Metagenomic analysis with strain-level resolution reveals fine-scale variation in the human pregnancy microbiome
Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the...
Saved in:
Published in | Genome research Vol. 28; no. 10; pp. 1467 - 1480 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the vaginal, gut, and oral microbiomes in 292 samples from 10 subjects sampled every three weeks throughout pregnancy. Nonhuman sequences in the amount of 1.53 Gb were assembled into scaffolds, and functional genes were predicted for gene- and pathway-based analyses. Vaginal assemblies were binned into 97 draft quality genomes. Redundancy analysis (RDA) of microbial community composition at all three body sites revealed gestational age to be a significant source of variation in patterns of gene abundance. In addition, health complications were associated with variation in community functional gene composition in the mouth and gut. The diversity of
Lactobacillus iners
-dominated communities in the vagina, unlike most other vaginal community types, significantly increased with gestational age. The genomes of co-occurring
Gardnerella vaginalis
strains with predicted distinct functions were recovered in samples from two subjects. In seven subjects, gut samples contained strains of the same
Lactobacillus
species that dominated the vaginal community of that same subject and not other
Lactobacillus
species; however, these within-host strains were divergent. CRISPR spacer analysis suggested shared phage and plasmid populations across body sites and individuals. This work underscores the dynamic behavior of the microbiome during pregnancy and suggests the potential importance of understanding the sources of this behavior for fetal development and gestational outcome. |
---|---|
AbstractList | Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the vaginal, gut, and oral microbiomes in 292 samples from 10 subjects sampled every three weeks throughout pregnancy. Nonhuman sequences in the amount of 1.53 Gb were assembled into scaffolds, and functional genes were predicted for gene- and pathway-based analyses. Vaginal assemblies were binned into 97 draft quality genomes. Redundancy analysis (RDA) of microbial community composition at all three body sites revealed gestational age to be a significant source of variation in patterns of gene abundance. In addition, health complications were associated with variation in community functional gene composition in the mouth and gut. The diversity of
Lactobacillus iners
-dominated communities in the vagina, unlike most other vaginal community types, significantly increased with gestational age. The genomes of co-occurring
Gardnerella vaginalis
strains with predicted distinct functions were recovered in samples from two subjects. In seven subjects, gut samples contained strains of the same
Lactobacillus
species that dominated the vaginal community of that same subject and not other
Lactobacillus
species; however, these within-host strains were divergent. CRISPR spacer analysis suggested shared phage and plasmid populations across body sites and individuals. This work underscores the dynamic behavior of the microbiome during pregnancy and suggests the potential importance of understanding the sources of this behavior for fetal development and gestational outcome. Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the vaginal, gut, and oral microbiomes in 292 samples from 10 subjects sampled every three weeks throughout pregnancy. Nonhuman sequences in the amount of 1.53 Gb were assembled into scaffolds, and functional genes were predicted for gene- and pathway-based analyses. Vaginal assemblies were binned into 97 draft quality genomes. Redundancy analysis (RDA) of microbial community composition at all three body sites revealed gestational age to be a significant source of variation in patterns of gene abundance. In addition, health complications were associated with variation in community functional gene composition in the mouth and gut. The diversity of Lactobacillus iners-dominated communities in the vagina, unlike most other vaginal community types, significantly increased with gestational age. The genomes of co-occurring Gardnerella vaginalis strains with predicted distinct functions were recovered in samples from two subjects. In seven subjects, gut samples contained strains of the same Lactobacillus species that dominated the vaginal community of that same subject and not other Lactobacillus species; however, these within-host strains were divergent. CRISPR spacer analysis suggested shared phage and plasmid populations across body sites and individuals. This work underscores the dynamic behavior of the microbiome during pregnancy and suggests the potential importance of understanding the sources of this behavior for fetal development and gestational outcome. Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the vaginal, gut, and oral microbiomes in 292 samples from 10 subjects sampled every three weeks throughout pregnancy. Nonhuman sequences in the amount of 1.53 Gb were assembled into scaffolds, and functional genes were predicted for gene- and pathway-based analyses. Vaginal assemblies were binned into 97 draft quality genomes. Redundancy analysis (RDA) of microbial community composition at all three body sites revealed gestational age to be a significant source of variation in patterns of gene abundance. In addition, health complications were associated with variation in community functional gene composition in the mouth and gut. The diversity of -dominated communities in the vagina, unlike most other vaginal community types, significantly increased with gestational age. The genomes of co-occurring strains with predicted distinct functions were recovered in samples from two subjects. In seven subjects, gut samples contained strains of the same species that dominated the vaginal community of that same subject and not other species; however, these within-host strains were divergent. CRISPR spacer analysis suggested shared phage and plasmid populations across body sites and individuals. This work underscores the dynamic behavior of the microbiome during pregnancy and suggests the potential importance of understanding the sources of this behavior for fetal development and gestational outcome. Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the vaginal, gut, and oral microbiomes in 292 samples from 10 subjects sampled every three weeks throughout pregnancy. Nonhuman sequences in the amount of 1.53 Gb were assembled into scaffolds, and functional genes were predicted for gene- and pathway-based analyses. Vaginal assemblies were binned into 97 draft quality genomes. Redundancy analysis (RDA) of microbial community composition at all three body sites revealed gestational age to be a significant source of variation in patterns of gene abundance. In addition, health complications were associated with variation in community functional gene composition in the mouth and gut. The diversity of Lactobacillus iners-dominated communities in the vagina, unlike most other vaginal community types, significantly increased with gestational age. The genomes of co-occurring Gardnerella vaginalis strains with predicted distinct functions were recovered in samples from two subjects. In seven subjects, gut samples contained strains of the same Lactobacillus species that dominated the vaginal community of that same subject and not other Lactobacillus species; however, these within-host strains were divergent. CRISPR spacer analysis suggested shared phage and plasmid populations across body sites and individuals. This work underscores the dynamic behavior of the microbiome during pregnancy and suggests the potential importance of understanding the sources of this behavior for fetal development and gestational outcome.Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the vaginal, gut, and oral microbiomes in 292 samples from 10 subjects sampled every three weeks throughout pregnancy. Nonhuman sequences in the amount of 1.53 Gb were assembled into scaffolds, and functional genes were predicted for gene- and pathway-based analyses. Vaginal assemblies were binned into 97 draft quality genomes. Redundancy analysis (RDA) of microbial community composition at all three body sites revealed gestational age to be a significant source of variation in patterns of gene abundance. In addition, health complications were associated with variation in community functional gene composition in the mouth and gut. The diversity of Lactobacillus iners-dominated communities in the vagina, unlike most other vaginal community types, significantly increased with gestational age. The genomes of co-occurring Gardnerella vaginalis strains with predicted distinct functions were recovered in samples from two subjects. In seven subjects, gut samples contained strains of the same Lactobacillus species that dominated the vaginal community of that same subject and not other Lactobacillus species; however, these within-host strains were divergent. CRISPR spacer analysis suggested shared phage and plasmid populations across body sites and individuals. This work underscores the dynamic behavior of the microbiome during pregnancy and suggests the potential importance of understanding the sources of this behavior for fetal development and gestational outcome. |
Author | Stevenson, David K. Goltsman, Daniela S. Aliaga DiGiulio, Daniel B. Shaw, Gary M. Robaczewska, Anna Thomas, Brian C. Relman, David A. Sun, Christine L. Banfield, Jillian F. Proctor, Diana M. Holmes, Susan P. |
AuthorAffiliation | 6 Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA 2 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA 5 Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA 7 Department of Statistics, Stanford University, Stanford, California 94305, USA 3 Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA 4 Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA 8 Earth and Environmental Science, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 1 March of Dimes Prematurity Research Center at Stanford University, Stanford, California 94305, USA |
AuthorAffiliation_xml | – name: 1 March of Dimes Prematurity Research Center at Stanford University, Stanford, California 94305, USA – name: 3 Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA – name: 4 Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA – name: 7 Department of Statistics, Stanford University, Stanford, California 94305, USA – name: 8 Earth and Environmental Science, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA – name: 2 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA – name: 5 Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA – name: 6 Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA |
Author_xml | – sequence: 1 givenname: Daniela S. Aliaga surname: Goltsman fullname: Goltsman, Daniela S. Aliaga – sequence: 2 givenname: Christine L. surname: Sun fullname: Sun, Christine L. – sequence: 3 givenname: Diana M. orcidid: 0000-0002-7078-0669 surname: Proctor fullname: Proctor, Diana M. – sequence: 4 givenname: Daniel B. surname: DiGiulio fullname: DiGiulio, Daniel B. – sequence: 5 givenname: Anna surname: Robaczewska fullname: Robaczewska, Anna – sequence: 6 givenname: Brian C. surname: Thomas fullname: Thomas, Brian C. – sequence: 7 givenname: Gary M. surname: Shaw fullname: Shaw, Gary M. – sequence: 8 givenname: David K. surname: Stevenson fullname: Stevenson, David K. – sequence: 9 givenname: Susan P. surname: Holmes fullname: Holmes, Susan P. – sequence: 10 givenname: Jillian F. surname: Banfield fullname: Banfield, Jillian F. – sequence: 11 givenname: David A. orcidid: 0000-0001-8331-1354 surname: Relman fullname: Relman, David A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30232199$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1506368$$D View this record in Osti.gov |
BookMark | eNptUk1v1DAQtVAr-gFHrsiCC5cUO46T-IJUVXxUasUFzpbjHSeuHHuxnUX773G6LYKqJ89o3rx5b8Zn6MgHDwi9oeSCUkI_jvGiZi0ha9q_QKeUN6LiTSuOSkz6vhKE0xN0ltJdAbGm71-iE0ZqVlMhTtH2FrIawYfZaqy8cvtkE_5t84RTjsr6ysEOHI6QgluyDb6EO1AuYWM9VEkrB3inolX3RetxngBPy6w83kYYvfJ6jwt7DIMNM7xCx6Z0w-uH9xz9_PL5x9W36ub71-ury5tKN02dK0U7YwA2rDghQ2MEU8ZQPWgi-n4YQHRta3TBDoZzPTREdZ1ghvENAWqgZufo04F3uwwzbDT4YsfJbbSzinsZlJX_V7yd5Bh2sqVtGdEVgncHgpCylUnbDHrSwXvQWVJOWtb2BfThYUoMvxZIWc42aXBOeQhLkjWlvOPFxCro_RPoXVhi2fiKYsUlrdk69e2_sv_qfbxYAbADoCw0pQhGFmX3u1_P5SQlcv0Xcozy8C9KuuqsnnQ9Ej-P_wPpK7xD |
CitedBy_id | crossref_primary_10_1007_s40471_021_00263_8 crossref_primary_10_1101_gr_276306_121 crossref_primary_10_1055_s_0044_1779025 crossref_primary_10_1177_09287329251316227 crossref_primary_10_7717_peerj_11437 crossref_primary_10_1099_mgen_0_001267 crossref_primary_10_1007_s00213_019_05436_4 crossref_primary_10_1080_19490976_2023_2259316 crossref_primary_10_1016_j_cophys_2019_10_011 crossref_primary_10_1373_clinchem_2019_303248 crossref_primary_10_1038_s41522_020_00142_y crossref_primary_10_3389_fcimb_2022_1054190 crossref_primary_10_1080_19490976_2021_1911571 crossref_primary_10_1128_msystems_01339_23 crossref_primary_10_3390_agriculture10060232 crossref_primary_10_1007_s43032_020_00438_6 crossref_primary_10_1097_NMC_0000000000000930 crossref_primary_10_1128_mmbr_00181_21 crossref_primary_10_1038_s41390_020_0981_8 crossref_primary_10_3390_life13030785 crossref_primary_10_3389_fmicb_2022_1059227 crossref_primary_10_1016_j_micpath_2020_104029 crossref_primary_10_1038_s41564_022_01128_6 crossref_primary_10_3390_foods13244024 crossref_primary_10_3389_fmicb_2020_01925 crossref_primary_10_1016_j_isci_2022_104418 crossref_primary_10_1111_jdi_13177 crossref_primary_10_1016_j_celrep_2019_01_091 crossref_primary_10_1016_j_gpb_2021_05_001 crossref_primary_10_1038_s41598_024_62531_z crossref_primary_10_3389_fmicb_2021_613791 crossref_primary_10_1111_prd_12349 crossref_primary_10_1016_j_jdent_2024_105018 crossref_primary_10_3389_fcimb_2020_00168 crossref_primary_10_3389_frmbi_2025_1548650 crossref_primary_10_3390_microorganisms12081564 crossref_primary_10_1038_s41598_023_43780_w crossref_primary_10_17352_2455_2976_000146 crossref_primary_10_1007_s43032_023_01351_4 crossref_primary_10_1093_femsre_fuac004 crossref_primary_10_1186_s12866_021_02327_7 crossref_primary_10_1038_s41467_023_39849_9 crossref_primary_10_1080_20002297_2024_2417099 crossref_primary_10_36303_JMLSTSA_235 crossref_primary_10_3390_microorganisms12040808 crossref_primary_10_1038_s41522_023_00454_9 crossref_primary_10_1111_1462_2920_15441 crossref_primary_10_1186_s40168_021_01067_0 crossref_primary_10_1186_s12967_023_04230_3 crossref_primary_10_1186_s40364_024_00557_1 crossref_primary_10_1038_s41579_023_00933_y crossref_primary_10_1038_s41592_020_00971_x crossref_primary_10_1186_s12916_022_02657_x crossref_primary_10_1080_10408398_2021_1879004 crossref_primary_10_18632_aging_205019 crossref_primary_10_1186_s13059_022_02635_9 crossref_primary_10_1128_msystems_00893_22 crossref_primary_10_1016_j_mib_2023_102309 crossref_primary_10_1007_s12038_019_9925_z crossref_primary_10_1016_j_molmed_2021_01_007 crossref_primary_10_1016_j_jcf_2019_01_003 crossref_primary_10_3390_microorganisms11061481 crossref_primary_10_1007_s00281_019_00772_1 crossref_primary_10_1016_j_gpb_2022_09_003 crossref_primary_10_1093_femsle_fnaa032 crossref_primary_10_1016_j_chom_2020_04_006 crossref_primary_10_3389_fcimb_2022_873253 crossref_primary_10_1111_1471_0528_15978 crossref_primary_10_1016_j_csbj_2021_02_021 crossref_primary_10_3389_froh_2021_735634 crossref_primary_10_1186_s40168_024_01992_w crossref_primary_10_1038_s41467_020_14677_3 crossref_primary_10_1016_j_medmic_2022_100065 crossref_primary_10_1111_febs_70031 crossref_primary_10_1093_bib_bbac013 crossref_primary_10_3389_fmicb_2024_1366181 crossref_primary_10_1099_mgen_0_000543 crossref_primary_10_1038_s41522_020_00162_8 crossref_primary_10_1080_10408398_2022_2117784 crossref_primary_10_2139_ssrn_3981896 crossref_primary_10_1002_jia2_25300 crossref_primary_10_1038_s41591_019_0465_8 crossref_primary_10_3389_fcimb_2020_523764 crossref_primary_10_1097_JPN_0000000000000715 crossref_primary_10_1038_s41467_024_45336_6 crossref_primary_10_1113_JP277353 crossref_primary_10_1128_spectrum_00105_22 crossref_primary_10_1093_emph_eoae001 crossref_primary_10_1016_j_ebiom_2021_103421 crossref_primary_10_1038_s41467_023_40719_7 crossref_primary_10_3389_fmicb_2022_946779 crossref_primary_10_1016_j_jdent_2024_105059 crossref_primary_10_1177_1753495X241258383 crossref_primary_10_1038_s41564_022_01070_7 crossref_primary_10_1038_s41598_021_96495_1 crossref_primary_10_1016_j_clim_2025_110444 crossref_primary_10_1080_17476348_2021_1924061 crossref_primary_10_3390_microbiolres13010001 crossref_primary_10_3390_v15091821 crossref_primary_10_1146_annurev_micro_012520_072314 crossref_primary_10_1186_s13073_020_00765_y crossref_primary_10_3390_antiox12020463 crossref_primary_10_1038_s41467_022_31227_1 crossref_primary_10_1128_AEM_02188_20 crossref_primary_10_21886_2308_6424_2024_12_5_12_23 crossref_primary_10_1016_j_tim_2019_07_010 crossref_primary_10_3390_metabo14120655 crossref_primary_10_3390_microorganisms8111813 crossref_primary_10_3390_ijms20081835 crossref_primary_10_1093_molbev_msz237 crossref_primary_10_20517_mrr_2023_02 crossref_primary_10_1016_j_celrep_2024_114078 crossref_primary_10_1053_j_gastro_2020_09_057 |
Cites_doi | 10.1038/ismej.2014.31 10.1007/s00239-004-0046-3 10.1038/ismej.2013.63 10.1093/bioinformatics/btv271 10.1038/nature14486 10.1038/nmeth.1923 10.1371/journal.pgen.1002441 10.1093/nar/gkm321 10.1186/s13059-014-0524-x 10.1101/gr.129684.111 10.1093/nar/gkt183 10.1093/bioinformatics/btn654 10.1038/nrg3182 10.1126/scitranslmed.3003605 10.1093/bioinformatics/btr381 10.1038/nmicrobiol.2016.48 10.1128/AEM.06516-11 10.2323/jgam.54.141 10.1038/nature11234 10.1093/infdis/jiu089 10.1093/bioinformatics/bts174 10.1177/1933719113488838 10.1371/journal.pone.0011147 10.1038/nrmicro3569 10.1038/nature18845 10.1093/nar/gkt263 10.1073/pnas.1502875112 10.1128/AEM.00753-08 10.1093/nar/gkw1099 10.1038/ismej.2015.162 10.1371/journal.pone.0012411 10.1113/JP271694 10.1128/JB.00056-12 10.1371/journal.pone.0061217 10.1186/s13059-014-0550-8 10.1111/1471-0528.15299 10.1093/bioinformatics/btq461 10.1016/j.ajog.2010.12.061 10.1371/journal.pcbi.1002358 10.1186/1471-2105-11-119 10.1073/pnas.1705899114 10.1126/science.1224203 10.1186/gb-2009-10-8-r85 10.1016/j.molcel.2015.10.008 10.1093/nar/25.5.0955 10.1093/bioinformatics/bts199 10.1186/s40168-016-0223-9 10.1016/j.trsl.2012.02.008 10.1073/pnas.0630018100 10.1186/gb-2011-12-5-r44 10.1186/1471-2164-15-1070 10.1038/nrg2749 10.1016/j.cell.2010.01.023 10.1073/pnas.1002611107 10.1056/NEJM199512283332604 10.1126/science.1157358 10.1093/nar/gkm864 10.1016/j.ajog.2017.05.030 10.1093/bioinformatics/btp324 10.1099/mic.0.27437-0 10.1093/nar/gkh340 10.1371/journal.pone.0166757 10.3389/fmicb.2016.01031 10.1093/nar/28.1.27 10.1146/annurev-micro-092611-150157 10.1016/j.cell.2012.07.008 10.1073/pnas.1000086107 10.1038/srep08988 10.1101/gr.213256.116 10.1038/ncomms10613 10.1586/eri.10.14 10.1126/science.1179555 10.1371/journal.pone.0146510 10.1186/2049-2618-2-4 10.1099/mic.0.28048-0 10.1093/bioinformatics/bth226 10.1093/molbev/msp077 10.1016/j.molcel.2009.12.033 10.1101/gr.111732.110 10.1038/ismej.2007.12 |
ContentType | Journal Article |
Copyright | 2018 Goltsman et al.; Published by Cold Spring Harbor Laboratory Press. Copyright Cold Spring Harbor Laboratory Press Oct 2018 2018 |
Copyright_xml | – notice: 2018 Goltsman et al.; Published by Cold Spring Harbor Laboratory Press. – notice: Copyright Cold Spring Harbor Laboratory Press Oct 2018 – notice: 2018 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 OIOZB OTOTI 5PM |
DOI | 10.1101/gr.236000.118 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Goltsman et al |
EISSN | 1549-5469 |
EndPage | 1480 |
ExternalDocumentID | PMC6169887 1506368 30232199 10_1101_gr_236000_118 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: K99 HD090290 – fundername: ; – fundername: Chan Zuckerburg Biohub – fundername: ; grantid: 1K99HD090290 – fundername: Eunice Kennedy Shriver |
GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAYOK AAYXX AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AEILP AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 OIOZB OTOTI RHF 5PM |
ID | FETCH-LOGICAL-c442t-a17ffeed34690b4f93aff1cbc0988bbe9766fcc44bf55cb40a7793f35d0e1fe23 |
ISSN | 1088-9051 1549-5469 |
IngestDate | Thu Aug 21 14:10:07 EDT 2025 Mon Nov 25 02:36:43 EST 2024 Fri Jul 11 09:40:44 EDT 2025 Fri Jul 25 07:22:52 EDT 2025 Mon Jul 21 05:59:18 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 Tue Jul 01 02:20:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2018 Goltsman et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c442t-a17ffeed34690b4f93aff1cbc0988bbe9766fcc44bf55cb40a7793f35d0e1fe23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231 USDOE Office of Science (SC) These authors contributed equally to this work. |
ORCID | 0000-0002-7078-0669 0000-0001-8331-1354 0000000270780669 0000000183311354 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1506368 |
PMID | 30232199 |
PQID | 2136901237 |
PQPubID | 2049132 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6169887 osti_scitechconnect_1506368 proquest_miscellaneous_2115753462 proquest_journals_2136901237 pubmed_primary_30232199 crossref_citationtrail_10_1101_gr_236000_118 crossref_primary_10_1101_gr_236000_118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Genome research |
PublicationTitleAlternate | Genome Res |
PublicationYear | 2018 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | (2021111811174778000_28.10.1467.10) 2008; 10 2021111811174778000_28.10.1467.80 2021111811174778000_28.10.1467.81 (2021111811174778000_28.10.1467.74) 2017; 595 (2021111811174778000_28.10.1467.28) 2016; 1 2021111811174778000_28.10.1467.35 2021111811174778000_28.10.1467.79 2021111811174778000_28.10.1467.36 2021111811174778000_28.10.1467.37 2021111811174778000_28.10.1467.38 2021111811174778000_28.10.1467.39 2021111811174778000_28.10.1467.71 2021111811174778000_28.10.1467.72 2021111811174778000_28.10.1467.73 2021111811174778000_28.10.1467.30 2021111811174778000_28.10.1467.31 2021111811174778000_28.10.1467.32 2021111811174778000_28.10.1467.76 2021111811174778000_28.10.1467.33 2021111811174778000_28.10.1467.77 2021111811174778000_28.10.1467.34 2021111811174778000_28.10.1467.78 2021111811174778000_28.10.1467.1 2021111811174778000_28.10.1467.5 2021111811174778000_28.10.1467.4 2021111811174778000_28.10.1467.3 2021111811174778000_28.10.1467.2 2021111811174778000_28.10.1467.9 2021111811174778000_28.10.1467.46 2021111811174778000_28.10.1467.8 2021111811174778000_28.10.1467.47 2021111811174778000_28.10.1467.7 2021111811174778000_28.10.1467.48 2021111811174778000_28.10.1467.49 2021111811174778000_28.10.1467.82 2021111811174778000_28.10.1467.83 2021111811174778000_28.10.1467.40 2021111811174778000_28.10.1467.41 2021111811174778000_28.10.1467.42 2021111811174778000_28.10.1467.43 2021111811174778000_28.10.1467.44 2021111811174778000_28.10.1467.45 (2021111811174778000_28.10.1467.6) 2017; 28 2021111811174778000_28.10.1467.13 2021111811174778000_28.10.1467.57 2021111811174778000_28.10.1467.14 2021111811174778000_28.10.1467.58 2021111811174778000_28.10.1467.15 2021111811174778000_28.10.1467.59 2021111811174778000_28.10.1467.16 2021111811174778000_28.10.1467.17 2021111811174778000_28.10.1467.18 2021111811174778000_28.10.1467.19 2021111811174778000_28.10.1467.50 2021111811174778000_28.10.1467.51 2021111811174778000_28.10.1467.52 2021111811174778000_28.10.1467.53 2021111811174778000_28.10.1467.54 2021111811174778000_28.10.1467.11 2021111811174778000_28.10.1467.55 2021111811174778000_28.10.1467.12 2021111811174778000_28.10.1467.56 2021111811174778000_28.10.1467.70 2021111811174778000_28.10.1467.24 2021111811174778000_28.10.1467.68 2021111811174778000_28.10.1467.25 2021111811174778000_28.10.1467.69 2021111811174778000_28.10.1467.26 (2021111811174778000_28.10.1467.75) 2017; 217 2021111811174778000_28.10.1467.27 2021111811174778000_28.10.1467.29 2021111811174778000_28.10.1467.60 2021111811174778000_28.10.1467.61 2021111811174778000_28.10.1467.62 2021111811174778000_28.10.1467.63 2021111811174778000_28.10.1467.20 2021111811174778000_28.10.1467.64 2021111811174778000_28.10.1467.21 2021111811174778000_28.10.1467.65 2021111811174778000_28.10.1467.22 2021111811174778000_28.10.1467.66 2021111811174778000_28.10.1467.23 2021111811174778000_28.10.1467.67 |
References_xml | – ident: 2021111811174778000_28.10.1467.1 doi: 10.1038/ismej.2014.31 – ident: 2021111811174778000_28.10.1467.51 doi: 10.1007/s00239-004-0046-3 – ident: 2021111811174778000_28.10.1467.67 doi: 10.1038/ismej.2013.63 – ident: 2021111811174778000_28.10.1467.22 doi: 10.1093/bioinformatics/btv271 – ident: 2021111811174778000_28.10.1467.7 doi: 10.1038/nature14486 – ident: 2021111811174778000_28.10.1467.38 doi: 10.1038/nmeth.1923 – ident: 2021111811174778000_28.10.1467.66 doi: 10.1371/journal.pgen.1002441 – ident: 2021111811174778000_28.10.1467.52 doi: 10.1093/nar/gkm321 – ident: 2021111811174778000_28.10.1467.78 doi: 10.1186/s13059-014-0524-x – ident: 2021111811174778000_28.10.1467.36 doi: 10.1101/gr.129684.111 – ident: 2021111811174778000_28.10.1467.73 doi: 10.1093/nar/gkt183 – ident: 2021111811174778000_28.10.1467.53 doi: 10.1093/bioinformatics/btn654 – ident: 2021111811174778000_28.10.1467.12 doi: 10.1038/nrg3182 – ident: 2021111811174778000_28.10.1467.21 doi: 10.1126/scitranslmed.3003605 – ident: 2021111811174778000_28.10.1467.19 doi: 10.1093/bioinformatics/btr381 – volume: 1 start-page: 16048 year: 2016 ident: 2021111811174778000_28.10.1467.28 article-title: A new view of the tree of life publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2016.48 – ident: 2021111811174778000_28.10.1467.81 doi: 10.1128/AEM.06516-11 – ident: 2021111811174778000_28.10.1467.57 doi: 10.2323/jgam.54.141 – ident: 2021111811174778000_28.10.1467.29 doi: 10.1038/nature11234 – ident: 2021111811174778000_28.10.1467.63 – ident: 2021111811174778000_28.10.1467.71 doi: 10.1093/infdis/jiu089 – volume: 10 start-page: 421 year: 2008 ident: 2021111811174778000_28.10.1467.10 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics – ident: 2021111811174778000_28.10.1467.58 doi: 10.1093/bioinformatics/bts174 – ident: 2021111811174778000_28.10.1467.31 doi: 10.1177/1933719113488838 – ident: 2021111811174778000_28.10.1467.14 doi: 10.1371/journal.pone.0011147 – ident: 2021111811174778000_28.10.1467.45 doi: 10.1038/nrmicro3569 – ident: 2021111811174778000_28.10.1467.11 doi: 10.1038/nature18845 – ident: 2021111811174778000_28.10.1467.50 doi: 10.1093/nar/gkt263 – ident: 2021111811174778000_28.10.1467.16 doi: 10.1073/pnas.1502875112 – ident: 2021111811174778000_28.10.1467.80 doi: 10.1128/AEM.00753-08 – ident: 2021111811174778000_28.10.1467.79 doi: 10.1093/nar/gkw1099 – ident: 2021111811174778000_28.10.1467.76 doi: 10.1038/ismej.2015.162 – ident: 2021111811174778000_28.10.1467.82 doi: 10.1371/journal.pone.0012411 – volume: 595 start-page: 451 year: 2017 ident: 2021111811174778000_28.10.1467.74 article-title: The vaginal microbiota, host defence and reproductive physiology publication-title: J Physiol doi: 10.1113/JP271694 – ident: 2021111811174778000_28.10.1467.3 doi: 10.1128/JB.00056-12 – ident: 2021111811174778000_28.10.1467.48 doi: 10.1371/journal.pone.0061217 – ident: 2021111811174778000_28.10.1467.40 doi: 10.1186/s13059-014-0550-8 – ident: 2021111811174778000_28.10.1467.77 doi: 10.1111/1471-0528.15299 – ident: 2021111811174778000_28.10.1467.18 doi: 10.1093/bioinformatics/btq461 – ident: 2021111811174778000_28.10.1467.69 doi: 10.1016/j.ajog.2010.12.061 – ident: 2021111811174778000_28.10.1467.2 doi: 10.1371/journal.pcbi.1002358 – ident: 2021111811174778000_28.10.1467.30 doi: 10.1186/1471-2105-11-119 – volume: 28 start-page: 1303265 year: 2017 ident: 2021111811174778000_28.10.1467.6 article-title: Changes in vaginal community state types reflect major shifts in the microbiome publication-title: Microb Ecol Health Dis – ident: 2021111811174778000_28.10.1467.9 doi: 10.1073/pnas.1705899114 – ident: 2021111811174778000_28.10.1467.13 doi: 10.1126/science.1224203 – ident: 2021111811174778000_28.10.1467.15 doi: 10.1186/gb-2009-10-8-r85 – ident: 2021111811174778000_28.10.1467.72 doi: 10.1016/j.molcel.2015.10.008 – ident: 2021111811174778000_28.10.1467.41 doi: 10.1093/nar/25.5.0955 – ident: 2021111811174778000_28.10.1467.34 doi: 10.1093/bioinformatics/bts199 – ident: 2021111811174778000_28.10.1467.35 doi: 10.1186/s40168-016-0223-9 – ident: 2021111811174778000_28.10.1467.24 doi: 10.1016/j.trsl.2012.02.008 – ident: 2021111811174778000_28.10.1467.65 doi: 10.1073/pnas.0630018100 – ident: 2021111811174778000_28.10.1467.49 doi: 10.1186/gb-2011-12-5-r44 – ident: 2021111811174778000_28.10.1467.55 doi: 10.1186/1471-2164-15-1070 – ident: 2021111811174778000_28.10.1467.47 doi: 10.1038/nrg2749 – ident: 2021111811174778000_28.10.1467.23 doi: 10.1016/j.cell.2010.01.023 – ident: 2021111811174778000_28.10.1467.64 doi: 10.1073/pnas.1002611107 – ident: 2021111811174778000_28.10.1467.25 doi: 10.1056/NEJM199512283332604 – ident: 2021111811174778000_28.10.1467.4 doi: 10.1126/science.1157358 – ident: 2021111811174778000_28.10.1467.62 doi: 10.1093/nar/gkm864 – volume: 217 start-page: 356.e1 year: 2017 ident: 2021111811174778000_28.10.1467.75 article-title: Early pregnancy vaginal microbiome trends and preterm birth publication-title: Am J Obstet Gynecol. doi: 10.1016/j.ajog.2017.05.030 – ident: 2021111811174778000_28.10.1467.39 doi: 10.1093/bioinformatics/btp324 – ident: 2021111811174778000_28.10.1467.59 doi: 10.1099/mic.0.27437-0 – ident: 2021111811174778000_28.10.1467.17 doi: 10.1093/nar/gkh340 – ident: 2021111811174778000_28.10.1467.46 doi: 10.1371/journal.pone.0166757 – ident: 2021111811174778000_28.10.1467.54 doi: 10.3389/fmicb.2016.01031 – ident: 2021111811174778000_28.10.1467.32 doi: 10.1093/nar/28.1.27 – ident: 2021111811174778000_28.10.1467.42 doi: 10.1146/annurev-micro-092611-150157 – ident: 2021111811174778000_28.10.1467.37 doi: 10.1016/j.cell.2012.07.008 – ident: 2021111811174778000_28.10.1467.44 doi: 10.1073/pnas.1000086107 – ident: 2021111811174778000_28.10.1467.43 doi: 10.1038/srep08988 – ident: 2021111811174778000_28.10.1467.56 doi: 10.1101/gr.213256.116 – ident: 2021111811174778000_28.10.1467.8 doi: 10.1038/ncomms10613 – ident: 2021111811174778000_28.10.1467.20 doi: 10.1586/eri.10.14 – ident: 2021111811174778000_28.10.1467.26 doi: 10.1126/science.1179555 – ident: 2021111811174778000_28.10.1467.70 doi: 10.1371/journal.pone.0146510 – ident: 2021111811174778000_28.10.1467.68 doi: 10.1186/2049-2618-2-4 – ident: 2021111811174778000_28.10.1467.5 doi: 10.1099/mic.0.28048-0 – ident: 2021111811174778000_28.10.1467.27 doi: 10.1093/bioinformatics/bth226 – ident: 2021111811174778000_28.10.1467.60 doi: 10.1093/molbev/msp077 – ident: 2021111811174778000_28.10.1467.33 doi: 10.1016/j.molcel.2009.12.033 – ident: 2021111811174778000_28.10.1467.61 doi: 10.1101/gr.111732.110 – ident: 2021111811174778000_28.10.1467.83 doi: 10.1038/ismej.2007.12 |
SSID | ssj0003488 |
Score | 2.5789115 |
Snippet | Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome... |
SourceID | pubmedcentral osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1467 |
SubjectTerms | Bacteria - classification Bacteria - genetics BASIC BIOLOGICAL SCIENCES Community composition Contig Mapping CRISPR Divergence DNA, Bacterial - genetics DNA, Ribosomal - genetics Female Fetuses Gastrointestinal Tract - microbiology Genomes Gestational age Humans Lactobacillus Longitudinal Studies Metagenomics - methods Microbiomes Phages Phylogeny Pregnancy Pregnancy complications Pregnancy Outcome RNA, Ribosomal, 16S - genetics rRNA 16S Sequence Analysis, DNA - methods Vagina Vagina - microbiology Variation |
Title | Metagenomic analysis with strain-level resolution reveals fine-scale variation in the human pregnancy microbiome |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30232199 https://www.proquest.com/docview/2136901237 https://www.proquest.com/docview/2115753462 https://www.osti.gov/servlets/purl/1506368 https://pubmed.ncbi.nlm.nih.gov/PMC6169887 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKEYIXBBuXsoGMhPYSUnK_PHYbbFzKyzZpb5Ht2iVSm1ZtijT-E_-Rc-LESaciDV6iNHZzO1_OxT7-DiHvBIuiQMrQTichBCg8nOAkYWArlXIu4oQzBxcKj79H51fBl-vwutf73cla2pR8KH7tXFfyP1KFYyBXXCX7D5I1J4UDsA_yhS1IGLZ3kvFYlgxJVucV6WrNLqKTzqvSD_YMU4IsiKjr28CVKhIJkxU4l_Ya5COtnxAts27Koy7bt1zJKZJx3FjzXJM1bdManOF1seZKZzis4tmflet6VFUvX2fWxdAazXI2NRbgYlO0xAbo5n4bGhUNBrXUQwingFxmjU3TaX6Wb2b5oj21dTzsjlq4icl_axQtaDcbucG0HaqVb5DaYaBLtzTa2Uu6KHQ6uhZ1fMduQ1zn7LYJVS2C6Wro-eDd4YGkNX7NhP8tm2gyFasYyXGz6SrTf4efyT1y34OopIrgP381ht8PEr3ysn40Q-nqfti6-pYL1F_Ai94V3tzO0u24PZdPyOM6XqEjDb6npCeLPbI_Kli5mN_QI1plEFdTM3vkwXGz9_CkqSO4T5YdlNIGpRRRSrsopS1KaY1S2qKUGpTSvKCAUlqhlBqU0halz8jVp4-XJ-d2XefDFkHglTZzY6XAV_NxqIYHKvWZUq7gwkmThHMJHnOkBPTlKgwFDxwWg1VRfjhxpKuk5z8n_WJRyJeEJiJivitZmkoW8MhhaRK54BFHTDqxEHJA3jevPhM1CT4-6izbKegBOTLdl5r95W8dD1COGbityL0sMElNlBnSd_oRtB424s1q9bHOPNfHYnCeHw_IW9MMssEZO1bIxQb7uBBOwXvxBuSFRoO5D6z2Be5GOiDxFk5MBySO324p8h8VgXzkRvBm41d3fboD8qj9hg9Jv1xt5GvwxUv-pvoC_gA2JONg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metagenomic+analysis+with+strain-level+resolution+reveals+fine-scale+variation+in+the+human+pregnancy+microbiome&rft.jtitle=Genome+research&rft.au=Goltsman%2C+Daniela+S.+Aliaga&rft.au=Sun%2C+Christine+L.&rft.au=Proctor%2C+Diana+M.&rft.au=DiGiulio%2C+Daniel+B.&rft.date=2018-10-01&rft.issn=1088-9051&rft.eissn=1549-5469&rft.volume=28&rft.issue=10&rft.spage=1467&rft.epage=1480&rft_id=info:doi/10.1101%2Fgr.236000.118&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_gr_236000_118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |