Spiking Neural Networks and online learning: An overview and perspectives
Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they often turn into evolving environments where a cha...
Saved in:
Published in | Neural networks Vol. 121; pp. 88 - 100 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.01.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2019.09.004 |
Cover
Abstract | Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they often turn into evolving environments where a change may affect the input data distribution. Such a change causes that predictive models trained over these stream data become obsolete and do not adapt suitably to new distributions. Specially in these non-stationary scenarios, there is a pressing need for new algorithms that adapt to these changes as fast as possible, while maintaining good performance scores. Unfortunately, most off-the-shelf classification models need to be retrained if they are used in changing environments, and fail to scale properly. Spiking Neural Networks have revealed themselves as one of the most successful approaches to model the behavior and learning potential of the brain, and exploit them to undertake practical online learning tasks. Besides, some specific flavors of Spiking Neural Networks can overcome the necessity of retraining after a drift occurs. This work intends to merge both fields by serving as a comprehensive overview, motivating further developments that embrace Spiking Neural Networks for online learning scenarios, and being a friendly entry point for non-experts. |
---|---|
AbstractList | Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they often turn into evolving environments where a change may affect the input data distribution. Such a change causes that predictive models trained over these stream data become obsolete and do not adapt suitably to new distributions. Specially in these non-stationary scenarios, there is a pressing need for new algorithms that adapt to these changes as fast as possible, while maintaining good performance scores. Unfortunately, most off-the-shelf classification models need to be retrained if they are used in changing environments, and fail to scale properly. Spiking Neural Networks have revealed themselves as one of the most successful approaches to model the behavior and learning potential of the brain, and exploit them to undertake practical online learning tasks. Besides, some specific flavors of Spiking Neural Networks can overcome the necessity of retraining after a drift occurs. This work intends to merge both fields by serving as a comprehensive overview, motivating further developments that embrace Spiking Neural Networks for online learning scenarios, and being a friendly entry point for non-experts. Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they often turn into evolving environments where a change may affect the input data distribution. Such a change causes that predictive models trained over these stream data become obsolete and do not adapt suitably to new distributions. Specially in these non-stationary scenarios, there is a pressing need for new algorithms that adapt to these changes as fast as possible, while maintaining good performance scores. Unfortunately, most off-the-shelf classification models need to be retrained if they are used in changing environments, and fail to scale properly. Spiking Neural Networks have revealed themselves as one of the most successful approaches to model the behavior and learning potential of the brain, and exploit them to undertake practical online learning tasks. Besides, some specific flavors of Spiking Neural Networks can overcome the necessity of retraining after a drift occurs. This work intends to merge both fields by serving as a comprehensive overview, motivating further developments that embrace Spiking Neural Networks for online learning scenarios, and being a friendly entry point for non-experts.Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they often turn into evolving environments where a change may affect the input data distribution. Such a change causes that predictive models trained over these stream data become obsolete and do not adapt suitably to new distributions. Specially in these non-stationary scenarios, there is a pressing need for new algorithms that adapt to these changes as fast as possible, while maintaining good performance scores. Unfortunately, most off-the-shelf classification models need to be retrained if they are used in changing environments, and fail to scale properly. Spiking Neural Networks have revealed themselves as one of the most successful approaches to model the behavior and learning potential of the brain, and exploit them to undertake practical online learning tasks. Besides, some specific flavors of Spiking Neural Networks can overcome the necessity of retraining after a drift occurs. This work intends to merge both fields by serving as a comprehensive overview, motivating further developments that embrace Spiking Neural Networks for online learning scenarios, and being a friendly entry point for non-experts. |
Author | Del Ser, Javier Kasabov, Nikola Lobo, Jesus L. Bifet, Albert |
Author_xml | – sequence: 1 givenname: Jesus L. surname: Lobo fullname: Lobo, Jesus L. email: jesus.lopez@tecnalia.com organization: TECNALIA, 48160 Derio, Spain – sequence: 2 givenname: Javier orcidid: 0000-0002-1260-9775 surname: Del Ser fullname: Del Ser, Javier organization: TECNALIA, 48160 Derio, Spain – sequence: 3 givenname: Albert surname: Bifet fullname: Bifet, Albert organization: Télécom ParisTech, París, C201-2, France – sequence: 4 givenname: Nikola surname: Kasabov fullname: Kasabov, Nikola organization: Auckland University of Technology (AUT), Auckland, New Zealand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31536902$$D View this record in MEDLINE/PubMed https://telecom-paris.hal.science/hal-02460417$$DView record in HAL |
BookMark | eNqFkU9v1DAUxC1URLeFb4BQjvSQ7fOfxHEPSKsKaKUVPRTOltd5AW-zdrCTrfj2eEnbQw9FetJIT7-Zw8wJOfLBIyHvKSwp0Pp8u_Q4eRyXDKhaQj4Qr8iCNlKVTDbsiCygUbysoYFjcpLSFgDqRvA35JjTitcK2IJc3w7uzvmfxTecoumzjPch3qXC-LYIvnceix5N9Jm5KFa-CHuMe4f3_4ABYxrQjm6P6S153Zk-4bsHPSU_vnz-fnlVrm--Xl-u1qUVgo2lgaoznMOmkUIBB9taUzWyUYLZruoqI5gyslNIGVUblFy0FmxtrOCtQrnhp-Rszv1lej1EtzPxjw7G6avVWh9-wEQNgso9zezHmR1i-D1hGvXOJYt9bzyGKWnGVCUkVYpl9MMDOm122D4lP1aVgYsZsDGkFLHT1o1mdMGP0bheU9CHXfRWz7vowy4a8oHIZvHM_Jj_H9un2Ya50Nx61Mk69BZbF3Ptug3u5YC_XhyoRA |
CitedBy_id | crossref_primary_10_1088_1741_2552_ac74e0 crossref_primary_10_1016_j_tcs_2022_09_021 crossref_primary_10_1016_j_tcs_2020_07_016 crossref_primary_10_3233_AIC_210009 crossref_primary_10_1016_j_neucom_2021_08_005 crossref_primary_10_3390_app132413145 crossref_primary_10_1007_s40747_023_01245_7 crossref_primary_10_1007_s11768_023_00150_1 crossref_primary_10_1109_TKDE_2024_3374357 crossref_primary_10_1016_j_comnet_2022_108836 crossref_primary_10_1115_1_4055316 crossref_primary_10_1134_S2635167621060069 crossref_primary_10_1063_5_0133515 crossref_primary_10_1007_s00521_021_05832_y crossref_primary_10_1007_s00521_020_05388_3 crossref_primary_10_1007_s40820_024_01550_x crossref_primary_10_1002_aisy_202400673 crossref_primary_10_1007_s10846_020_01227_8 crossref_primary_10_3390_s21082730 crossref_primary_10_1016_j_ijadhadh_2024_103888 crossref_primary_10_1016_j_neunet_2024_106410 crossref_primary_10_1007_s11227_023_05420_y crossref_primary_10_1109_ACCESS_2021_3053280 crossref_primary_10_1109_ACCESS_2021_3076264 crossref_primary_10_1109_TCE_2023_3279135 crossref_primary_10_1051_e3sconf_202124407003 crossref_primary_10_1016_j_neucom_2023_126234 crossref_primary_10_1134_S2635167621060057 crossref_primary_10_1016_j_neucom_2023_01_087 crossref_primary_10_3389_fnins_2023_1161592 crossref_primary_10_1007_s11042_023_16344_3 crossref_primary_10_1016_j_neucom_2024_129005 crossref_primary_10_1007_s00521_022_06936_9 crossref_primary_10_1007_s10462_025_11108_x crossref_primary_10_1002_aisy_202300132 crossref_primary_10_1109_LSENS_2024_3523443 crossref_primary_10_1109_TETC_2024_3387026 crossref_primary_10_1109_TBCAS_2022_3166530 crossref_primary_10_1371_journal_pone_0244822 crossref_primary_10_3390_su15053978 crossref_primary_10_1109_TC_2022_3197089 crossref_primary_10_1145_3444693 crossref_primary_10_1109_TWC_2024_3522956 crossref_primary_10_1016_j_measurement_2023_113796 crossref_primary_10_1007_s11042_024_19665_z crossref_primary_10_3390_su14106063 crossref_primary_10_1016_j_neunet_2021_02_017 crossref_primary_10_1002_aisy_202200047 crossref_primary_10_1093_ijlct_ctae294 crossref_primary_10_58763_rc2025355 crossref_primary_10_1109_TNNLS_2023_3303308 crossref_primary_10_15622_ia_21_3_2 crossref_primary_10_1016_j_neunet_2020_02_011 crossref_primary_10_1002_aelm_202400258 crossref_primary_10_1109_TCSI_2020_3010723 crossref_primary_10_7498_aps_71_20220281 crossref_primary_10_1016_j_chaos_2025_116149 crossref_primary_10_1109_JETCAS_2021_3121554 crossref_primary_10_3389_fnins_2022_923587 crossref_primary_10_1088_1361_6501_ac3199 crossref_primary_10_1016_j_optlastec_2020_106787 crossref_primary_10_1063_5_0211040 crossref_primary_10_1016_j_neunet_2024_106474 crossref_primary_10_1016_j_ress_2023_109102 crossref_primary_10_3390_buildings13030580 crossref_primary_10_3390_s22239245 crossref_primary_10_1002_aelm_202200877 crossref_primary_10_3390_math12132025 crossref_primary_10_1109_TCSII_2022_3169004 crossref_primary_10_1109_JBHI_2024_3441332 crossref_primary_10_3389_fnins_2022_991851 crossref_primary_10_1007_s00202_024_02330_x crossref_primary_10_21684_2411_7978_2021_7_2_223_235 crossref_primary_10_1109_TBCAS_2022_3209073 crossref_primary_10_1109_ACCESS_2024_3444596 crossref_primary_10_1016_j_swevo_2025_101867 crossref_primary_10_1007_s10115_024_02092_9 crossref_primary_10_1007_s11071_023_08655_9 crossref_primary_10_1103_PhysRevApplied_19_064010 crossref_primary_10_3390_biomimetics9030136 crossref_primary_10_1109_TCASAI_2024_3491673 crossref_primary_10_1007_s12065_024_00983_y crossref_primary_10_1007_s13534_024_00436_6 crossref_primary_10_3390_math12081230 crossref_primary_10_1007_s11227_023_05776_1 crossref_primary_10_3389_fnins_2023_994517 crossref_primary_10_1016_j_neunet_2020_11_005 crossref_primary_10_1016_j_jpdc_2022_04_004 crossref_primary_10_1016_j_pmcj_2024_101876 crossref_primary_10_1038_s42005_024_01869_2 crossref_primary_10_2196_46407 crossref_primary_10_1109_TETC_2023_3281063 crossref_primary_10_1016_j_neucom_2023_02_026 crossref_primary_10_1007_s41060_023_00463_z crossref_primary_10_1007_s40997_023_00596_3 crossref_primary_10_3389_fnins_2023_1196796 crossref_primary_10_3389_fnins_2022_850945 crossref_primary_10_37188_lam_2022_013 crossref_primary_10_1063_5_0243083 crossref_primary_10_3390_app12083841 crossref_primary_10_1038_s41598_023_34517_w crossref_primary_10_1016_j_asoc_2021_107082 crossref_primary_10_1016_j_bspc_2024_107192 crossref_primary_10_3389_fnins_2023_1167134 crossref_primary_10_3389_fpsyg_2022_939336 crossref_primary_10_1016_j_chaos_2021_110714 crossref_primary_10_3389_fnins_2024_1291053 crossref_primary_10_1007_s10994_022_06129_4 crossref_primary_10_1155_2022_2718787 crossref_primary_10_1016_j_knosys_2022_108632 crossref_primary_10_1109_TCDS_2021_3140115 crossref_primary_10_1007_s10489_020_02058_8 crossref_primary_10_1109_TBCAS_2023_3327496 crossref_primary_10_1007_s10846_023_01963_7 crossref_primary_10_1038_s41377_024_01453_x crossref_primary_10_1016_j_softx_2024_102006 crossref_primary_10_1002_aisy_202100151 crossref_primary_10_1109_JSSC_2024_3426319 crossref_primary_10_1109_ACCESS_2024_3507002 crossref_primary_10_1111_coin_12472 crossref_primary_10_3390_s22030720 crossref_primary_10_1016_j_isci_2023_108241 crossref_primary_10_3390_cryst13040615 crossref_primary_10_1145_3635165 crossref_primary_10_1162_neco_a_01740 crossref_primary_10_1109_ACCESS_2020_2981346 crossref_primary_10_1109_TSMC_2023_3300318 crossref_primary_10_3390_math10111844 crossref_primary_10_1007_s12293_022_00373_w crossref_primary_10_1109_IOTM_001_2300229 crossref_primary_10_3389_fnins_2021_756876 crossref_primary_10_1016_j_techfore_2023_122640 crossref_primary_10_1017_ice_2021_236 crossref_primary_10_1002_aisy_202400282 crossref_primary_10_1016_j_inffus_2023_101943 crossref_primary_10_3389_fncom_2024_1363514 crossref_primary_10_1360_SST_2022_0470 crossref_primary_10_1016_j_asoc_2020_106475 |
Cites_doi | 10.1016/j.neucom.2017.06.084 10.1007/BF02478259 10.14778/3137765.3137770 10.1145/3054925 10.1038/nn1643 10.1126/science.1127647 10.1037/h0042519 10.1007/s12530-016-9168-2 10.1109/TNNLS.2015.2501322 10.1109/JPROC.2014.2304638 10.1016/j.ins.2018.04.014 10.1016/j.neucom.2015.07.086 10.3389/neuro.11.011.2009 10.1016/S0893-6080(01)00083-1 10.1146/annurev.neuro.24.1.139 10.1113/jphysiol.1952.sp004764 10.3389/fnbot.2018.00035 10.1162/0899766054796888 10.1007/s10618-015-0448-4 10.1145/2523813 10.1007/s12530-013-9074-9 10.3389/fninf.2015.00019 10.1142/S012906571000253X 10.1145/2934664 10.1016/j.swevo.2019.04.008 10.14445/22312803/IJCTT-V19P103 10.1016/S0925-2312(01)00658-0 10.1016/j.asoc.2017.10.004 10.1152/jn.1993.70.4.1629 10.1098/rspb.2016.2134 10.3389/neuro.11.005.2008 10.1016/j.neunet.2018.07.014 10.1371/journal.pone.0040233 10.1016/j.neunet.2014.01.006 10.1016/j.inffus.2017.02.004 10.2200/S00737ED1V01Y201610AIM033 10.55782/ane-2011-1862 10.1016/j.inffus.2018.10.005 10.1109/TKDE.2018.2876857 10.1016/j.neucom.2017.01.078 10.3389/fnins.2018.00291 10.1162/neco.1997.9.8.1735 10.1016/S0893-6080(97)00011-7 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES |
DOI | 10.1016/j.neunet.2019.09.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 100 |
ExternalDocumentID | oai_HAL_hal_02460417v1 31536902 10_1016_j_neunet_2019_09_004 S0893608019302655 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 EFKBS 1XC VOOES |
ID | FETCH-LOGICAL-c442t-a05fa330b8749030cdca5878942cf5f5a429a7f9e1219be734dc0c6ac43d9e7b3 |
IEDL.DBID | AIKHN |
ISSN | 0893-6080 1879-2782 |
IngestDate | Thu Sep 04 07:30:28 EDT 2025 Thu Sep 04 22:20:08 EDT 2025 Wed Feb 19 02:31:25 EST 2025 Thu Apr 24 23:07:37 EDT 2025 Tue Jul 01 01:24:34 EDT 2025 Fri Feb 23 02:49:19 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stream data Spiking Neural Networks Concept drift Online learning |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-a05fa330b8749030cdca5878942cf5f5a429a7f9e1219be734dc0c6ac43d9e7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1260-9775 0000-0002-8339-7773 |
OpenAccessLink | https://telecom-paris.hal.science/hal-02460417 |
PMID | 31536902 |
PQID | 2295471992 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_02460417v1 proquest_miscellaneous_2295471992 pubmed_primary_31536902 crossref_citationtrail_10_1016_j_neunet_2019_09_004 crossref_primary_10_1016_j_neunet_2019_09_004 elsevier_sciencedirect_doi_10_1016_j_neunet_2019_09_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 2020-Jan 20200101 2020-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Gerstner, Kistler (b22) 2002 Carnevale, Hines (b10) 2006 Manyika, Chui, Bisson, Woetzel, Dobbs, Bughin (b44) 2015 Wang, Belatreche, Maguire, McGinnity (b71) 2017; 28 Wang, Minku, Yao (b72) 2018 Lobo, Del Ser, Laña, Bilbao, Kasabov (b39) 2018 Dora, Subramanian, Suresh, Sundararajan (b16) 2016; 171 Vogelstein, Mallik, Culurciello, Cauwenberghs, Etienne-Cummings (b68) 2005 Lu, Liu, Dong, Gu, Gama, Zhang (b42) 2018 Diez-Olivan, Del Ser, Galar, Sierra (b15) 2019; 50 Soltic, Kasabov (b62) 2010; 20 Kasabov (b32) 2018 Lobo, Del Ser, Bilbao, Perfecto, Salcedo-Sanz (b38) 2018; 68 Hodgkin, Huxley (b28) 1952; 117 De Francisci Morales, Bifet, Khan, Gama, Fan (b12) 2016 Lobo, Laña, Del Ser, Bilbao, Kasabov (b40) 2018; 108 Bing, Meschede, Röhrbein, Huang, Knoll (b7) 2018; 12 Bifet, Gavaldà, Holmes, Pfahringer (b6) 2018 Losing, Hammer, Wersing (b41) 2018; 275 Ponulak (b55) 2005 Žliobaitė, Pechenizkiy, Gama (b77) 2016 Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho (b13) 2019; 48 vol. 11 (pp. 301–305). Bohte, Kok, La Poutre (b8) 2002; 48 Ponulak, Kasinski (b56) 2011; 71 Barros, Santos (b3) 2018; 451 . Gama, Žliobaitė, Bifet, Pechenizkiy, Bouchachia (b21) 2014; 46 Benczúr, Kocsis, Pálovics (b4) 2018 Gütig, Sompolinsky (b25) 2006; 9 Middleton, Tsai, Yamaji, Gupta, Rueb (b47) 2017 Wang, Belatreche, Maguire, McGinnity (b69) 2010 DeWolf, Stewart, Slotine, Eliasmith (b14) 2016; 283 Kasabov (b33) 2019 Florian (b17) 2012; 7 Kasabov (b31) 2014; 52 Rosenblatt (b58) 1958; 65 Foundation (b18) 2012 van Albada, Rowley, Senk, Hopkins, Schmidt, Stokes (b65) 2018; 12 McKennoch, Liu, Bushnell (b46) 2006 Schrauwen, B., & Van Campenhout, J. (2004). Improving Spikeprop: Enhancements to an error-backpropagation rule for spiking neural networks. In Webb, Hyde, Cao, Nguyen, Petitjean (b73) 2016; 30 McCulloch, Pitts (b45) 1943; 5 Wang, Belatreche, Maguire, McGinnity (b70) 2015 Tavanaei, Ghodrati, Kheradpisheh, Masquelier, Maida (b63) 2018 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b53) 2011; 12 Wu, Chua, Zhang, Yang, Li, Li (b75) 2019 Villani, Bonnet, Rondepierre (b66) 2018 Morales, Bifet (b50) 2015; 16 Hochreiter, Schmidhuber (b27) 1997; 9 Legenstein, Naeger, Maass (b37) 2005; 17 Schliebs, Kasabov (b60) 2013; 4 Iqbal, Soomro (b29) 2015; 19 Werbos (b74) 1982 Bair, W. (1994). Reliable temporal modulation in cortical spike trains in the awake monkey. In Montiel, Read, Bifet, Abdessalem (b49) 2018; 19 Vitay, Dinkelbach, Hamker (b67) 2015; 9 Goodman, Brette (b24) 2008; 2 Zaharia, Xin, Wendell, Das, Armbrust, Dave (b76) 2016; 59 Furber, Galluppi, Temple, Plana (b20) 2014; 102 Maass (b43) 1997; 10 Thorpe, Delorme, Van Rullen (b64) 2001; 14 Pecevski, Natschläger, Schuch (b52) 2009; 3 Ramírez-Gallego, Krawczyk, García, Woźniak, Herrera (b57) 2017; 239 Hinton, Salakhutdinov (b26) 2006; 313 Khamassi, Sayed-Mouchaweh, Hammami, Ghédira (b35) 2018; 9 Rumelhart, Hinton, Williams (b59) 1988; 5 Bi, Poo (b5) 2001; 24 Abeles, Bergman, Margalit, Vaadia (b1) 1993; 70 Izhikevich (b30) 2007 Kasiński, Ponulak (b34) 2006; 16 Gomes, Barddal, Enembreck, Bifet (b23) 2017; 50 Foundation (b19) 2017 Krawczyk, Minku, Gama, Stefanowski, Woźniak (b36) 2017; 37 Carbone, Katsifodimos, Ewen, Markl, Haridi, Tzoumas (b9) 2015; 36 Petro, Kasabov, Kiss (b54) 2019 Chen, Liu (b11) 2016; 10 Noghabi, Paramasivam, Pan, Ramesh, Bringhurst, Gupta (b51) 2017; 10 Minku (b48) 2011 Hochreiter (10.1016/j.neunet.2019.09.004_b27) 1997; 9 Losing (10.1016/j.neunet.2019.09.004_b41) 2018; 275 Wang (10.1016/j.neunet.2019.09.004_b72) 2018 10.1016/j.neunet.2019.09.004_b61 van Albada (10.1016/j.neunet.2019.09.004_b65) 2018; 12 Maass (10.1016/j.neunet.2019.09.004_b43) 1997; 10 Kasabov (10.1016/j.neunet.2019.09.004_b31) 2014; 52 Foundation (10.1016/j.neunet.2019.09.004_b18) 2012 Montiel (10.1016/j.neunet.2019.09.004_b49) 2018; 19 Ponulak (10.1016/j.neunet.2019.09.004_b55) 2005 Zaharia (10.1016/j.neunet.2019.09.004_b76) 2016; 59 Goodman (10.1016/j.neunet.2019.09.004_b24) 2008; 2 Diez-Olivan (10.1016/j.neunet.2019.09.004_b15) 2019; 50 Khamassi (10.1016/j.neunet.2019.09.004_b35) 2018; 9 Lobo (10.1016/j.neunet.2019.09.004_b40) 2018; 108 Vitay (10.1016/j.neunet.2019.09.004_b67) 2015; 9 Wang (10.1016/j.neunet.2019.09.004_b69) 2010 Hinton (10.1016/j.neunet.2019.09.004_b26) 2006; 313 Tavanaei (10.1016/j.neunet.2019.09.004_b63) 2018 Žliobaitė (10.1016/j.neunet.2019.09.004_b77) 2016 Benczúr (10.1016/j.neunet.2019.09.004_b4) 2018 Pecevski (10.1016/j.neunet.2019.09.004_b52) 2009; 3 Noghabi (10.1016/j.neunet.2019.09.004_b51) 2017; 10 Soltic (10.1016/j.neunet.2019.09.004_b62) 2010; 20 Petro (10.1016/j.neunet.2019.09.004_b54) 2019 McCulloch (10.1016/j.neunet.2019.09.004_b45) 1943; 5 Lobo (10.1016/j.neunet.2019.09.004_b39) 2018 Izhikevich (10.1016/j.neunet.2019.09.004_b30) 2007 Wu (10.1016/j.neunet.2019.09.004_b75) 2019 Abeles (10.1016/j.neunet.2019.09.004_b1) 1993; 70 Florian (10.1016/j.neunet.2019.09.004_b17) 2012; 7 10.1016/j.neunet.2019.09.004_b2 Lu (10.1016/j.neunet.2019.09.004_b42) 2018 Kasabov (10.1016/j.neunet.2019.09.004_b32) 2018 Bohte (10.1016/j.neunet.2019.09.004_b8) 2002; 48 Gomes (10.1016/j.neunet.2019.09.004_b23) 2017; 50 Ramírez-Gallego (10.1016/j.neunet.2019.09.004_b57) 2017; 239 Dora (10.1016/j.neunet.2019.09.004_b16) 2016; 171 Bing (10.1016/j.neunet.2019.09.004_b7) 2018; 12 Bifet (10.1016/j.neunet.2019.09.004_b6) 2018 DeWolf (10.1016/j.neunet.2019.09.004_b14) 2016; 283 De Francisci Morales (10.1016/j.neunet.2019.09.004_b12) 2016 Lobo (10.1016/j.neunet.2019.09.004_b38) 2018; 68 Gama (10.1016/j.neunet.2019.09.004_b21) 2014; 46 Rosenblatt (10.1016/j.neunet.2019.09.004_b58) 1958; 65 Furber (10.1016/j.neunet.2019.09.004_b20) 2014; 102 Ponulak (10.1016/j.neunet.2019.09.004_b56) 2011; 71 Del Ser (10.1016/j.neunet.2019.09.004_b13) 2019; 48 Wang (10.1016/j.neunet.2019.09.004_b70) 2015 Vogelstein (10.1016/j.neunet.2019.09.004_b68) 2005 Thorpe (10.1016/j.neunet.2019.09.004_b64) 2001; 14 Iqbal (10.1016/j.neunet.2019.09.004_b29) 2015; 19 Carnevale (10.1016/j.neunet.2019.09.004_b10) 2006 Gütig (10.1016/j.neunet.2019.09.004_b25) 2006; 9 Bi (10.1016/j.neunet.2019.09.004_b5) 2001; 24 Hodgkin (10.1016/j.neunet.2019.09.004_b28) 1952; 117 Minku (10.1016/j.neunet.2019.09.004_b48) 2011 Chen (10.1016/j.neunet.2019.09.004_b11) 2016; 10 Carbone (10.1016/j.neunet.2019.09.004_b9) 2015; 36 Barros (10.1016/j.neunet.2019.09.004_b3) 2018; 451 Legenstein (10.1016/j.neunet.2019.09.004_b37) 2005; 17 Villani (10.1016/j.neunet.2019.09.004_b66) 2018 Werbos (10.1016/j.neunet.2019.09.004_b74) 1982 McKennoch (10.1016/j.neunet.2019.09.004_b46) 2006 Rumelhart (10.1016/j.neunet.2019.09.004_b59) 1988; 5 Wang (10.1016/j.neunet.2019.09.004_b71) 2017; 28 Krawczyk (10.1016/j.neunet.2019.09.004_b36) 2017; 37 Kasiński (10.1016/j.neunet.2019.09.004_b34) 2006; 16 Morales (10.1016/j.neunet.2019.09.004_b50) 2015; 16 Webb (10.1016/j.neunet.2019.09.004_b73) 2016; 30 Kasabov (10.1016/j.neunet.2019.09.004_b33) 2019 Pedregosa (10.1016/j.neunet.2019.09.004_b53) 2011; 12 Foundation (10.1016/j.neunet.2019.09.004_b19) 2017 Middleton (10.1016/j.neunet.2019.09.004_b47) 2017 Manyika (10.1016/j.neunet.2019.09.004_b44) 2015 Gerstner (10.1016/j.neunet.2019.09.004_b22) 2002 Schliebs (10.1016/j.neunet.2019.09.004_b60) 2013; 4 |
References_xml | – volume: 14 start-page: 715 year: 2001 end-page: 725 ident: b64 article-title: Spike-based strategies for rapid processing publication-title: Neural Networks – volume: 12 start-page: 35 year: 2018 ident: b7 article-title: A survey of robotics control based on learning-inspired spiking neural networks publication-title: Frontiers in Neurorobotics – volume: 9 start-page: 420 year: 2006 ident: b25 article-title: The tempotron: A neuron that learns spike timing–based decisions publication-title: Nature Neuroscience – start-page: 619 year: 2019 end-page: 658 ident: b33 article-title: Deep learning of multisensory streaming data for predictive modelling with applications in finance, ecology, transport and environment publication-title: Time-space, spiking neural networks and brain-inspired artificial intelligence – year: 2002 ident: b22 article-title: Spiking neuron models: Single neurons, populations, plasticity – year: 2019 ident: b54 article-title: Selection and optimization of temporal spike encoding methods for spiking neural networks publication-title: IEEE transactions on neural networks and learning systems – volume: 102 start-page: 652 year: 2014 end-page: 665 ident: b20 article-title: The spinnaker project publication-title: Proceedings of the IEEE – year: 2006 ident: b10 article-title: The NEURON book – volume: 50 start-page: 92 year: 2019 end-page: 111 ident: b15 article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards industry 4.0 publication-title: Information Fusion – year: 2018 ident: b4 article-title: Online machine learning in big data streams publication-title: CoRR – volume: 24 start-page: 139 year: 2001 end-page: 166 ident: b5 article-title: Synaptic modification by correlated activity: Hebb’s postulate revisited publication-title: Annual Review of Neuroscience – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b26 article-title: Reducing the dimensionality of data with neural networks publication-title: science – year: 2005 ident: b55 article-title: Resume-new supervised learning method for spiking neural networks, (vol. 42) – year: 2018 ident: b6 article-title: Machine learning for data streams with practical examples in MOA – reference: Bair, W. (1994). Reliable temporal modulation in cortical spike trains in the awake monkey. In – year: 2016 ident: b12 article-title: Iot big data stream mining publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining – start-page: 762 year: 1982 end-page: 770 ident: b74 article-title: Applications of advances in nonlinear sensitivity analysis publication-title: System modeling and optimization – volume: 7 year: 2012 ident: b17 article-title: The chronotron: A neuron that learns to fire temporally precise spike patterns publication-title: PLoS One – year: 2018 ident: b63 article-title: Deep learning in spiking neural networks publication-title: Neural Networks – start-page: 1457 year: 2005 end-page: 1464 ident: b68 article-title: Saliency-driven image acuity modulation on a reconfigurable array of spiking silicon neurons publication-title: Advances in neural information processing systems – volume: 171 start-page: 1216 year: 2016 end-page: 1229 ident: b16 article-title: Development of a self-regulating evolving spiking neural network for classification problem publication-title: Neurocomputing – volume: 46 start-page: 44 year: 2014 ident: b21 article-title: A survey on concept drift adaptation publication-title: ACM computing surveys (CSUR) – volume: 4 start-page: 87 year: 2013 end-page: 98 ident: b60 article-title: Evolving spiking neural network – a survey publication-title: Evolving Systems – volume: 30 start-page: 964 year: 2016 end-page: 994 ident: b73 article-title: Characterizing concept drift publication-title: Data Mining and Knowledge Discovery – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b53 article-title: Scikit-learn: Machine learning in python publication-title: Journal of Machine Learning Research (JMLR) – volume: 17 start-page: 2337 year: 2005 end-page: 2382 ident: b37 article-title: What can a neuron learn with spike-timing-dependent plasticity? publication-title: Neural Computation – year: 2018 ident: b66 article-title: For a meaningful artificial intelligence: Towards a French and European strategy – volume: 16 start-page: 101 year: 2006 end-page: 113 ident: b34 article-title: Comparison of supervised learning methods for spike time coding in spiking neural networks publication-title: International Journal of Applied Mathematics and Computer Science – start-page: 3970 year: 2006 end-page: 3977 ident: b46 article-title: Fast modifications of the spikeprop algorithm publication-title: The 2006 IEEE international joint conference on neural network proceedings – volume: 451 start-page: 348 year: 2018 end-page: 370 ident: b3 article-title: A large-scale comparison of concept drift detectors publication-title: Information Sciences – volume: 71 start-page: 409 year: 2011 end-page: 433 ident: b56 article-title: Introduction to spiking neural networks: Information processing, learning and applications publication-title: Acta Neurobiologiae Experimentalis – volume: 19 start-page: 9 year: 2015 end-page: 14 ident: b29 article-title: Big data analysis: Apache storm perspective publication-title: International Journal of Computer Trends and Technology – start-page: 259 year: 2015 end-page: 267 ident: b70 article-title: Spikecomp: An evolving spiking neural network with adaptive compact structure for pattern classification publication-title: International conference on neural information processing – year: 2011 ident: b48 article-title: Online ensemble learning in the presence of concept drift – start-page: 1 year: 2010 end-page: 6 ident: b69 article-title: Online versus offline learning for spiking neural networks: A review and new strategies publication-title: 2010 IEEE 9th International conference on cyberntic intelligent systems – volume: 117 start-page: 500 year: 1952 end-page: 544 ident: b28 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: The Journal of Physiology – volume: 68 start-page: 693 year: 2018 end-page: 709 ident: b38 article-title: Dred: an evolutionary diversity generation method for concept drift adaptation in online learning environments publication-title: Applied Soft Computing – volume: 50 start-page: 23 year: 2017 ident: b23 article-title: A survey on ensemble learning for data stream classification publication-title: ACM Computing Surveys – volume: 10 start-page: 1659 year: 1997 end-page: 1671 ident: b43 article-title: Networks of spiking neurons: The third generation of neural network models publication-title: Neural Networks – volume: 108 start-page: 1 year: 2018 end-page: 19 ident: b40 article-title: Evolving spiking neural networks for online learning over drifting data streams publication-title: Neural Networks – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: b45 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: The Bulletin of Mathematical Biophysics – volume: 10 start-page: 1 year: 2016 end-page: 145 ident: b11 article-title: Lifelong machine learning publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning – volume: 275 start-page: 1261 year: 2018 end-page: 1274 ident: b41 article-title: Incremental on-line learning: A review and comparison of state of the art algorithms publication-title: Neurocomputing – volume: 239 start-page: 39 year: 2017 end-page: 57 ident: b57 article-title: A survey on data preprocessing for data stream mining: Current status and future directions publication-title: Neurocomputing – reference: Schrauwen, B., & Van Campenhout, J. (2004). Improving Spikeprop: Enhancements to an error-backpropagation rule for spiking neural networks. In – volume: 2 start-page: 5 year: 2008 ident: b24 article-title: Brian: A simulator for spiking neural networks in python publication-title: Frontiers in Neuroinformatics – volume: 20 start-page: 437 year: 2010 end-page: 445 ident: b62 article-title: Knowledge extraction from evolving spiking neural networks with rank order population coding publication-title: International Journal of Neural Systems – year: 2018 ident: b42 article-title: Learning under concept drift: A review publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 10 start-page: 1634 year: 2017 end-page: 1645 ident: b51 article-title: Samza: Stateful scalable stream processing at linkedin publication-title: Proceedings of the VLDB Endowment – volume: 12 start-page: 291 year: 2018 ident: b65 article-title: Performance comparison of the digital neuromorphic hardware spinnaker and the neural network simulation software NEST for a full-scale cortical microcircuit model publication-title: Frontiers in Neuroscience – volume: 48 start-page: 17 year: 2002 end-page: 37 ident: b8 article-title: Error-backpropagation in temporally encoded networks of spiking neurons publication-title: Neurocomputing – year: 2017 ident: b19 article-title: Apache beam – volume: 5 start-page: 1 year: 1988 ident: b59 article-title: Learning representations by back-propagating errors publication-title: Cognitive Modeling – volume: 37 start-page: 132 year: 2017 end-page: 156 ident: b36 article-title: Ensemble learning for data stream analysis: A survey publication-title: Information Fusion – volume: 9 start-page: 19 year: 2015 ident: b67 article-title: Annarchy: A code generation approach to neural simulations on parallel hardware publication-title: Frontiers in Neuroinformatics – volume: 52 start-page: 62 year: 2014 end-page: 76 ident: b31 article-title: Neucube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data publication-title: Neural Networks – year: 2017 ident: b47 article-title: Forecast: Internet of things — Endpoints and associated services, worldwide – start-page: 1 year: 2018 end-page: 20 ident: b72 article-title: A systematic study of online class imbalance learning with concept drift publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 36 year: 2015 ident: b9 article-title: Apache flink: Stream and batch processing in a single engine publication-title: Bulletin of the IEEE Computer Society Technical Committee on Data Engineering – volume: 28 start-page: 30 year: 2017 end-page: 43 ident: b71 article-title: Spiketemp: An enhanced rank-order-based learning approach for spiking neural networks with adaptive structure publication-title: IEEE Transactions on Neural Networks and Learning Systems – reference: . – volume: 48 start-page: 220 year: 2019 end-page: 250 ident: b13 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm and Evolutionary Computation – year: 2019 ident: b75 article-title: Deep spiking neural network with spike count based learning rule – volume: 19 start-page: 1 year: 2018 end-page: 5 ident: b49 article-title: Scikit-multiflow: A multi-output streaming framework publication-title: Journal of Machine Learning Research (JMLR) – volume: 70 start-page: 1629 year: 1993 end-page: 1638 ident: b1 article-title: Spatiotemporal firing patterns in the frontal cortex of behaving monkeys publication-title: Journal of Neurophysiology – reference: . vol. 11 (pp. 301–305). – volume: 283 start-page: 20162134 year: 2016 ident: b14 article-title: A spiking neural model of adaptive arm control publication-title: Proceedings of the Royal Society B – volume: 59 start-page: 56 year: 2016 end-page: 65 ident: b76 article-title: Apache spark: A unified engine for big data processing publication-title: Communications of the ACM – volume: 9 start-page: 1 year: 2018 end-page: 23 ident: b35 article-title: Discussion and review on evolving data streams and concept drift adapting publication-title: Evolving Systems – start-page: 82 year: 2018 end-page: 94 ident: b39 article-title: Drift detection over non-stationary data streams using evolving spiking neural networks publication-title: International symposium on intelligent and distributed computing – year: 2015 ident: b44 article-title: Unlocking the potential of the internet of things – year: 2012 ident: b18 article-title: Apache spark streaming – volume: 16 start-page: 149 year: 2015 end-page: 153 ident: b50 article-title: SAMOA: Scalable advanced massive online analysis publication-title: Journal of Machine Learning Research (JMLR) – volume: 3 start-page: 11 year: 2009 ident: b52 article-title: PCSIM: A parallel simulation environment for neural circuits fully integrated with python publication-title: Frontiers in Neuroinformatics – year: 2007 ident: b30 article-title: Dynamical systems in neuroscience – year: 2018 ident: b32 article-title: Time-space, spiking neural networks and brain-inspired artificial intelligence – start-page: 91 year: 2016 end-page: 114 ident: b77 article-title: An overview of concept drift applications publication-title: Big data analysis: New algorithms for a new society – volume: 65 start-page: 386 year: 1958 ident: b58 article-title: The perceptron: A probabilistic model for information storage and organization in the brain publication-title: Psychological Review – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b27 article-title: Long short-term memory publication-title: Neural Computation – volume: 275 start-page: 1261 year: 2018 ident: 10.1016/j.neunet.2019.09.004_b41 article-title: Incremental on-line learning: A review and comparison of state of the art algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.084 – year: 2018 ident: 10.1016/j.neunet.2019.09.004_b4 article-title: Online machine learning in big data streams publication-title: CoRR – volume: 5 start-page: 115 issue: 4 year: 1943 ident: 10.1016/j.neunet.2019.09.004_b45 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: The Bulletin of Mathematical Biophysics doi: 10.1007/BF02478259 – year: 2018 ident: 10.1016/j.neunet.2019.09.004_b63 article-title: Deep learning in spiking neural networks publication-title: Neural Networks – year: 2002 ident: 10.1016/j.neunet.2019.09.004_b22 – year: 2017 ident: 10.1016/j.neunet.2019.09.004_b47 – year: 2012 ident: 10.1016/j.neunet.2019.09.004_b18 – volume: 10 start-page: 1634 issue: 12 year: 2017 ident: 10.1016/j.neunet.2019.09.004_b51 article-title: Samza: Stateful scalable stream processing at linkedin publication-title: Proceedings of the VLDB Endowment doi: 10.14778/3137765.3137770 – volume: 50 start-page: 23 issue: 2 year: 2017 ident: 10.1016/j.neunet.2019.09.004_b23 article-title: A survey on ensemble learning for data stream classification publication-title: ACM Computing Surveys doi: 10.1145/3054925 – year: 2018 ident: 10.1016/j.neunet.2019.09.004_b32 – volume: 9 start-page: 420 issue: 3 year: 2006 ident: 10.1016/j.neunet.2019.09.004_b25 article-title: The tempotron: A neuron that learns spike timing–based decisions publication-title: Nature Neuroscience doi: 10.1038/nn1643 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.neunet.2019.09.004_b26 article-title: Reducing the dimensionality of data with neural networks publication-title: science doi: 10.1126/science.1127647 – volume: 5 start-page: 1 issue: 3 year: 1988 ident: 10.1016/j.neunet.2019.09.004_b59 article-title: Learning representations by back-propagating errors publication-title: Cognitive Modeling – year: 2011 ident: 10.1016/j.neunet.2019.09.004_b48 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 10.1016/j.neunet.2019.09.004_b58 article-title: The perceptron: A probabilistic model for information storage and organization in the brain publication-title: Psychological Review doi: 10.1037/h0042519 – volume: 9 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.neunet.2019.09.004_b35 article-title: Discussion and review on evolving data streams and concept drift adapting publication-title: Evolving Systems doi: 10.1007/s12530-016-9168-2 – start-page: 762 year: 1982 ident: 10.1016/j.neunet.2019.09.004_b74 article-title: Applications of advances in nonlinear sensitivity analysis – volume: 28 start-page: 30 issue: 1 year: 2017 ident: 10.1016/j.neunet.2019.09.004_b71 article-title: Spiketemp: An enhanced rank-order-based learning approach for spiking neural networks with adaptive structure publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2501322 – volume: 102 start-page: 652 issue: 5 year: 2014 ident: 10.1016/j.neunet.2019.09.004_b20 article-title: The spinnaker project publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2014.2304638 – volume: 451 start-page: 348 year: 2018 ident: 10.1016/j.neunet.2019.09.004_b3 article-title: A large-scale comparison of concept drift detectors publication-title: Information Sciences doi: 10.1016/j.ins.2018.04.014 – volume: 171 start-page: 1216 year: 2016 ident: 10.1016/j.neunet.2019.09.004_b16 article-title: Development of a self-regulating evolving spiking neural network for classification problem publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.086 – year: 2005 ident: 10.1016/j.neunet.2019.09.004_b55 – start-page: 1 issue: 99 year: 2018 ident: 10.1016/j.neunet.2019.09.004_b72 article-title: A systematic study of online class imbalance learning with concept drift publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 3 start-page: 11 year: 2009 ident: 10.1016/j.neunet.2019.09.004_b52 article-title: PCSIM: A parallel simulation environment for neural circuits fully integrated with python publication-title: Frontiers in Neuroinformatics doi: 10.3389/neuro.11.011.2009 – volume: 19 start-page: 1 issue: 72 year: 2018 ident: 10.1016/j.neunet.2019.09.004_b49 article-title: Scikit-multiflow: A multi-output streaming framework publication-title: Journal of Machine Learning Research (JMLR) – volume: 14 start-page: 715 issue: 6–7 year: 2001 ident: 10.1016/j.neunet.2019.09.004_b64 article-title: Spike-based strategies for rapid processing publication-title: Neural Networks doi: 10.1016/S0893-6080(01)00083-1 – year: 2016 ident: 10.1016/j.neunet.2019.09.004_b12 article-title: Iot big data stream mining – volume: 24 start-page: 139 issue: 1 year: 2001 ident: 10.1016/j.neunet.2019.09.004_b5 article-title: Synaptic modification by correlated activity: Hebb’s postulate revisited publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.24.1.139 – volume: 117 start-page: 500 issue: 4 year: 1952 ident: 10.1016/j.neunet.2019.09.004_b28 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: The Journal of Physiology doi: 10.1113/jphysiol.1952.sp004764 – year: 2018 ident: 10.1016/j.neunet.2019.09.004_b6 – volume: 12 start-page: 35 year: 2018 ident: 10.1016/j.neunet.2019.09.004_b7 article-title: A survey of robotics control based on learning-inspired spiking neural networks publication-title: Frontiers in Neurorobotics doi: 10.3389/fnbot.2018.00035 – volume: 36 issue: 4 year: 2015 ident: 10.1016/j.neunet.2019.09.004_b9 article-title: Apache flink: Stream and batch processing in a single engine publication-title: Bulletin of the IEEE Computer Society Technical Committee on Data Engineering – start-page: 1 year: 2010 ident: 10.1016/j.neunet.2019.09.004_b69 article-title: Online versus offline learning for spiking neural networks: A review and new strategies – year: 2007 ident: 10.1016/j.neunet.2019.09.004_b30 – volume: 17 start-page: 2337 issue: 11 year: 2005 ident: 10.1016/j.neunet.2019.09.004_b37 article-title: What can a neuron learn with spike-timing-dependent plasticity? publication-title: Neural Computation doi: 10.1162/0899766054796888 – volume: 30 start-page: 964 issue: 4 year: 2016 ident: 10.1016/j.neunet.2019.09.004_b73 article-title: Characterizing concept drift publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-015-0448-4 – start-page: 82 year: 2018 ident: 10.1016/j.neunet.2019.09.004_b39 article-title: Drift detection over non-stationary data streams using evolving spiking neural networks – start-page: 619 year: 2019 ident: 10.1016/j.neunet.2019.09.004_b33 article-title: Deep learning of multisensory streaming data for predictive modelling with applications in finance, ecology, transport and environment – year: 2019 ident: 10.1016/j.neunet.2019.09.004_b54 article-title: Selection and optimization of temporal spike encoding methods for spiking neural networks publication-title: IEEE transactions on neural networks and learning systems – volume: 46 start-page: 44 issue: 4 year: 2014 ident: 10.1016/j.neunet.2019.09.004_b21 article-title: A survey on concept drift adaptation publication-title: ACM computing surveys (CSUR) doi: 10.1145/2523813 – volume: 4 start-page: 87 issue: 2 year: 2013 ident: 10.1016/j.neunet.2019.09.004_b60 article-title: Evolving spiking neural network – a survey publication-title: Evolving Systems doi: 10.1007/s12530-013-9074-9 – ident: 10.1016/j.neunet.2019.09.004_b61 – volume: 9 start-page: 19 year: 2015 ident: 10.1016/j.neunet.2019.09.004_b67 article-title: Annarchy: A code generation approach to neural simulations on parallel hardware publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2015.00019 – start-page: 259 year: 2015 ident: 10.1016/j.neunet.2019.09.004_b70 article-title: Spikecomp: An evolving spiking neural network with adaptive compact structure for pattern classification – volume: 20 start-page: 437 issue: 6 year: 2010 ident: 10.1016/j.neunet.2019.09.004_b62 article-title: Knowledge extraction from evolving spiking neural networks with rank order population coding publication-title: International Journal of Neural Systems doi: 10.1142/S012906571000253X – volume: 59 start-page: 56 issue: 11 year: 2016 ident: 10.1016/j.neunet.2019.09.004_b76 article-title: Apache spark: A unified engine for big data processing publication-title: Communications of the ACM doi: 10.1145/2934664 – volume: 48 start-page: 220 year: 2019 ident: 10.1016/j.neunet.2019.09.004_b13 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2019.04.008 – volume: 19 start-page: 9 issue: 1 year: 2015 ident: 10.1016/j.neunet.2019.09.004_b29 article-title: Big data analysis: Apache storm perspective publication-title: International Journal of Computer Trends and Technology doi: 10.14445/22312803/IJCTT-V19P103 – volume: 48 start-page: 17 issue: 1–4 year: 2002 ident: 10.1016/j.neunet.2019.09.004_b8 article-title: Error-backpropagation in temporally encoded networks of spiking neurons publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00658-0 – year: 2017 ident: 10.1016/j.neunet.2019.09.004_b19 – volume: 68 start-page: 693 year: 2018 ident: 10.1016/j.neunet.2019.09.004_b38 article-title: Dred: an evolutionary diversity generation method for concept drift adaptation in online learning environments publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.10.004 – volume: 70 start-page: 1629 issue: 4 year: 1993 ident: 10.1016/j.neunet.2019.09.004_b1 article-title: Spatiotemporal firing patterns in the frontal cortex of behaving monkeys publication-title: Journal of Neurophysiology doi: 10.1152/jn.1993.70.4.1629 – year: 2019 ident: 10.1016/j.neunet.2019.09.004_b75 – volume: 283 start-page: 20162134 issue: 1843 year: 2016 ident: 10.1016/j.neunet.2019.09.004_b14 article-title: A spiking neural model of adaptive arm control publication-title: Proceedings of the Royal Society B doi: 10.1098/rspb.2016.2134 – volume: 2 start-page: 5 year: 2008 ident: 10.1016/j.neunet.2019.09.004_b24 article-title: Brian: A simulator for spiking neural networks in python publication-title: Frontiers in Neuroinformatics doi: 10.3389/neuro.11.005.2008 – volume: 108 start-page: 1 year: 2018 ident: 10.1016/j.neunet.2019.09.004_b40 article-title: Evolving spiking neural networks for online learning over drifting data streams publication-title: Neural Networks doi: 10.1016/j.neunet.2018.07.014 – volume: 7 issue: 8 year: 2012 ident: 10.1016/j.neunet.2019.09.004_b17 article-title: The chronotron: A neuron that learns to fire temporally precise spike patterns publication-title: PLoS One doi: 10.1371/journal.pone.0040233 – volume: 52 start-page: 62 year: 2014 ident: 10.1016/j.neunet.2019.09.004_b31 article-title: Neucube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data publication-title: Neural Networks doi: 10.1016/j.neunet.2014.01.006 – year: 2015 ident: 10.1016/j.neunet.2019.09.004_b44 – volume: 37 start-page: 132 year: 2017 ident: 10.1016/j.neunet.2019.09.004_b36 article-title: Ensemble learning for data stream analysis: A survey publication-title: Information Fusion doi: 10.1016/j.inffus.2017.02.004 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.neunet.2019.09.004_b53 article-title: Scikit-learn: Machine learning in python publication-title: Journal of Machine Learning Research (JMLR) – volume: 10 start-page: 1 issue: 3 year: 2016 ident: 10.1016/j.neunet.2019.09.004_b11 article-title: Lifelong machine learning publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning doi: 10.2200/S00737ED1V01Y201610AIM033 – volume: 71 start-page: 409 issue: 4 year: 2011 ident: 10.1016/j.neunet.2019.09.004_b56 article-title: Introduction to spiking neural networks: Information processing, learning and applications publication-title: Acta Neurobiologiae Experimentalis doi: 10.55782/ane-2011-1862 – volume: 50 start-page: 92 year: 2019 ident: 10.1016/j.neunet.2019.09.004_b15 article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards industry 4.0 publication-title: Information Fusion doi: 10.1016/j.inffus.2018.10.005 – year: 2018 ident: 10.1016/j.neunet.2019.09.004_b42 article-title: Learning under concept drift: A review publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2018.2876857 – start-page: 1457 year: 2005 ident: 10.1016/j.neunet.2019.09.004_b68 article-title: Saliency-driven image acuity modulation on a reconfigurable array of spiking silicon neurons – volume: 16 start-page: 101 year: 2006 ident: 10.1016/j.neunet.2019.09.004_b34 article-title: Comparison of supervised learning methods for spike time coding in spiking neural networks publication-title: International Journal of Applied Mathematics and Computer Science – year: 2018 ident: 10.1016/j.neunet.2019.09.004_b66 – volume: 239 start-page: 39 year: 2017 ident: 10.1016/j.neunet.2019.09.004_b57 article-title: A survey on data preprocessing for data stream mining: Current status and future directions publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.078 – volume: 12 start-page: 291 year: 2018 ident: 10.1016/j.neunet.2019.09.004_b65 article-title: Performance comparison of the digital neuromorphic hardware spinnaker and the neural network simulation software NEST for a full-scale cortical microcircuit model publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2018.00291 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.neunet.2019.09.004_b27 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – start-page: 3970 year: 2006 ident: 10.1016/j.neunet.2019.09.004_b46 article-title: Fast modifications of the spikeprop algorithm – volume: 16 start-page: 149 issue: 1 year: 2015 ident: 10.1016/j.neunet.2019.09.004_b50 article-title: SAMOA: Scalable advanced massive online analysis publication-title: Journal of Machine Learning Research (JMLR) – volume: 10 start-page: 1659 issue: 9 year: 1997 ident: 10.1016/j.neunet.2019.09.004_b43 article-title: Networks of spiking neurons: The third generation of neural network models publication-title: Neural Networks doi: 10.1016/S0893-6080(97)00011-7 – year: 2006 ident: 10.1016/j.neunet.2019.09.004_b10 – start-page: 91 year: 2016 ident: 10.1016/j.neunet.2019.09.004_b77 article-title: An overview of concept drift applications – ident: 10.1016/j.neunet.2019.09.004_b2 |
SSID | ssj0006843 |
Score | 2.645131 |
Snippet | Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 88 |
SubjectTerms | Action Potentials - physiology Algorithms Artificial Intelligence Brain - cytology Brain - physiology Computer Science Concept drift Education, Distance - methods Humans Models, Neurological Neural Networks, Computer Neurons - physiology Online learning Spiking Neural Networks Stream data |
Title | Spiking Neural Networks and online learning: An overview and perspectives |
URI | https://dx.doi.org/10.1016/j.neunet.2019.09.004 https://www.ncbi.nlm.nih.gov/pubmed/31536902 https://www.proquest.com/docview/2295471992 https://telecom-paris.hal.science/hal-02460417 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51txculPJcCpVBXM06fsbcVhXVlsdeSqXeLMdx6CKUrtjdHvntHSfOIiSqSkg5WeMkmrFnvrHnAfAuVKH2qra0MkxSiZCAWs0DjSVP9c4CmrSUO_x1oecX8tOlutyDkyEXJoVVZt3f6_ROW-eRaebmdLVcTs8ZmlqNgAchCDoSSo1gnwur1Rj2Z2ef54udQtZlHzyH9DRNGDLoujCvNm7bmIIqC9sVPM0d2_5hoUZXKVTyLhza2aPTR_AwA0ky6__1EPZi-xgOhiYNJO_ZJ3B2vlqm43CSynDghEUf970mvq1JXyeD5NYR3z-QWUtSTGe6L-gIVn9yMddP4eL047eTOc39E2iQkm-oZ6rxQrCqNNLiZg518Ko0pZU8NKpRHm2RN42NBaqtKhoh68CC9kGK2kZTiWcwbq_b-AKI1Y2WjUB4YrhUokInTSC9lqpCn7FmExADz1zIxcVTj4ufbogi--F6TrvEacfwYXICdDdr1RfXuIfeDOJwfy0Sh_r_nplvUXq7j6Sa2vPZF5fGEKRoJgtzU0zgzSBch5ss3Zz4Nl5v1y71PEcrbi2fwPNe6rt3CbQZ2jL-8r9_7gge8OTFdwc7r2C8-bWNrxHqbKpjGL3_XRznBX0LoJL65Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAX3o_laRBXs974FXNbVVRb2O6lrdSb5ThOWYTSFbvLkd_OTOJshQSqhJSTNU6iGXse9jczAO9jFeuga8crKxRX6BJwZ4rIU1lQvbOIJo1yh08WZnauPl_oiz04HHJhCFaZdX-v0zttnUfGmZvj1XI5PhVoag06POiCYCCh9T7cUlpawvV9-HWN8zBlD51Dak7kQ_5cB_Jq07ZNBKmcuK7cae7X9hf7tP-VgJL_8kI7a3R0H-5mN5JN-z99AHupfQj3hhYNLO_YR3B8ulrSYTijIhw4YdGjvtcstDXrq2Sw3Dji8iObtowQnXRb0BGsrjMx14_h_OjT2eGM5-4JPCpVbHgQuglSiqq0yuFWjnUMurSlU0VsdKMDWqJgG5cmqLSqZKWqo4gmRCVrl2wln8BBe9WmZ8CcaYxqJDontkAWVxiiSaQ3SlcYMdZiBHLgmY-5tDh1uPjuBwzZN99z2hOnvcBHqBHw3axVX1rjBno7iMP_sUQ8av8bZr5D6e0-QhW1Z9O5pzF0UYxQE_tzMoK3g3A9bjG6NwltutquPXU8RxvuXDGCp73Ud--SaDGME8Xz__65N3B7dnYy9_PjxZcXcKegeL474nkJB5sf2_QKnZ5N9bpb1L8BvL77sA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spiking+Neural+Networks+and+online+learning%3A+An+overview+and+perspectives&rft.jtitle=Neural+networks&rft.au=Lobo%2C+Jesus+L.&rft.au=Del+Ser%2C+Javier&rft.au=Bifet%2C+Albert&rft.au=Kasabov%2C+Nikola&rft.date=2020-01-01&rft.issn=0893-6080&rft.volume=121&rft.spage=88&rft.epage=100&rft_id=info:doi/10.1016%2Fj.neunet.2019.09.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2019_09_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |