Spiking Neural Networks and online learning: An overview and perspectives

Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they often turn into evolving environments where a cha...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 121; pp. 88 - 100
Main Authors Lobo, Jesus L., Del Ser, Javier, Bifet, Albert, Kasabov, Nikola
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2020
Elsevier
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2019.09.004

Cover

Abstract Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they often turn into evolving environments where a change may affect the input data distribution. Such a change causes that predictive models trained over these stream data become obsolete and do not adapt suitably to new distributions. Specially in these non-stationary scenarios, there is a pressing need for new algorithms that adapt to these changes as fast as possible, while maintaining good performance scores. Unfortunately, most off-the-shelf classification models need to be retrained if they are used in changing environments, and fail to scale properly. Spiking Neural Networks have revealed themselves as one of the most successful approaches to model the behavior and learning potential of the brain, and exploit them to undertake practical online learning tasks. Besides, some specific flavors of Spiking Neural Networks can overcome the necessity of retraining after a drift occurs. This work intends to merge both fields by serving as a comprehensive overview, motivating further developments that embrace Spiking Neural Networks for online learning scenarios, and being a friendly entry point for non-experts.
AbstractList Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they often turn into evolving environments where a change may affect the input data distribution. Such a change causes that predictive models trained over these stream data become obsolete and do not adapt suitably to new distributions. Specially in these non-stationary scenarios, there is a pressing need for new algorithms that adapt to these changes as fast as possible, while maintaining good performance scores. Unfortunately, most off-the-shelf classification models need to be retrained if they are used in changing environments, and fail to scale properly. Spiking Neural Networks have revealed themselves as one of the most successful approaches to model the behavior and learning potential of the brain, and exploit them to undertake practical online learning tasks. Besides, some specific flavors of Spiking Neural Networks can overcome the necessity of retraining after a drift occurs. This work intends to merge both fields by serving as a comprehensive overview, motivating further developments that embrace Spiking Neural Networks for online learning scenarios, and being a friendly entry point for non-experts.
Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they often turn into evolving environments where a change may affect the input data distribution. Such a change causes that predictive models trained over these stream data become obsolete and do not adapt suitably to new distributions. Specially in these non-stationary scenarios, there is a pressing need for new algorithms that adapt to these changes as fast as possible, while maintaining good performance scores. Unfortunately, most off-the-shelf classification models need to be retrained if they are used in changing environments, and fail to scale properly. Spiking Neural Networks have revealed themselves as one of the most successful approaches to model the behavior and learning potential of the brain, and exploit them to undertake practical online learning tasks. Besides, some specific flavors of Spiking Neural Networks can overcome the necessity of retraining after a drift occurs. This work intends to merge both fields by serving as a comprehensive overview, motivating further developments that embrace Spiking Neural Networks for online learning scenarios, and being a friendly entry point for non-experts.Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they often turn into evolving environments where a change may affect the input data distribution. Such a change causes that predictive models trained over these stream data become obsolete and do not adapt suitably to new distributions. Specially in these non-stationary scenarios, there is a pressing need for new algorithms that adapt to these changes as fast as possible, while maintaining good performance scores. Unfortunately, most off-the-shelf classification models need to be retrained if they are used in changing environments, and fail to scale properly. Spiking Neural Networks have revealed themselves as one of the most successful approaches to model the behavior and learning potential of the brain, and exploit them to undertake practical online learning tasks. Besides, some specific flavors of Spiking Neural Networks can overcome the necessity of retraining after a drift occurs. This work intends to merge both fields by serving as a comprehensive overview, motivating further developments that embrace Spiking Neural Networks for online learning scenarios, and being a friendly entry point for non-experts.
Author Del Ser, Javier
Kasabov, Nikola
Lobo, Jesus L.
Bifet, Albert
Author_xml – sequence: 1
  givenname: Jesus L.
  surname: Lobo
  fullname: Lobo, Jesus L.
  email: jesus.lopez@tecnalia.com
  organization: TECNALIA, 48160 Derio, Spain
– sequence: 2
  givenname: Javier
  orcidid: 0000-0002-1260-9775
  surname: Del Ser
  fullname: Del Ser, Javier
  organization: TECNALIA, 48160 Derio, Spain
– sequence: 3
  givenname: Albert
  surname: Bifet
  fullname: Bifet, Albert
  organization: Télécom ParisTech, París, C201-2, France
– sequence: 4
  givenname: Nikola
  surname: Kasabov
  fullname: Kasabov, Nikola
  organization: Auckland University of Technology (AUT), Auckland, New Zealand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31536902$$D View this record in MEDLINE/PubMed
https://telecom-paris.hal.science/hal-02460417$$DView record in HAL
BookMark eNqFkU9v1DAUxC1URLeFb4BQjvSQ7fOfxHEPSKsKaKUVPRTOltd5AW-zdrCTrfj2eEnbQw9FetJIT7-Zw8wJOfLBIyHvKSwp0Pp8u_Q4eRyXDKhaQj4Qr8iCNlKVTDbsiCygUbysoYFjcpLSFgDqRvA35JjTitcK2IJc3w7uzvmfxTecoumzjPch3qXC-LYIvnceix5N9Jm5KFa-CHuMe4f3_4ABYxrQjm6P6S153Zk-4bsHPSU_vnz-fnlVrm--Xl-u1qUVgo2lgaoznMOmkUIBB9taUzWyUYLZruoqI5gyslNIGVUblFy0FmxtrOCtQrnhp-Rszv1lej1EtzPxjw7G6avVWh9-wEQNgso9zezHmR1i-D1hGvXOJYt9bzyGKWnGVCUkVYpl9MMDOm122D4lP1aVgYsZsDGkFLHT1o1mdMGP0bheU9CHXfRWz7vowy4a8oHIZvHM_Jj_H9un2Ya50Nx61Mk69BZbF3Ptug3u5YC_XhyoRA
CitedBy_id crossref_primary_10_1088_1741_2552_ac74e0
