Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation
In this study, we developed a new approach to designing and preparing NF membranes through pore engineering by graphene quantum dots (GQDs). An in-situ interfacial polymerization reaction between GQDs and trimesoyl chloride (TMC) took place within the pores of ultrafiltration (UF) membranes, which w...
Saved in:
Published in | Journal of membrane science Vol. 572; pp. 504 - 511 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we developed a new approach to designing and preparing NF membranes through pore engineering by graphene quantum dots (GQDs). An in-situ interfacial polymerization reaction between GQDs and trimesoyl chloride (TMC) took place within the pores of ultrafiltration (UF) membranes, which was followed by thermal treatment. The irreversible shrinkage of membrane bulk material by thermal treatment ensured the robust residence of the GQDs nanoaggregates. The pore structure of the resultant membranes was revealed by scanning electron microscope (SEM), positron annihilation spectroscopy (PAS), Brunner–Emmet–Teller (BET) measurements and neutral solutes rejection experiments. The voids among GQDs nanoaggregates formed the pores of resultant membranes, which radius can be tuned in range of 1.21–1.72 nm by the adding amount of GQDs. The resultant membranes exhibited ultrafast water permeation of 244.7 L/(m2 h bar), which was about 5–6 times higher than the reported datas in previous literatures, and the rejection of Alcian blue and Congo red could attain 92.9% and 98.8%, respectively. Long-time operation and chemical exposure further demonstrated the stability of the resultant membranes. The approach reported in this study may open a new avenue for a variety of molecular/ionic separations by reconstructing membrane pore structure through the mediation of nanomaterials.
An in-situ interfacial polymerization between graphene quantum dots (GQDs) in aqueous phase and trimesoyl chloride in organic phase was conducted within the pores of ultrafiltration (UF) membrane, followed by thermal treatment. The pristine UF membrane was transformed into nanofiltration (NF) membrane with superior separation performance and stabilities. [Display omitted]
•A novel approach to preparing nanofiltration membrane was explored.•Pore engineering by GQDs based on ultrafiltration membranes were conducted.•Pore size among the GQDs aggregates can be tuned by the amount of GQDs.•Residence stability of GQDs aggregates can be ensured by post thermal treatment.•The nanofiltration membranes showed high separation performance and stabilties. |
---|---|
AbstractList | In this study, we developed a new approach to designing and preparing NF membranes through pore engineering by graphene quantum dots (GQDs). An in-situ interfacial polymerization reaction between GQDs and trimesoyl chloride (TMC) took place within the pores of ultrafiltration (UF) membranes, which was followed by thermal treatment. The irreversible shrinkage of membrane bulk material by thermal treatment ensured the robust residence of the GQDs nanoaggregates. The pore structure of the resultant membranes was revealed by scanning electron microscope (SEM), positron annihilation spectroscopy (PAS), Brunner–Emmet–Teller (BET) measurements and neutral solutes rejection experiments. The voids among GQDs nanoaggregates formed the pores of resultant membranes, which radius can be tuned in range of 1.21–1.72 nm by the adding amount of GQDs. The resultant membranes exhibited ultrafast water permeation of 244.7 L/(m2 h bar), which was about 5–6 times higher than the reported datas in previous literatures, and the rejection of Alcian blue and Congo red could attain 92.9% and 98.8%, respectively. Long-time operation and chemical exposure further demonstrated the stability of the resultant membranes. The approach reported in this study may open a new avenue for a variety of molecular/ionic separations by reconstructing membrane pore structure through the mediation of nanomaterials.
An in-situ interfacial polymerization between graphene quantum dots (GQDs) in aqueous phase and trimesoyl chloride in organic phase was conducted within the pores of ultrafiltration (UF) membrane, followed by thermal treatment. The pristine UF membrane was transformed into nanofiltration (NF) membrane with superior separation performance and stabilities. [Display omitted]
•A novel approach to preparing nanofiltration membrane was explored.•Pore engineering by GQDs based on ultrafiltration membranes were conducted.•Pore size among the GQDs aggregates can be tuned by the amount of GQDs.•Residence stability of GQDs aggregates can be ensured by post thermal treatment.•The nanofiltration membranes showed high separation performance and stabilties. In this study, we developed a new approach to designing and preparing NF membranes through pore engineering by graphene quantum dots (GQDs). An in-situ interfacial polymerization reaction between GQDs and trimesoyl chloride (TMC) took place within the pores of ultrafiltration (UF) membranes, which was followed by thermal treatment. The irreversible shrinkage of membrane bulk material by thermal treatment ensured the robust residence of the GQDs nanoaggregates. The pore structure of the resultant membranes was revealed by scanning electron microscope (SEM), positron annihilation spectroscopy (PAS), Brunner–Emmet–Teller (BET) measurements and neutral solutes rejection experiments. The voids among GQDs nanoaggregates formed the pores of resultant membranes, which radius can be tuned in range of 1.21–1.72 nm by the adding amount of GQDs. The resultant membranes exhibited ultrafast water permeation of 244.7 L/(m2 h bar), which was about 5–6 times higher than the reported datas in previous literatures, and the rejection of Alcian blue and Congo red could attain 92.9% and 98.8%, respectively. Long-time operation and chemical exposure further demonstrated the stability of the resultant membranes. The approach reported in this study may open a new avenue for a variety of molecular/ionic separations by reconstructing membrane pore structure through the mediation of nanomaterials. |
Author | Liu, Ya-nan You, Xinda Bi, Ran Zhang, Runnan Shen, Jianliang Jiang, Zhongyi Su, Yanlei He, Mingrui |
Author_xml | – sequence: 1 givenname: Ran surname: Bi fullname: Bi, Ran organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 2 givenname: Runnan surname: Zhang fullname: Zhang, Runnan organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 3 givenname: Jianliang surname: Shen fullname: Shen, Jianliang organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 4 givenname: Ya-nan surname: Liu fullname: Liu, Ya-nan organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 5 givenname: Mingrui surname: He fullname: He, Mingrui organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 6 givenname: Xinda surname: You fullname: You, Xinda organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 7 givenname: Yanlei surname: Su fullname: Su, Yanlei email: suyanlei@tju.edu.cn organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 8 givenname: Zhongyi surname: Jiang fullname: Jiang, Zhongyi email: zhyjiang@tju.edu.cn organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China |
BookMark | eNqFkE1LxDAQhoMouK7-Aw89emmdpB9pPQgiugqCFz15CNlkqlnaZE1SwX9v1nryoKfA8LyTd54jsm-dRUJOKRQUaHO-KUYcgzIFA9oWlBZQVXtkQVte5iVl5T5ZQMmbnJdte0iOQtgAUA5ttyAvKy-3b2gxe5-kjdOYaRdDhvbVWESPOrPSut4M0ctonM3ST2svE987n027cS9DzEY3oJoG6bOAWzmzx-Sgl0PAk593SZ5vb56u7_KHx9X99dVDrqqKxVzWGtZKga54g5w1dN10veIcoAbNeVsCpnu0Ykz3ALKWda87xequ1bxTGsolOZv3br17nzBEMZqgcBhSTTcFwRhLmhinTUIvZlR5F4LHXigTv8umQ8wgKIidUbERs1GxMyooFalBCle_wltvRuk__4tdzjFMDj4MepEItAq18aii0M78veALUZKWlQ |
CitedBy_id | crossref_primary_10_1016_j_envres_2023_116133 crossref_primary_10_1016_j_memsci_2020_118465 crossref_primary_10_3390_app122010565 crossref_primary_10_2139_ssrn_4048846 crossref_primary_10_3390_nano12234154 crossref_primary_10_1515_revce_2021_0046 crossref_primary_10_3390_polym16111481 crossref_primary_10_1177_15280837221113083 crossref_primary_10_1016_j_memsci_2023_121399 crossref_primary_10_1002_slct_202101957 crossref_primary_10_1021_acs_iecr_0c04360 crossref_primary_10_1016_j_jwpe_2021_102249 crossref_primary_10_1016_j_cej_2024_154862 crossref_primary_10_1016_j_seppur_2024_129754 crossref_primary_10_1016_j_memsci_2022_121081 crossref_primary_10_1016_j_cjche_2019_11_007 crossref_primary_10_1016_j_desal_2023_116598 crossref_primary_10_2166_wst_2022_357 crossref_primary_10_1007_s42247_021_00291_6 crossref_primary_10_1016_j_desal_2020_114811 crossref_primary_10_1016_j_desal_2022_116232 crossref_primary_10_1016_j_cclet_2021_06_018 crossref_primary_10_1016_j_desal_2022_115742 crossref_primary_10_1016_j_memsci_2021_119523 crossref_primary_10_1016_j_memsci_2020_118433 crossref_primary_10_1016_j_memsci_2021_119209 crossref_primary_10_1039_D0TA09319J crossref_primary_10_3390_molecules25214934 crossref_primary_10_1016_j_seppur_2024_129273 crossref_primary_10_12677_JAPC_2023_124027 crossref_primary_10_1016_j_polymertesting_2021_107270 crossref_primary_10_1016_j_memsci_2025_123787 crossref_primary_10_1016_j_memsci_2022_121075 crossref_primary_10_1016_j_jtice_2021_08_047 crossref_primary_10_1016_j_memsci_2023_122020 crossref_primary_10_1002_tcr_201900024 crossref_primary_10_1016_j_memsci_2019_117212 crossref_primary_10_1016_j_nanoms_2024_01_009 crossref_primary_10_1016_j_desal_2020_114867 crossref_primary_10_1080_25740881_2024_2375363 crossref_primary_10_1039_D3TA03016D crossref_primary_10_1002_app_56296 crossref_primary_10_1016_j_jcis_2021_01_004 crossref_primary_10_1021_acsami_3c05677 crossref_primary_10_1016_j_jiec_2022_11_017 crossref_primary_10_1016_j_jwpe_2024_106394 crossref_primary_10_1016_j_seppur_2021_118567 crossref_primary_10_1021_acsami_9b03753 crossref_primary_10_1016_j_pmatsci_2024_101282 crossref_primary_10_1016_j_memsci_2022_121334 crossref_primary_10_1016_j_jwpe_2020_101652 crossref_primary_10_1016_j_apmt_2021_101331 crossref_primary_10_1021_acsami_4c12144 crossref_primary_10_1007_s10570_021_04174_1 crossref_primary_10_1007_s42114_024_00923_5 crossref_primary_10_1039_C9EW01134J crossref_primary_10_2139_ssrn_4184459 crossref_primary_10_1016_j_seppur_2023_124366 crossref_primary_10_1016_j_seppur_2023_123831 crossref_primary_10_1016_j_desal_2024_117666 crossref_primary_10_1016_j_memsci_2021_119667 crossref_primary_10_1021_acsami_9b16704 crossref_primary_10_1016_j_memsci_2021_119944 crossref_primary_10_1016_j_apsusc_2019_145198 crossref_primary_10_1016_j_memsci_2021_119309 crossref_primary_10_1016_j_seppur_2021_118372 crossref_primary_10_1016_j_jcis_2023_03_044 crossref_primary_10_1016_j_cej_2020_127602 crossref_primary_10_1016_j_memsci_2020_118176 crossref_primary_10_1021_acsami_0c10301 crossref_primary_10_2139_ssrn_4007834 crossref_primary_10_1016_j_eti_2025_104163 crossref_primary_10_1016_j_memsci_2021_119275 crossref_primary_10_3390_coatings11091100 crossref_primary_10_1016_j_desal_2022_116146 crossref_primary_10_1039_D3MA00372H |
Cites_doi | 10.1016/j.memsci.2012.08.020 10.1021/acsami.7b00159 10.1016/j.carbon.2012.06.002 10.1039/C5RA08317F 10.1021/nn1014006 10.1016/j.memsci.2016.09.055 10.1016/j.memsci.2018.01.056 10.1021/nn304471w 10.1021/nn1014616 10.1038/nature05532 10.1002/anie.201712816 10.1016/j.memsci.2005.12.051 10.1002/adfm.201202601 10.1021/acsnano.5b02598 10.1016/j.desal.2018.01.031 10.1039/C7TA09596A 10.1039/C7TA08635K 10.1016/j.memsci.2018.02.010 10.1126/science.aaa5058 10.1016/j.memsci.2017.06.084 10.1038/nnano.2017.160 10.1016/j.memsci.2014.08.055 10.1016/j.nimb.2018.04.040 10.1016/j.memsci.2012.11.059 10.1021/acsnano.8b01266 10.1021/ja073067w 10.1016/j.memsci.2014.10.032 10.1002/adma.201100510 10.1016/j.memsci.2005.04.034 10.1016/j.cej.2018.03.116 10.1038/nature06599 10.1126/science.aar6308 10.1016/j.memsci.2010.10.060 10.1002/anie.201505663 10.1016/j.memsci.2006.07.004 10.1002/smll.201402648 10.1126/science.1154663 10.1016/j.watres.2015.04.037 10.1021/am403790s 10.1016/j.memsci.2013.01.041 10.1021/acssuschemeng.7b04699 10.1016/j.pmatsci.2017.10.006 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.memsci.2018.11.044 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3123 |
EndPage | 511 |
ExternalDocumentID | 10_1016_j_memsci_2018_11_044 S0376738818324086 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ 7S9 L.6 |
ID | FETCH-LOGICAL-c442t-a5d0bcc0d476e7261b69fc770050d77830e044dc22df00a5a5fd9c2598d79cd03 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Fri Jul 11 05:31:35 EDT 2025 Tue Jul 01 02:49:29 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Fri Feb 23 02:28:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High flux Chemical stability Pore engineering Graphene quantum dots In-situ interfacial polymerization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-a5d0bcc0d476e7261b69fc770050d77830e044dc22df00a5a5fd9c2598d79cd03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2221012716 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2221012716 crossref_citationtrail_10_1016_j_memsci_2018_11_044 crossref_primary_10_1016_j_memsci_2018_11_044 elsevier_sciencedirect_doi_10_1016_j_memsci_2018_11_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-15 |
PublicationDateYYYYMMDD | 2019-02-15 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Wang, Lin, Jin, Gao, Zhu, Jin (bib12) 2018; 9 Qiao, Chung, Pramoda (bib39) 2005; 264 Zhang, Shen, Tang, Jin, Song, Long, Wei, Zhou, Chen, Guo (bib31) 2018; 427 Shannon, Bohn, Elimelech, Georgiadis, Marinas, Mayes (bib1) 2008; 452 Sun, Zhu, Wang, Zhong, Wei, Wu, Xu, Zhu (bib9) 2013; 7 Bi, Zhang, Zhang, Su, Jiang (bib25) 2018; 553 Yang, Wu, Yao, Shi, Xu, Cheng, Pan, Liu, Jiang, Cao (bib32) 2018; 6 Morelos-Gomez, Cruz-Silva, Muramatsu, Ortiz-Medina, Araki, Fukuyo, Tejima, Takeuchi, Hayashi, Terrones, Endo (bib40) 2017; 12 Lai, Lau, Goh, Ismail, Tan, Chong, Krause-Rehberg, Awad (bib20) 2018; 344 An, Li, Ji, Chen (bib16) 2011; 367 Karan, Jiang, Livingston (bib10) 2015; 348 Yin, Kim, Yang, Deng (bib15) 2012; 423 Zhang, Su, Peng, Zhao, Liu, Zhao, Jiang (bib43) 2013; 429 Tan, Chen, Peng, Zhang, Gao (bib13) 2018; 360 Chen, Zhang, Tang, Qiu, Fu, Fan (bib28) 2018; 552 Wang, Li, Chen, Li, Yin, Cao, Zhong, Wu (bib18) 2017; 523 Ponomarenko, Schedin, Katsnelson, Yang, Hill, Novoselov, Geim (bib24) 2008; 320 You, Ma, Su, Wu, Wu, Cai, Sun, Jiang (bib34) 2017; 540 Wang, Tang, Zhu, Dong, Wang, Wu (bib41) 2015; 475 Striemer, Gaborski, McGrath, Fauchet (bib3) 2007; 445 Wang, Wang, Liu, Ding, Wang, Du, Liu, Apel, Kluth, Trautmann, Wang (bib5) 2018; 9 Zhao, Wang, Wang, Wang (bib29) 2006; 283 Dong, Shao, Chen, Li, Wang, Chi, Lin, Chen (bib26) 2012; 50 Jackson, Hillmyer (bib8) 2010; 4 Cheng, Wang, Jiang, Li, Lau, Guo, Ma, Shao (bib2) 2018; 92 Yu, Qiu, Moreno, Ma, Calo, Nunes, Peinemann (bib33) 2015; 54 Khorshidi, Thundat, Fleck, Sadrzadeh (bib36) 2015; 5 Zhou, Nemade, Lu, Zeng, Hatakeyama, Noble, Gin (bib7) 2007; 129 Song, Liu, Sun (bib14) 2011; 23 Zheng, Ananthanarayanan, Luo, Chen (bib27) 2015; 11 Liu, Wang, Song (bib44) 2018; 6 Fan, Zhang, Yang, Zhang, Liu, He, Jiang, Su (bib30) 2017; 9 Han, Xu, Gao (bib35) 2013; 23 Fan, Gu, Meng, Knebel, Caro (bib17) 2018; 57 Lau, Gray, Matsuura, Emadzadeh, Chen, Ismail (bib11) 2015; 80 Yang, Dementyev, Biere, Emmrich, Stohmann, Korzetz, Zhang, Beyer, Koch, Anselmetti, Golzhauser (bib4) 2018; 12 Mandavi, Rahimi (bib21) 2018; 433 Wu, Huang, Yu, Lawless, Feng (bib37) 2014; 472 Su, Guo (bib23) 2011; 5 Choi, Choi, Bang, Lee (bib42) 2013; 5 Amini, Jahanshahi, Rahimpour (bib22) 2013; 435 Hu, He, Zhang, Zhang, Li, Zhu (bib19) 2017; 5 Liu, Yuan, Li, Tang, Zhang, Qian, Van der Bruggen, Wang (bib6) 2015; 9 Korikov, Kosaraju, Sirkar (bib38) 2006; 279 Amini (10.1016/j.memsci.2018.11.044_bib22) 2013; 435 Dong (10.1016/j.memsci.2018.11.044_bib26) 2012; 50 Wang (10.1016/j.memsci.2018.11.044_bib18) 2017; 523 Khorshidi (10.1016/j.memsci.2018.11.044_bib36) 2015; 5 Sun (10.1016/j.memsci.2018.11.044_bib9) 2013; 7 Korikov (10.1016/j.memsci.2018.11.044_bib38) 2006; 279 Cheng (10.1016/j.memsci.2018.11.044_bib2) 2018; 92 Wang (10.1016/j.memsci.2018.11.044_bib41) 2015; 475 Wu (10.1016/j.memsci.2018.11.044_bib37) 2014; 472 Zheng (10.1016/j.memsci.2018.11.044_bib27) 2015; 11 Tan (10.1016/j.memsci.2018.11.044_bib13) 2018; 360 Zhang (10.1016/j.memsci.2018.11.044_bib31) 2018; 427 Zhang (10.1016/j.memsci.2018.11.044_bib43) 2013; 429 Qiao (10.1016/j.memsci.2018.11.044_bib39) 2005; 264 Karan (10.1016/j.memsci.2018.11.044_bib10) 2015; 348 An (10.1016/j.memsci.2018.11.044_bib16) 2011; 367 Zhou (10.1016/j.memsci.2018.11.044_bib7) 2007; 129 Yang (10.1016/j.memsci.2018.11.044_bib32) 2018; 6 Striemer (10.1016/j.memsci.2018.11.044_bib3) 2007; 445 Yang (10.1016/j.memsci.2018.11.044_bib4) 2018; 12 Lau (10.1016/j.memsci.2018.11.044_bib11) 2015; 80 You (10.1016/j.memsci.2018.11.044_bib34) 2017; 540 Su (10.1016/j.memsci.2018.11.044_bib23) 2011; 5 Mandavi (10.1016/j.memsci.2018.11.044_bib21) 2018; 433 Wang (10.1016/j.memsci.2018.11.044_bib12) 2018; 9 Bi (10.1016/j.memsci.2018.11.044_bib25) 2018; 553 Ponomarenko (10.1016/j.memsci.2018.11.044_bib24) 2008; 320 Fan (10.1016/j.memsci.2018.11.044_bib30) 2017; 9 Chen (10.1016/j.memsci.2018.11.044_bib28) 2018; 552 Morelos-Gomez (10.1016/j.memsci.2018.11.044_bib40) 2017; 12 Liu (10.1016/j.memsci.2018.11.044_bib6) 2015; 9 Lai (10.1016/j.memsci.2018.11.044_bib20) 2018; 344 Song (10.1016/j.memsci.2018.11.044_bib14) 2011; 23 Jackson (10.1016/j.memsci.2018.11.044_bib8) 2010; 4 Hu (10.1016/j.memsci.2018.11.044_bib19) 2017; 5 Shannon (10.1016/j.memsci.2018.11.044_bib1) 2008; 452 Liu (10.1016/j.memsci.2018.11.044_bib44) 2018; 6 Yin (10.1016/j.memsci.2018.11.044_bib15) 2012; 423 Han (10.1016/j.memsci.2018.11.044_bib35) 2013; 23 Wang (10.1016/j.memsci.2018.11.044_bib5) 2018; 9 Fan (10.1016/j.memsci.2018.11.044_bib17) 2018; 57 Zhao (10.1016/j.memsci.2018.11.044_bib29) 2006; 283 Yu (10.1016/j.memsci.2018.11.044_bib33) 2015; 54 Choi (10.1016/j.memsci.2018.11.044_bib42) 2013; 5 |
References_xml | – volume: 283 start-page: 346 year: 2006 end-page: 356 ident: bib29 article-title: Influence of heat-treatment on CO publication-title: J. Membr. Sci. – volume: 360 start-page: 518 year: 2018 end-page: 521 ident: bib13 article-title: Polyamide membranes with nanoscale Turing structures for water purification publication-title: Science – volume: 423 start-page: 238 year: 2012 end-page: 246 ident: bib15 article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification publication-title: J. Membr. Sci. – volume: 523 start-page: 273 year: 2017 end-page: 281 ident: bib18 article-title: Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination publication-title: J. Membr. Sci. – volume: 5 start-page: 351 year: 2011 end-page: 359 ident: bib23 article-title: Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field publication-title: ACS Nano – volume: 9 start-page: 9 year: 2018 ident: bib12 article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination publication-title: Nat. Commun. – volume: 5 start-page: 25632 year: 2017 end-page: 25640 ident: bib19 article-title: Graphene oxide-embedded polyamide nanofiltration membranes for selective ion separation publication-title: J. Mater. Chem. A – volume: 367 start-page: 158 year: 2011 end-page: 165 ident: bib16 article-title: Influence of polyvinyl alcohol on the surface morphology, separation and anti-fouling performance of the composite polyamide nanofiltration membranes publication-title: J. Membr. Sci. – volume: 5 start-page: 54985 year: 2015 end-page: 54997 ident: bib36 article-title: Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions publication-title: RSC Adv. – volume: 23 start-page: 3256 year: 2011 end-page: 3260 ident: bib14 article-title: Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate publication-title: Adv. Mater. – volume: 553 start-page: 17 year: 2018 end-page: 24 ident: bib25 article-title: Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property publication-title: J. Membr. Sci. – volume: 429 start-page: 235 year: 2013 end-page: 242 ident: bib43 article-title: Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride publication-title: J. Membr. Sci. – volume: 445 start-page: 749 year: 2007 end-page: 753 ident: bib3 article-title: Charge- and size-based separation of macromolecules using ultrathin silicon membranes publication-title: Nature – volume: 427 start-page: 1 year: 2018 end-page: 8 ident: bib31 article-title: Proton-irradiation induced defects in modified 310S steels characterized with positron annihilation spectroscopy and transmission electron microscopy publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B – volume: 11 start-page: 1620 year: 2015 end-page: 1636 ident: bib27 article-title: Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications publication-title: Small – volume: 4 start-page: 3548 year: 2010 end-page: 3553 ident: bib8 article-title: Nanoporous membranes derived from block copolymers: from drug delivery to water filtration publication-title: ACS Nano – volume: 12 start-page: 1083 year: 2017 end-page: 1088 ident: bib40 article-title: Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes publication-title: Nat. Nanotechnol. – volume: 9 year: 2018 ident: bib5 article-title: Ultrafast ion sieving using nanoporous polymeric membranes publication-title: Nat. Commun. – volume: 92 start-page: 258 year: 2018 end-page: 283 ident: bib2 article-title: Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials publication-title: Prog. Mater. Sci. – volume: 433 start-page: 94 year: 2018 end-page: 107 ident: bib21 article-title: Zwitterion functionalized graphene oxide/polyamide thin film nanocomposite membrane: towards improved anti-fouling performance for reverse osmosis publication-title: Desalination – volume: 54 start-page: 13937 year: 2015 end-page: 13941 ident: bib33 article-title: Self-assembled asymmetric block copolymer membranes: bridging the gap from ultra- to nanofiltration publication-title: Angew. Chem. Int. Ed. – volume: 129 start-page: 9574 year: 2007 end-page: 9575 ident: bib7 article-title: New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly publication-title: J. Am. Chem. Soc. – volume: 264 start-page: 176 year: 2005 end-page: 189 ident: bib39 article-title: Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol publication-title: J. Membr. Sci. – volume: 6 start-page: 4253 year: 2018 end-page: 4263 ident: bib44 article-title: Free radical graft copolymerization strategy to prepare catechin-modified chitosan loose nanofiltration (NF) membrane for dye desalination publication-title: ACS Sustain. Chem. Eng. – volume: 12 start-page: 4695 year: 2018 end-page: 4701 ident: bib4 article-title: Rapid water permeation through carbon nanomembranes with sub-nanometer channels publication-title: ACS Nano – volume: 57 start-page: 4083 year: 2018 end-page: 4087 ident: bib17 article-title: High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration publication-title: Angew. Chem. Int. Ed. – volume: 80 start-page: 306 year: 2015 end-page: 324 ident: bib11 article-title: A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches publication-title: Water Res. – volume: 344 start-page: 524 year: 2018 end-page: 534 ident: bib20 article-title: Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation publication-title: Chem. Eng. J. – volume: 435 start-page: 233 year: 2013 end-page: 241 ident: bib22 article-title: Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes publication-title: J. Membr. Sci. – volume: 552 start-page: 77 year: 2018 end-page: 85 ident: bib28 article-title: Novel pore size tuning method for the fabrication of ceramic multi-channel nanofiltration membrane publication-title: J. Membr. Sci. – volume: 9 start-page: 13577 year: 2017 end-page: 13586 ident: bib30 article-title: Improving Permeation and Antifouling Performance of Polyamide Nanofiltration Membranes through the Incorporation of Arginine publication-title: ACS Appl. Mater. Interfaces – volume: 320 start-page: 356 year: 2008 end-page: 358 ident: bib24 article-title: Chaotic dirac billiard in graphene quantum dots publication-title: Science – volume: 279 start-page: 588 year: 2006 end-page: 600 ident: bib38 article-title: Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibers and flat films publication-title: J. Membr. Sci. – volume: 472 start-page: 141 year: 2014 end-page: 153 ident: bib37 article-title: Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride publication-title: J. Membr. Sci. – volume: 23 start-page: 3693 year: 2013 end-page: 3700 ident: bib35 article-title: Ultrathin graphene nanofiltration membrane for water purification publication-title: Adv. Funct. Mater. – volume: 9 start-page: 7488 year: 2015 end-page: 7496 ident: bib6 article-title: Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh mono-/multivalent ion selectivity publication-title: ACS Nano – volume: 50 start-page: 4738 year: 2012 end-page: 4743 ident: bib26 article-title: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid publication-title: Carbon – volume: 348 start-page: 1347 year: 2015 end-page: 1351 ident: bib10 article-title: Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation publication-title: Science – volume: 452 start-page: 301 year: 2008 end-page: 310 ident: bib1 article-title: Science and technology for water purification in the coming decades publication-title: Nature – volume: 7 start-page: 428 year: 2013 end-page: 437 ident: bib9 article-title: Selective ion penetration of graphene oxide membranes publication-title: ACS Nano – volume: 5 start-page: 12510 year: 2013 end-page: 12519 ident: bib42 article-title: Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications publication-title: ACS Appl. Mater. Interfaces – volume: 540 start-page: 454 year: 2017 end-page: 463 ident: bib34 article-title: Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles publication-title: J. Membr. Sci. – volume: 475 start-page: 184 year: 2015 end-page: 192 ident: bib41 article-title: Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment publication-title: J. Membr. Sci. – volume: 6 start-page: 583 year: 2018 end-page: 591 ident: bib32 article-title: Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation publication-title: J. Mater. Chem. A – volume: 423 start-page: 238 year: 2012 ident: 10.1016/j.memsci.2018.11.044_bib15 article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.08.020 – volume: 9 start-page: 13577 year: 2017 ident: 10.1016/j.memsci.2018.11.044_bib30 article-title: Improving Permeation and Antifouling Performance of Polyamide Nanofiltration Membranes through the Incorporation of Arginine publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00159 – volume: 50 start-page: 4738 year: 2012 ident: 10.1016/j.memsci.2018.11.044_bib26 article-title: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid publication-title: Carbon doi: 10.1016/j.carbon.2012.06.002 – volume: 5 start-page: 54985 year: 2015 ident: 10.1016/j.memsci.2018.11.044_bib36 article-title: Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions publication-title: RSC Adv. doi: 10.1039/C5RA08317F – volume: 9 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib5 article-title: Ultrafast ion sieving using nanoporous polymeric membranes publication-title: Nat. Commun. – volume: 4 start-page: 3548 year: 2010 ident: 10.1016/j.memsci.2018.11.044_bib8 article-title: Nanoporous membranes derived from block copolymers: from drug delivery to water filtration publication-title: ACS Nano doi: 10.1021/nn1014006 – volume: 523 start-page: 273 year: 2017 ident: 10.1016/j.memsci.2018.11.044_bib18 article-title: Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.09.055 – volume: 552 start-page: 77 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib28 article-title: Novel pore size tuning method for the fabrication of ceramic multi-channel nanofiltration membrane publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.01.056 – volume: 7 start-page: 428 year: 2013 ident: 10.1016/j.memsci.2018.11.044_bib9 article-title: Selective ion penetration of graphene oxide membranes publication-title: ACS Nano doi: 10.1021/nn304471w – volume: 5 start-page: 351 year: 2011 ident: 10.1016/j.memsci.2018.11.044_bib23 article-title: Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field publication-title: ACS Nano doi: 10.1021/nn1014616 – volume: 445 start-page: 749 year: 2007 ident: 10.1016/j.memsci.2018.11.044_bib3 article-title: Charge- and size-based separation of macromolecules using ultrathin silicon membranes publication-title: Nature doi: 10.1038/nature05532 – volume: 57 start-page: 4083 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib17 article-title: High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712816 – volume: 9 start-page: 9 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib12 article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination publication-title: Nat. Commun. – volume: 279 start-page: 588 year: 2006 ident: 10.1016/j.memsci.2018.11.044_bib38 article-title: Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibers and flat films publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.12.051 – volume: 23 start-page: 3693 year: 2013 ident: 10.1016/j.memsci.2018.11.044_bib35 article-title: Ultrathin graphene nanofiltration membrane for water purification publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202601 – volume: 9 start-page: 7488 year: 2015 ident: 10.1016/j.memsci.2018.11.044_bib6 article-title: Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh mono-/multivalent ion selectivity publication-title: ACS Nano doi: 10.1021/acsnano.5b02598 – volume: 433 start-page: 94 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib21 article-title: Zwitterion functionalized graphene oxide/polyamide thin film nanocomposite membrane: towards improved anti-fouling performance for reverse osmosis publication-title: Desalination doi: 10.1016/j.desal.2018.01.031 – volume: 6 start-page: 583 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib32 article-title: Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09596A – volume: 5 start-page: 25632 year: 2017 ident: 10.1016/j.memsci.2018.11.044_bib19 article-title: Graphene oxide-embedded polyamide nanofiltration membranes for selective ion separation publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08635K – volume: 553 start-page: 17 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib25 article-title: Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.02.010 – volume: 348 start-page: 1347 year: 2015 ident: 10.1016/j.memsci.2018.11.044_bib10 article-title: Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation publication-title: Science doi: 10.1126/science.aaa5058 – volume: 540 start-page: 454 year: 2017 ident: 10.1016/j.memsci.2018.11.044_bib34 article-title: Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.06.084 – volume: 12 start-page: 1083 year: 2017 ident: 10.1016/j.memsci.2018.11.044_bib40 article-title: Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.160 – volume: 472 start-page: 141 year: 2014 ident: 10.1016/j.memsci.2018.11.044_bib37 article-title: Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.08.055 – volume: 427 start-page: 1 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib31 article-title: Proton-irradiation induced defects in modified 310S steels characterized with positron annihilation spectroscopy and transmission electron microscopy publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B doi: 10.1016/j.nimb.2018.04.040 – volume: 429 start-page: 235 year: 2013 ident: 10.1016/j.memsci.2018.11.044_bib43 article-title: Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.11.059 – volume: 12 start-page: 4695 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib4 article-title: Rapid water permeation through carbon nanomembranes with sub-nanometer channels publication-title: ACS Nano doi: 10.1021/acsnano.8b01266 – volume: 129 start-page: 9574 year: 2007 ident: 10.1016/j.memsci.2018.11.044_bib7 article-title: New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly publication-title: J. Am. Chem. Soc. doi: 10.1021/ja073067w – volume: 475 start-page: 184 year: 2015 ident: 10.1016/j.memsci.2018.11.044_bib41 article-title: Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.10.032 – volume: 23 start-page: 3256 year: 2011 ident: 10.1016/j.memsci.2018.11.044_bib14 article-title: Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate publication-title: Adv. Mater. doi: 10.1002/adma.201100510 – volume: 264 start-page: 176 year: 2005 ident: 10.1016/j.memsci.2018.11.044_bib39 article-title: Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.04.034 – volume: 344 start-page: 524 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib20 article-title: Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.116 – volume: 452 start-page: 301 year: 2008 ident: 10.1016/j.memsci.2018.11.044_bib1 article-title: Science and technology for water purification in the coming decades publication-title: Nature doi: 10.1038/nature06599 – volume: 360 start-page: 518 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib13 article-title: Polyamide membranes with nanoscale Turing structures for water purification publication-title: Science doi: 10.1126/science.aar6308 – volume: 367 start-page: 158 year: 2011 ident: 10.1016/j.memsci.2018.11.044_bib16 article-title: Influence of polyvinyl alcohol on the surface morphology, separation and anti-fouling performance of the composite polyamide nanofiltration membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.10.060 – volume: 54 start-page: 13937 year: 2015 ident: 10.1016/j.memsci.2018.11.044_bib33 article-title: Self-assembled asymmetric block copolymer membranes: bridging the gap from ultra- to nanofiltration publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201505663 – volume: 283 start-page: 346 year: 2006 ident: 10.1016/j.memsci.2018.11.044_bib29 article-title: Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.07.004 – volume: 11 start-page: 1620 year: 2015 ident: 10.1016/j.memsci.2018.11.044_bib27 article-title: Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications publication-title: Small doi: 10.1002/smll.201402648 – volume: 320 start-page: 356 year: 2008 ident: 10.1016/j.memsci.2018.11.044_bib24 article-title: Chaotic dirac billiard in graphene quantum dots publication-title: Science doi: 10.1126/science.1154663 – volume: 80 start-page: 306 year: 2015 ident: 10.1016/j.memsci.2018.11.044_bib11 article-title: A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches publication-title: Water Res. doi: 10.1016/j.watres.2015.04.037 – volume: 5 start-page: 12510 year: 2013 ident: 10.1016/j.memsci.2018.11.044_bib42 article-title: Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am403790s – volume: 435 start-page: 233 year: 2013 ident: 10.1016/j.memsci.2018.11.044_bib22 article-title: Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.01.041 – volume: 6 start-page: 4253 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib44 article-title: Free radical graft copolymerization strategy to prepare catechin-modified chitosan loose nanofiltration (NF) membrane for dye desalination publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b04699 – volume: 92 start-page: 258 year: 2018 ident: 10.1016/j.memsci.2018.11.044_bib2 article-title: Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.10.006 |
SSID | ssj0017089 |
Score | 2.5319805 |
Snippet | In this study, we developed a new approach to designing and preparing NF membranes through pore engineering by graphene quantum dots (GQDs). An in-situ... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 504 |
SubjectTerms | artificial membranes Chemical stability electrons engineering graphene Graphene quantum dots heat treatment High flux In-situ interfacial polymerization nanofiltration organochlorine compounds permeability polymerization Pore engineering quantum dots scanning electron microscopes scanning electron microscopy shrinkage solutes spectroscopy ultrafiltration |
Title | Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation |
URI | https://dx.doi.org/10.1016/j.memsci.2018.11.044 https://www.proquest.com/docview/2221012716 |
Volume | 572 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvuiD-ImfI4Kv2bI2XdLHMZxTcS86GPgQ2iSFieumXV_9273rx1BBBj42XNL0cr38rr38jpBr5HcxgByYSrhlIlZdFgPQYDaJDZhLIhOHH_Qfx73RRNxPg2mDDOqzMJhWWfn-0qcX3rpq6VTa7Cxns84TRyISXyk0SgHIHE-wC4lW3v5cp3l0JS_K4KEwQ-n6-FyR4zV3cxgaE7xUG7k8hfhre_rlqIvdZ7hHdivYSPvlzPZJw6UHZOcbmeAheblF7mlwXfQ9B3XlcwoBZ0ZdJeMsTaMUC3RXRLkUpgWhMsgDbqU5NidRtqLzumAuzVxJDL5Ij8hkePM8GLGqdAIzQngrFgWWx8ZwCwpxEqKkuBcmRkqke7FSKp87eFhrPM8mnEdBFCQ2NBAKKStDY7l_TJrpInUnhEovUN0IT1pyBdjJD3lgY8-3sXA9a0R0SvxaY9pUvOJY3uJN1wlkr7rUs0Y9Q8ih4danhK17LUtejQ3ysl4M_cM-NLj-DT2v6rXT8Org_xBQ7SLPNEAjZDeDiPHs36Ofk224CjGPuxtckObqI3eXAFNWcauwwxbZ6t89jMZf70Lo_w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4ineBIlrWNamS3pECBivXQAJiUPUJqk0xDpg6__HXlMESAiJa-qkreM6nxvnM8AR8btYRA5cF8JxmesOzxFocFfkFs2lUIWnH_q3_W7vQV49Jo8zcNqchaG0yuD7a58-9dahpR202X4dDNp3gohIYq3JKCUi81mYI3aqpAVzJ5fXvf7nZoIS00p4JM-pQ3OCbprmNfRDHJ1yvPQx0XlK-dsK9cNXTxeg82VYCsiRndQPtwIzvlyFxS98gmvwdEH00-i92FuFGquGDGPOMfNBxjtWZiXV6A5cuQwfC6NllEfoyipqLrLxhA2bmrls7Gtu8FG5Dg_nZ_enPR6qJ3ArZTThWeJEbq1wUnW9wkAp76aFVYoYX5xSOhYeX9bZKHKFEFmSJYVLLUZD2qnUOhFvQKsclX4TmIoS3cnosKXQCJ_iVCQuj2KXS991VmZbEDcaMzZQi1OFixfT5JA9m1rPhvSMUYfBW28B_-z1WlNr_CGvmskw30zEoPf_o-dhM3cGvx7aEkHVjqqxQXREBGcYNG7_e_QDmO_d396Ym8v-9Q4s4JWU0ro7yS60Ju-V30PUMsn3g1V-AOx767A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+quantum+dots+engineered+nanofiltration+membrane+for+ultrafast+molecular+separation&rft.jtitle=Journal+of+membrane+science&rft.au=Bi%2C+Ran&rft.au=Zhang%2C+Runnan&rft.au=Shen%2C+Jianliang&rft.au=Liu%2C+Ya-nan&rft.date=2019-02-15&rft.issn=0376-7388&rft.volume=572&rft.spage=504&rft.epage=511&rft_id=info:doi/10.1016%2Fj.memsci.2018.11.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2018_11_044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |