standard quantitative viral outgrowth assay (QVOA) underestimates the magnitude of the viral reservoir. We sought to determine whether xenograft of leukocytes from HIV type 1 (HIV)-infected patients with undetectable plasma viral loads into immunocompromised mice would result in viral amplification. Methods. Peripheral blood mononuclear cells or purified CD4⁺ T cells from HIV or simian immunodeficiency virus (SIV)-infected subjects with undetectable plasma viral loads were adoptively transferred into NOD.Cg-PrkdcscidIl2rgtmlWjl/SzJ (NSG) mice. The mice were monitored for viremia following depletion of human CD8⁺ T cells to minimize antiviral activity. In some cases, humanized mice were also treated with activating anti-CD3 antibody. Results. With this murine viral outgrowth assay (MVOA), we successfully amplified replication-competent HIV or SIV from all subjects tested, including 5 HIV-positive patients receiving suppressive antiretroviral therapy (ART) and 6 elite controllers or suppressors who were maintaining undetectable viral loads without ART, including an elite suppressor from whom we were unable to recover virus by QVOA. Conclusions. Our results suggest that the MVOA has the potential to serve as a powerful tool to identify residual HIV in patients with undetectable viral loads. Sensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to determine whether eradication strategies are effective. The gold standard quantitative viral outgrowth assay (QVOA) underestimates the magnitude of the viral reservoir. We sought to determine whether xenograft of leukocytes from HIV type 1 (HIV)-infected patients with undetectable plasma viral loads into immunocompromised mice would result in viral amplification.BACKGROUNDSensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to determine whether eradication strategies are effective. The gold standard quantitative viral outgrowth assay (QVOA) underestimates the magnitude of the viral reservoir. We sought to determine whether xenograft of leukocytes from HIV type 1 (HIV)-infected patients with undetectable plasma viral loads into immunocompromised mice would result in viral amplification.Peripheral blood mononuclear cells or purified CD4(+) T cells from HIV or simian immunodeficiency virus (SIV)-infected subjects with undetectable plasma viral loads were adoptively transferred into NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (NSG) mice. The mice were monitored for viremia following depletion of human CD8(+) T cells to minimize antiviral activity. In some cases, humanized mice were also treated with activating anti-CD3 antibody.METHODSPeripheral blood mononuclear cells or purified CD4(+) T cells from HIV or simian immunodeficiency virus (SIV)-infected subjects with undetectable plasma viral loads were adoptively transferred into NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (NSG) mice. The mice were monitored for viremia following depletion of human CD8(+) T cells to minimize antiviral activity. In some cases, humanized mice were also treated with activating anti-CD3 antibody.With this murine viral outgrowth assay (MVOA), we successfully amplified replication-competent HIV or SIV from all subjects tested, including 5 HIV-positive patients receiving suppressive antiretroviral therapy (ART) and 6 elite controllers or suppressors who were maintaining undetectable viral loads without ART, including an elite suppressor from whom we were unable to recover virus by QVOA.RESULTSWith this murine viral outgrowth assay (MVOA), we successfully amplified replication-competent HIV or SIV from all subjects tested, including 5 HIV-positive patients receiving suppressive antiretroviral therapy (ART) and 6 elite controllers or suppressors who were maintaining undetectable viral loads without ART, including an elite suppressor from whom we were unable to recover virus by QVOA.Our results suggest that the MVOA has the potential to serve as a powerful tool to identify residual HIV in patients with undetectable viral loads.CONCLUSIONSOur results suggest that the MVOA has the potential to serve as a powerful tool to identify residual HIV in patients with undetectable viral loads. Background. Sensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to determine whether eradication strategies are effective. The gold standard quantitative viral outgrowth assay (QVOA) underestimates the magnitude of the viral reservoir. We sought to determine whether xenograft of leukocytes from HIV type 1 (HIV)–infected patients with undetectable plasma viral loads into immunocompromised mice would result in viral amplification. Methods. Peripheral blood mononuclear cells or purified CD4 + T cells from HIV or simian immunodeficiency virus (SIV)–infected subjects with undetectable plasma viral loads were adoptively transferred into NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ (NSG) mice. The mice were monitored for viremia following depletion of human CD8 + T cells to minimize antiviral activity. In some cases, humanized mice were also treated with activating anti-CD3 antibody. Results. With this murine viral outgrowth assay (MVOA), we successfully amplified replication-competent HIV or SIV from all subjects tested, including 5 HIV-positive patients receiving suppressive antiretroviral therapy (ART) and 6 elite controllers or suppressors who were maintaining undetectable viral loads without ART, including an elite suppressor from whom we were unable to recover virus by QVOA. Conclusions. Our results suggest that the MVOA has the potential to serve as a powerful tool to identify residual HIV in patients with undetectable viral loads. Sensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to determine whether eradication strategies are effective. The gold standard quantitative viral outgrowth assay (QVOA) underestimates the magnitude of the viral reservoir. We sought to determine whether xenograft of leukocytes from HIV type 1 (HIV)-infected patients with undetectable plasma viral loads into immunocompromised mice would result in viral amplification. Peripheral blood mononuclear cells or purified CD4(+) T cells from HIV or simian immunodeficiency virus (SIV)-infected subjects with undetectable plasma viral loads were adoptively transferred into NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (NSG) mice. The mice were monitored for viremia following depletion of human CD8(+) T cells to minimize antiviral activity. In some cases, humanized mice were also treated with activating anti-CD3 antibody. With this murine viral outgrowth assay (MVOA), we successfully amplified replication-competent HIV or SIV from all subjects tested, including 5 HIV-positive patients receiving suppressive antiretroviral therapy (ART) and 6 elite controllers or suppressors who were maintaining undetectable viral loads without ART, including an elite suppressor from whom we were unable to recover virus by QVOA. Our results suggest that the MVOA has the potential to serve as a powerful tool to identify residual HIV in patients with undetectable viral loads. Background. Sensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to determine whether eradication strategies are effective. The gold standard quantitative viral outgrowth assay (QVOA) underestimates the magnitude of the viral reservoir. We sought to determine whether xenograft of leukocytes from HIV type 1 (HIV)-infected patients with undetectable plasma viral loads into immunocompromised mice would result in viral amplification. Methods. Peripheral blood mononuclear cells or purified CD4+ T cells from HIV or simian immunodeficiency virus (SIV)-infected subjects with undetectable plasma viral loads were adoptively transferred into NOD.Cg-Prkdc super(scid) Il2rg super(tm1Wjl)/SzJ (NSG) mice. The mice were monitored for viremia following depletion of human CD8 super(+) T cells to minimize antiviral activity. In some cases, humanized mice were also treated with activating anti-CD3 antibody. Results. With this murine viral outgrowth assay (MVOA), we successfully amplified replication-competent HIV or SIV from all subjects tested, including 5 HIV-positive patients receiving suppressive antiretroviral therapy (ART) and 6 elite controllers or suppressors who were maintaining undetectable viral loads without ART, including an elite suppressor from whom we were unable to recover virus by QVOA. Conclusions. Our results suggest that the MVOA has the potential to serve as a powerful tool to identify residual HIV in patients with undetectable viral loads. |
Author | Lyons, Claire E. Najarro, Kevin M. Li, Ming Adams, Robert J. Engle, Elizabeth L. Zink, M. Christine Cryer, Catherine G. Blankson, Joel N. Pohlmeyer, Christopher W. Shirk, Erin N. Vermillion, Meghan S. Queen, Suzanne E. Salgado, Maria Bullock, Brandon Mankowski, Joseph L. Chioma, Stanley Pate, Kelly A. Metcalf Walker-Sperling, Victoria E. Gama, Lucio Clements, Janice E. Foote, Jeremy B. |
Author_xml | – sequence: 1 givenname: Kelly A. Metcalf surname: Pate fullname: Pate, Kelly A. Metcalf – sequence: 2 givenname: Christopher W. surname: Pohlmeyer fullname: Pohlmeyer, Christopher W. – sequence: 3 givenname: Victoria E. surname: Walker-Sperling fullname: Walker-Sperling, Victoria E. – sequence: 4 givenname: Jeremy B. surname: Foote fullname: Foote, Jeremy B. – sequence: 5 givenname: Kevin M. surname: Najarro fullname: Najarro, Kevin M. – sequence: 6 givenname: Catherine G. surname: Cryer fullname: Cryer, Catherine G. – sequence: 7 givenname: Maria surname: Salgado fullname: Salgado, Maria – sequence: 8 givenname: Lucio surname: Gama fullname: Gama, Lucio – sequence: 9 givenname: Elizabeth L. surname: Engle fullname: Engle, Elizabeth L. – sequence: 10 givenname: Erin N. surname: Shirk fullname: Shirk, Erin N. – sequence: 11 givenname: Suzanne E. surname: Queen fullname: Queen, Suzanne E. – sequence: 12 givenname: Stanley surname: Chioma fullname: Chioma, Stanley – sequence: 13 givenname: Meghan S. surname: Vermillion fullname: Vermillion, Meghan S. – sequence: 14 givenname: Brandon surname: Bullock fullname: Bullock, Brandon – sequence: 15 givenname: Ming surname: Li fullname: Li, Ming – sequence: 16 givenname: Claire E. surname: Lyons fullname: Lyons, Claire E. – sequence: 17 givenname: Robert J. surname: Adams fullname: Adams, Robert J. – sequence: 18 givenname: M. Christine surname: Zink fullname: Zink, M. Christine – sequence: 19 givenname: Janice E. surname: Clements fullname: Clements, Janice E. – sequence: 20 givenname: Joseph L. surname: Mankowski fullname: Mankowski, Joseph L. – sequence: 21 givenname: Joel N. surname: Blankson fullname: Blankson, Joel N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25883388$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAYRS3Uik5blixBXrIJ9SPxY4M0KpRWmqoI9bG0nORL61EmHmyn1fx7PKRTARISKy987tG17yHaG_wACL2l5CMlmp-4oWtdPFm6R8bJKzSjFZeFEJTvoRkhjBVUaX2ADmNcEkJKLuRrdMAqpThXaoa6Ob4cgxsA37pge3w1pvvgn9IDnsdoNzh5_BkSNAl_h-jaMSPnF7f4erMGTLEb8DebHAwp4juXQzdD-4u2db8zLrxt4zHa72wf4c3zeYRuzr5cn54Xi6uvF6fzRdGUJUtFzTnwSspSga5paRWvwLaCWw1EClK3gmpZ88Yq2wGjTOoSNN--tu1ayxQ_Qp8m73qsV9A2uVnuYNbBrWzYGG-d-fNmcA_m3j-aUhCqqciCD8-C4H-MEJNZudhA39sB_BgNlVKIShD2PyhjVFVS64y-_73WS5_dDhngE9AEH2OAzjQu5Z_125auN5SY7dpmWttMa-dU8VdqJ_4X_27ilzH58AKXXGZWEf4Tik64lg |
CitedBy_id | crossref_primary_10_1038_s41598_020_76422_6 crossref_primary_10_7448_IAS_20_1_21521 crossref_primary_10_1186_s12977_017_0376_z crossref_primary_10_1089_aid_2015_0258 crossref_primary_10_1093_infdis_jix662 crossref_primary_10_3389_fimmu_2020_01971 crossref_primary_10_1128_mbio_01344_23 crossref_primary_10_1172_JCI80567 crossref_primary_10_1016_S2352_3018_18_30039_0 crossref_primary_10_1093_infdis_jiw648 crossref_primary_10_3389_fimmu_2017_01698 crossref_primary_10_1007_s11904_022_00607_z crossref_primary_10_3389_fimmu_2024_1443377 crossref_primary_10_1007_s11481_021_10011_w crossref_primary_10_1097_COH_0000000000000440 crossref_primary_10_7554_eLife_49022 crossref_primary_10_1084_jem_20201908 crossref_primary_10_3389_fcimb_2020_00038 crossref_primary_10_3389_fmicb_2019_02878 crossref_primary_10_3390_v15010228 crossref_primary_10_7326_M18_2822 crossref_primary_10_3389_fimmu_2019_01435 crossref_primary_10_1016_S2055_6640_20_30298_3 crossref_primary_10_1038_s41598_023_37223_9 crossref_primary_10_1007_s11904_017_0355_y crossref_primary_10_1016_S2055_6640_20_30271_5 crossref_primary_10_3390_v13122475 crossref_primary_10_1038_nm_4108 crossref_primary_10_1097_QAI_0000000000001662 crossref_primary_10_1186_s12977_017_0381_2 crossref_primary_10_1186_s12977_016_0323_4 crossref_primary_10_1146_annurev_med_011514_023043 crossref_primary_10_1038_s41591_020_1022_1 crossref_primary_10_1007_s13365_017_0582_4 crossref_primary_10_7326_M18_0759 crossref_primary_10_1016_j_coviro_2017_07_027 crossref_primary_10_3390_v12111279 crossref_primary_10_1371_journal_pmed_1002417 crossref_primary_10_1128_JVI_02086_18 crossref_primary_10_1038_srep23513 crossref_primary_10_3390_v11030252 crossref_primary_10_1038_s41591_023_02213_x crossref_primary_10_1128_JVI_02051_18 crossref_primary_10_3389_fmicb_2021_646447 crossref_primary_10_3390_v13081560 crossref_primary_10_3389_fcimb_2020_00134 crossref_primary_10_2217_fvl_2016_0093 crossref_primary_10_1016_j_virol_2017_04_011 crossref_primary_10_1007_s11904_023_00653_1 crossref_primary_10_3389_fimmu_2018_00344 crossref_primary_10_1007_s12223_016_0474_7 crossref_primary_10_1016_j_chom_2021_04_014 crossref_primary_10_1172_JCI97555 crossref_primary_10_1146_annurev_virology_101416_041703 |
Cites_doi | 10.1128/JVI.00840-09 10.1038/nm.3489 10.1016/j.tips.2009.09.005 10.1016/S0140-6736(14)61405-7 10.1073/pnas.0611244104 10.1097/INF.0000000000000570 10.1097/COH.0b013e32835fc601 10.1097/QAD.0b013e328361d0e1 10.1007/s11481-011-9332-1 10.1128/JCM.41.10.4531-4536.2003 10.1001/jama.2014.4754 10.1128/JVI.06120-11 10.1136/bmj.g4614 10.1080/13550280802132832 10.1182/blood-2005-12-4818 10.1016/j.immuni.2007.08.010 10.7326/M14-1027 10.1371/journal.ppat.1003872 10.1128/JVI.74.4.2023-2028.2000 10.1371/journal.ppat.1003174 10.1186/1742-4690-10-68 10.1016/j.cell.2013.09.020 10.1128/JVI.02165-06 10.1038/nm880 10.1371/journal.pone.0043754 10.1371/journal.ppat.1003398 10.1128/JVI.03380-13 10.1001/jama.2010.925 10.1371/journal.ppat.1000917 10.1056/NEJM198108063050603 10.1097/00007890-198112000-00018 10.1056/NEJMc1413931 10.1038/ncomms1697 10.1097/00002030-199912030-00012 10.1038/ni845 10.1016/j.immuni.2008.10.010 10.1056/NEJMc1315498 |
ContentType | Journal Article |
Copyright | Copyright © 2015 Oxford University Press on behalf of the Infectious Diseases Society of America The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: . 2015 |
Copyright_xml | – notice: Copyright © 2015 Oxford University Press on behalf of the Infectious Diseases Society of America – notice: The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. – notice: The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: . 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T2 7U9 C1K H94 5PM |
DOI | 10.1093/infdis/jiv230 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Health and Safety Science Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Health & Safety Science Abstracts Virology and AIDS Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1537-6613 |
EndPage | 1396 |
ExternalDocumentID | PMC4601916 25883388 10_1093_infdis_jiv230 43709380 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P30AI094189 – fundername: NIAID NIH HHS grantid: R56 AI080328 – fundername: NIH HHS grantid: K01 OD018244 – fundername: NIAID NIH HHS grantid: T32 AI007247 – fundername: NIAID NIH HHS grantid: R21 AI106491 – fundername: NIGMS NIH HHS grantid: T32 GM007445 – fundername: NIMH NIH HHS grantid: P01 MH070306 – fundername: NIAID NIH HHS grantid: P30 AI094189 – fundername: NIH HHS grantid: T32 OD011089 – fundername: NIAID NIH HHS grantid: U19 AI096113 – fundername: the Spanish Health Institute – fundername: National Center for Research Resources Office of Research Infrastructure Programs grantid: P40 OD013117; K01 OD018244; T32 OD011089, to – fundername: NIH – fundername: National Institute of Allergy and Infectious Diseases grantid: R56 AI080328; R21 AI106491 – fundername: the Collaboratory of AIDS Researchers for Eradication – fundername: donation for macaques – fundername: AbbVie (ritonavir donation for macaques), and Janssen (darunavir donation for macaques) – fundername: the Johns Hopkins University Center for AIDS Research grantid: P30AI094189 – fundername: National Institute of Health – fundername: Gilead (tenofovir donation for macaques), Bristol-Myers Squibb (atazanavir donation for macaques), Merck grantid: L000870812 |
GroupedDBID | --- -DZ -~X ..I .2P .I3 .XZ .ZR 08P 0R~ 123 1KJ 1TH 29K 2AX 2WC 36B 4.4 48X 53G 5GY 5RE 5VS 5WD 70D 85S AABZA AACGO AACZT AAHBH AAHTB AAJKP AAJQQ AAMVS AANCE AAOGV AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAWTL ABBHK ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPEJ ABPLY ABPPZ ABPQP ABPTD ABQLI ABQNK ABTLG ABVGC ABWST ABXSQ ABXVV ABZBJ ACGFO ACGFS ACGOD ACHIC ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADQXQ ADRTK ADULT ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEUPB AEWNT AEXZC AFFZL AFIYH AFOFC AFXAL AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN AQVQM ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BR6 BTRTY BVRKM C45 CDBKE CS3 CZ4 D-I DAKXR DCCCD DIK DILTD DU5 D~K EBS ECGQY EE~ EJD EMOBN ENERS F5P F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B LSO LU7 MHKGH MJL ML0 N9A NGC NOMLY NOYVH NU- NVLIB O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD RD5 ROX ROZ RUSNO RW1 RXO SA0 SJN TCURE TEORI TJX TR2 W2D W8F WH7 X7H YAYTL YKOAZ YXANX ~91 AAYXX CITATION ADJQC ADRIX AFXEN CGR CUY CVF DOOOF ECM EIF ESX JSODD M49 NPM YIF 7X8 7T2 7U9 C1K H94 5PM |
ID | FETCH-LOGICAL-c442t-b33e357748e9b14a835ead63a9e0760bd6197b3ca8afe212794e936613dfda283 |
ISSN | 0022-1899 1537-6613 |
IngestDate | Thu Aug 21 18:21:44 EDT 2025 Fri Jul 11 11:15:37 EDT 2025 Fri Jul 11 11:58:27 EDT 2025 Wed Feb 19 02:41:23 EST 2025 Tue Jul 01 01:30:57 EDT 2025 Thu Apr 24 23:11:32 EDT 2025 Fri Jun 20 00:28:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | SIV humanized mouse cure HIV quantitative viral outgrowth assay (QVOA) |
Language | English |
License | The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c442t-b33e357748e9b14a835ead63a9e0760bd6197b3ca8afe212794e936613dfda283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1093/infdis/jiv230 |
PMID | 25883388 |
PQID | 1722185799 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4601916 proquest_miscellaneous_1776656026 proquest_miscellaneous_1722185799 pubmed_primary_25883388 crossref_citationtrail_10_1093_infdis_jiv230 crossref_primary_10_1093_infdis_jiv230 jstor_primary_43709380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of infectious diseases |
PublicationTitleAlternate | J Infect Dis |
PublicationYear | 2015 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016042508034410000_212.9.1387.28 2016042508034410000_212.9.1387.29 Wit (2016042508034410000_212.9.1387.41) 2005; 19 Buckheit (2016042508034410000_212.9.1387.18) 2011; 3 2016042508034410000_212.9.1387.30 2016042508034410000_212.9.1387.31 2016042508034410000_212.9.1387.10 2016042508034410000_212.9.1387.32 2016042508034410000_212.9.1387.11 2016042508034410000_212.9.1387.33 2016042508034410000_212.9.1387.34 2016042508034410000_212.9.1387.14 2016042508034410000_212.9.1387.36 2016042508034410000_212.9.1387.15 2016042508034410000_212.9.1387.37 2016042508034410000_212.9.1387.16 2016042508034410000_212.9.1387.38 2016042508034410000_212.9.1387.6 2016042508034410000_212.9.1387.17 2016042508034410000_212.9.1387.39 2016042508034410000_212.9.1387.7 2016042508034410000_212.9.1387.19 2016042508034410000_212.9.1387.2 Butler (2016042508034410000_212.9.1387.8) 2015; 34 Siliciano (2016042508034410000_212.9.1387.9) 2004; 304 2016042508034410000_212.9.1387.3 2016042508034410000_212.9.1387.5 Fauci (2016042508034410000_212.9.1387.4) 2013; 312 Webster (2016042508034410000_212.9.1387.12) 1976; 40 2016042508034410000_212.9.1387.1 Denton (2016042508034410000_212.9.1387.13) 2010; 13 2016042508034410000_212.9.1387.40 2016042508034410000_212.9.1387.20 2016042508034410000_212.9.1387.42 2016042508034410000_212.9.1387.21 Buckheit (2016042508034410000_212.9.1387.35) 2012; 10 2016042508034410000_212.9.1387.43 2016042508034410000_212.9.1387.22 2016042508034410000_212.9.1387.23 2016042508034410000_212.9.1387.24 2016042508034410000_212.9.1387.25 2016042508034410000_212.9.1387.26 2016042508034410000_212.9.1387.27 24384589 - AIDS. 2013 Aug 24;27(13):2081-8 20523897 - PLoS Pathog. 2010 May;6(5):e1000917 6454075 - N Engl J Med. 1981 Aug 6;305(6):308-14 22198699 - J Neuroimmune Pharmacol. 2012 Jun;7(2):454-64 24415939 - PLoS Pathog. 2014 Jan;10(1):e1003872 17151109 - J Virol. 2007 Mar;81(5):2508-18 10644376 - J Virol. 2000 Feb;74(4):2023-8 25283573 - Lancet. 2014 Oct 4;384(9950):1320 23737751 - PLoS Pathog. 2013;9(5):e1003398 17428922 - Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6776-81 25693029 - N Engl J Med. 2015 Feb 19;372(8):786-8 16467198 - Blood. 2006 Jun 15;107(12):4781-9 24390323 - J Virol. 2014 Mar;88(6):3340-52 21799532 - AIDS Rev. 2011 Jul-Sep;13(3):135-48 22013053 - J Virol. 2012 Jan;86(1):630-4 23459007 - PLoS Pathog. 2013 Feb;9(2):e1003174 12754504 - Nat Med. 2003 Jun;9(6):727-8 17892849 - Immunity. 2007 Sep;27(3):406-16 14532178 - J Clin Microbiol. 2003 Oct;41(10):4531-6 25038345 - JAMA. 2014 Jul 23-30;312(4):335-6 25742088 - Pediatr Infect Dis J. 2015 Mar;34(3):e48-51 24521123 - N Engl J Med. 2014 Feb 13;370(7):678 15718848 - AIDS. 2005 Feb 18;19(3):345-8 24658076 - Nat Med. 2014 Apr;20(4):425-9 22395607 - Nat Commun. 2012;3:716 7041358 - Transplantation. 1981 Dec;32(6):535-9 19062316 - Immunity. 2008 Dec 19;29(6):1009-21 25022915 - BMJ. 2014;349:g4614 793696 - Can J Comp Med. 1976 Jul;40(3):322-5 23429501 - Curr Opin HIV AIDS. 2013 May;8(3):165-9 23816179 - Retrovirology. 2013;10:68 19570871 - J Virol. 2009 Sep;83(18):9247-57 10597782 - AIDS. 1999 Dec 3;13(17):2405-10 24243014 - Cell. 2013 Oct 24;155(3):540-51 20628133 - JAMA. 2010 Jul 14;304(2):194-201 16061962 - Methods Mol Biol. 2005;304:3-15 22952756 - PLoS One. 2012;7(8):e43754 12368910 - Nat Immunol. 2002 Nov;3(11):1061-8 18780232 - J Neurovirol. 2008 Aug;14(4):309-17 25047577 - Ann Intern Med. 2014 Sep 2;161(5):319-27 19837464 - Trends Pharmacol Sci. 2009 Dec;30(12):631-7 |
References_xml | – ident: 2016042508034410000_212.9.1387.17 doi: 10.1128/JVI.00840-09 – ident: 2016042508034410000_212.9.1387.24 doi: 10.1038/nm.3489 – ident: 2016042508034410000_212.9.1387.27 doi: 10.1016/j.tips.2009.09.005 – ident: 2016042508034410000_212.9.1387.3 doi: 10.1016/S0140-6736(14)61405-7 – ident: 2016042508034410000_212.9.1387.34 doi: 10.1073/pnas.0611244104 – volume: 34 start-page: 51 year: 2015 ident: 2016042508034410000_212.9.1387.8 article-title: Rapid viral rebound after 4 years of suppressive therapy in a seronegative HIV-1 infected infant treated from birth publication-title: Pediatr Infect Dis J doi: 10.1097/INF.0000000000000570 – ident: 2016042508034410000_212.9.1387.39 doi: 10.1097/COH.0b013e32835fc601 – ident: 2016042508034410000_212.9.1387.43 doi: 10.1097/QAD.0b013e328361d0e1 – ident: 2016042508034410000_212.9.1387.20 doi: 10.1007/s11481-011-9332-1 – ident: 2016042508034410000_212.9.1387.19 doi: 10.1128/JCM.41.10.4531-4536.2003 – volume: 40 start-page: 322 year: 1976 ident: 2016042508034410000_212.9.1387.12 article-title: The mouse inoculation test in rabies diagnosis: early diagnosis in mice during the incubation period publication-title: Can J Comp Med – volume: 312 start-page: 335 year: 2013 ident: 2016042508034410000_212.9.1387.4 article-title: An HIV cure: feasibility, discovery, and implementation publication-title: JAMA doi: 10.1001/jama.2014.4754 – volume: 304 start-page: 3 year: 2004 ident: 2016042508034410000_212.9.1387.9 article-title: Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals publication-title: Methods Mol Biol – ident: 2016042508034410000_212.9.1387.14 doi: 10.1128/JVI.06120-11 – ident: 2016042508034410000_212.9.1387.6 doi: 10.1136/bmj.g4614 – ident: 2016042508034410000_212.9.1387.16 doi: 10.1080/13550280802132832 – ident: 2016042508034410000_212.9.1387.31 doi: 10.1182/blood-2005-12-4818 – ident: 2016042508034410000_212.9.1387.26 doi: 10.1016/j.immuni.2007.08.010 – ident: 2016042508034410000_212.9.1387.2 doi: 10.7326/M14-1027 – ident: 2016042508034410000_212.9.1387.15 doi: 10.1371/journal.ppat.1003872 – volume: 13 start-page: 135 year: 2010 ident: 2016042508034410000_212.9.1387.13 article-title: Humanized mouse models of HIV infection publication-title: AIDS Rev – ident: 2016042508034410000_212.9.1387.36 doi: 10.1128/JVI.74.4.2023-2028.2000 – ident: 2016042508034410000_212.9.1387.11 doi: 10.1371/journal.ppat.1003174 – volume: 10 start-page: 68 year: 2012 ident: 2016042508034410000_212.9.1387.35 article-title: Primary CD8+ T cells from elite suppressors effectively eliminate non-productively HIV-1 infected resting and activated CD4+ T cells publication-title: Retrovirology doi: 10.1186/1742-4690-10-68 – ident: 2016042508034410000_212.9.1387.10 doi: 10.1016/j.cell.2013.09.020 – ident: 2016042508034410000_212.9.1387.22 doi: 10.1128/JVI.02165-06 – ident: 2016042508034410000_212.9.1387.25 doi: 10.1038/nm880 – ident: 2016042508034410000_212.9.1387.42 doi: 10.1371/journal.pone.0043754 – ident: 2016042508034410000_212.9.1387.21 doi: 10.1371/journal.ppat.1003398 – ident: 2016042508034410000_212.9.1387.40 – ident: 2016042508034410000_212.9.1387.23 doi: 10.1128/JVI.03380-13 – ident: 2016042508034410000_212.9.1387.28 doi: 10.1001/jama.2010.925 – ident: 2016042508034410000_212.9.1387.33 doi: 10.1371/journal.ppat.1000917 – ident: 2016042508034410000_212.9.1387.38 doi: 10.1056/NEJM198108063050603 – ident: 2016042508034410000_212.9.1387.1 doi: 10.1097/INF.0000000000000570 – ident: 2016042508034410000_212.9.1387.37 doi: 10.1097/00007890-198112000-00018 – ident: 2016042508034410000_212.9.1387.7 doi: 10.1056/NEJMc1413931 – volume: 3 start-page: 716 year: 2011 ident: 2016042508034410000_212.9.1387.18 article-title: Host factors dictate control of viral replication in two HIV-1 controller/chronic progressor transmission pairs publication-title: Nat Com doi: 10.1038/ncomms1697 – ident: 2016042508034410000_212.9.1387.29 doi: 10.1097/00002030-199912030-00012 – ident: 2016042508034410000_212.9.1387.30 doi: 10.1038/ni845 – ident: 2016042508034410000_212.9.1387.32 doi: 10.1016/j.immuni.2008.10.010 – volume: 19 start-page: 345 year: 2005 ident: 2016042508034410000_212.9.1387.41 article-title: Safety of long-term interruption of successful antiretroviral therapy: the ATHENA cohort study publication-title: AIDS – ident: 2016042508034410000_212.9.1387.5 doi: 10.1056/NEJMc1315498 – reference: 23816179 - Retrovirology. 2013;10:68 – reference: 22952756 - PLoS One. 2012;7(8):e43754 – reference: 24521123 - N Engl J Med. 2014 Feb 13;370(7):678 – reference: 15718848 - AIDS. 2005 Feb 18;19(3):345-8 – reference: 18780232 - J Neurovirol. 2008 Aug;14(4):309-17 – reference: 24415939 - PLoS Pathog. 2014 Jan;10(1):e1003872 – reference: 6454075 - N Engl J Med. 1981 Aug 6;305(6):308-14 – reference: 22013053 - J Virol. 2012 Jan;86(1):630-4 – reference: 22198699 - J Neuroimmune Pharmacol. 2012 Jun;7(2):454-64 – reference: 25283573 - Lancet. 2014 Oct 4;384(9950):1320 – reference: 24384589 - AIDS. 2013 Aug 24;27(13):2081-8 – reference: 25742088 - Pediatr Infect Dis J. 2015 Mar;34(3):e48-51 – reference: 793696 - Can J Comp Med. 1976 Jul;40(3):322-5 – reference: 20628133 - JAMA. 2010 Jul 14;304(2):194-201 – reference: 17151109 - J Virol. 2007 Mar;81(5):2508-18 – reference: 23737751 - PLoS Pathog. 2013;9(5):e1003398 – reference: 17892849 - Immunity. 2007 Sep;27(3):406-16 – reference: 16061962 - Methods Mol Biol. 2005;304:3-15 – reference: 7041358 - Transplantation. 1981 Dec;32(6):535-9 – reference: 24243014 - Cell. 2013 Oct 24;155(3):540-51 – reference: 10597782 - AIDS. 1999 Dec 3;13(17):2405-10 – reference: 10644376 - J Virol. 2000 Feb;74(4):2023-8 – reference: 19062316 - Immunity. 2008 Dec 19;29(6):1009-21 – reference: 25038345 - JAMA. 2014 Jul 23-30;312(4):335-6 – reference: 19570871 - J Virol. 2009 Sep;83(18):9247-57 – reference: 25047577 - Ann Intern Med. 2014 Sep 2;161(5):319-27 – reference: 23429501 - Curr Opin HIV AIDS. 2013 May;8(3):165-9 – reference: 12368910 - Nat Immunol. 2002 Nov;3(11):1061-8 – reference: 25022915 - BMJ. 2014;349:g4614 – reference: 21799532 - AIDS Rev. 2011 Jul-Sep;13(3):135-48 – reference: 25693029 - N Engl J Med. 2015 Feb 19;372(8):786-8 – reference: 23459007 - PLoS Pathog. 2013 Feb;9(2):e1003174 – reference: 19837464 - Trends Pharmacol Sci. 2009 Dec;30(12):631-7 – reference: 12754504 - Nat Med. 2003 Jun;9(6):727-8 – reference: 14532178 - J Clin Microbiol. 2003 Oct;41(10):4531-6 – reference: 16467198 - Blood. 2006 Jun 15;107(12):4781-9 – reference: 20523897 - PLoS Pathog. 2010 May;6(5):e1000917 – reference: 17428922 - Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6776-81 – reference: 22395607 - Nat Commun. 2012;3:716 – reference: 24658076 - Nat Med. 2014 Apr;20(4):425-9 – reference: 24390323 - J Virol. 2014 Mar;88(6):3340-52 |
SSID | ssj0004367 |
Score | 2.4104745 |
Snippet | Background. Sensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to... Sensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to determine whether... Background. Sensitive assays are needed for detection of residual human immunodeficiency virus (HIV) in patients with undetectable plasma viral loads to... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1387 |
SubjectTerms | Animals Antiretroviral Therapy, Highly Active CD4-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - virology Disease Models, Animal HIV Infections - diagnosis HIV Infections - drug therapy HIV-1 - growth & development HIV-1 - isolation & purification HIV/AIDS Humans Interleukin-2 - blood Leukocytes, Mononuclear - virology Macaca Major and Brief Reports Male Mice Simian immunodeficiency virus Simian Immunodeficiency Virus - growth & development Simian Immunodeficiency Virus - isolation & purification Swine influenza virus Viral Load Viremia - veterinary |
Title | A Murine Viral Outgrowth Assay to Detect Residual HIV Type 1 in Patients With Undetectable Viral Loads |
URI | https://www.jstor.org/stable/43709380 https://www.ncbi.nlm.nih.gov/pubmed/25883388 https://www.proquest.com/docview/1722185799 https://www.proquest.com/docview/1776656026 https://pubmed.ncbi.nlm.nih.gov/PMC4601916 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIhAXBIWW8NIiIS7BtN71Iz6GRxQKgUq0pTdr7aypwbWrxEEKf4S_y8yOXyktAi5W5B3vSpnP45nZnW8Ye-rbOpgJ37U85SaW48pdS8nYtlw_SqJd5ejAJPSnH7zJobN37B73ej87p5aWZfQi_nFhXcn_aBXugV6xSvYfNNtMCjfgN-gXrqBhuP6VjkeDKSbL9eAoxTr7j8vyC0TVuA-zWCjjVr7WuEmASXoquppAtIeh58DGRMc-kariGVh4CFsgobQppqIZ3xeKCoFr_7WtJKvIJugo13JR7_Q0LvoU8KCyBNfQVACUZas2c7pfnGSnelWVIbYMB4Mm5_NZZd_03Pp0Zgi5jEU6SnGLIVVt-cS4KGj6PT3HwpiX3SyG7VblfOYjVFte3wJnQXZNs7BFB4NBx9Dakr7Tv30BiB0Lbs2Qo2H8Nf0uaOOng4ezUwMI4WKnZeoqeI50ux66wq4KiD9MrP72XVtwKz2_ImyF9XZotR1aC-mlq6fXfB067npRIHP-PG7HwTm4xW5WWuUjgtlt1tP5JrtGvUpXm-z6tDqFcYclI0644wYlvMEdN7jjZcEJd7zGHQfcccQdt3ma8xp3HHHHu7irZjS4u8sOx28OXk2sql-HFTuOKK1ISi1diCeGOohsR4FzD3bKkyrQuP8bzSBY9yMZq6FKNHYWCMAUSNT5LJkp8HO32EZe5Poe40lsaxU5EQwJx3WTYWBHsQ68QOuh0L7bZ8_rfzaMKzJ77KmShXSoQoakk5B00mfPGvEzYnG5THDLqKmRcqQPQkMYeFLrLQQDjLtqKtfweoUQAQgkVAuCP8n4HrJcCa_PtknXzQo1WPrMX0NBI4AE8OsjeXpiiOAdDwI027t_6ZwP2I32ZXvINsr5Uj8CJ7qMHhtA_wLoOMz0 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Murine+Viral+Outgrowth+Assay+to+Detect+Residual+HIV+Type+1+in+Patients+With+Undetectable+Viral+Loads&rft.jtitle=The+Journal+of+infectious+diseases&rft.au=Metcalf+Pate%2C+Kelly+A&rft.au=Pohlmeyer%2C+Christopher+W&rft.au=Walker-Sperling%2C+Victoria+E&rft.au=Foote%2C+Jeremy+B&rft.date=2015-11-01&rft.eissn=1537-6613&rft.volume=212&rft.issue=9&rft.spage=1387&rft_id=info:doi/10.1093%2Finfdis%2Fjiv230&rft_id=info%3Apmid%2F25883388&rft.externalDocID=25883388 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1899&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1899&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1899&client=summon |