crossref_primary_10_1016_j_tcs_2022_09_021
crossref_primary_10_1016_j_tcs_2020_07_016
crossref_primary_10_3233_AIC_210009
crossref_primary_10_1016_j_neucom_2021_08_005
crossref_primary_10_3390_app132413145
crossref_primary_10_1007_s40747_023_01245_7
crossref_primary_10_1007_s11768_023_00150_1
crossref_primary_10_1109_TKDE_2024_3374357
crossref_primary_10_1016_j_comnet_2022_108836
crossref_primary_10_1115_1_4055316
crossref_primary_10_1134_S2635167621060069
crossref_primary_10_1063_5_0133515
crossref_primary_10_1007_s00521_021_05832_y
crossref_primary_10_1007_s00521_020_05388_3
crossref_primary_10_1007_s40820_024_01550_x
crossref_primary_10_1002_aisy_202400673
crossref_primary_10_1007_s10846_020_01227_8
crossref_primary_10_3390_s21082730
crossref_primary_10_1016_j_ijadhadh_2024_103888
crossref_primary_10_1016_j_neunet_2024_106410
crossref_primary_10_1007_s11227_023_05420_y
crossref_primary_10_1109_ACCESS_2021_3053280
crossref_primary_10_1109_ACCESS_2021_3076264
crossref_primary_10_1109_TCE_2023_3279135
crossref_primary_10_1051_e3sconf_202124407003
crossref_primary_10_1016_j_neucom_2023_126234
crossref_primary_10_1134_S2635167621060057
crossref_primary_10_1016_j_neucom_2023_01_087
crossref_primary_10_3389_fnins_2023_1161592
crossref_primary_10_1007_s11042_023_16344_3
crossref_primary_10_1016_j_neucom_2024_129005
crossref_primary_10_1007_s00521_022_06936_9
crossref_primary_10_1007_s10462_025_11108_x
crossref_primary_10_1002_aisy_202300132
crossref_primary_10_1109_LSENS_2024_3523443
crossref_primary_10_1109_TETC_2024_3387026
crossref_primary_10_1109_TBCAS_2022_3166530
crossref_primary_10_1371_journal_pone_0244822
crossref_primary_10_3390_su15053978
crossref_primary_10_1109_TC_2022_3197089
crossref_primary_10_1145_3444693
crossref_primary_10_1109_TWC_2024_3522956
crossref_primary_10_1016_j_measurement_2023_113796
crossref_primary_10_1007_s11042_024_19665_z
crossref_primary_10_3390_su14106063
crossref_primary_10_1016_j_neunet_2021_02_017
crossref_primary_10_1002_aisy_202200047
crossref_primary_10_1093_ijlct_ctae294
crossref_primary_10_58763_rc2025355
crossref_primary_10_1109_TNNLS_2023_3303308
crossref_primary_10_15622_ia_21_3_2
crossref_primary_10_1016_j_neunet_2020_02_011
crossref_primary_10_1002_aelm_202400258
crossref_primary_10_1109_TCSI_2020_3010723
crossref_primary_10_7498_aps_71_20220281
crossref_primary_10_1016_j_chaos_2025_116149
crossref_primary_10_1109_JETCAS_2021_3121554
crossref_primary_10_3389_fnins_2022_923587
crossref_primary_10_1088_1361_6501_ac3199
crossref_primary_10_1016_j_optlastec_2020_106787
crossref_primary_10_1063_5_0211040
crossref_primary_10_1016_j_neunet_2024_106474
crossref_primary_10_1016_j_ress_2023_109102
crossref_primary_10_3390_buildings13030580
crossref_primary_10_3390_s22239245
crossref_primary_10_1002_aelm_202200877
crossref_primary_10_3390_math12132025
crossref_primary_10_1109_TCSII_2022_3169004
crossref_primary_10_1109_JBHI_2024_3441332
crossref_primary_10_3389_fnins_2022_991851
crossref_primary_10_1007_s00202_024_02330_x
crossref_primary_10_21684_2411_7978_2021_7_2_223_235
crossref_primary_10_1109_TBCAS_2022_3209073
crossref_primary_10_1109_ACCESS_2024_3444596
crossref_primary_10_1016_j_swevo_2025_101867
crossref_primary_10_1007_s10115_024_02092_9
crossref_primary_10_1007_s11071_023_08655_9
crossref_primary_10_1103_PhysRevApplied_19_064010
crossref_primary_10_3390_biomimetics9030136
crossref_primary_10_1109_TCASAI_2024_3491673
crossref_primary_10_1007_s12065_024_00983_y
crossref_primary_10_1007_s13534_024_00436_6
crossref_primary_10_3390_math12081230
crossref_primary_10_1007_s11227_023_05776_1
crossref_primary_10_3389_fnins_2023_994517
crossref_primary_10_1016_j_neunet_2020_11_005
crossref_primary_10_1016_j_jpdc_2022_04_004
crossref_primary_10_1016_j_pmcj_2024_101876
crossref_primary_10_1038_s42005_024_01869_2
crossref_primary_10_2196_46407
crossref_primary_10_1109_TETC_2023_3281063
crossref_primary_10_1016_j_neucom_2023_02_026
crossref_primary_10_1007_s41060_023_00463_z
crossref_primary_10_1007_s40997_023_00596_3
crossref_primary_10_3389_fnins_2023_1196796
crossref_primary_10_3389_fnins_2022_850945
crossref_primary_10_37188_lam_2022_013
crossref_primary_10_1063_5_0243083
crossref_primary_10_3390_app12083841
crossref_primary_10_1038_s41598_023_34517_w
crossref_primary_10_1016_j_asoc_2021_107082
crossref_primary_10_1016_j_bspc_2024_107192
crossref_primary_10_3389_fnins_2023_1167134
crossref_primary_10_3389_fpsyg_2022_939336
crossref_primary_10_1016_j_chaos_2021_110714
crossref_primary_10_3389_fnins_2024_1291053
crossref_primary_10_1007_s10994_022_06129_4
crossref_primary_10_1155_2022_2718787
crossref_primary_10_1016_j_knosys_2022_108632
crossref_primary_10_1109_TCDS_2021_3140115
crossref_primary_10_1007_s10489_020_02058_8
crossref_primary_10_1109_TBCAS_2023_3327496
crossref_primary_10_1007_s10846_023_01963_7
crossref_primary_10_1038_s41377_024_01453_x
crossref_primary_10_1016_j_softx_2024_102006
crossref_primary_10_1002_aisy_202100151
crossref_primary_10_1109_JSSC_2024_3426319
crossref_primary_10_1109_ACCESS_2024_3507002
crossref_primary_10_1111_coin_12472
crossref_primary_10_3390_s22030720
crossref_primary_10_1016_j_isci_2023_108241
crossref_primary_10_3390_cryst13040615
crossref_primary_10_1145_3635165
crossref_primary_10_1162_neco_a_01740
crossref_primary_10_1109_ACCESS_2020_2981346
crossref_primary_10_1109_TSMC_2023_3300318
crossref_primary_10_3390_math10111844
crossref_primary_10_1007_s12293_022_00373_w
crossref_primary_10_1109_IOTM_001_2300229
crossref_primary_10_3389_fnins_2021_756876
crossref_primary_10_1016_j_techfore_2023_122640
crossref_primary_10_1017_ice_2021_236
crossref_primary_10_1002_aisy_202400282
crossref_primary_10_1016_j_inffus_2023_101943
crossref_primary_10_3389_fncom_2024_1363514
crossref_primary_10_1360_SST_2022_0470
crossref_primary_10_1016_j_asoc_2020_106475
Cites_doi 10.1016/j.neucom.2017.06.084
10.1007/BF02478259
10.14778/3137765.3137770
10.1145/3054925
10.1038/nn1643
10.1126/science.1127647
10.1037/h0042519
10.1007/s12530-016-9168-2
10.1109/TNNLS.2015.2501322
10.1109/JPROC.2014.2304638
10.1016/j.ins.2018.04.014
10.1016/j.neucom.2015.07.086
10.3389/neuro.11.011.2009
10.1016/S0893-6080(01)00083-1
10.1146/annurev.neuro.24.1.139
10.1113/jphysiol.1952.sp004764
10.3389/fnbot.2018.00035
10.1162/0899766054796888
10.1007/s10618-015-0448-4
10.1145/2523813
10.1007/s12530-013-9074-9
10.3389/fninf.2015.00019
10.1142/S012906571000253X
10.1145/2934664
10.1016/j.swevo.2019.04.008
10.14445/22312803/IJCTT-V19P103
10.1016/S0925-2312(01)00658-0
10.1016/j.asoc.2017.10.004
10.1152/jn.1993.70.4.1629
10.1098/rspb.2016.2134
10.3389/neuro.11.005.2008
10.1016/j.neunet.2018.07.014
10.1371/journal.pone.0040233
10.1016/j.neunet.2014.01.006
10.1016/j.inffus.2017.02.004
10.2200/S00737ED1V01Y201610AIM033
10.55782/ane-2011-1862
10.1016/j.inffus.2018.10.005
10.1109/TKDE.2018.2876857
10.1016/j.neucom.2017.01.078
10.3389/fnins.2018.00291
10.1162/neco.1997.9.8.1735
10.1016/S0893-6080(97)00011-7
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
DOI 10.1016/j.neunet.2019.09.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 100
ExternalDocumentID oai_HAL_hal_02460417v1
31536902
10_1016_j_neunet_2019_09_004
S0893608019302655
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
EFKBS
1XC
VOOES
ID FETCH-LOGICAL-c442t-a05fa330b8749030cdca5878942cf5f5a429a7f9e1219be734dc0c6ac43d9e7b3
IEDL.DBID AIKHN
ISSN 0893-6080
1879-2782
IngestDate Thu Sep 04 07:30:28 EDT 2025
Thu Sep 04 22:20:08 EDT 2025
Wed Feb 19 02:31:25 EST 2025
Thu Apr 24 23:07:37 EDT 2025
Tue Jul 01 01:24:34 EDT 2025
Fri Feb 23 02:49:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stream data
Spiking Neural Networks
Concept drift
Online learning
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-a05fa330b8749030cdca5878942cf5f5a429a7f9e1219be734dc0c6ac43d9e7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1260-9775
0000-0002-8339-7773
OpenAccessLink https://telecom-paris.hal.science/hal-02460417
PMID 31536902
PQID 2295471992
PQPubID 23479
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_02460417v1
proquest_miscellaneous_2295471992
pubmed_primary_31536902
crossref_citationtrail_10_1016_j_neunet_2019_09_004
crossref_primary_10_1016_j_neunet_2019_09_004
elsevier_sciencedirect_doi_10_1016_j_neunet_2019_09_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
2020-Jan
20200101
2020-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gerstner, Kistler (b22) 2002
Carnevale, Hines (b10) 2006
Manyika, Chui, Bisson, Woetzel, Dobbs, Bughin (b44) 2015
Wang, Belatreche, Maguire, McGinnity (b71) 2017; 28
Wang, Minku, Yao (b72) 2018
Lobo, Del Ser, Laña, Bilbao, Kasabov (b39) 2018
Dora, Subramanian, Suresh, Sundararajan (b16) 2016; 171
Vogelstein, Mallik, Culurciello, Cauwenberghs, Etienne-Cummings (b68) 2005
Lu, Liu, Dong, Gu, Gama, Zhang (b42) 2018
Diez-Olivan, Del Ser, Galar, Sierra (b15) 2019; 50
Soltic, Kasabov (b62) 2010; 20
Kasabov (b32) 2018
Lobo, Del Ser, Bilbao, Perfecto, Salcedo-Sanz (b38) 2018; 68
Hodgkin, Huxley (b28) 1952; 117
De Francisci Morales, Bifet, Khan, Gama, Fan (b12) 2016
Lobo, Laña, Del Ser, Bilbao, Kasabov (b40) 2018; 108
Bing, Meschede, Röhrbein, Huang, Knoll (b7) 2018; 12
Bifet, Gavaldà, Holmes, Pfahringer (b6) 2018
Losing, Hammer, Wersing (b41) 2018; 275
Ponulak (b55) 2005
Žliobaitė, Pechenizkiy, Gama (b77) 2016
Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho (b13) 2019; 48
vol. 11 (pp. 301–305).
Bohte, Kok, La Poutre (b8) 2002; 48
Ponulak, Kasinski (b56) 2011; 71
Barros, Santos (b3) 2018; 451
.
Gama, Žliobaitė, Bifet, Pechenizkiy, Bouchachia (b21) 2014; 46
Benczúr, Kocsis, Pálovics (b4) 2018
Gütig, Sompolinsky (b25) 2006; 9
Middleton, Tsai, Yamaji, Gupta, Rueb (b47) 2017
Wang, Belatreche, Maguire, McGinnity (b69) 2010
DeWolf, Stewart, Slotine, Eliasmith (b14) 2016; 283
Kasabov (b33) 2019
Florian (b17) 2012; 7
Kasabov (b31) 2014; 52
Rosenblatt (b58) 1958; 65
Foundation (b18) 2012
van Albada, Rowley, Senk, Hopkins, Schmidt, Stokes (b65) 2018; 12
McKennoch, Liu, Bushnell (b46) 2006
Schrauwen, B., & Van Campenhout, J. (2004). Improving Spikeprop: Enhancements to an error-backpropagation rule for spiking neural networks. In
Webb, Hyde, Cao, Nguyen, Petitjean (b73) 2016; 30
McCulloch, Pitts (b45) 1943; 5
Wang, Belatreche, Maguire, McGinnity (b70) 2015
Tavanaei, Ghodrati, Kheradpisheh, Masquelier, Maida (b63) 2018
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b53) 2011; 12
Wu, Chua, Zhang, Yang, Li, Li (b75) 2019
Villani, Bonnet, Rondepierre (b66) 2018
Morales, Bifet (b50) 2015; 16
Hochreiter, Schmidhuber (b27) 1997; 9
Legenstein, Naeger, Maass (b37) 2005; 17
Schliebs, Kasabov (b60) 2013; 4
Iqbal, Soomro (b29) 2015; 19
Werbos (b74) 1982
Bair, W. (1994). Reliable temporal modulation in cortical spike trains in the awake monkey. In
Montiel, Read, Bifet, Abdessalem (b49) 2018; 19
Vitay, Dinkelbach, Hamker (b67) 2015; 9
Goodman, Brette (b24) 2008; 2
Zaharia, Xin, Wendell, Das, Armbrust, Dave (b76) 2016; 59
Furber, Galluppi, Temple, Plana (b20) 2014; 102
Maass (b43) 1997; 10
Thorpe, Delorme, Van Rullen (b64) 2001; 14
Pecevski, Natschläger, Schuch (b52) 2009; 3
Ramírez-Gallego, Krawczyk, García, Woźniak, Herrera (b57) 2017; 239
Hinton, Salakhutdinov (b26) 2006; 313
Khamassi, Sayed-Mouchaweh, Hammami, Ghédira (b35) 2018; 9
Rumelhart, Hinton, Williams (b59) 1988; 5
Bi, Poo (b5) 2001; 24
Abeles, Bergman, Margalit, Vaadia (b1) 1993; 70
Izhikevich (b30) 2007
Kasiński, Ponulak (b34) 2006; 16
Gomes, Barddal, Enembreck, Bifet (b23) 2017; 50
Foundation (b19) 2017
Krawczyk, Minku, Gama, Stefanowski, Woźniak (b36) 2017; 37
Carbone, Katsifodimos, Ewen, Markl, Haridi, Tzoumas (b9) 2015; 36
Petro, Kasabov, Kiss (b54) 2019
Chen, Liu (b11) 2016; 10
Noghabi, Paramasivam, Pan, Ramesh, Bringhurst, Gupta (b51) 2017; 10
Minku (b48) 2011
Hochreiter (10.1016/j.neunet.2019.09.004_b27) 1997; 9
Losing (10.1016/j.neunet.2019.09.004_b41) 2018; 275
Wang (10.1016/j.neunet.2019.09.004_b72) 2018
10.1016/j.neunet.2019.09.004_b61
van Albada (10.1016/j.neunet.2019.09.004_b65) 2018; 12
Maass (10.1016/j.neunet.2019.09.004_b43) 1997; 10
Kasabov (10.1016/j.neunet.2019.09.004_b31) 2014; 52
Foundation (10.1016/j.neunet.2019.09.004_b18) 2012
Montiel (10.1016/j.neunet.2019.09.004_b49) 2018; 19
Ponulak (10.1016/j.neunet.2019.09.004_b55) 2005
Zaharia (10.1016/j.neunet.2019.09.004_b76) 2016; 59
Goodman (10.1016/j.neunet.2019.09.004_b24) 2008; 2
Diez-Olivan (10.1016/j.neunet.2019.09.004_b15) 2019; 50
Khamassi (10.1016/j.neunet.2019.09.004_b35) 2018; 9
Lobo (10.1016/j.neunet.2019.09.004_b40) 2018; 108
Vitay (10.1016/j.neunet.2019.09.004_b67) 2015; 9
Wang (10.1016/j.neunet.2019.09.004_b69) 2010
Hinton (10.1016/j.neunet.2019.09.004_b26) 2006; 313
Tavanaei (10.1016/j.neunet.2019.09.004_b63) 2018
Žliobaitė (10.1016/j.neunet.2019.09.004_b77) 2016
Benczúr (10.1016/j.neunet.2019.09.004_b4) 2018
Pecevski (10.1016/j.neunet.2019.09.004_b52) 2009; 3
Noghabi (10.1016/j.neunet.2019.09.004_b51) 2017; 10
Soltic (10.1016/j.neunet.2019.09.004_b62) 2010; 20
Petro (10.1016/j.neunet.2019.09.004_b54) 2019
McCulloch (10.1016/j.neunet.2019.09.004_b45) 1943; 5
Lobo (10.1016/j.neunet.2019.09.004_b39) 2018
Izhikevich (10.1016/j.neunet.2019.09.004_b30) 2007
Wu (10.1016/j.neunet.2019.09.004_b75) 2019
Abeles (10.1016/j.neunet.2019.09.004_b1) 1993; 70
Florian (10.1016/j.neunet.2019.09.004_b17) 2012; 7
10.1016/j.neunet.2019.09.004_b2
Lu (10.1016/j.neunet.2019.09.004_b42) 2018
Kasabov (10.1016/j.neunet.2019.09.004_b32) 2018
Bohte (10.1016/j.neunet.2019.09.004_b8) 2002; 48
Gomes (10.1016/j.neunet.2019.09.004_b23) 2017; 50
Ramírez-Gallego (10.1016/j.neunet.2019.09.004_b57) 2017; 239
Dora (10.1016/j.neunet.2019.09.004_b16) 2016; 171
Bing (10.1016/j.neunet.2019.09.004_b7) 2018; 12
Bifet (10.1016/j.neunet.2019.09.004_b6) 2018
DeWolf (10.1016/j.neunet.2019.09.004_b14) 2016; 283
De Francisci Morales (10.1016/j.neunet.2019.09.004_b12) 2016
Lobo (10.1016/j.neunet.2019.09.004_b38) 2018; 68
Gama (10.1016/j.neunet.2019.09.004_b21) 2014; 46
Rosenblatt (10.1016/j.neunet.2019.09.004_b58) 1958; 65
Furber (10.1016/j.neunet.2019.09.004_b20) 2014; 102
Ponulak (10.1016/j.neunet.2019.09.004_b56) 2011; 71
Del Ser (10.1016/j.neunet.2019.09.004_b13) 2019; 48
Wang (10.1016/j.neunet.2019.09.004_b70) 2015
Vogelstein (10.1016/j.neunet.2019.09.004_b68) 2005
Thorpe (10.1016/j.neunet.2019.09.004_b64) 2001; 14
Iqbal (10.1016/j.neunet.2019.09.004_b29) 2015; 19
Carnevale (10.1016/j.neunet.2019.09.004_b10) 2006
Gütig (10.1016/j.neunet.2019.09.004_b25) 2006; 9
Bi (10.1016/j.neunet.2019.09.004_b5) 2001; 24
Hodgkin (10.1016/j.neunet.2019.09.004_b28) 1952; 117
Minku (10.1016/j.neunet.2019.09.004_b48) 2011
Chen (10.1016/j.neunet.2019.09.004_b11) 2016; 10
Carbone (10.1016/j.neunet.2019.09.004_b9) 2015; 36
Barros (10.1016/j.neunet.2019.09.004_b3) 2018; 451
Legenstein (10.1016/j.neunet.2019.09.004_b37) 2005; 17
Villani (10.1016/j.neunet.2019.09.004_b66) 2018
Werbos (10.1016/j.neunet.2019.09.004_b74) 1982
McKennoch (10.1016/j.neunet.2019.09.004_b46) 2006
Rumelhart (10.1016/j.neunet.2019.09.004_b59) 1988; 5
Wang (10.1016/j.neunet.2019.09.004_b71) 2017; 28
Krawczyk (10.1016/j.neunet.2019.09.004_b36) 2017; 37
Kasiński (10.1016/j.neunet.2019.09.004_b34) 2006; 16
Morales (10.1016/j.neunet.2019.09.004_b50) 2015; 16
Webb (10.1016/j.neunet.2019.09.004_b73) 2016; 30
Kasabov (10.1016/j.neunet.2019.09.004_b33) 2019
Pedregosa (10.1016/j.neunet.2019.09.004_b53) 2011; 12
Foundation (10.1016/j.neunet.2019.09.004_b19) 2017
Middleton (10.1016/j.neunet.2019.09.004_b47) 2017
Manyika (10.1016/j.neunet.2019.09.004_b44) 2015
Gerstner (10.1016/j.neunet.2019.09.004_b22) 2002
Schliebs (10.1016/j.neunet.2019.09.004_b60) 2013; 4
References_xml – volume: 14
  start-page: 715
  year: 2001
  end-page: 725
  ident: b64
  article-title: Spike-based strategies for rapid processing
  publication-title: Neural Networks
– volume: 12
  start-page: 35
  year: 2018
  ident: b7
  article-title: A survey of robotics control based on learning-inspired spiking neural networks
  publication-title: Frontiers in Neurorobotics
– volume: 9
  start-page: 420
  year: 2006
  ident: b25
  article-title: The tempotron: A neuron that learns spike timing–based decisions
  publication-title: Nature Neuroscience
– start-page: 619
  year: 2019
  end-page: 658
  ident: b33
  article-title: Deep learning of multisensory streaming data for predictive modelling with applications in finance, ecology, transport and environment
  publication-title: Time-space, spiking neural networks and brain-inspired artificial intelligence
– year: 2002
  ident: b22
  article-title: Spiking neuron models: Single neurons, populations, plasticity
– year: 2019
  ident: b54
  article-title: Selection and optimization of temporal spike encoding methods for spiking neural networks
  publication-title: IEEE transactions on neural networks and learning systems
– volume: 102
  start-page: 652
  year: 2014
  end-page: 665
  ident: b20
  article-title: The spinnaker project
  publication-title: Proceedings of the IEEE
– year: 2006
  ident: b10
  article-title: The NEURON book
– volume: 50
  start-page: 92
  year: 2019
  end-page: 111
  ident: b15
  article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards industry 4.0
  publication-title: Information Fusion
– year: 2018
  ident: b4
  article-title: Online machine learning in big data streams
  publication-title: CoRR
– volume: 24
  start-page: 139
  year: 2001
  end-page: 166
  ident: b5
  article-title: Synaptic modification by correlated activity: Hebb’s postulate revisited
  publication-title: Annual Review of Neuroscience
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b26
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: science
– year: 2005
  ident: b55
  article-title: Resume-new supervised learning method for spiking neural networks, (vol. 42)
– year: 2018
  ident: b6
  article-title: Machine learning for data streams with practical examples in MOA
– reference: Bair, W. (1994). Reliable temporal modulation in cortical spike trains in the awake monkey. In
– year: 2016
  ident: b12
  article-title: Iot big data stream mining
  publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining
– start-page: 762
  year: 1982
  end-page: 770
  ident: b74
  article-title: Applications of advances in nonlinear sensitivity analysis
  publication-title: System modeling and optimization
– volume: 7
  year: 2012
  ident: b17
  article-title: The chronotron: A neuron that learns to fire temporally precise spike patterns
  publication-title: PLoS One
– year: 2018
  ident: b63
  article-title: Deep learning in spiking neural networks
  publication-title: Neural Networks
– start-page: 1457
  year: 2005
  end-page: 1464
  ident: b68
  article-title: Saliency-driven image acuity modulation on a reconfigurable array of spiking silicon neurons
  publication-title: Advances in neural information processing systems
– volume: 171
  start-page: 1216
  year: 2016
  end-page: 1229
  ident: b16
  article-title: Development of a self-regulating evolving spiking neural network for classification problem
  publication-title: Neurocomputing
– volume: 46
  start-page: 44
  year: 2014
  ident: b21
  article-title: A survey on concept drift adaptation
  publication-title: ACM computing surveys (CSUR)
– volume: 4
  start-page: 87
  year: 2013
  end-page: 98
  ident: b60
  article-title: Evolving spiking neural network – a survey
  publication-title: Evolving Systems
– volume: 30
  start-page: 964
  year: 2016
  end-page: 994
  ident: b73
  article-title: Characterizing concept drift
  publication-title: Data Mining and Knowledge Discovery
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b53
  article-title: Scikit-learn: Machine learning in python
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 17
  start-page: 2337
  year: 2005
  end-page: 2382
  ident: b37
  article-title: What can a neuron learn with spike-timing-dependent plasticity?
  publication-title: Neural Computation
– year: 2018
  ident: b66
  article-title: For a meaningful artificial intelligence: Towards a French and European strategy
– volume: 16
  start-page: 101
  year: 2006
  end-page: 113
  ident: b34
  article-title: Comparison of supervised learning methods for spike time coding in spiking neural networks
  publication-title: International Journal of Applied Mathematics and Computer Science
– start-page: 3970
  year: 2006
  end-page: 3977
  ident: b46
  article-title: Fast modifications of the spikeprop algorithm
  publication-title: The 2006 IEEE international joint conference on neural network proceedings
– volume: 451
  start-page: 348
  year: 2018
  end-page: 370
  ident: b3
  article-title: A large-scale comparison of concept drift detectors
  publication-title: Information Sciences
– volume: 71
  start-page: 409
  year: 2011
  end-page: 433
  ident: b56
  article-title: Introduction to spiking neural networks: Information processing, learning and applications
  publication-title: Acta Neurobiologiae Experimentalis
– volume: 19
  start-page: 9
  year: 2015
  end-page: 14
  ident: b29
  article-title: Big data analysis: Apache storm perspective
  publication-title: International Journal of Computer Trends and Technology
– start-page: 259
  year: 2015
  end-page: 267
  ident: b70
  article-title: Spikecomp: An evolving spiking neural network with adaptive compact structure for pattern classification
  publication-title: International conference on neural information processing
– year: 2011
  ident: b48
  article-title: Online ensemble learning in the presence of concept drift
– start-page: 1
  year: 2010
  end-page: 6
  ident: b69
  article-title: Online versus offline learning for spiking neural networks: A review and new strategies
  publication-title: 2010 IEEE 9th International conference on cyberntic intelligent systems
– volume: 117
  start-page: 500
  year: 1952
  end-page: 544
  ident: b28
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: The Journal of Physiology
– volume: 68
  start-page: 693
  year: 2018
  end-page: 709
  ident: b38
  article-title: Dred: an evolutionary diversity generation method for concept drift adaptation in online learning environments
  publication-title: Applied Soft Computing
– volume: 50
  start-page: 23
  year: 2017
  ident: b23
  article-title: A survey on ensemble learning for data stream classification
  publication-title: ACM Computing Surveys
– volume: 10
  start-page: 1659
  year: 1997
  end-page: 1671
  ident: b43
  article-title: Networks of spiking neurons: The third generation of neural network models
  publication-title: Neural Networks
– volume: 108
  start-page: 1
  year: 2018
  end-page: 19
  ident: b40
  article-title: Evolving spiking neural networks for online learning over drifting data streams
  publication-title: Neural Networks
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: b45
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: The Bulletin of Mathematical Biophysics
– volume: 10
  start-page: 1
  year: 2016
  end-page: 145
  ident: b11
  article-title: Lifelong machine learning
  publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning
– volume: 275
  start-page: 1261
  year: 2018
  end-page: 1274
  ident: b41
  article-title: Incremental on-line learning: A review and comparison of state of the art algorithms
  publication-title: Neurocomputing
– volume: 239
  start-page: 39
  year: 2017
  end-page: 57
  ident: b57
  article-title: A survey on data preprocessing for data stream mining: Current status and future directions
  publication-title: Neurocomputing
– reference: Schrauwen, B., & Van Campenhout, J. (2004). Improving Spikeprop: Enhancements to an error-backpropagation rule for spiking neural networks. In
– volume: 2
  start-page: 5
  year: 2008
  ident: b24
  article-title: Brian: A simulator for spiking neural networks in python
  publication-title: Frontiers in Neuroinformatics
– volume: 20
  start-page: 437
  year: 2010
  end-page: 445
  ident: b62
  article-title: Knowledge extraction from evolving spiking neural networks with rank order population coding
  publication-title: International Journal of Neural Systems
– year: 2018
  ident: b42
  article-title: Learning under concept drift: A review
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 10
  start-page: 1634
  year: 2017
  end-page: 1645
  ident: b51
  article-title: Samza: Stateful scalable stream processing at linkedin
  publication-title: Proceedings of the VLDB Endowment
– volume: 12
  start-page: 291
  year: 2018
  ident: b65
  article-title: Performance comparison of the digital neuromorphic hardware spinnaker and the neural network simulation software NEST for a full-scale cortical microcircuit model
  publication-title: Frontiers in Neuroscience
– volume: 48
  start-page: 17
  year: 2002
  end-page: 37
  ident: b8
  article-title: Error-backpropagation in temporally encoded networks of spiking neurons
  publication-title: Neurocomputing
– year: 2017
  ident: b19
  article-title: Apache beam
– volume: 5
  start-page: 1
  year: 1988
  ident: b59
  article-title: Learning representations by back-propagating errors
  publication-title: Cognitive Modeling
– volume: 37
  start-page: 132
  year: 2017
  end-page: 156
  ident: b36
  article-title: Ensemble learning for data stream analysis: A survey
  publication-title: Information Fusion
– volume: 9
  start-page: 19
  year: 2015
  ident: b67
  article-title: Annarchy: A code generation approach to neural simulations on parallel hardware
  publication-title: Frontiers in Neuroinformatics
– volume: 52
  start-page: 62
  year: 2014
  end-page: 76
  ident: b31
  article-title: Neucube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Networks
– year: 2017
  ident: b47
  article-title: Forecast: Internet of things — Endpoints and associated services, worldwide
– start-page: 1
  year: 2018
  end-page: 20
  ident: b72
  article-title: A systematic study of online class imbalance learning with concept drift
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 36
  year: 2015
  ident: b9
  article-title: Apache flink: Stream and batch processing in a single engine
  publication-title: Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
– volume: 28
  start-page: 30
  year: 2017
  end-page: 43
  ident: b71
  article-title: Spiketemp: An enhanced rank-order-based learning approach for spiking neural networks with adaptive structure
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: .
– volume: 48
  start-page: 220
  year: 2019
  end-page: 250
  ident: b13
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm and Evolutionary Computation
– year: 2019
  ident: b75
  article-title: Deep spiking neural network with spike count based learning rule
– volume: 19
  start-page: 1
  year: 2018
  end-page: 5
  ident: b49
  article-title: Scikit-multiflow: A multi-output streaming framework
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 70
  start-page: 1629
  year: 1993
  end-page: 1638
  ident: b1
  article-title: Spatiotemporal firing patterns in the frontal cortex of behaving monkeys
  publication-title: Journal of Neurophysiology
– reference: . vol. 11 (pp. 301–305).
– volume: 283
  start-page: 20162134
  year: 2016
  ident: b14
  article-title: A spiking neural model of adaptive arm control
  publication-title: Proceedings of the Royal Society B
– volume: 59
  start-page: 56
  year: 2016
  end-page: 65
  ident: b76
  article-title: Apache spark: A unified engine for big data processing
  publication-title: Communications of the ACM
– volume: 9
  start-page: 1
  year: 2018
  end-page: 23
  ident: b35
  article-title: Discussion and review on evolving data streams and concept drift adapting
  publication-title: Evolving Systems
– start-page: 82
  year: 2018
  end-page: 94
  ident: b39
  article-title: Drift detection over non-stationary data streams using evolving spiking neural networks
  publication-title: International symposium on intelligent and distributed computing
– year: 2015
  ident: b44
  article-title: Unlocking the potential of the internet of things
– year: 2012
  ident: b18
  article-title: Apache spark streaming
– volume: 16
  start-page: 149
  year: 2015
  end-page: 153
  ident: b50
  article-title: SAMOA: Scalable advanced massive online analysis
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 3
  start-page: 11
  year: 2009
  ident: b52
  article-title: PCSIM: A parallel simulation environment for neural circuits fully integrated with python
  publication-title: Frontiers in Neuroinformatics
– year: 2007
  ident: b30
  article-title: Dynamical systems in neuroscience
– year: 2018
  ident: b32
  article-title: Time-space, spiking neural networks and brain-inspired artificial intelligence
– start-page: 91
  year: 2016
  end-page: 114
  ident: b77
  article-title: An overview of concept drift applications
  publication-title: Big data analysis: New algorithms for a new society
– volume: 65
  start-page: 386
  year: 1958
  ident: b58
  article-title: The perceptron: A probabilistic model for information storage and organization in the brain
  publication-title: Psychological Review
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b27
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 275
  start-page: 1261
  year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b41
  article-title: Incremental on-line learning: A review and comparison of state of the art algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.084
– year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b4
  article-title: Online machine learning in big data streams
  publication-title: CoRR
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 10.1016/j.neunet.2019.09.004_b45
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: The Bulletin of Mathematical Biophysics
  doi: 10.1007/BF02478259
– year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b63
  article-title: Deep learning in spiking neural networks
  publication-title: Neural Networks
– year: 2002
  ident: 10.1016/j.neunet.2019.09.004_b22
– year: 2017
  ident: 10.1016/j.neunet.2019.09.004_b47
– year: 2012
  ident: 10.1016/j.neunet.2019.09.004_b18
– volume: 10
  start-page: 1634
  issue: 12
  year: 2017
  ident: 10.1016/j.neunet.2019.09.004_b51
  article-title: Samza: Stateful scalable stream processing at linkedin
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3137765.3137770
– volume: 50
  start-page: 23
  issue: 2
  year: 2017
  ident: 10.1016/j.neunet.2019.09.004_b23
  article-title: A survey on ensemble learning for data stream classification
  publication-title: ACM Computing Surveys
  doi: 10.1145/3054925
– year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b32
– volume: 9
  start-page: 420
  issue: 3
  year: 2006
  ident: 10.1016/j.neunet.2019.09.004_b25
  article-title: The tempotron: A neuron that learns spike timing–based decisions
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1643
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.neunet.2019.09.004_b26
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: science
  doi: 10.1126/science.1127647
– volume: 5
  start-page: 1
  issue: 3
  year: 1988
  ident: 10.1016/j.neunet.2019.09.004_b59
  article-title: Learning representations by back-propagating errors
  publication-title: Cognitive Modeling
– year: 2011
  ident: 10.1016/j.neunet.2019.09.004_b48
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 10.1016/j.neunet.2019.09.004_b58
  article-title: The perceptron: A probabilistic model for information storage and organization in the brain
  publication-title: Psychological Review
  doi: 10.1037/h0042519
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b35
  article-title: Discussion and review on evolving data streams and concept drift adapting
  publication-title: Evolving Systems
  doi: 10.1007/s12530-016-9168-2
– start-page: 762
  year: 1982
  ident: 10.1016/j.neunet.2019.09.004_b74
  article-title: Applications of advances in nonlinear sensitivity analysis
– volume: 28
  start-page: 30
  issue: 1
  year: 2017
  ident: 10.1016/j.neunet.2019.09.004_b71
  article-title: Spiketemp: An enhanced rank-order-based learning approach for spiking neural networks with adaptive structure
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2501322
– volume: 102
  start-page: 652
  issue: 5
  year: 2014
  ident: 10.1016/j.neunet.2019.09.004_b20
  article-title: The spinnaker project
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2014.2304638
– volume: 451
  start-page: 348
  year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b3
  article-title: A large-scale comparison of concept drift detectors
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.04.014
– volume: 171
  start-page: 1216
  year: 2016
  ident: 10.1016/j.neunet.2019.09.004_b16
  article-title: Development of a self-regulating evolving spiking neural network for classification problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.086
– year: 2005
  ident: 10.1016/j.neunet.2019.09.004_b55
– start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b72
  article-title: A systematic study of online class imbalance learning with concept drift
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 3
  start-page: 11
  year: 2009
  ident: 10.1016/j.neunet.2019.09.004_b52
  article-title: PCSIM: A parallel simulation environment for neural circuits fully integrated with python
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/neuro.11.011.2009
– volume: 19
  start-page: 1
  issue: 72
  year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b49
  article-title: Scikit-multiflow: A multi-output streaming framework
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 14
  start-page: 715
  issue: 6–7
  year: 2001
  ident: 10.1016/j.neunet.2019.09.004_b64
  article-title: Spike-based strategies for rapid processing
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(01)00083-1
– year: 2016
  ident: 10.1016/j.neunet.2019.09.004_b12
  article-title: Iot big data stream mining
– volume: 24
  start-page: 139
  issue: 1
  year: 2001
  ident: 10.1016/j.neunet.2019.09.004_b5
  article-title: Synaptic modification by correlated activity: Hebb’s postulate revisited
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.24.1.139
– volume: 117
  start-page: 500
  issue: 4
  year: 1952
  ident: 10.1016/j.neunet.2019.09.004_b28
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1952.sp004764
– year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b6
– volume: 12
  start-page: 35
  year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b7
  article-title: A survey of robotics control based on learning-inspired spiking neural networks
  publication-title: Frontiers in Neurorobotics
  doi: 10.3389/fnbot.2018.00035
– volume: 36
  issue: 4
  year: 2015
  ident: 10.1016/j.neunet.2019.09.004_b9
  article-title: Apache flink: Stream and batch processing in a single engine
  publication-title: Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
– start-page: 1
  year: 2010
  ident: 10.1016/j.neunet.2019.09.004_b69
  article-title: Online versus offline learning for spiking neural networks: A review and new strategies
– year: 2007
  ident: 10.1016/j.neunet.2019.09.004_b30
– volume: 17
  start-page: 2337
  issue: 11
  year: 2005
  ident: 10.1016/j.neunet.2019.09.004_b37
  article-title: What can a neuron learn with spike-timing-dependent plasticity?
  publication-title: Neural Computation
  doi: 10.1162/0899766054796888
– volume: 30
  start-page: 964
  issue: 4
  year: 2016
  ident: 10.1016/j.neunet.2019.09.004_b73
  article-title: Characterizing concept drift
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-015-0448-4
– start-page: 82
  year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b39
  article-title: Drift detection over non-stationary data streams using evolving spiking neural networks
– start-page: 619
  year: 2019
  ident: 10.1016/j.neunet.2019.09.004_b33
  article-title: Deep learning of multisensory streaming data for predictive modelling with applications in finance, ecology, transport and environment
– year: 2019
  ident: 10.1016/j.neunet.2019.09.004_b54
  article-title: Selection and optimization of temporal spike encoding methods for spiking neural networks
  publication-title: IEEE transactions on neural networks and learning systems
– volume: 46
  start-page: 44
  issue: 4
  year: 2014
  ident: 10.1016/j.neunet.2019.09.004_b21
  article-title: A survey on concept drift adaptation
  publication-title: ACM computing surveys (CSUR)
  doi: 10.1145/2523813
– volume: 4
  start-page: 87
  issue: 2
  year: 2013
  ident: 10.1016/j.neunet.2019.09.004_b60
  article-title: Evolving spiking neural network – a survey
  publication-title: Evolving Systems
  doi: 10.1007/s12530-013-9074-9
– ident: 10.1016/j.neunet.2019.09.004_b61
– volume: 9
  start-page: 19
  year: 2015
  ident: 10.1016/j.neunet.2019.09.004_b67
  article-title: Annarchy: A code generation approach to neural simulations on parallel hardware
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2015.00019
– start-page: 259
  year: 2015
  ident: 10.1016/j.neunet.2019.09.004_b70
  article-title: Spikecomp: An evolving spiking neural network with adaptive compact structure for pattern classification
– volume: 20
  start-page: 437
  issue: 6
  year: 2010
  ident: 10.1016/j.neunet.2019.09.004_b62
  article-title: Knowledge extraction from evolving spiking neural networks with rank order population coding
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S012906571000253X
– volume: 59
  start-page: 56
  issue: 11
  year: 2016
  ident: 10.1016/j.neunet.2019.09.004_b76
  article-title: Apache spark: A unified engine for big data processing
  publication-title: Communications of the ACM
  doi: 10.1145/2934664
– volume: 48
  start-page: 220
  year: 2019
  ident: 10.1016/j.neunet.2019.09.004_b13
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.04.008
– volume: 19
  start-page: 9
  issue: 1
  year: 2015
  ident: 10.1016/j.neunet.2019.09.004_b29
  article-title: Big data analysis: Apache storm perspective
  publication-title: International Journal of Computer Trends and Technology
  doi: 10.14445/22312803/IJCTT-V19P103
– volume: 48
  start-page: 17
  issue: 1–4
  year: 2002
  ident: 10.1016/j.neunet.2019.09.004_b8
  article-title: Error-backpropagation in temporally encoded networks of spiking neurons
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00658-0
– year: 2017
  ident: 10.1016/j.neunet.2019.09.004_b19
– volume: 68
  start-page: 693
  year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b38
  article-title: Dred: an evolutionary diversity generation method for concept drift adaptation in online learning environments
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.10.004
– volume: 70
  start-page: 1629
  issue: 4
  year: 1993
  ident: 10.1016/j.neunet.2019.09.004_b1
  article-title: Spatiotemporal firing patterns in the frontal cortex of behaving monkeys
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1993.70.4.1629
– year: 2019
  ident: 10.1016/j.neunet.2019.09.004_b75
– volume: 283
  start-page: 20162134
  issue: 1843
  year: 2016
  ident: 10.1016/j.neunet.2019.09.004_b14
  article-title: A spiking neural model of adaptive arm control
  publication-title: Proceedings of the Royal Society B
  doi: 10.1098/rspb.2016.2134
– volume: 2
  start-page: 5
  year: 2008
  ident: 10.1016/j.neunet.2019.09.004_b24
  article-title: Brian: A simulator for spiking neural networks in python
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/neuro.11.005.2008
– volume: 108
  start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b40
  article-title: Evolving spiking neural networks for online learning over drifting data streams
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.07.014
– volume: 7
  issue: 8
  year: 2012
  ident: 10.1016/j.neunet.2019.09.004_b17
  article-title: The chronotron: A neuron that learns to fire temporally precise spike patterns
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0040233
– volume: 52
  start-page: 62
  year: 2014
  ident: 10.1016/j.neunet.2019.09.004_b31
  article-title: Neucube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.01.006
– year: 2015
  ident: 10.1016/j.neunet.2019.09.004_b44
– volume: 37
  start-page: 132
  year: 2017
  ident: 10.1016/j.neunet.2019.09.004_b36
  article-title: Ensemble learning for data stream analysis: A survey
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.02.004
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.neunet.2019.09.004_b53
  article-title: Scikit-learn: Machine learning in python
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 10
  start-page: 1
  issue: 3
  year: 2016
  ident: 10.1016/j.neunet.2019.09.004_b11
  article-title: Lifelong machine learning
  publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning
  doi: 10.2200/S00737ED1V01Y201610AIM033
– volume: 71
  start-page: 409
  issue: 4
  year: 2011
  ident: 10.1016/j.neunet.2019.09.004_b56
  article-title: Introduction to spiking neural networks: Information processing, learning and applications
  publication-title: Acta Neurobiologiae Experimentalis
  doi: 10.55782/ane-2011-1862
– volume: 50
  start-page: 92
  year: 2019
  ident: 10.1016/j.neunet.2019.09.004_b15
  article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards industry 4.0
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.10.005
– year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b42
  article-title: Learning under concept drift: A review
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2018.2876857
– start-page: 1457
  year: 2005
  ident: 10.1016/j.neunet.2019.09.004_b68
  article-title: Saliency-driven image acuity modulation on a reconfigurable array of spiking silicon neurons
– volume: 16
  start-page: 101
  year: 2006
  ident: 10.1016/j.neunet.2019.09.004_b34
  article-title: Comparison of supervised learning methods for spike time coding in spiking neural networks
  publication-title: International Journal of Applied Mathematics and Computer Science
– year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b66
– volume: 239
  start-page: 39
  year: 2017
  ident: 10.1016/j.neunet.2019.09.004_b57
  article-title: A survey on data preprocessing for data stream mining: Current status and future directions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.078
– volume: 12
  start-page: 291
  year: 2018
  ident: 10.1016/j.neunet.2019.09.004_b65
  article-title: Performance comparison of the digital neuromorphic hardware spinnaker and the neural network simulation software NEST for a full-scale cortical microcircuit model
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2018.00291
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.neunet.2019.09.004_b27
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 3970
  year: 2006
  ident: 10.1016/j.neunet.2019.09.004_b46
  article-title: Fast modifications of the spikeprop algorithm
– volume: 16
  start-page: 149
  issue: 1
  year: 2015
  ident: 10.1016/j.neunet.2019.09.004_b50
  article-title: SAMOA: Scalable advanced massive online analysis
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 10
  start-page: 1659
  issue: 9
  year: 1997
  ident: 10.1016/j.neunet.2019.09.004_b43
  article-title: Networks of spiking neurons: The third generation of neural network models
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(97)00011-7
– year: 2006
  ident: 10.1016/j.neunet.2019.09.004_b10
– start-page: 91
  year: 2016
  ident: 10.1016/j.neunet.2019.09.004_b77
  article-title: An overview of concept drift applications
– ident: 10.1016/j.neunet.2019.09.004_b2
SSID ssj0006843
Score 2.645131
Snippet Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 88
SubjectTerms Action Potentials - physiology
Algorithms
Artificial Intelligence
Brain - cytology
Brain - physiology
Computer Science
Concept drift
Education, Distance - methods
Humans
Models, Neurological
Neural Networks, Computer
Neurons - physiology
Online learning
Spiking Neural Networks
Stream data
Title Spiking Neural Networks and online learning: An overview and perspectives
URI https://dx.doi.org/10.1016/j.neunet.2019.09.004
https://www.ncbi.nlm.nih.gov/pubmed/31536902
https://www.proquest.com/docview/2295471992
https://telecom-paris.hal.science/hal-02460417
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51txculPJcCpVBXM06fsbcVhXVlsdeSqXeLMdx6CKUrtjdHvntHSfOIiSqSkg5WeMkmrFnvrHnAfAuVKH2qra0MkxSiZCAWs0DjSVP9c4CmrSUO_x1oecX8tOlutyDkyEXJoVVZt3f6_ROW-eRaebmdLVcTs8ZmlqNgAchCDoSSo1gnwur1Rj2Z2ef54udQtZlHzyH9DRNGDLoujCvNm7bmIIqC9sVPM0d2_5hoUZXKVTyLhza2aPTR_AwA0ky6__1EPZi-xgOhiYNJO_ZJ3B2vlqm43CSynDghEUf970mvq1JXyeD5NYR3z-QWUtSTGe6L-gIVn9yMddP4eL047eTOc39E2iQkm-oZ6rxQrCqNNLiZg518Ko0pZU8NKpRHm2RN42NBaqtKhoh68CC9kGK2kZTiWcwbq_b-AKI1Y2WjUB4YrhUokInTSC9lqpCn7FmExADz1zIxcVTj4ufbogi--F6TrvEacfwYXICdDdr1RfXuIfeDOJwfy0Sh_r_nplvUXq7j6Sa2vPZF5fGEKRoJgtzU0zgzSBch5ss3Zz4Nl5v1y71PEcrbi2fwPNe6rt3CbQZ2jL-8r9_7gge8OTFdwc7r2C8-bWNrxHqbKpjGL3_XRznBX0LoJL65Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAX3o_laRBXs974FXNbVVRb2O6lrdSb5ThOWYTSFbvLkd_OTOJshQSqhJSTNU6iGXse9jczAO9jFeuga8crKxRX6BJwZ4rIU1lQvbOIJo1yh08WZnauPl_oiz04HHJhCFaZdX-v0zttnUfGmZvj1XI5PhVoag06POiCYCCh9T7cUlpawvV9-HWN8zBlD51Dak7kQ_5cB_Jq07ZNBKmcuK7cae7X9hf7tP-VgJL_8kI7a3R0H-5mN5JN-z99AHupfQj3hhYNLO_YR3B8ulrSYTijIhw4YdGjvtcstDXrq2Sw3Dji8iObtowQnXRb0BGsrjMx14_h_OjT2eGM5-4JPCpVbHgQuglSiqq0yuFWjnUMurSlU0VsdKMDWqJgG5cmqLSqZKWqo4gmRCVrl2wln8BBe9WmZ8CcaYxqJDontkAWVxiiSaQ3SlcYMdZiBHLgmY-5tDh1uPjuBwzZN99z2hOnvcBHqBHw3axVX1rjBno7iMP_sUQ8av8bZr5D6e0-QhW1Z9O5pzF0UYxQE_tzMoK3g3A9bjG6NwltutquPXU8RxvuXDGCp73Ud--SaDGME8Xz__65N3B7dnYy9_PjxZcXcKegeL474nkJB5sf2_QKnZ5N9bpb1L8BvL77sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spiking+Neural+Networks+and+online+learning%3A+An+overview+and+perspectives&rft.jtitle=Neural+networks&rft.au=Lobo%2C+Jesus+L.&rft.au=Del+Ser%2C+Javier&rft.au=Bifet%2C+Albert&rft.au=Kasabov%2C+Nikola&rft.date=2020-01-01&rft.issn=0893-6080&rft.volume=121&rft.spage=88&rft.epage=100&rft_id=info:doi/10.1016%2Fj.neunet.2019.09.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2019_09_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon