Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation

In this study, we developed a new approach to designing and preparing NF membranes through pore engineering by graphene quantum dots (GQDs). An in-situ interfacial polymerization reaction between GQDs and trimesoyl chloride (TMC) took place within the pores of ultrafiltration (UF) membranes, which w...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 572; pp. 504 - 511
Main Authors Bi, Ran, Zhang, Runnan, Shen, Jianliang, Liu, Ya-nan, He, Mingrui, You, Xinda, Su, Yanlei, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we developed a new approach to designing and preparing NF membranes through pore engineering by graphene quantum dots (GQDs). An in-situ interfacial polymerization reaction between GQDs and trimesoyl chloride (TMC) took place within the pores of ultrafiltration (UF) membranes, which was followed by thermal treatment. The irreversible shrinkage of membrane bulk material by thermal treatment ensured the robust residence of the GQDs nanoaggregates. The pore structure of the resultant membranes was revealed by scanning electron microscope (SEM), positron annihilation spectroscopy (PAS), Brunner–Emmet–Teller (BET) measurements and neutral solutes rejection experiments. The voids among GQDs nanoaggregates formed the pores of resultant membranes, which radius can be tuned in range of 1.21–1.72 nm by the adding amount of GQDs. The resultant membranes exhibited ultrafast water permeation of 244.7 L/(m2 h bar), which was about 5–6 times higher than the reported datas in previous literatures, and the rejection of Alcian blue and Congo red could attain 92.9% and 98.8%, respectively. Long-time operation and chemical exposure further demonstrated the stability of the resultant membranes. The approach reported in this study may open a new avenue for a variety of molecular/ionic separations by reconstructing membrane pore structure through the mediation of nanomaterials. An in-situ interfacial polymerization between graphene quantum dots (GQDs) in aqueous phase and trimesoyl chloride in organic phase was conducted within the pores of ultrafiltration (UF) membrane, followed by thermal treatment. The pristine UF membrane was transformed into nanofiltration (NF) membrane with superior separation performance and stabilities. [Display omitted] •A novel approach to preparing nanofiltration membrane was explored.•Pore engineering by GQDs based on ultrafiltration membranes were conducted.•Pore size among the GQDs aggregates can be tuned by the amount of GQDs.•Residence stability of GQDs aggregates can be ensured by post thermal treatment.•The nanofiltration membranes showed high separation performance and stabilties.
AbstractList In this study, we developed a new approach to designing and preparing NF membranes through pore engineering by graphene quantum dots (GQDs). An in-situ interfacial polymerization reaction between GQDs and trimesoyl chloride (TMC) took place within the pores of ultrafiltration (UF) membranes, which was followed by thermal treatment. The irreversible shrinkage of membrane bulk material by thermal treatment ensured the robust residence of the GQDs nanoaggregates. The pore structure of the resultant membranes was revealed by scanning electron microscope (SEM), positron annihilation spectroscopy (PAS), Brunner–Emmet–Teller (BET) measurements and neutral solutes rejection experiments. The voids among GQDs nanoaggregates formed the pores of resultant membranes, which radius can be tuned in range of 1.21–1.72 nm by the adding amount of GQDs. The resultant membranes exhibited ultrafast water permeation of 244.7 L/(m2 h bar), which was about 5–6 times higher than the reported datas in previous literatures, and the rejection of Alcian blue and Congo red could attain 92.9% and 98.8%, respectively. Long-time operation and chemical exposure further demonstrated the stability of the resultant membranes. The approach reported in this study may open a new avenue for a variety of molecular/ionic separations by reconstructing membrane pore structure through the mediation of nanomaterials. An in-situ interfacial polymerization between graphene quantum dots (GQDs) in aqueous phase and trimesoyl chloride in organic phase was conducted within the pores of ultrafiltration (UF) membrane, followed by thermal treatment. The pristine UF membrane was transformed into nanofiltration (NF) membrane with superior separation performance and stabilities. [Display omitted] •A novel approach to preparing nanofiltration membrane was explored.•Pore engineering by GQDs based on ultrafiltration membranes were conducted.•Pore size among the GQDs aggregates can be tuned by the amount of GQDs.•Residence stability of GQDs aggregates can be ensured by post thermal treatment.•The nanofiltration membranes showed high separation performance and stabilties.
In this study, we developed a new approach to designing and preparing NF membranes through pore engineering by graphene quantum dots (GQDs). An in-situ interfacial polymerization reaction between GQDs and trimesoyl chloride (TMC) took place within the pores of ultrafiltration (UF) membranes, which was followed by thermal treatment. The irreversible shrinkage of membrane bulk material by thermal treatment ensured the robust residence of the GQDs nanoaggregates. The pore structure of the resultant membranes was revealed by scanning electron microscope (SEM), positron annihilation spectroscopy (PAS), Brunner–Emmet–Teller (BET) measurements and neutral solutes rejection experiments. The voids among GQDs nanoaggregates formed the pores of resultant membranes, which radius can be tuned in range of 1.21–1.72 nm by the adding amount of GQDs. The resultant membranes exhibited ultrafast water permeation of 244.7 L/(m2 h bar), which was about 5–6 times higher than the reported datas in previous literatures, and the rejection of Alcian blue and Congo red could attain 92.9% and 98.8%, respectively. Long-time operation and chemical exposure further demonstrated the stability of the resultant membranes. The approach reported in this study may open a new avenue for a variety of molecular/ionic separations by reconstructing membrane pore structure through the mediation of nanomaterials.
Author Liu, Ya-nan
You, Xinda
Bi, Ran
Zhang, Runnan
Shen, Jianliang
Jiang, Zhongyi
Su, Yanlei
He, Mingrui
Author_xml – sequence: 1
  givenname: Ran
  surname: Bi
  fullname: Bi, Ran
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Runnan
  surname: Zhang
  fullname: Zhang, Runnan
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Jianliang
  surname: Shen
  fullname: Shen, Jianliang
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 4
  givenname: Ya-nan
  surname: Liu
  fullname: Liu, Ya-nan
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 5
  givenname: Mingrui
  surname: He
  fullname: He, Mingrui
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 6
  givenname: Xinda
  surname: You
  fullname: You, Xinda
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 7
  givenname: Yanlei
  surname: Su
  fullname: Su, Yanlei
  email: suyanlei@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 8
  givenname: Zhongyi
  surname: Jiang
  fullname: Jiang, Zhongyi
  email: zhyjiang@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
BookMark eNqFkE1LxDAQhoMouK7-Aw89emmdpB9pPQgiugqCFz15CNlkqlnaZE1SwX9v1nryoKfA8LyTd54jsm-dRUJOKRQUaHO-KUYcgzIFA9oWlBZQVXtkQVte5iVl5T5ZQMmbnJdte0iOQtgAUA5ttyAvKy-3b2gxe5-kjdOYaRdDhvbVWESPOrPSut4M0ctonM3ST2svE987n027cS9DzEY3oJoG6bOAWzmzx-Sgl0PAk593SZ5vb56u7_KHx9X99dVDrqqKxVzWGtZKga54g5w1dN10veIcoAbNeVsCpnu0Ykz3ALKWda87xequ1bxTGsolOZv3br17nzBEMZqgcBhSTTcFwRhLmhinTUIvZlR5F4LHXigTv8umQ8wgKIidUbERs1GxMyooFalBCle_wltvRuk__4tdzjFMDj4MepEItAq18aii0M78veALUZKWlQ
CitedBy_id crossref_primary_10_1016_j_envres_2023_116133
crossref_primary_10_1016_j_memsci_2020_118465
crossref_primary_10_3390_app122010565
crossref_primary_10_2139_ssrn_4048846
crossref_primary_10_3390_nano12234154
crossref_primary_10_1515_revce_2021_0046
crossref_primary_10_3390_polym16111481
crossref_primary_10_1177_15280837221113083
crossref_primary_10_1016_j_memsci_2023_121399
crossref_primary_10_1002_slct_202101957
crossref_primary_10_1021_acs_iecr_0c04360
crossref_primary_10_1016_j_jwpe_2021_102249
crossref_primary_10_1016_j_cej_2024_154862
crossref_primary_10_1016_j_seppur_2024_129754
crossref_primary_10_1016_j_memsci_2022_121081
crossref_primary_10_1016_j_cjche_2019_11_007
crossref_primary_10_1016_j_desal_2023_116598
crossref_primary_10_2166_wst_2022_357
crossref_primary_10_1007_s42247_021_00291_6
crossref_primary_10_1016_j_desal_2020_114811
crossref_primary_10_1016_j_desal_2022_116232
crossref_primary_10_1016_j_cclet_2021_06_018
crossref_primary_10_1016_j_desal_2022_115742
crossref_primary_10_1016_j_memsci_2021_119523
crossref_primary_10_1016_j_memsci_2020_118433
crossref_primary_10_1016_j_memsci_2021_119209
crossref_primary_10_1039_D0TA09319J
crossref_primary_10_3390_molecules25214934
crossref_primary_10_1016_j_seppur_2024_129273
crossref_primary_10_12677_JAPC_2023_124027
crossref_primary_10_1016_j_polymertesting_2021_107270
crossref_primary_10_1016_j_memsci_2025_123787
crossref_primary_10_1016_j_memsci_2022_121075
crossref_primary_10_1016_j_jtice_2021_08_047
crossref_primary_10_1016_j_memsci_2023_122020
crossref_primary_10_1002_tcr_201900024
crossref_primary_10_1016_j_memsci_2019_117212
crossref_primary_10_1016_j_nanoms_2024_01_009
crossref_primary_10_1016_j_desal_2020_114867
crossref_primary_10_1080_25740881_2024_2375363
crossref_primary_10_1039_D3TA03016D
crossref_primary_10_1002_app_56296
crossref_primary_10_1016_j_jcis_2021_01_004
crossref_primary_10_1021_acsami_3c05677
crossref_primary_10_1016_j_jiec_2022_11_017
crossref_primary_10_1016_j_jwpe_2024_106394
crossref_primary_10_1016_j_seppur_2021_118567
crossref_primary_10_1021_acsami_9b03753
crossref_primary_10_1016_j_pmatsci_2024_101282
crossref_primary_10_1016_j_memsci_2022_121334
crossref_primary_10_1016_j_jwpe_2020_101652
crossref_primary_10_1016_j_apmt_2021_101331
crossref_primary_10_1021_acsami_4c12144
crossref_primary_10_1007_s10570_021_04174_1
crossref_primary_10_1007_s42114_024_00923_5
crossref_primary_10_1039_C9EW01134J
crossref_primary_10_2139_ssrn_4184459
crossref_primary_10_1016_j_seppur_2023_124366
crossref_primary_10_1016_j_seppur_2023_123831
crossref_primary_10_1016_j_desal_2024_117666
crossref_primary_10_1016_j_memsci_2021_119667
crossref_primary_10_1021_acsami_9b16704
crossref_primary_10_1016_j_memsci_2021_119944
crossref_primary_10_1016_j_apsusc_2019_145198
crossref_primary_10_1016_j_memsci_2021_119309
crossref_primary_10_1016_j_seppur_2021_118372
crossref_primary_10_1016_j_jcis_2023_03_044
crossref_primary_10_1016_j_cej_2020_127602
crossref_primary_10_1016_j_memsci_2020_118176
crossref_primary_10_1021_acsami_0c10301
crossref_primary_10_2139_ssrn_4007834
crossref_primary_10_1016_j_eti_2025_104163
crossref_primary_10_1016_j_memsci_2021_119275
crossref_primary_10_3390_coatings11091100
crossref_primary_10_1016_j_desal_2022_116146
crossref_primary_10_1039_D3MA00372H
Cites_doi 10.1016/j.memsci.2012.08.020
10.1021/acsami.7b00159
10.1016/j.carbon.2012.06.002
10.1039/C5RA08317F
10.1021/nn1014006
10.1016/j.memsci.2016.09.055
10.1016/j.memsci.2018.01.056
10.1021/nn304471w
10.1021/nn1014616
10.1038/nature05532
10.1002/anie.201712816
10.1016/j.memsci.2005.12.051
10.1002/adfm.201202601
10.1021/acsnano.5b02598
10.1016/j.desal.2018.01.031
10.1039/C7TA09596A
10.1039/C7TA08635K
10.1016/j.memsci.2018.02.010
10.1126/science.aaa5058
10.1016/j.memsci.2017.06.084
10.1038/nnano.2017.160
10.1016/j.memsci.2014.08.055
10.1016/j.nimb.2018.04.040
10.1016/j.memsci.2012.11.059
10.1021/acsnano.8b01266
10.1021/ja073067w
10.1016/j.memsci.2014.10.032
10.1002/adma.201100510
10.1016/j.memsci.2005.04.034
10.1016/j.cej.2018.03.116
10.1038/nature06599
10.1126/science.aar6308
10.1016/j.memsci.2010.10.060
10.1002/anie.201505663
10.1016/j.memsci.2006.07.004
10.1002/smll.201402648
10.1126/science.1154663
10.1016/j.watres.2015.04.037
10.1021/am403790s
10.1016/j.memsci.2013.01.041
10.1021/acssuschemeng.7b04699
10.1016/j.pmatsci.2017.10.006
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.memsci.2018.11.044
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3123
EndPage 511
ExternalDocumentID 10_1016_j_memsci_2018_11_044
S0376738818324086
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
7S9
L.6
ID FETCH-LOGICAL-c442t-a5d0bcc0d476e7261b69fc770050d77830e044dc22df00a5a5fd9c2598d79cd03
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Fri Jul 11 05:31:35 EDT 2025
Tue Jul 01 02:49:29 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Fri Feb 23 02:28:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High flux
Chemical stability
Pore engineering
Graphene quantum dots
In-situ interfacial polymerization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-a5d0bcc0d476e7261b69fc770050d77830e044dc22df00a5a5fd9c2598d79cd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2221012716
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2221012716
crossref_citationtrail_10_1016_j_memsci_2018_11_044
crossref_primary_10_1016_j_memsci_2018_11_044
elsevier_sciencedirect_doi_10_1016_j_memsci_2018_11_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-15
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of membrane science
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Wang, Lin, Jin, Gao, Zhu, Jin (bib12) 2018; 9
Qiao, Chung, Pramoda (bib39) 2005; 264
Zhang, Shen, Tang, Jin, Song, Long, Wei, Zhou, Chen, Guo (bib31) 2018; 427
Shannon, Bohn, Elimelech, Georgiadis, Marinas, Mayes (bib1) 2008; 452
Sun, Zhu, Wang, Zhong, Wei, Wu, Xu, Zhu (bib9) 2013; 7
Bi, Zhang, Zhang, Su, Jiang (bib25) 2018; 553
Yang, Wu, Yao, Shi, Xu, Cheng, Pan, Liu, Jiang, Cao (bib32) 2018; 6
Morelos-Gomez, Cruz-Silva, Muramatsu, Ortiz-Medina, Araki, Fukuyo, Tejima, Takeuchi, Hayashi, Terrones, Endo (bib40) 2017; 12
Lai, Lau, Goh, Ismail, Tan, Chong, Krause-Rehberg, Awad (bib20) 2018; 344
An, Li, Ji, Chen (bib16) 2011; 367
Karan, Jiang, Livingston (bib10) 2015; 348
Yin, Kim, Yang, Deng (bib15) 2012; 423
Zhang, Su, Peng, Zhao, Liu, Zhao, Jiang (bib43) 2013; 429
Tan, Chen, Peng, Zhang, Gao (bib13) 2018; 360
Chen, Zhang, Tang, Qiu, Fu, Fan (bib28) 2018; 552
Wang, Li, Chen, Li, Yin, Cao, Zhong, Wu (bib18) 2017; 523
Ponomarenko, Schedin, Katsnelson, Yang, Hill, Novoselov, Geim (bib24) 2008; 320
You, Ma, Su, Wu, Wu, Cai, Sun, Jiang (bib34) 2017; 540
Wang, Tang, Zhu, Dong, Wang, Wu (bib41) 2015; 475
Striemer, Gaborski, McGrath, Fauchet (bib3) 2007; 445
Wang, Wang, Liu, Ding, Wang, Du, Liu, Apel, Kluth, Trautmann, Wang (bib5) 2018; 9
Zhao, Wang, Wang, Wang (bib29) 2006; 283
Dong, Shao, Chen, Li, Wang, Chi, Lin, Chen (bib26) 2012; 50
Jackson, Hillmyer (bib8) 2010; 4
Cheng, Wang, Jiang, Li, Lau, Guo, Ma, Shao (bib2) 2018; 92
Yu, Qiu, Moreno, Ma, Calo, Nunes, Peinemann (bib33) 2015; 54
Khorshidi, Thundat, Fleck, Sadrzadeh (bib36) 2015; 5
Zhou, Nemade, Lu, Zeng, Hatakeyama, Noble, Gin (bib7) 2007; 129
Song, Liu, Sun (bib14) 2011; 23
Zheng, Ananthanarayanan, Luo, Chen (bib27) 2015; 11
Liu, Wang, Song (bib44) 2018; 6
Fan, Zhang, Yang, Zhang, Liu, He, Jiang, Su (bib30) 2017; 9
Han, Xu, Gao (bib35) 2013; 23
Fan, Gu, Meng, Knebel, Caro (bib17) 2018; 57
Lau, Gray, Matsuura, Emadzadeh, Chen, Ismail (bib11) 2015; 80
Yang, Dementyev, Biere, Emmrich, Stohmann, Korzetz, Zhang, Beyer, Koch, Anselmetti, Golzhauser (bib4) 2018; 12
Mandavi, Rahimi (bib21) 2018; 433
Wu, Huang, Yu, Lawless, Feng (bib37) 2014; 472
Su, Guo (bib23) 2011; 5
Choi, Choi, Bang, Lee (bib42) 2013; 5
Amini, Jahanshahi, Rahimpour (bib22) 2013; 435
Hu, He, Zhang, Zhang, Li, Zhu (bib19) 2017; 5
Liu, Yuan, Li, Tang, Zhang, Qian, Van der Bruggen, Wang (bib6) 2015; 9
Korikov, Kosaraju, Sirkar (bib38) 2006; 279
Amini (10.1016/j.memsci.2018.11.044_bib22) 2013; 435
Dong (10.1016/j.memsci.2018.11.044_bib26) 2012; 50
Wang (10.1016/j.memsci.2018.11.044_bib18) 2017; 523
Khorshidi (10.1016/j.memsci.2018.11.044_bib36) 2015; 5
Sun (10.1016/j.memsci.2018.11.044_bib9) 2013; 7
Korikov (10.1016/j.memsci.2018.11.044_bib38) 2006; 279
Cheng (10.1016/j.memsci.2018.11.044_bib2) 2018; 92
Wang (10.1016/j.memsci.2018.11.044_bib41) 2015; 475
Wu (10.1016/j.memsci.2018.11.044_bib37) 2014; 472
Zheng (10.1016/j.memsci.2018.11.044_bib27) 2015; 11
Tan (10.1016/j.memsci.2018.11.044_bib13) 2018; 360
Zhang (10.1016/j.memsci.2018.11.044_bib31) 2018; 427
Zhang (10.1016/j.memsci.2018.11.044_bib43) 2013; 429
Qiao (10.1016/j.memsci.2018.11.044_bib39) 2005; 264
Karan (10.1016/j.memsci.2018.11.044_bib10) 2015; 348
An (10.1016/j.memsci.2018.11.044_bib16) 2011; 367
Zhou (10.1016/j.memsci.2018.11.044_bib7) 2007; 129
Yang (10.1016/j.memsci.2018.11.044_bib32) 2018; 6
Striemer (10.1016/j.memsci.2018.11.044_bib3) 2007; 445
Yang (10.1016/j.memsci.2018.11.044_bib4) 2018; 12
Lau (10.1016/j.memsci.2018.11.044_bib11) 2015; 80
You (10.1016/j.memsci.2018.11.044_bib34) 2017; 540
Su (10.1016/j.memsci.2018.11.044_bib23) 2011; 5
Mandavi (10.1016/j.memsci.2018.11.044_bib21) 2018; 433
Wang (10.1016/j.memsci.2018.11.044_bib12) 2018; 9
Bi (10.1016/j.memsci.2018.11.044_bib25) 2018; 553
Ponomarenko (10.1016/j.memsci.2018.11.044_bib24) 2008; 320
Fan (10.1016/j.memsci.2018.11.044_bib30) 2017; 9
Chen (10.1016/j.memsci.2018.11.044_bib28) 2018; 552
Morelos-Gomez (10.1016/j.memsci.2018.11.044_bib40) 2017; 12
Liu (10.1016/j.memsci.2018.11.044_bib6) 2015; 9
Lai (10.1016/j.memsci.2018.11.044_bib20) 2018; 344
Song (10.1016/j.memsci.2018.11.044_bib14) 2011; 23
Jackson (10.1016/j.memsci.2018.11.044_bib8) 2010; 4
Hu (10.1016/j.memsci.2018.11.044_bib19) 2017; 5
Shannon (10.1016/j.memsci.2018.11.044_bib1) 2008; 452
Liu (10.1016/j.memsci.2018.11.044_bib44) 2018; 6
Yin (10.1016/j.memsci.2018.11.044_bib15) 2012; 423
Han (10.1016/j.memsci.2018.11.044_bib35) 2013; 23
Wang (10.1016/j.memsci.2018.11.044_bib5) 2018; 9
Fan (10.1016/j.memsci.2018.11.044_bib17) 2018; 57
Zhao (10.1016/j.memsci.2018.11.044_bib29) 2006; 283
Yu (10.1016/j.memsci.2018.11.044_bib33) 2015; 54
Choi (10.1016/j.memsci.2018.11.044_bib42) 2013; 5
References_xml – volume: 283
  start-page: 346
  year: 2006
  end-page: 356
  ident: bib29
  article-title: Influence of heat-treatment on CO
  publication-title: J. Membr. Sci.
– volume: 360
  start-page: 518
  year: 2018
  end-page: 521
  ident: bib13
  article-title: Polyamide membranes with nanoscale Turing structures for water purification
  publication-title: Science
– volume: 423
  start-page: 238
  year: 2012
  end-page: 246
  ident: bib15
  article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification
  publication-title: J. Membr. Sci.
– volume: 523
  start-page: 273
  year: 2017
  end-page: 281
  ident: bib18
  article-title: Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination
  publication-title: J. Membr. Sci.
– volume: 5
  start-page: 351
  year: 2011
  end-page: 359
  ident: bib23
  article-title: Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field
  publication-title: ACS Nano
– volume: 9
  start-page: 9
  year: 2018
  ident: bib12
  article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination
  publication-title: Nat. Commun.
– volume: 5
  start-page: 25632
  year: 2017
  end-page: 25640
  ident: bib19
  article-title: Graphene oxide-embedded polyamide nanofiltration membranes for selective ion separation
  publication-title: J. Mater. Chem. A
– volume: 367
  start-page: 158
  year: 2011
  end-page: 165
  ident: bib16
  article-title: Influence of polyvinyl alcohol on the surface morphology, separation and anti-fouling performance of the composite polyamide nanofiltration membranes
  publication-title: J. Membr. Sci.
– volume: 5
  start-page: 54985
  year: 2015
  end-page: 54997
  ident: bib36
  article-title: Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions
  publication-title: RSC Adv.
– volume: 23
  start-page: 3256
  year: 2011
  end-page: 3260
  ident: bib14
  article-title: Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate
  publication-title: Adv. Mater.
– volume: 553
  start-page: 17
  year: 2018
  end-page: 24
  ident: bib25
  article-title: Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property
  publication-title: J. Membr. Sci.
– volume: 429
  start-page: 235
  year: 2013
  end-page: 242
  ident: bib43
  article-title: Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride
  publication-title: J. Membr. Sci.
– volume: 445
  start-page: 749
  year: 2007
  end-page: 753
  ident: bib3
  article-title: Charge- and size-based separation of macromolecules using ultrathin silicon membranes
  publication-title: Nature
– volume: 427
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib31
  article-title: Proton-irradiation induced defects in modified 310S steels characterized with positron annihilation spectroscopy and transmission electron microscopy
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B
– volume: 11
  start-page: 1620
  year: 2015
  end-page: 1636
  ident: bib27
  article-title: Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications
  publication-title: Small
– volume: 4
  start-page: 3548
  year: 2010
  end-page: 3553
  ident: bib8
  article-title: Nanoporous membranes derived from block copolymers: from drug delivery to water filtration
  publication-title: ACS Nano
– volume: 12
  start-page: 1083
  year: 2017
  end-page: 1088
  ident: bib40
  article-title: Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes
  publication-title: Nat. Nanotechnol.
– volume: 9
  year: 2018
  ident: bib5
  article-title: Ultrafast ion sieving using nanoporous polymeric membranes
  publication-title: Nat. Commun.
– volume: 92
  start-page: 258
  year: 2018
  end-page: 283
  ident: bib2
  article-title: Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials
  publication-title: Prog. Mater. Sci.
– volume: 433
  start-page: 94
  year: 2018
  end-page: 107
  ident: bib21
  article-title: Zwitterion functionalized graphene oxide/polyamide thin film nanocomposite membrane: towards improved anti-fouling performance for reverse osmosis
  publication-title: Desalination
– volume: 54
  start-page: 13937
  year: 2015
  end-page: 13941
  ident: bib33
  article-title: Self-assembled asymmetric block copolymer membranes: bridging the gap from ultra- to nanofiltration
  publication-title: Angew. Chem. Int. Ed.
– volume: 129
  start-page: 9574
  year: 2007
  end-page: 9575
  ident: bib7
  article-title: New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly
  publication-title: J. Am. Chem. Soc.
– volume: 264
  start-page: 176
  year: 2005
  end-page: 189
  ident: bib39
  article-title: Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol
  publication-title: J. Membr. Sci.
– volume: 6
  start-page: 4253
  year: 2018
  end-page: 4263
  ident: bib44
  article-title: Free radical graft copolymerization strategy to prepare catechin-modified chitosan loose nanofiltration (NF) membrane for dye desalination
  publication-title: ACS Sustain. Chem. Eng.
– volume: 12
  start-page: 4695
  year: 2018
  end-page: 4701
  ident: bib4
  article-title: Rapid water permeation through carbon nanomembranes with sub-nanometer channels
  publication-title: ACS Nano
– volume: 57
  start-page: 4083
  year: 2018
  end-page: 4087
  ident: bib17
  article-title: High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration
  publication-title: Angew. Chem. Int. Ed.
– volume: 80
  start-page: 306
  year: 2015
  end-page: 324
  ident: bib11
  article-title: A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches
  publication-title: Water Res.
– volume: 344
  start-page: 524
  year: 2018
  end-page: 534
  ident: bib20
  article-title: Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation
  publication-title: Chem. Eng. J.
– volume: 435
  start-page: 233
  year: 2013
  end-page: 241
  ident: bib22
  article-title: Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes
  publication-title: J. Membr. Sci.
– volume: 552
  start-page: 77
  year: 2018
  end-page: 85
  ident: bib28
  article-title: Novel pore size tuning method for the fabrication of ceramic multi-channel nanofiltration membrane
  publication-title: J. Membr. Sci.
– volume: 9
  start-page: 13577
  year: 2017
  end-page: 13586
  ident: bib30
  article-title: Improving Permeation and Antifouling Performance of Polyamide Nanofiltration Membranes through the Incorporation of Arginine
  publication-title: ACS Appl. Mater. Interfaces
– volume: 320
  start-page: 356
  year: 2008
  end-page: 358
  ident: bib24
  article-title: Chaotic dirac billiard in graphene quantum dots
  publication-title: Science
– volume: 279
  start-page: 588
  year: 2006
  end-page: 600
  ident: bib38
  article-title: Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibers and flat films
  publication-title: J. Membr. Sci.
– volume: 472
  start-page: 141
  year: 2014
  end-page: 153
  ident: bib37
  article-title: Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride
  publication-title: J. Membr. Sci.
– volume: 23
  start-page: 3693
  year: 2013
  end-page: 3700
  ident: bib35
  article-title: Ultrathin graphene nanofiltration membrane for water purification
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 7488
  year: 2015
  end-page: 7496
  ident: bib6
  article-title: Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh mono-/multivalent ion selectivity
  publication-title: ACS Nano
– volume: 50
  start-page: 4738
  year: 2012
  end-page: 4743
  ident: bib26
  article-title: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid
  publication-title: Carbon
– volume: 348
  start-page: 1347
  year: 2015
  end-page: 1351
  ident: bib10
  article-title: Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation
  publication-title: Science
– volume: 452
  start-page: 301
  year: 2008
  end-page: 310
  ident: bib1
  article-title: Science and technology for water purification in the coming decades
  publication-title: Nature
– volume: 7
  start-page: 428
  year: 2013
  end-page: 437
  ident: bib9
  article-title: Selective ion penetration of graphene oxide membranes
  publication-title: ACS Nano
– volume: 5
  start-page: 12510
  year: 2013
  end-page: 12519
  ident: bib42
  article-title: Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 540
  start-page: 454
  year: 2017
  end-page: 463
  ident: bib34
  article-title: Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles
  publication-title: J. Membr. Sci.
– volume: 475
  start-page: 184
  year: 2015
  end-page: 192
  ident: bib41
  article-title: Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment
  publication-title: J. Membr. Sci.
– volume: 6
  start-page: 583
  year: 2018
  end-page: 591
  ident: bib32
  article-title: Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation
  publication-title: J. Mater. Chem. A
– volume: 423
  start-page: 238
  year: 2012
  ident: 10.1016/j.memsci.2018.11.044_bib15
  article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.08.020
– volume: 9
  start-page: 13577
  year: 2017
  ident: 10.1016/j.memsci.2018.11.044_bib30
  article-title: Improving Permeation and Antifouling Performance of Polyamide Nanofiltration Membranes through the Incorporation of Arginine
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00159
– volume: 50
  start-page: 4738
  year: 2012
  ident: 10.1016/j.memsci.2018.11.044_bib26
  article-title: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.06.002
– volume: 5
  start-page: 54985
  year: 2015
  ident: 10.1016/j.memsci.2018.11.044_bib36
  article-title: Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions
  publication-title: RSC Adv.
  doi: 10.1039/C5RA08317F
– volume: 9
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib5
  article-title: Ultrafast ion sieving using nanoporous polymeric membranes
  publication-title: Nat. Commun.
– volume: 4
  start-page: 3548
  year: 2010
  ident: 10.1016/j.memsci.2018.11.044_bib8
  article-title: Nanoporous membranes derived from block copolymers: from drug delivery to water filtration
  publication-title: ACS Nano
  doi: 10.1021/nn1014006
– volume: 523
  start-page: 273
  year: 2017
  ident: 10.1016/j.memsci.2018.11.044_bib18
  article-title: Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.09.055
– volume: 552
  start-page: 77
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib28
  article-title: Novel pore size tuning method for the fabrication of ceramic multi-channel nanofiltration membrane
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.01.056
– volume: 7
  start-page: 428
  year: 2013
  ident: 10.1016/j.memsci.2018.11.044_bib9
  article-title: Selective ion penetration of graphene oxide membranes
  publication-title: ACS Nano
  doi: 10.1021/nn304471w
– volume: 5
  start-page: 351
  year: 2011
  ident: 10.1016/j.memsci.2018.11.044_bib23
  article-title: Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field
  publication-title: ACS Nano
  doi: 10.1021/nn1014616
– volume: 445
  start-page: 749
  year: 2007
  ident: 10.1016/j.memsci.2018.11.044_bib3
  article-title: Charge- and size-based separation of macromolecules using ultrathin silicon membranes
  publication-title: Nature
  doi: 10.1038/nature05532
– volume: 57
  start-page: 4083
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib17
  article-title: High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712816
– volume: 9
  start-page: 9
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib12
  article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination
  publication-title: Nat. Commun.
– volume: 279
  start-page: 588
  year: 2006
  ident: 10.1016/j.memsci.2018.11.044_bib38
  article-title: Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibers and flat films
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.12.051
– volume: 23
  start-page: 3693
  year: 2013
  ident: 10.1016/j.memsci.2018.11.044_bib35
  article-title: Ultrathin graphene nanofiltration membrane for water purification
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202601
– volume: 9
  start-page: 7488
  year: 2015
  ident: 10.1016/j.memsci.2018.11.044_bib6
  article-title: Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh mono-/multivalent ion selectivity
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02598
– volume: 433
  start-page: 94
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib21
  article-title: Zwitterion functionalized graphene oxide/polyamide thin film nanocomposite membrane: towards improved anti-fouling performance for reverse osmosis
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.01.031
– volume: 6
  start-page: 583
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib32
  article-title: Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09596A
– volume: 5
  start-page: 25632
  year: 2017
  ident: 10.1016/j.memsci.2018.11.044_bib19
  article-title: Graphene oxide-embedded polyamide nanofiltration membranes for selective ion separation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08635K
– volume: 553
  start-page: 17
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib25
  article-title: Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.02.010
– volume: 348
  start-page: 1347
  year: 2015
  ident: 10.1016/j.memsci.2018.11.044_bib10
  article-title: Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation
  publication-title: Science
  doi: 10.1126/science.aaa5058
– volume: 540
  start-page: 454
  year: 2017
  ident: 10.1016/j.memsci.2018.11.044_bib34
  article-title: Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.06.084
– volume: 12
  start-page: 1083
  year: 2017
  ident: 10.1016/j.memsci.2018.11.044_bib40
  article-title: Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.160
– volume: 472
  start-page: 141
  year: 2014
  ident: 10.1016/j.memsci.2018.11.044_bib37
  article-title: Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.08.055
– volume: 427
  start-page: 1
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib31
  article-title: Proton-irradiation induced defects in modified 310S steels characterized with positron annihilation spectroscopy and transmission electron microscopy
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B
  doi: 10.1016/j.nimb.2018.04.040
– volume: 429
  start-page: 235
  year: 2013
  ident: 10.1016/j.memsci.2018.11.044_bib43
  article-title: Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.11.059
– volume: 12
  start-page: 4695
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib4
  article-title: Rapid water permeation through carbon nanomembranes with sub-nanometer channels
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01266
– volume: 129
  start-page: 9574
  year: 2007
  ident: 10.1016/j.memsci.2018.11.044_bib7
  article-title: New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja073067w
– volume: 475
  start-page: 184
  year: 2015
  ident: 10.1016/j.memsci.2018.11.044_bib41
  article-title: Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.10.032
– volume: 23
  start-page: 3256
  year: 2011
  ident: 10.1016/j.memsci.2018.11.044_bib14
  article-title: Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100510
– volume: 264
  start-page: 176
  year: 2005
  ident: 10.1016/j.memsci.2018.11.044_bib39
  article-title: Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.04.034
– volume: 344
  start-page: 524
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib20
  article-title: Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.116
– volume: 452
  start-page: 301
  year: 2008
  ident: 10.1016/j.memsci.2018.11.044_bib1
  article-title: Science and technology for water purification in the coming decades
  publication-title: Nature
  doi: 10.1038/nature06599
– volume: 360
  start-page: 518
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib13
  article-title: Polyamide membranes with nanoscale Turing structures for water purification
  publication-title: Science
  doi: 10.1126/science.aar6308
– volume: 367
  start-page: 158
  year: 2011
  ident: 10.1016/j.memsci.2018.11.044_bib16
  article-title: Influence of polyvinyl alcohol on the surface morphology, separation and anti-fouling performance of the composite polyamide nanofiltration membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.10.060
– volume: 54
  start-page: 13937
  year: 2015
  ident: 10.1016/j.memsci.2018.11.044_bib33
  article-title: Self-assembled asymmetric block copolymer membranes: bridging the gap from ultra- to nanofiltration
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201505663
– volume: 283
  start-page: 346
  year: 2006
  ident: 10.1016/j.memsci.2018.11.044_bib29
  article-title: Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.07.004
– volume: 11
  start-page: 1620
  year: 2015
  ident: 10.1016/j.memsci.2018.11.044_bib27
  article-title: Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications
  publication-title: Small
  doi: 10.1002/smll.201402648
– volume: 320
  start-page: 356
  year: 2008
  ident: 10.1016/j.memsci.2018.11.044_bib24
  article-title: Chaotic dirac billiard in graphene quantum dots
  publication-title: Science
  doi: 10.1126/science.1154663
– volume: 80
  start-page: 306
  year: 2015
  ident: 10.1016/j.memsci.2018.11.044_bib11
  article-title: A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.04.037
– volume: 5
  start-page: 12510
  year: 2013
  ident: 10.1016/j.memsci.2018.11.044_bib42
  article-title: Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am403790s
– volume: 435
  start-page: 233
  year: 2013
  ident: 10.1016/j.memsci.2018.11.044_bib22
  article-title: Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.01.041
– volume: 6
  start-page: 4253
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib44
  article-title: Free radical graft copolymerization strategy to prepare catechin-modified chitosan loose nanofiltration (NF) membrane for dye desalination
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04699
– volume: 92
  start-page: 258
  year: 2018
  ident: 10.1016/j.memsci.2018.11.044_bib2
  article-title: Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.10.006
SSID ssj0017089
Score 2.5319805
Snippet In this study, we developed a new approach to designing and preparing NF membranes through pore engineering by graphene quantum dots (GQDs). An in-situ...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 504
SubjectTerms artificial membranes
Chemical stability
electrons
engineering
graphene
Graphene quantum dots
heat treatment
High flux
In-situ interfacial polymerization
nanofiltration
organochlorine compounds
permeability
polymerization
Pore engineering
quantum dots
scanning electron microscopes
scanning electron microscopy
shrinkage
solutes
spectroscopy
ultrafiltration
Title Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation
URI https://dx.doi.org/10.1016/j.memsci.2018.11.044
https://www.proquest.com/docview/2221012716
Volume 572
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvuiD-ImfI4Kv2bI2XdLHMZxTcS86GPgQ2iSFieumXV_9273rx1BBBj42XNL0cr38rr38jpBr5HcxgByYSrhlIlZdFgPQYDaJDZhLIhOHH_Qfx73RRNxPg2mDDOqzMJhWWfn-0qcX3rpq6VTa7Cxns84TRyISXyk0SgHIHE-wC4lW3v5cp3l0JS_K4KEwQ-n6-FyR4zV3cxgaE7xUG7k8hfhre_rlqIvdZ7hHdivYSPvlzPZJw6UHZOcbmeAheblF7mlwXfQ9B3XlcwoBZ0ZdJeMsTaMUC3RXRLkUpgWhMsgDbqU5NidRtqLzumAuzVxJDL5Ij8hkePM8GLGqdAIzQngrFgWWx8ZwCwpxEqKkuBcmRkqke7FSKp87eFhrPM8mnEdBFCQ2NBAKKStDY7l_TJrpInUnhEovUN0IT1pyBdjJD3lgY8-3sXA9a0R0SvxaY9pUvOJY3uJN1wlkr7rUs0Y9Q8ih4danhK17LUtejQ3ysl4M_cM-NLj-DT2v6rXT8Org_xBQ7SLPNEAjZDeDiPHs36Ofk224CjGPuxtckObqI3eXAFNWcauwwxbZ6t89jMZf70Lo_w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4ineBIlrWNamS3pECBivXQAJiUPUJqk0xDpg6__HXlMESAiJa-qkreM6nxvnM8AR8btYRA5cF8JxmesOzxFocFfkFs2lUIWnH_q3_W7vQV49Jo8zcNqchaG0yuD7a58-9dahpR202X4dDNp3gohIYq3JKCUi81mYI3aqpAVzJ5fXvf7nZoIS00p4JM-pQ3OCbprmNfRDHJ1yvPQx0XlK-dsK9cNXTxeg82VYCsiRndQPtwIzvlyFxS98gmvwdEH00-i92FuFGquGDGPOMfNBxjtWZiXV6A5cuQwfC6NllEfoyipqLrLxhA2bmrls7Gtu8FG5Dg_nZ_enPR6qJ3ArZTThWeJEbq1wUnW9wkAp76aFVYoYX5xSOhYeX9bZKHKFEFmSJYVLLUZD2qnUOhFvQKsclX4TmIoS3cnosKXQCJ_iVCQuj2KXS991VmZbEDcaMzZQi1OFixfT5JA9m1rPhvSMUYfBW28B_-z1WlNr_CGvmskw30zEoPf_o-dhM3cGvx7aEkHVjqqxQXREBGcYNG7_e_QDmO_d396Ym8v-9Q4s4JWU0ro7yS60Ju-V30PUMsn3g1V-AOx767A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+quantum+dots+engineered+nanofiltration+membrane+for+ultrafast+molecular+separation&rft.jtitle=Journal+of+membrane+science&rft.au=Bi%2C+Ran&rft.au=Zhang%2C+Runnan&rft.au=Shen%2C+Jianliang&rft.au=Liu%2C+Ya-nan&rft.date=2019-02-15&rft.issn=0376-7388&rft.volume=572&rft.spage=504&rft.epage=511&rft_id=info:doi/10.1016%2Fj.memsci.2018.11.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2018_11_044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon