Metagenomic analysis with strain-level resolution reveals fine-scale variation in the human pregnancy microbiome

Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the...

Full description

Saved in:
Bibliographic Details
Published inGenome research Vol. 28; no. 10; pp. 1467 - 1480
Main Authors Goltsman, Daniela S. Aliaga, Sun, Christine L., Proctor, Diana M., DiGiulio, Daniel B., Robaczewska, Anna, Thomas, Brian C., Shaw, Gary M., Stevenson, David K., Holmes, Susan P., Banfield, Jillian F., Relman, David A.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the vaginal, gut, and oral microbiomes in 292 samples from 10 subjects sampled every three weeks throughout pregnancy. Nonhuman sequences in the amount of 1.53 Gb were assembled into scaffolds, and functional genes were predicted for gene- and pathway-based analyses. Vaginal assemblies were binned into 97 draft quality genomes. Redundancy analysis (RDA) of microbial community composition at all three body sites revealed gestational age to be a significant source of variation in patterns of gene abundance. In addition, health complications were associated with variation in community functional gene composition in the mouth and gut. The diversity of Lactobacillus iners -dominated communities in the vagina, unlike most other vaginal community types, significantly increased with gestational age. The genomes of co-occurring Gardnerella vaginalis strains with predicted distinct functions were recovered in samples from two subjects. In seven subjects, gut samples contained strains of the same Lactobacillus species that dominated the vaginal community of that same subject and not other Lactobacillus species; however, these within-host strains were divergent. CRISPR spacer analysis suggested shared phage and plasmid populations across body sites and individuals. This work underscores the dynamic behavior of the microbiome during pregnancy and suggests the potential importance of understanding the sources of this behavior for fetal development and gestational outcome.
AbstractList Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the vaginal, gut, and oral microbiomes in 292 samples from 10 subjects sampled every three weeks throughout pregnancy. Nonhuman sequences in the amount of 1.53 Gb were assembled into scaffolds, and functional genes were predicted for gene- and pathway-based analyses. Vaginal assemblies were binned into 97 draft quality genomes. Redundancy analysis (RDA) of microbial community composition at all three body sites revealed gestational age to be a significant source of variation in patterns of gene abundance. In addition, health complications were associated with variation in community functional gene composition in the mouth and gut. The diversity of Lactobacillus iners -dominated communities in the vagina, unlike most other vaginal community types, significantly increased with gestational age. The genomes of co-occurring Gardnerella vaginalis strains with predicted distinct functions were recovered in samples from two subjects. In seven subjects, gut samples contained strains of the same Lactobacillus species that dominated the vaginal community of that same subject and not other Lactobacillus species; however, these within-host strains were divergent. CRISPR spacer analysis suggested shared phage and plasmid populations across body sites and individuals. This work underscores the dynamic behavior of the microbiome during pregnancy and suggests the potential importance of understanding the sources of this behavior for fetal development and gestational outcome.
Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the vaginal, gut, and oral microbiomes in 292 samples from 10 subjects sampled every three weeks throughout pregnancy. Nonhuman sequences in the amount of 1.53 Gb were assembled into scaffolds, and functional genes were predicted for gene- and pathway-based analyses. Vaginal assemblies were binned into 97 draft quality genomes. Redundancy analysis (RDA) of microbial community composition at all three body sites revealed gestational age to be a significant source of variation in patterns of gene abundance. In addition, health complications were associated with variation in community functional gene composition in the mouth and gut. The diversity of Lactobacillus iners-dominated communities in the vagina, unlike most other vaginal community types, significantly increased with gestational age. The genomes of co-occurring Gardnerella vaginalis strains with predicted distinct functions were recovered in samples from two subjects. In seven subjects, gut samples contained strains of the same Lactobacillus species that dominated the vaginal community of that same subject and not other Lactobacillus species; however, these within-host strains were divergent. CRISPR spacer analysis suggested shared phage and plasmid populations across body sites and individuals. This work underscores the dynamic behavior of the microbiome during pregnancy and suggests the potential importance of understanding the sources of this behavior for fetal development and gestational outcome.
Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the vaginal, gut, and oral microbiomes in 292 samples from 10 subjects sampled every three weeks throughout pregnancy. Nonhuman sequences in the amount of 1.53 Gb were assembled into scaffolds, and functional genes were predicted for gene- and pathway-based analyses. Vaginal assemblies were binned into 97 draft quality genomes. Redundancy analysis (RDA) of microbial community composition at all three body sites revealed gestational age to be a significant source of variation in patterns of gene abundance. In addition, health complications were associated with variation in community functional gene composition in the mouth and gut. The diversity of -dominated communities in the vagina, unlike most other vaginal community types, significantly increased with gestational age. The genomes of co-occurring strains with predicted distinct functions were recovered in samples from two subjects. In seven subjects, gut samples contained strains of the same species that dominated the vaginal community of that same subject and not other species; however, these within-host strains were divergent. CRISPR spacer analysis suggested shared phage and plasmid populations across body sites and individuals. This work underscores the dynamic behavior of the microbiome during pregnancy and suggests the potential importance of understanding the sources of this behavior for fetal development and gestational outcome.
Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the vaginal, gut, and oral microbiomes in 292 samples from 10 subjects sampled every three weeks throughout pregnancy. Nonhuman sequences in the amount of 1.53 Gb were assembled into scaffolds, and functional genes were predicted for gene- and pathway-based analyses. Vaginal assemblies were binned into 97 draft quality genomes. Redundancy analysis (RDA) of microbial community composition at all three body sites revealed gestational age to be a significant source of variation in patterns of gene abundance. In addition, health complications were associated with variation in community functional gene composition in the mouth and gut. The diversity of Lactobacillus iners-dominated communities in the vagina, unlike most other vaginal community types, significantly increased with gestational age. The genomes of co-occurring Gardnerella vaginalis strains with predicted distinct functions were recovered in samples from two subjects. In seven subjects, gut samples contained strains of the same Lactobacillus species that dominated the vaginal community of that same subject and not other Lactobacillus species; however, these within-host strains were divergent. CRISPR spacer analysis suggested shared phage and plasmid populations across body sites and individuals. This work underscores the dynamic behavior of the microbiome during pregnancy and suggests the potential importance of understanding the sources of this behavior for fetal development and gestational outcome.Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome has largely relied on 16S rRNA gene amplicon-based surveys. Here, we describe an assembly-driven, metagenomics-based, longitudinal study of the vaginal, gut, and oral microbiomes in 292 samples from 10 subjects sampled every three weeks throughout pregnancy. Nonhuman sequences in the amount of 1.53 Gb were assembled into scaffolds, and functional genes were predicted for gene- and pathway-based analyses. Vaginal assemblies were binned into 97 draft quality genomes. Redundancy analysis (RDA) of microbial community composition at all three body sites revealed gestational age to be a significant source of variation in patterns of gene abundance. In addition, health complications were associated with variation in community functional gene composition in the mouth and gut. The diversity of Lactobacillus iners-dominated communities in the vagina, unlike most other vaginal community types, significantly increased with gestational age. The genomes of co-occurring Gardnerella vaginalis strains with predicted distinct functions were recovered in samples from two subjects. In seven subjects, gut samples contained strains of the same Lactobacillus species that dominated the vaginal community of that same subject and not other Lactobacillus species; however, these within-host strains were divergent. CRISPR spacer analysis suggested shared phage and plasmid populations across body sites and individuals. This work underscores the dynamic behavior of the microbiome during pregnancy and suggests the potential importance of understanding the sources of this behavior for fetal development and gestational outcome.
Author Stevenson, David K.
Goltsman, Daniela S. Aliaga
DiGiulio, Daniel B.
Shaw, Gary M.
Robaczewska, Anna
Thomas, Brian C.
Relman, David A.
Sun, Christine L.
Banfield, Jillian F.
Proctor, Diana M.
Holmes, Susan P.
AuthorAffiliation 6 Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
2 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
5 Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
7 Department of Statistics, Stanford University, Stanford, California 94305, USA
3 Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
4 Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
8 Earth and Environmental Science, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
1 March of Dimes Prematurity Research Center at Stanford University, Stanford, California 94305, USA
AuthorAffiliation_xml – name: 1 March of Dimes Prematurity Research Center at Stanford University, Stanford, California 94305, USA
– name: 3 Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
– name: 4 Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
– name: 7 Department of Statistics, Stanford University, Stanford, California 94305, USA
– name: 8 Earth and Environmental Science, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
– name: 2 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
– name: 5 Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
– name: 6 Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
Author_xml – sequence: 1
  givenname: Daniela S. Aliaga
  surname: Goltsman
  fullname: Goltsman, Daniela S. Aliaga
– sequence: 2
  givenname: Christine L.
  surname: Sun
  fullname: Sun, Christine L.
– sequence: 3
  givenname: Diana M.
  orcidid: 0000-0002-7078-0669
  surname: Proctor
  fullname: Proctor, Diana M.
– sequence: 4
  givenname: Daniel B.
  surname: DiGiulio
  fullname: DiGiulio, Daniel B.
– sequence: 5
  givenname: Anna
  surname: Robaczewska
  fullname: Robaczewska, Anna
– sequence: 6
  givenname: Brian C.
  surname: Thomas
  fullname: Thomas, Brian C.
– sequence: 7
  givenname: Gary M.
  surname: Shaw
  fullname: Shaw, Gary M.
– sequence: 8
  givenname: David K.
  surname: Stevenson
  fullname: Stevenson, David K.
– sequence: 9
  givenname: Susan P.
  surname: Holmes
  fullname: Holmes, Susan P.
– sequence: 10
  givenname: Jillian F.
  surname: Banfield
  fullname: Banfield, Jillian F.
– sequence: 11
  givenname: David A.
  orcidid: 0000-0001-8331-1354
  surname: Relman
  fullname: Relman, David A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30232199$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1506368$$D View this record in Osti.gov
BookMark eNptUk1v1DAQtVAr-gFHrsiCC5cUO46T-IJUVXxUasUFzpbjHSeuHHuxnUX773G6LYKqJ89o3rx5b8Zn6MgHDwi9oeSCUkI_jvGiZi0ha9q_QKeUN6LiTSuOSkz6vhKE0xN0ltJdAbGm71-iE0ZqVlMhTtH2FrIawYfZaqy8cvtkE_5t84RTjsr6ysEOHI6QgluyDb6EO1AuYWM9VEkrB3inolX3RetxngBPy6w83kYYvfJ6jwt7DIMNM7xCx6Z0w-uH9xz9_PL5x9W36ub71-ury5tKN02dK0U7YwA2rDghQ2MEU8ZQPWgi-n4YQHRta3TBDoZzPTREdZ1ghvENAWqgZufo04F3uwwzbDT4YsfJbbSzinsZlJX_V7yd5Bh2sqVtGdEVgncHgpCylUnbDHrSwXvQWVJOWtb2BfThYUoMvxZIWc42aXBOeQhLkjWlvOPFxCro_RPoXVhi2fiKYsUlrdk69e2_sv_qfbxYAbADoCw0pQhGFmX3u1_P5SQlcv0Xcozy8C9KuuqsnnQ9Ej-P_wPpK7xD
CitedBy_id crossref_primary_10_1007_s40471_021_00263_8
crossref_primary_10_1101_gr_276306_121
crossref_primary_10_1055_s_0044_1779025
crossref_primary_10_1177_09287329251316227
crossref_primary_10_7717_peerj_11437
crossref_primary_10_1099_mgen_0_001267
crossref_primary_10_1007_s00213_019_05436_4
crossref_primary_10_1080_19490976_2023_2259316
crossref_primary_10_1016_j_cophys_2019_10_011
crossref_primary_10_1373_clinchem_2019_303248
crossref_primary_10_1038_s41522_020_00142_y
crossref_primary_10_3389_fcimb_2022_1054190
crossref_primary_10_1080_19490976_2021_1911571
crossref_primary_10_1128_msystems_01339_23
crossref_primary_10_3390_agriculture10060232
crossref_primary_10_1007_s43032_020_00438_6
crossref_primary_10_1097_NMC_0000000000000930
crossref_primary_10_1128_mmbr_00181_21
crossref_primary_10_1038_s41390_020_0981_8
crossref_primary_10_3390_life13030785
crossref_primary_10_3389_fmicb_2022_1059227
crossref_primary_10_1016_j_micpath_2020_104029
crossref_primary_10_1038_s41564_022_01128_6
crossref_primary_10_3390_foods13244024
crossref_primary_10_3389_fmicb_2020_01925
crossref_primary_10_1016_j_isci_2022_104418
crossref_primary_10_1111_jdi_13177
crossref_primary_10_1016_j_celrep_2019_01_091
crossref_primary_10_1016_j_gpb_2021_05_001
crossref_primary_10_1038_s41598_024_62531_z
crossref_primary_10_3389_fmicb_2021_613791
crossref_primary_10_1111_prd_12349
crossref_primary_10_1016_j_jdent_2024_105018
crossref_primary_10_3389_fcimb_2020_00168
crossref_primary_10_3389_frmbi_2025_1548650
crossref_primary_10_3390_microorganisms12081564
crossref_primary_10_1038_s41598_023_43780_w
crossref_primary_10_17352_2455_2976_000146
crossref_primary_10_1007_s43032_023_01351_4
crossref_primary_10_1093_femsre_fuac004
crossref_primary_10_1186_s12866_021_02327_7
crossref_primary_10_1038_s41467_023_39849_9
crossref_primary_10_1080_20002297_2024_2417099
crossref_primary_10_36303_JMLSTSA_235
crossref_primary_10_3390_microorganisms12040808
crossref_primary_10_1038_s41522_023_00454_9
crossref_primary_10_1111_1462_2920_15441
crossref_primary_10_1186_s40168_021_01067_0
crossref_primary_10_1186_s12967_023_04230_3
crossref_primary_10_1186_s40364_024_00557_1
crossref_primary_10_1038_s41579_023_00933_y
crossref_primary_10_1038_s41592_020_00971_x
crossref_primary_10_1186_s12916_022_02657_x
crossref_primary_10_1080_10408398_2021_1879004
crossref_primary_10_18632_aging_205019
crossref_primary_10_1186_s13059_022_02635_9
crossref_primary_10_1128_msystems_00893_22
crossref_primary_10_1016_j_mib_2023_102309
crossref_primary_10_1007_s12038_019_9925_z
crossref_primary_10_1016_j_molmed_2021_01_007
crossref_primary_10_1016_j_jcf_2019_01_003
crossref_primary_10_3390_microorganisms11061481
crossref_primary_10_1007_s00281_019_00772_1
crossref_primary_10_1016_j_gpb_2022_09_003
crossref_primary_10_1093_femsle_fnaa032
crossref_primary_10_1016_j_chom_2020_04_006
crossref_primary_10_3389_fcimb_2022_873253
crossref_primary_10_1111_1471_0528_15978
crossref_primary_10_1016_j_csbj_2021_02_021
crossref_primary_10_3389_froh_2021_735634
crossref_primary_10_1186_s40168_024_01992_w
crossref_primary_10_1038_s41467_020_14677_3
crossref_primary_10_1016_j_medmic_2022_100065
crossref_primary_10_1111_febs_70031
crossref_primary_10_1093_bib_bbac013
crossref_primary_10_3389_fmicb_2024_1366181
crossref_primary_10_1099_mgen_0_000543
crossref_primary_10_1038_s41522_020_00162_8
crossref_primary_10_1080_10408398_2022_2117784
crossref_primary_10_2139_ssrn_3981896
crossref_primary_10_1002_jia2_25300
crossref_primary_10_1038_s41591_019_0465_8
crossref_primary_10_3389_fcimb_2020_523764
crossref_primary_10_1097_JPN_0000000000000715
crossref_primary_10_1038_s41467_024_45336_6
crossref_primary_10_1113_JP277353
crossref_primary_10_1128_spectrum_00105_22
crossref_primary_10_1093_emph_eoae001
crossref_primary_10_1016_j_ebiom_2021_103421
crossref_primary_10_1038_s41467_023_40719_7
crossref_primary_10_3389_fmicb_2022_946779
crossref_primary_10_1016_j_jdent_2024_105059
crossref_primary_10_1177_1753495X241258383
crossref_primary_10_1038_s41564_022_01070_7
crossref_primary_10_1038_s41598_021_96495_1
crossref_primary_10_1016_j_clim_2025_110444
crossref_primary_10_1080_17476348_2021_1924061
crossref_primary_10_3390_microbiolres13010001
crossref_primary_10_3390_v15091821
crossref_primary_10_1146_annurev_micro_012520_072314
crossref_primary_10_1186_s13073_020_00765_y
crossref_primary_10_3390_antiox12020463
crossref_primary_10_1038_s41467_022_31227_1
crossref_primary_10_1128_AEM_02188_20
crossref_primary_10_21886_2308_6424_2024_12_5_12_23
crossref_primary_10_1016_j_tim_2019_07_010
crossref_primary_10_3390_metabo14120655
crossref_primary_10_3390_microorganisms8111813
crossref_primary_10_3390_ijms20081835
crossref_primary_10_1093_molbev_msz237
crossref_primary_10_20517_mrr_2023_02
crossref_primary_10_1016_j_celrep_2024_114078
crossref_primary_10_1053_j_gastro_2020_09_057
Cites_doi 10.1038/ismej.2014.31
10.1007/s00239-004-0046-3
10.1038/ismej.2013.63
10.1093/bioinformatics/btv271
10.1038/nature14486
10.1038/nmeth.1923
10.1371/journal.pgen.1002441
10.1093/nar/gkm321
10.1186/s13059-014-0524-x
10.1101/gr.129684.111
10.1093/nar/gkt183
10.1093/bioinformatics/btn654
10.1038/nrg3182
10.1126/scitranslmed.3003605
10.1093/bioinformatics/btr381
10.1038/nmicrobiol.2016.48
10.1128/AEM.06516-11
10.2323/jgam.54.141
10.1038/nature11234
10.1093/infdis/jiu089
10.1093/bioinformatics/bts174
10.1177/1933719113488838
10.1371/journal.pone.0011147
10.1038/nrmicro3569
10.1038/nature18845
10.1093/nar/gkt263
10.1073/pnas.1502875112
10.1128/AEM.00753-08
10.1093/nar/gkw1099
10.1038/ismej.2015.162
10.1371/journal.pone.0012411
10.1113/JP271694
10.1128/JB.00056-12
10.1371/journal.pone.0061217
10.1186/s13059-014-0550-8
10.1111/1471-0528.15299
10.1093/bioinformatics/btq461
10.1016/j.ajog.2010.12.061
10.1371/journal.pcbi.1002358
10.1186/1471-2105-11-119
10.1073/pnas.1705899114
10.1126/science.1224203
10.1186/gb-2009-10-8-r85
10.1016/j.molcel.2015.10.008
10.1093/nar/25.5.0955
10.1093/bioinformatics/bts199
10.1186/s40168-016-0223-9
10.1016/j.trsl.2012.02.008
10.1073/pnas.0630018100
10.1186/gb-2011-12-5-r44
10.1186/1471-2164-15-1070
10.1038/nrg2749
10.1016/j.cell.2010.01.023
10.1073/pnas.1002611107
10.1056/NEJM199512283332604
10.1126/science.1157358
10.1093/nar/gkm864
10.1016/j.ajog.2017.05.030
10.1093/bioinformatics/btp324
10.1099/mic.0.27437-0
10.1093/nar/gkh340
10.1371/journal.pone.0166757
10.3389/fmicb.2016.01031
10.1093/nar/28.1.27
10.1146/annurev-micro-092611-150157
10.1016/j.cell.2012.07.008
10.1073/pnas.1000086107
10.1038/srep08988
10.1101/gr.213256.116
10.1038/ncomms10613
10.1586/eri.10.14
10.1126/science.1179555
10.1371/journal.pone.0146510
10.1186/2049-2618-2-4
10.1099/mic.0.28048-0
10.1093/bioinformatics/bth226
10.1093/molbev/msp077
10.1016/j.molcel.2009.12.033
10.1101/gr.111732.110
10.1038/ismej.2007.12
ContentType Journal Article
Copyright 2018 Goltsman et al.; Published by Cold Spring Harbor Laboratory Press.
Copyright Cold Spring Harbor Laboratory Press Oct 2018
2018
Copyright_xml – notice: 2018 Goltsman et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: Copyright Cold Spring Harbor Laboratory Press Oct 2018
– notice: 2018
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1101/gr.236000.118
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
Genetics Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Goltsman et al
EISSN 1549-5469
EndPage 1480
ExternalDocumentID PMC6169887
1506368
30232199
10_1101_gr_236000_118
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: K99 HD090290
– fundername: ;
– fundername: Chan Zuckerburg Biohub
– fundername: ;
  grantid: 1K99HD090290
– fundername: Eunice Kennedy Shriver
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAFWJ
AAYOK
AAYXX
AAZTW
ABDIX
ABDNZ
ACGFO
ACLKE
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
R.V
RCX
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
OIOZB
OTOTI
RHF
5PM
ID FETCH-LOGICAL-c442t-a17ffeed34690b4f93aff1cbc0988bbe9766fcc44bf55cb40a7793f35d0e1fe23
ISSN 1088-9051
1549-5469
IngestDate Thu Aug 21 14:10:07 EDT 2025
Mon Nov 25 02:36:43 EST 2024
Fri Jul 11 09:40:44 EDT 2025
Fri Jul 25 07:22:52 EDT 2025
Mon Jul 21 05:59:18 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
Tue Jul 01 02:20:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2018 Goltsman et al.; Published by Cold Spring Harbor Laboratory Press.
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-a17ffeed34690b4f93aff1cbc0988bbe9766fcc44bf55cb40a7793f35d0e1fe23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-05CH11231
USDOE Office of Science (SC)
These authors contributed equally to this work.
ORCID 0000-0002-7078-0669
0000-0001-8331-1354
0000000270780669
0000000183311354
OpenAccessLink https://www.osti.gov/servlets/purl/1506368
PMID 30232199
PQID 2136901237
PQPubID 2049132
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6169887
osti_scitechconnect_1506368
proquest_miscellaneous_2115753462
proquest_journals_2136901237
pubmed_primary_30232199
crossref_citationtrail_10_1101_gr_236000_118
crossref_primary_10_1101_gr_236000_118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Genome research
PublicationTitleAlternate Genome Res
PublicationYear 2018
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References (2021111811174778000_28.10.1467.10) 2008; 10
2021111811174778000_28.10.1467.80
2021111811174778000_28.10.1467.81
(2021111811174778000_28.10.1467.74) 2017; 595
(2021111811174778000_28.10.1467.28) 2016; 1
2021111811174778000_28.10.1467.35
2021111811174778000_28.10.1467.79
2021111811174778000_28.10.1467.36
2021111811174778000_28.10.1467.37
2021111811174778000_28.10.1467.38
2021111811174778000_28.10.1467.39
2021111811174778000_28.10.1467.71
2021111811174778000_28.10.1467.72
2021111811174778000_28.10.1467.73
2021111811174778000_28.10.1467.30
2021111811174778000_28.10.1467.31
2021111811174778000_28.10.1467.32
2021111811174778000_28.10.1467.76
2021111811174778000_28.10.1467.33
2021111811174778000_28.10.1467.77
2021111811174778000_28.10.1467.34
2021111811174778000_28.10.1467.78
2021111811174778000_28.10.1467.1
2021111811174778000_28.10.1467.5
2021111811174778000_28.10.1467.4
2021111811174778000_28.10.1467.3
2021111811174778000_28.10.1467.2
2021111811174778000_28.10.1467.9
2021111811174778000_28.10.1467.46
2021111811174778000_28.10.1467.8
2021111811174778000_28.10.1467.47
2021111811174778000_28.10.1467.7
2021111811174778000_28.10.1467.48
2021111811174778000_28.10.1467.49
2021111811174778000_28.10.1467.82
2021111811174778000_28.10.1467.83
2021111811174778000_28.10.1467.40
2021111811174778000_28.10.1467.41
2021111811174778000_28.10.1467.42
2021111811174778000_28.10.1467.43
2021111811174778000_28.10.1467.44
2021111811174778000_28.10.1467.45
(2021111811174778000_28.10.1467.6) 2017; 28
2021111811174778000_28.10.1467.13
2021111811174778000_28.10.1467.57
2021111811174778000_28.10.1467.14
2021111811174778000_28.10.1467.58
2021111811174778000_28.10.1467.15
2021111811174778000_28.10.1467.59
2021111811174778000_28.10.1467.16
2021111811174778000_28.10.1467.17
2021111811174778000_28.10.1467.18
2021111811174778000_28.10.1467.19
2021111811174778000_28.10.1467.50
2021111811174778000_28.10.1467.51
2021111811174778000_28.10.1467.52
2021111811174778000_28.10.1467.53
2021111811174778000_28.10.1467.54
2021111811174778000_28.10.1467.11
2021111811174778000_28.10.1467.55
2021111811174778000_28.10.1467.12
2021111811174778000_28.10.1467.56
2021111811174778000_28.10.1467.70
2021111811174778000_28.10.1467.24
2021111811174778000_28.10.1467.68
2021111811174778000_28.10.1467.25
2021111811174778000_28.10.1467.69
2021111811174778000_28.10.1467.26
(2021111811174778000_28.10.1467.75) 2017; 217
2021111811174778000_28.10.1467.27
2021111811174778000_28.10.1467.29
2021111811174778000_28.10.1467.60
2021111811174778000_28.10.1467.61
2021111811174778000_28.10.1467.62
2021111811174778000_28.10.1467.63
2021111811174778000_28.10.1467.20
2021111811174778000_28.10.1467.64
2021111811174778000_28.10.1467.21
2021111811174778000_28.10.1467.65
2021111811174778000_28.10.1467.22
2021111811174778000_28.10.1467.66
2021111811174778000_28.10.1467.23
2021111811174778000_28.10.1467.67
References_xml – ident: 2021111811174778000_28.10.1467.1
  doi: 10.1038/ismej.2014.31
– ident: 2021111811174778000_28.10.1467.51
  doi: 10.1007/s00239-004-0046-3
– ident: 2021111811174778000_28.10.1467.67
  doi: 10.1038/ismej.2013.63
– ident: 2021111811174778000_28.10.1467.22
  doi: 10.1093/bioinformatics/btv271
– ident: 2021111811174778000_28.10.1467.7
  doi: 10.1038/nature14486
– ident: 2021111811174778000_28.10.1467.38
  doi: 10.1038/nmeth.1923
– ident: 2021111811174778000_28.10.1467.66
  doi: 10.1371/journal.pgen.1002441
– ident: 2021111811174778000_28.10.1467.52
  doi: 10.1093/nar/gkm321
– ident: 2021111811174778000_28.10.1467.78
  doi: 10.1186/s13059-014-0524-x
– ident: 2021111811174778000_28.10.1467.36
  doi: 10.1101/gr.129684.111
– ident: 2021111811174778000_28.10.1467.73
  doi: 10.1093/nar/gkt183
– ident: 2021111811174778000_28.10.1467.53
  doi: 10.1093/bioinformatics/btn654
– ident: 2021111811174778000_28.10.1467.12
  doi: 10.1038/nrg3182
– ident: 2021111811174778000_28.10.1467.21
  doi: 10.1126/scitranslmed.3003605
– ident: 2021111811174778000_28.10.1467.19
  doi: 10.1093/bioinformatics/btr381
– volume: 1
  start-page: 16048
  year: 2016
  ident: 2021111811174778000_28.10.1467.28
  article-title: A new view of the tree of life
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2016.48
– ident: 2021111811174778000_28.10.1467.81
  doi: 10.1128/AEM.06516-11
– ident: 2021111811174778000_28.10.1467.57
  doi: 10.2323/jgam.54.141
– ident: 2021111811174778000_28.10.1467.29
  doi: 10.1038/nature11234
– ident: 2021111811174778000_28.10.1467.63
– ident: 2021111811174778000_28.10.1467.71
  doi: 10.1093/infdis/jiu089
– volume: 10
  start-page: 421
  year: 2008
  ident: 2021111811174778000_28.10.1467.10
  article-title: BLAST+: architecture and applications
  publication-title: BMC Bioinformatics
– ident: 2021111811174778000_28.10.1467.58
  doi: 10.1093/bioinformatics/bts174
– ident: 2021111811174778000_28.10.1467.31
  doi: 10.1177/1933719113488838
– ident: 2021111811174778000_28.10.1467.14
  doi: 10.1371/journal.pone.0011147
– ident: 2021111811174778000_28.10.1467.45
  doi: 10.1038/nrmicro3569
– ident: 2021111811174778000_28.10.1467.11
  doi: 10.1038/nature18845
– ident: 2021111811174778000_28.10.1467.50
  doi: 10.1093/nar/gkt263
– ident: 2021111811174778000_28.10.1467.16
  doi: 10.1073/pnas.1502875112
– ident: 2021111811174778000_28.10.1467.80
  doi: 10.1128/AEM.00753-08
– ident: 2021111811174778000_28.10.1467.79
  doi: 10.1093/nar/gkw1099
– ident: 2021111811174778000_28.10.1467.76
  doi: 10.1038/ismej.2015.162
– ident: 2021111811174778000_28.10.1467.82
  doi: 10.1371/journal.pone.0012411
– volume: 595
  start-page: 451
  year: 2017
  ident: 2021111811174778000_28.10.1467.74
  article-title: The vaginal microbiota, host defence and reproductive physiology
  publication-title: J Physiol
  doi: 10.1113/JP271694
– ident: 2021111811174778000_28.10.1467.3
  doi: 10.1128/JB.00056-12
– ident: 2021111811174778000_28.10.1467.48
  doi: 10.1371/journal.pone.0061217
– ident: 2021111811174778000_28.10.1467.40
  doi: 10.1186/s13059-014-0550-8
– ident: 2021111811174778000_28.10.1467.77
  doi: 10.1111/1471-0528.15299
– ident: 2021111811174778000_28.10.1467.18
  doi: 10.1093/bioinformatics/btq461
– ident: 2021111811174778000_28.10.1467.69
  doi: 10.1016/j.ajog.2010.12.061
– ident: 2021111811174778000_28.10.1467.2
  doi: 10.1371/journal.pcbi.1002358
– ident: 2021111811174778000_28.10.1467.30
  doi: 10.1186/1471-2105-11-119
– volume: 28
  start-page: 1303265
  year: 2017
  ident: 2021111811174778000_28.10.1467.6
  article-title: Changes in vaginal community state types reflect major shifts in the microbiome
  publication-title: Microb Ecol Health Dis
– ident: 2021111811174778000_28.10.1467.9
  doi: 10.1073/pnas.1705899114
– ident: 2021111811174778000_28.10.1467.13
  doi: 10.1126/science.1224203
– ident: 2021111811174778000_28.10.1467.15
  doi: 10.1186/gb-2009-10-8-r85
– ident: 2021111811174778000_28.10.1467.72
  doi: 10.1016/j.molcel.2015.10.008
– ident: 2021111811174778000_28.10.1467.41
  doi: 10.1093/nar/25.5.0955
– ident: 2021111811174778000_28.10.1467.34
  doi: 10.1093/bioinformatics/bts199
– ident: 2021111811174778000_28.10.1467.35
  doi: 10.1186/s40168-016-0223-9
– ident: 2021111811174778000_28.10.1467.24
  doi: 10.1016/j.trsl.2012.02.008
– ident: 2021111811174778000_28.10.1467.65
  doi: 10.1073/pnas.0630018100
– ident: 2021111811174778000_28.10.1467.49
  doi: 10.1186/gb-2011-12-5-r44
– ident: 2021111811174778000_28.10.1467.55
  doi: 10.1186/1471-2164-15-1070
– ident: 2021111811174778000_28.10.1467.47
  doi: 10.1038/nrg2749
– ident: 2021111811174778000_28.10.1467.23
  doi: 10.1016/j.cell.2010.01.023
– ident: 2021111811174778000_28.10.1467.64
  doi: 10.1073/pnas.1002611107
– ident: 2021111811174778000_28.10.1467.25
  doi: 10.1056/NEJM199512283332604
– ident: 2021111811174778000_28.10.1467.4
  doi: 10.1126/science.1157358
– ident: 2021111811174778000_28.10.1467.62
  doi: 10.1093/nar/gkm864
– volume: 217
  start-page: 356.e1
  year: 2017
  ident: 2021111811174778000_28.10.1467.75
  article-title: Early pregnancy vaginal microbiome trends and preterm birth
  publication-title: Am J Obstet Gynecol.
  doi: 10.1016/j.ajog.2017.05.030
– ident: 2021111811174778000_28.10.1467.39
  doi: 10.1093/bioinformatics/btp324
– ident: 2021111811174778000_28.10.1467.59
  doi: 10.1099/mic.0.27437-0
– ident: 2021111811174778000_28.10.1467.17
  doi: 10.1093/nar/gkh340
– ident: 2021111811174778000_28.10.1467.46
  doi: 10.1371/journal.pone.0166757
– ident: 2021111811174778000_28.10.1467.54
  doi: 10.3389/fmicb.2016.01031
– ident: 2021111811174778000_28.10.1467.32
  doi: 10.1093/nar/28.1.27
– ident: 2021111811174778000_28.10.1467.42
  doi: 10.1146/annurev-micro-092611-150157
– ident: 2021111811174778000_28.10.1467.37
  doi: 10.1016/j.cell.2012.07.008
– ident: 2021111811174778000_28.10.1467.44
  doi: 10.1073/pnas.1000086107
– ident: 2021111811174778000_28.10.1467.43
  doi: 10.1038/srep08988
– ident: 2021111811174778000_28.10.1467.56
  doi: 10.1101/gr.213256.116
– ident: 2021111811174778000_28.10.1467.8
  doi: 10.1038/ncomms10613
– ident: 2021111811174778000_28.10.1467.20
  doi: 10.1586/eri.10.14
– ident: 2021111811174778000_28.10.1467.26
  doi: 10.1126/science.1179555
– ident: 2021111811174778000_28.10.1467.70
  doi: 10.1371/journal.pone.0146510
– ident: 2021111811174778000_28.10.1467.68
  doi: 10.1186/2049-2618-2-4
– ident: 2021111811174778000_28.10.1467.5
  doi: 10.1099/mic.0.28048-0
– ident: 2021111811174778000_28.10.1467.27
  doi: 10.1093/bioinformatics/bth226
– ident: 2021111811174778000_28.10.1467.60
  doi: 10.1093/molbev/msp077
– ident: 2021111811174778000_28.10.1467.33
  doi: 10.1016/j.molcel.2009.12.033
– ident: 2021111811174778000_28.10.1467.61
  doi: 10.1101/gr.111732.110
– ident: 2021111811174778000_28.10.1467.83
  doi: 10.1038/ismej.2007.12
SSID ssj0003488
Score 2.5789115
Snippet Recent studies suggest that the microbiome has an impact on gestational health and outcome. However, characterization of the pregnancy-associated microbiome...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1467
SubjectTerms Bacteria - classification
Bacteria - genetics
BASIC BIOLOGICAL SCIENCES
Community composition
Contig Mapping
CRISPR
Divergence
DNA, Bacterial - genetics
DNA, Ribosomal - genetics
Female
Fetuses
Gastrointestinal Tract - microbiology
Genomes
Gestational age
Humans
Lactobacillus
Longitudinal Studies
Metagenomics - methods
Microbiomes
Phages
Phylogeny
Pregnancy
Pregnancy complications
Pregnancy Outcome
RNA, Ribosomal, 16S - genetics
rRNA 16S
Sequence Analysis, DNA - methods
Vagina
Vagina - microbiology
Variation
Title Metagenomic analysis with strain-level resolution reveals fine-scale variation in the human pregnancy microbiome
URI https://www.ncbi.nlm.nih.gov/pubmed/30232199
https://www.proquest.com/docview/2136901237
https://www.proquest.com/docview/2115753462
https://www.osti.gov/servlets/purl/1506368
https://pubmed.ncbi.nlm.nih.gov/PMC6169887
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKEYIXBBuXsoGMhPYSUnK_PHYbbFzKyzZpb5Ht2iVSm1ZtijT-E_-Rc-LESaciDV6iNHZzO1_OxT7-DiHvBIuiQMrQTichBCg8nOAkYWArlXIu4oQzBxcKj79H51fBl-vwutf73cla2pR8KH7tXFfyP1KFYyBXXCX7D5I1J4UDsA_yhS1IGLZ3kvFYlgxJVucV6WrNLqKTzqvSD_YMU4IsiKjr28CVKhIJkxU4l_Ya5COtnxAts27Koy7bt1zJKZJx3FjzXJM1bdManOF1seZKZzis4tmflet6VFUvX2fWxdAazXI2NRbgYlO0xAbo5n4bGhUNBrXUQwingFxmjU3TaX6Wb2b5oj21dTzsjlq4icl_axQtaDcbucG0HaqVb5DaYaBLtzTa2Uu6KHQ6uhZ1fMduQ1zn7LYJVS2C6Wro-eDd4YGkNX7NhP8tm2gyFasYyXGz6SrTf4efyT1y34OopIrgP381ht8PEr3ysn40Q-nqfti6-pYL1F_Ai94V3tzO0u24PZdPyOM6XqEjDb6npCeLPbI_Kli5mN_QI1plEFdTM3vkwXGz9_CkqSO4T5YdlNIGpRRRSrsopS1KaY1S2qKUGpTSvKCAUlqhlBqU0halz8jVp4-XJ-d2XefDFkHglTZzY6XAV_NxqIYHKvWZUq7gwkmThHMJHnOkBPTlKgwFDxwWg1VRfjhxpKuk5z8n_WJRyJeEJiJivitZmkoW8MhhaRK54BFHTDqxEHJA3jevPhM1CT4-6izbKegBOTLdl5r95W8dD1COGbityL0sMElNlBnSd_oRtB424s1q9bHOPNfHYnCeHw_IW9MMssEZO1bIxQb7uBBOwXvxBuSFRoO5D6z2Be5GOiDxFk5MBySO324p8h8VgXzkRvBm41d3fboD8qj9hg9Jv1xt5GvwxUv-pvoC_gA2JONg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metagenomic+analysis+with+strain-level+resolution+reveals+fine-scale+variation+in+the+human+pregnancy+microbiome&rft.jtitle=Genome+research&rft.au=Goltsman%2C+Daniela+S.+Aliaga&rft.au=Sun%2C+Christine+L.&rft.au=Proctor%2C+Diana+M.&rft.au=DiGiulio%2C+Daniel+B.&rft.date=2018-10-01&rft.issn=1088-9051&rft.eissn=1549-5469&rft.volume=28&rft.issue=10&rft.spage=1467&rft.epage=1480&rft_id=info:doi/10.1101%2Fgr.236000.118&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_gr_236000_118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon