Solving nonlinear PDEs using the higher order Haar wavelet method on nonuniform and adaptive grids

The higher order Haar wavelet method (HOHWM) is used with a nonuniform grid to solve nonlinear partial differential equations numerically. The Burgers’ equation, the Korteweg–de Vries equation, the modified Korteweg–de Vries equation and the sine–Gordon equation are used as model equations. Adaptive...

Full description

Saved in:
Bibliographic Details
Published inMathematical modelling and analysis Vol. 26; no. 1; pp. 147 - 169
Main Authors Ratas, Mart, Salupere, Andrus, Majak, Jüri
Format Journal Article
LanguageEnglish
Published Vilnius Vilnius Gediminas Technical University 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The higher order Haar wavelet method (HOHWM) is used with a nonuniform grid to solve nonlinear partial differential equations numerically. The Burgers’ equation, the Korteweg–de Vries equation, the modified Korteweg–de Vries equation and the sine–Gordon equation are used as model equations. Adaptive as well as nonadaptive nonuniform grids are developed and used to solve the model equations numerically. The numerical results are compared to the known analytical solutions as well as to the numerical solutions obtained by application of the HOHWM on a uniform grid. The proposed methods of using nonuniform grid are shown to significantly increase the accuracy of the HOHWM at the same number of grid points.
AbstractList The higher order Haar wavelet method (HOHWM) is used with a nonuni-form grid to solve nonlinear partial differential equations numerically. The Burgers' equation, the Korteweg-de Vries equation, the modified Korteweg-de Vries equation and the sine-Gordon equation are used as model equations. Adaptive as well as nonadaptive nonuniform grids are developed and used to solve the model equations numerically. The numerical results are compared to the known analytical solutions as well as to the numerical solutions obtained by application of the HOHWM on a uniform grid. The proposed methods of using nonuniform grid are shown to significantly increase the accuracy of the HOHWM at the same number of grid points. Keywords: numerical simulation, Haar wavelet method, higher order wavelet expansion, nonlinear PDEs, nonuniform grid, adaptive grid. AMS Subject Classification: 37M05; 65T60; 35Q51; 35G31; 65M50.
The higher order Haar wavelet method (HOHWM) is used with a nonuniform grid to solve nonlinear partial differential equations numerically. The Burgers’ equation, the Korteweg–de Vries equation, the modified Korteweg–de Vries equation and the sine–Gordon equation are used as model equations. Adaptive as well as nonadaptive nonuniform grids are developed and used to solve the model equations numerically. The numerical results are compared to the known analytical solutions as well as to the numerical solutions obtained by application of the HOHWM on a uniform grid. The proposed methods of using nonuniform grid are shown to significantly increase the accuracy of the HOHWM at the same number of grid points.
Audience Academic
Author Majak, Jüri
Ratas, Mart
Salupere, Andrus
Author_xml – sequence: 1
  givenname: Mart
  orcidid: 0000-0002-4634-762X
  surname: Ratas
  fullname: Ratas, Mart
  organization: Department of Cybernetics, School of Science, Tallinn University of Technology, 12618 Tallinn, Estonia
– sequence: 2
  givenname: Andrus
  surname: Salupere
  fullname: Salupere, Andrus
  organization: Department of Cybernetics, School of Science, Tallinn University of Technology, 12618 Tallinn, Estonia
– sequence: 3
  givenname: Jüri
  orcidid: 0000-0003-3414-8890
  surname: Majak
  fullname: Majak, Jüri
  organization: Department of Mechanical and Industrial Engineering, School of Engineering, Tallinn University of Technology, 19086 Tallinn, Estonia
BookMark eNp1Ud1rFDEcXKSCbfXV54D4uNcku_l6LLXaQkFBfQ6_zcdejt3kTPZO_O_NdbUFQQLJj8nMZMhcNGcxRdc0bwnedLLnV_MMG4op2RCqKH7RnBPey7ZjBJ_VuVO05fXiVXNRyg5jxqjE583wNU3HEEdUzaYQHWT05cNtQYdyApetQ9swbl1GKdu630El_ISjm9yCZrdsk0UpnsSHGHzKM4JoEVjYL-Ho0JiDLa-blx6m4t78OS-b7x9vv93ctQ-fP93fXD-0pu_p0ipLBWEd7zwhzlNDgPaCDTUzFhQLJZkwzCg_YMPJ4DwR0itqOHDvvKesu2zuV1-bYKf3OcyQf-kEQT8CKY8a8hLM5LTknBrhqTWc9t6DEnYYFChuJLECfPV6t3rtc_pxcGXRu3TIscbXtJey5mRSVtZmZY1QTUP0aclg6rJuDqa240PFrzlTtQks2LPA5FRKdv4pJsH6VKKuJepTifqxxCro_xGYsMASUqwvhen_sver7BimGA7lOf3fH1h5vwGR8rAE
CitedBy_id crossref_primary_10_1115_1_4067859
crossref_primary_10_1121_10_0026453
crossref_primary_10_1016_j_matcom_2022_02_006
crossref_primary_10_1142_S0219876223500020
crossref_primary_10_1016_j_jocs_2024_102394
crossref_primary_10_1007_s11029_022_10025_2
crossref_primary_10_3846_mma_2022_15503
crossref_primary_10_1002_mma_8343
crossref_primary_10_1155_2022_1541486
crossref_primary_10_1142_S0219876222500232
crossref_primary_10_1002_mma_8655
crossref_primary_10_1007_s40314_023_02283_0
crossref_primary_10_1115_1_4056397
crossref_primary_10_1142_S0219876221500687
crossref_primary_10_1002_mma_7805
crossref_primary_10_1140_epjp_s13360_024_04894_w
crossref_primary_10_3390_computation12090187
crossref_primary_10_14498_vsgtu2009
crossref_primary_10_1007_s10973_022_11706_9
crossref_primary_10_3390_computation11100189
Cites_doi 10.1016/0045-7825(87)90046-6
10.1023/B:INAM.0000031914.84082.d2
10.1016/0045-7930(86)90036-8
10.1049/ip-cta:19970702
10.1016/j.matcom.2010.02.001
10.1007/s10910-015-0507-5
10.1109/proc.1973.9296
10.1137/1025024
10.1016/j.amc.2009.04.015
10.1016/j.cam.2014.04.027
10.1023/b:inam.0000020823.49759.c9
10.1016/s0895-7177(04)90010-6
10.1098/rspa.1949.0095
10.1137/1.9781611970227
10.1007/s00009-016-0682-z
10.1016/j.amc.2006.07.077
10.1016/j.physleta.2007.07.051
10.3846/mma.2020.11112
10.1016/S1874-608X(97)80005-2
10.1143/jpsj.33.1456
10.1143/jjap.17.811
10.1073/pnas.38.3.235
10.1038/s41592-019-0686-2
10.4028/www.scientific.net/KEM.799.230
10.1016/j.cam.2010.05.013
10.1007/s12043-016-1286-7
10.1017/s0962492906400015
10.1007/s00366-019-00883-1
10.1051/0004-6361/200912535
10.1016/s1874-608x(97)80006-4
10.1090/qam/42889
10.1007/978-3-319-04295-4
10.1016/j.amc.2009.12.037
10.1086/317361
10.1117/12.736416
10.1016/j.amc.2005.09.021
10.1016/j.cam.2008.07.003
10.1016/j.compstruct.2013.09.044
10.1086/313015
10.1137/0904010
10.1016/S0065-2156(08)70100-5
10.1016/s0377-0427(98)00261-1
10.1016/j.amc.2009.01.089
10.1080/15502287.2011.580828
10.1016/j.amc.2007.08.036
10.1016/B978-1-4832-0078-1.50015-8
10.1016/j.amc.2003.09.021
10.1155/2012/673934
10.1016/j.camwa.2018.11.018
10.2514/3.51100
10.1016/j.cam.2012.08.031
10.3846/1392-6292.2009.14.467-481
10.1016/j.compstruct.2018.06.013
10.1007/s10778-006-0044-9
10.1088/1126-6708/2005/08/023
10.1016/0021-9991(84)90073-1
10.1090/qam/306736
10.1016/s0020-7683(03)00417-7
10.1007/s00366-018-0584-8
10.1016/j.compstruct.2010.01.021
10.1016/j.amc.2004.12.027
10.1016/j.amc.2013.07.018
10.2174/1871527315666161111123638
10.1063/1.4952346
10.1051/0004-6361:20011817
10.1016/j.amc.2008.12.089
10.1017/CBO9781139172059
10.1137/1.9781611970883
10.1007/s11029-010-9119-0
10.1016/j.camwa.2011.02.016
10.1140/epjp/i2019-12874-8
10.1016/j.cam.2013.10.024
10.1016/j.compstruct.2013.12.019
10.1016/j.ymssp.2011.02.003
10.1063/1.5114340
10.1016/j.ijmecsci.2013.09.025
10.11121/ijocta.01.2017.00396
10.1103/physreva.44.5292
ContentType Journal Article
Copyright Copyright (c) 2021 The Author(s). Published by Vilnius Gediminas Technical University.
COPYRIGHT 2021 Vilnius Gediminas Technical University
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright (c) 2021 The Author(s). Published by Vilnius Gediminas Technical University.
– notice: COPYRIGHT 2021 Vilnius Gediminas Technical University
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID ABJBJ
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M2O
M7S
MBDVC
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3846/mma.2021.12920
DatabaseName VILNIUS TECH Press Open Access Scientific Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Engineering Database
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef

Research Library Prep
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1648-3510
EndPage 169
ExternalDocumentID oai_doaj_org_article_8662c7f2dc624ffa97dbb9a96c81d7af
A659648075
10_3846_mma_2021_12920
oai:ojs2.journals.vilniustech.lt:article/12920
GroupedDBID .7F
.QJ
4.4
5GY
8FE
8FG
8G5
AAENE
ABCCY
ABDBF
ABFIM
ABJBJ
ABJCF
ABJNI
ABPEM
ABTAI
ABUWG
ACGFO
ACGFS
ACIWK
ACUHS
ADBBV
ADCVX
AENEX
AFKRA
AGMYJ
AIJEM
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AVBZW
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CE4
CS3
DU5
DWQXO
EN8
ESX
E~A
E~B
GNUQQ
GROUPED_DOAJ
GTTXZ
GUQSH
H13
HCIFZ
HF~
HZ~
H~P
I-F
IAO
ITC
J.P
K6V
K7-
L6V
M2O
M7S
NA5
O9-
OK1
P2P
PADUT
PHGZM
PHGZT
PQGLB
PQQKQ
PTHSS
S-T
TDBHL
TFL
TFW
TR2
TUS
UT5
UU3
~8M
~S~
AAYXX
CITATION
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
MBDVC
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c442t-9d2715363f11ef2c1a2475b629072079857c5c9fb0c61bef178f92c6a6feff253
IEDL.DBID DOA
ISSN 1392-6292
IngestDate Wed Aug 27 01:27:29 EDT 2025
Fri Jul 25 12:27:18 EDT 2025
Tue Jun 10 20:34:04 EDT 2025
Tue Jul 01 04:16:27 EDT 2025
Thu Apr 24 23:07:36 EDT 2025
Tue Aug 12 21:21:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Haar wavelet method
higher order wavelet expansion
nonuniform grid
adaptive grid
numerical simulation
nonlinear PDEs
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-9d2715363f11ef2c1a2475b629072079857c5c9fb0c61bef178f92c6a6feff253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4634-762X
0000-0003-3414-8890
OpenAccessLink https://doaj.org/article/8662c7f2dc624ffa97dbb9a96c81d7af
PQID 2488153588
PQPubID 1386354
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_8662c7f2dc624ffa97dbb9a96c81d7af
proquest_journals_2488153588
gale_infotracacademiconefile_A659648075
crossref_primary_10_3846_mma_2021_12920
crossref_citationtrail_10_3846_mma_2021_12920
vilnius_journals_article_12920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Vilnius
PublicationPlace_xml – name: Vilnius
PublicationTitle Mathematical modelling and analysis
PublicationTitleAbbrev MMA
PublicationYear 2021
Publisher Vilnius Gediminas Technical University
Publisher_xml – name: Vilnius Gediminas Technical University
References key-10.3846/mma.2021.12920-50
key-10.3846/mma.2021.12920-18
key-10.3846/mma.2021.12920-17
key-10.3846/mma.2021.12920-9
key-10.3846/mma.2021.12920-8
key-10.3846/mma.2021.12920-15
key-10.3846/mma.2021.12920-59
key-10.3846/mma.2021.12920-7
key-10.3846/mma.2021.12920-6
key-10.3846/mma.2021.12920-5
key-10.3846/mma.2021.12920-4
key-10.3846/mma.2021.12920-19
key-10.3846/mma.2021.12920-10
key-10.3846/mma.2021.12920-54
key-10.3846/mma.2021.12920-53
key-10.3846/mma.2021.12920-52
key-10.3846/mma.2021.12920-51
key-10.3846/mma.2021.12920-14
key-10.3846/mma.2021.12920-58
key-10.3846/mma.2021.12920-13
key-10.3846/mma.2021.12920-57
key-10.3846/mma.2021.12920-12
key-10.3846/mma.2021.12920-56
key-10.3846/mma.2021.12920-11
key-10.3846/mma.2021.12920-55
key-10.3846/mma.2021.12920-61
key-10.3846/mma.2021.12920-60
key-10.3846/mma.2021.12920-29
key-10.3846/mma.2021.12920-28
key-10.3846/mma.2021.12920-27
key-10.3846/mma.2021.12920-26
F. Bulut (key-10.3846/mma.2021.12920-16) 2015; 108
key-10.3846/mma.2021.12920-65
key-10.3846/mma.2021.12920-20
C. Cattani (key-10.3846/mma.2021.12920-21) 2004; 53
key-10.3846/mma.2021.12920-64
key-10.3846/mma.2021.12920-63
key-10.3846/mma.2021.12920-62
key-10.3846/mma.2021.12920-25
key-10.3846/mma.2021.12920-69
key-10.3846/mma.2021.12920-24
key-10.3846/mma.2021.12920-68
key-10.3846/mma.2021.12920-23
key-10.3846/mma.2021.12920-67
key-10.3846/mma.2021.12920-22
key-10.3846/mma.2021.12920-66
M. Kumar (key-10.3846/mma.2021.12920-48) 2012; 13
key-10.3846/mma.2021.12920-72
key-10.3846/mma.2021.12920-71
key-10.3846/mma.2021.12920-70
key-10.3846/mma.2021.12920-39
key-10.3846/mma.2021.12920-38
key-10.3846/mma.2021.12920-37
key-10.3846/mma.2021.12920-32
key-10.3846/mma.2021.12920-76
key-10.3846/mma.2021.12920-31
key-10.3846/mma.2021.12920-75
key-10.3846/mma.2021.12920-30
key-10.3846/mma.2021.12920-74
key-10.3846/mma.2021.12920-73
key-10.3846/mma.2021.12920-36
key-10.3846/mma.2021.12920-35
key-10.3846/mma.2021.12920-79
key-10.3846/mma.2021.12920-34
key-10.3846/mma.2021.12920-78
key-10.3846/mma.2021.12920-33
key-10.3846/mma.2021.12920-77
key-10.3846/mma.2021.12920-83
key-10.3846/mma.2021.12920-82
key-10.3846/mma.2021.12920-81
key-10.3846/mma.2021.12920-80
key-10.3846/mma.2021.12920-3
key-10.3846/mma.2021.12920-2
key-10.3846/mma.2021.12920-1
key-10.3846/mma.2021.12920-49
key-10.3846/mma.2021.12920-43
key-10.3846/mma.2021.12920-87
key-10.3846/mma.2021.12920-42
key-10.3846/mma.2021.12920-86
key-10.3846/mma.2021.12920-41
key-10.3846/mma.2021.12920-85
key-10.3846/mma.2021.12920-40
key-10.3846/mma.2021.12920-84
key-10.3846/mma.2021.12920-47
key-10.3846/mma.2021.12920-46
key-10.3846/mma.2021.12920-45
key-10.3846/mma.2021.12920-89
key-10.3846/mma.2021.12920-44
key-10.3846/mma.2021.12920-88
References_xml – ident: key-10.3846/mma.2021.12920-31
  doi: 10.1016/0045-7825(87)90046-6
– ident: key-10.3846/mma.2021.12920-77
  doi: 10.1023/B:INAM.0000031914.84082.d2
– ident: key-10.3846/mma.2021.12920-7
  doi: 10.1016/0045-7930(86)90036-8
– ident: key-10.3846/mma.2021.12920-26
  doi: 10.1049/ip-cta:19970702
– ident: key-10.3846/mma.2021.12920-82
  doi: 10.1016/j.matcom.2010.02.001
– ident: key-10.3846/mma.2021.12920-69
  doi: 10.1007/s10910-015-0507-5
– ident: key-10.3846/mma.2021.12920-80
  doi: 10.1109/proc.1973.9296
– ident: key-10.3846/mma.2021.12920-51
  doi: 10.1137/1025024
– ident: key-10.3846/mma.2021.12920-57
  doi: 10.1016/j.amc.2009.04.015
– ident: key-10.3846/mma.2021.12920-5
  doi: 10.1016/j.cam.2014.04.027
– ident: key-10.3846/mma.2021.12920-24
  doi: 10.1023/b:inam.0000020823.49759.c9
– ident: key-10.3846/mma.2021.12920-20
  doi: 10.1016/s0895-7177(04)90010-6
– volume: 108
  start-page: 263
  issue: 4
  year: 2015
  ident: key-10.3846/mma.2021.12920-16
  article-title: Numerical solutions of fractional system of partial differential equations by Haar wavelets
  publication-title: Computer Modeling in Engineering & Sciences
– volume: 13
  start-page: 325
  issue: 3
  year: 2012
  ident: key-10.3846/mma.2021.12920-48
  article-title: Wavelet transform and wavelet based numerical methods: an introduction
  publication-title: International Journal of Nonlinear Science
– ident: key-10.3846/mma.2021.12920-40
– ident: key-10.3846/mma.2021.12920-33
  doi: 10.1098/rspa.1949.0095
– ident: key-10.3846/mma.2021.12920-67
  doi: 10.1137/1.9781611970227
– ident: key-10.3846/mma.2021.12920-71
  doi: 10.1007/s00009-016-0682-z
– ident: key-10.3846/mma.2021.12920-54
  doi: 10.1016/j.amc.2006.07.077
– ident: key-10.3846/mma.2021.12920-86
  doi: 10.1016/j.physleta.2007.07.051
– ident: key-10.3846/mma.2021.12920-76
  doi: 10.3846/mma.2020.11112
– ident: key-10.3846/mma.2021.12920-11
  doi: 10.1016/S1874-608X(97)80005-2
– ident: key-10.3846/mma.2021.12920-8
– ident: key-10.3846/mma.2021.12920-50
– ident: key-10.3846/mma.2021.12920-41
  doi: 10.1143/jpsj.33.1456
– ident: key-10.3846/mma.2021.12920-66
  doi: 10.1143/jjap.17.811
– ident: key-10.3846/mma.2021.12920-28
  doi: 10.1073/pnas.38.3.235
– ident: key-10.3846/mma.2021.12920-85
  doi: 10.1038/s41592-019-0686-2
– ident: key-10.3846/mma.2021.12920-46
  doi: 10.4028/www.scientific.net/KEM.799.230
– ident: key-10.3846/mma.2021.12920-3
  doi: 10.1016/j.cam.2010.05.013
– ident: key-10.3846/mma.2021.12920-70
  doi: 10.1007/s12043-016-1286-7
– ident: key-10.3846/mma.2021.12920-15
  doi: 10.1017/s0962492906400015
– ident: key-10.3846/mma.2021.12920-43
  doi: 10.1007/s00366-019-00883-1
– ident: key-10.3846/mma.2021.12920-84
  doi: 10.1051/0004-6361/200912535
– ident: key-10.3846/mma.2021.12920-12
  doi: 10.1016/s1874-608x(97)80006-4
– ident: key-10.3846/mma.2021.12920-27
  doi: 10.1090/qam/42889
– ident: key-10.3846/mma.2021.12920-59
  doi: 10.1007/978-3-319-04295-4
– ident: key-10.3846/mma.2021.12920-23
  doi: 10.1016/j.amc.2009.12.037
– ident: key-10.3846/mma.2021.12920-35
  doi: 10.1086/317361
– ident: key-10.3846/mma.2021.12920-53
  doi: 10.1117/12.736416
– ident: key-10.3846/mma.2021.12920-52
  doi: 10.1016/j.amc.2005.09.021
– ident: key-10.3846/mma.2021.12920-6
  doi: 10.1016/j.cam.2008.07.003
– ident: key-10.3846/mma.2021.12920-36
– ident: key-10.3846/mma.2021.12920-44
  doi: 10.1016/j.compstruct.2013.09.044
– ident: key-10.3846/mma.2021.12920-47
  doi: 10.1086/313015
– ident: key-10.3846/mma.2021.12920-74
  doi: 10.1137/0904010
– ident: key-10.3846/mma.2021.12920-17
  doi: 10.1016/S0065-2156(08)70100-5
– volume: 53
  start-page: 45
  issue: 1
  year: 2004
  ident: key-10.3846/mma.2021.12920-21
  article-title: Haar wavelets based technique in evolution problems
  publication-title: Proceedings of the Estonian Academy of Sciences
– ident: key-10.3846/mma.2021.12920-65
– ident: key-10.3846/mma.2021.12920-49
  doi: 10.1016/s0377-0427(98)00261-1
– ident: key-10.3846/mma.2021.12920-61
  doi: 10.1016/j.amc.2009.01.089
– ident: key-10.3846/mma.2021.12920-32
  doi: 10.1080/15502287.2011.580828
– ident: key-10.3846/mma.2021.12920-55
  doi: 10.1016/j.amc.2007.08.036
– ident: key-10.3846/mma.2021.12920-18
  doi: 10.1016/B978-1-4832-0078-1.50015-8
– ident: key-10.3846/mma.2021.12920-30
  doi: 10.1016/j.amc.2003.09.021
– ident: key-10.3846/mma.2021.12920-22
  doi: 10.1155/2012/673934
– ident: key-10.3846/mma.2021.12920-68
  doi: 10.1016/j.camwa.2018.11.018
– ident: key-10.3846/mma.2021.12920-75
  doi: 10.2514/3.51100
– ident: key-10.3846/mma.2021.12920-4
  doi: 10.1016/j.cam.2012.08.031
– ident: key-10.3846/mma.2021.12920-56
  doi: 10.3846/1392-6292.2009.14.467-481
– ident: key-10.3846/mma.2021.12920-63
  doi: 10.1016/j.compstruct.2018.06.013
– ident: key-10.3846/mma.2021.12920-25
  doi: 10.1007/s10778-006-0044-9
– ident: key-10.3846/mma.2021.12920-14
  doi: 10.1088/1126-6708/2005/08/023
– ident: key-10.3846/mma.2021.12920-10
  doi: 10.1016/0021-9991(84)90073-1
– ident: key-10.3846/mma.2021.12920-9
  doi: 10.1090/qam/306736
– ident: key-10.3846/mma.2021.12920-45
  doi: 10.1016/s0020-7683(03)00417-7
– ident: key-10.3846/mma.2021.12920-73
  doi: 10.1007/s00366-018-0584-8
– ident: key-10.3846/mma.2021.12920-19
  doi: 10.1016/j.compstruct.2010.01.021
– ident: key-10.3846/mma.2021.12920-37
– ident: key-10.3846/mma.2021.12920-2
  doi: 10.1016/j.amc.2004.12.027
– ident: key-10.3846/mma.2021.12920-78
  doi: 10.1016/j.amc.2013.07.018
– ident: key-10.3846/mma.2021.12920-87
  doi: 10.2174/1871527315666161111123638
– ident: key-10.3846/mma.2021.12920-64
  doi: 10.1063/1.4952346
– ident: key-10.3846/mma.2021.12920-81
  doi: 10.1051/0004-6361:20011817
– ident: key-10.3846/mma.2021.12920-38
  doi: 10.1016/j.amc.2008.12.089
– ident: key-10.3846/mma.2021.12920-29
  doi: 10.1017/CBO9781139172059
– ident: key-10.3846/mma.2021.12920-1
  doi: 10.1137/1.9781611970883
– ident: key-10.3846/mma.2021.12920-60
  doi: 10.1007/s11029-010-9119-0
– ident: key-10.3846/mma.2021.12920-58
  doi: 10.1016/j.camwa.2011.02.016
– ident: key-10.3846/mma.2021.12920-42
  doi: 10.1140/epjp/i2019-12874-8
– ident: key-10.3846/mma.2021.12920-83
  doi: 10.1016/j.cam.2013.10.024
– ident: key-10.3846/mma.2021.12920-88
  doi: 10.1016/j.compstruct.2013.12.019
– ident: key-10.3846/mma.2021.12920-39
  doi: 10.1016/j.ymssp.2011.02.003
– ident: key-10.3846/mma.2021.12920-62
  doi: 10.1063/1.5114340
– ident: key-10.3846/mma.2021.12920-13
– ident: key-10.3846/mma.2021.12920-34
– ident: key-10.3846/mma.2021.12920-89
  doi: 10.1016/j.ijmecsci.2013.09.025
– ident: key-10.3846/mma.2021.12920-72
  doi: 10.11121/ijocta.01.2017.00396
– ident: key-10.3846/mma.2021.12920-79
  doi: 10.1103/physreva.44.5292
SSID ssj0055280
Score 2.349596
Snippet The higher order Haar wavelet method (HOHWM) is used with a nonuniform grid to solve nonlinear partial differential equations numerically. The Burgers’...
The higher order Haar wavelet method (HOHWM) is used with a nonuni-form grid to solve nonlinear partial differential equations numerically. The Burgers'...
SourceID doaj
proquest
gale
crossref
vilnius
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 147
SubjectTerms adaptive grid
Comparative analysis
Differential equations
Exact solutions
haar wavelet method
higher order wavelet expansion
Mathematical models
Methods
Nonlinear differential equations
Nonlinear equations
nonlinear pdes
nonuniform grid
Numerical analysis
numerical simulation
Partial differential equations
Wavelet analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcAB8RSBUvmAxMk066xfJ9RCqgiJqgIq9Wb5GSKlmzSbwN9nZtfbFiG4ru21PTMej8eebwh5q7NOYKnWLHmXWM09Z14ZzyqdgxAiQCHGDn85k7OL-vOluCwOt7Y8qxx0Yqeo4yqgj_yIg6TB6hRaf1hfM8wahberJYXGfbIPKljD4Wv_ZHp2_nXQxUJw3ccJG84kN7yHbZzApnt01cEO8ep9hQmb_tiWOvT-v3U0mMg_F8tmsWvvbEGnj8mjYjvS457ZT8i91DwlD-8gCj4j_ttqiS4C2vQQGG5Dzz9NW4rP2-cUjD36o3vYQTvITTpzUOGXw-QTW9onk6arBhvvGgzZuqKuidRFt0atSOebRWyfk4vT6fePM1bSKLBQ13zLTOQKKCcnuapS5qFyvFbCAznGio-V0UIFEUz24yArn3KldDY8SCdzypmLyQuyB_2ml4RqvIWb4E_8uA7KGO-DkjFOuIlepHpE2EBFGwrGOKa6WFo4ayDVLVDdItVtR_UReXdTf92ja_yz5gky5aYWomJ3H1abuS2LzGopeVCZxyB5nbMzKnpvnJEBrHLlMnSHLLW4dmFYwZUQBJgcomDZYymMxBh7MSIHA9dtWdStvRXBETksknBbOgyiG-6r_7d_TR7g1HpXzgHZ22526Q0YN1t_WCT4NxKh-Sg
  priority: 102
  providerName: ProQuest
Title Solving nonlinear PDEs using the higher order Haar wavelet method on nonuniform and adaptive grids
URI https://journals.vilniustech.lt/index.php/MMA/article/view/12920
https://www.proquest.com/docview/2488153588
https://doaj.org/article/8662c7f2dc624ffa97dbb9a96c81d7af
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAKA-xbVn5gMQpdDOJX8cWdrtCoqqASr1ZtmOXlbZptQ_695mJs2WrCnHhGk-SyefxeOx4vmHsvU46YqRaF9G7WNTgofDK-KLUKQghAjZS7vDXUzk9r79ciIutUl90JizTA2fgDrWUEFSCJkioU3JGNd4bZ2TASEu5RN4X57zNYir7YCFA5_xgA4UEA5muscLJ9vCqoxuC8mNJhZruTUcda_9D34yh8a_ZvJ2tl1tTz-QFe97HjPwo67rLHsX2JXu2xST4ivnv13PaGuBtpr5wC372ebzkdKz9kmOQx392Bzp4R7XJpw4Fbh0VnVjxXESaX7d087qlVK0r7tqGu8bdkDfkl4tZs3zNzifjH5-mRV8-oQh1DavCNKDQn8kqlWVMEEoHtRIe4RgpGCmjhQoimORHQZY-plLpZCBIJ1NMCUT1hu3ge-NbxjX9favoIX5UB2WM90HJpqnANF7EesCKDYo29NziVOJibnGNQahbRN0S6rZDfcA-3MnfZFaNv0oeU6fcSREbdncBbcT2NmL_ZSP4OupSS2MW1QquTz3AjyP2K3skhZGUWy8G7GDT67YfzEsL6OQQSKH1gA17S_jTulGiU3fvf6i7z54SAHmj54DtrBbr-A5Dn5Ufssd6cjJkT47Hp2ffhp3N_wZgMgQg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxELWicAAOiFUMhOADiJPJtLu9HRAKJMOELEIikXIzttuejDTpGWYh4qf4Rqp6SYIQ3HJtL22Xy-XyUu8R8konHcFTLVj0LrKCe868Mp5lOgUhRIBEjB0-PJLDk-LzqThdI7-6WBh8VtnZxNpQl9OAZ-RbHDQNZqfQ-v3sO0PWKLxd7Sg0GrXYjz8vYMu2eLe3A-P7mvPB7vHHIWtZBVgoCr5kpuQKKpJ5yrKYeMgcL5TwksM2kfeV0UIFEUzy_SAzH1OmdDI8SCdTTIkjSwSY_FtFnhucUXrwqbP8QnDdRCUbzqA-3oBE5rDEb53XIEc8e5shPdQfi2DNFfD3igAO-Y_xpBqvFtcWvMF9cq_1VOl2o1oPyFqsHpK71_ALHxH_dTrBAwlaNYAbbk6_7OwuKD6mH1FwLelZ_YyE1gCfdOggw4VDqoslbair6bTCwqsKA8TOqatK6ko3QxtMR_NxuXhMTm5EvE_IOvw3PiVU451fjpX4fhGUMd4HJcsy56b0IhY9wjop2tAimiOxxsTCzgalbkHqFqVua6n3yJvL_LMGy-OfOT_goFzmQgzu-sN0PrLtlLZaSh5U4mWQvEjJGVV6b5yRAfYAyiX4HQ6pRUsBzQquDXiAziHmlt2WwkiM6Bc9stGNum1NyMJeKXyPbLaacJXaNaJu7rP_l39Jbg-PDw_swd7R_nNyB7vZHCJtkPXlfBVfgFu19Ju1LlPy7aYnz2_RvjPb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+nonlinear+PDEs+using+the+higher+order+Haar+wavelet+method+on+nonuniform+and+adaptive+grids&rft.jtitle=Mathematical+modelling+and+analysis&rft.au=Mart+Ratas&rft.au=Andrus+Salupere&rft.au=J%C3%BCri+Majak&rft.date=2021-01-01&rft.pub=Vilnius+Gediminas+Technical+University&rft.issn=1392-6292&rft.eissn=1648-3510&rft.volume=26&rft.issue=1&rft.spage=147&rft.epage=169&rft_id=info:doi/10.3846%2Fmma.2021.12920&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8662c7f2dc624ffa97dbb9a96c81d7af
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-6292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-6292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-6292&client=summon