Statistical Methods for Generalized Linear Models with Covariates Subject to Detection Limits

Censored observations are a common occurrence in biomedical data sets. Although a large amount of research has been devoted to estimation and inference for data with censored responses, very little research has focused on proper statistical procedures when predictors are censored. In this paper, we...

Full description

Saved in:
Bibliographic Details
Published inStatistics in biosciences Vol. 7; no. 1; pp. 68 - 89
Main Authors Bernhardt, Paul W., Wang, Huixia J., Zhang, Daowen
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Censored observations are a common occurrence in biomedical data sets. Although a large amount of research has been devoted to estimation and inference for data with censored responses, very little research has focused on proper statistical procedures when predictors are censored. In this paper, we consider statistical methods for dealing with multiple predictors subject to detection limits within the context of generalized linear models. We investigate and adapt several conventional methods and develop a new multiple imputation approach for analyzing data sets with predictors censored due to detection limits. We establish the consistency and asymptotic normality of the proposed multiple imputation estimator and suggest a computationally simple and consistent variance estimator. We also demonstrate that the conditional mean imputation method often leads to inconsistent estimates in generalized linear models, while several other methods are either computationally intensive or lead to parameter estimates that are biased or more variable compared to the proposed multiple imputation estimator. In an extensive simulation study, we assess the bias and variability of different approaches within the context of a logistic regression model and compare variance estimation methods for the proposed multiple imputation estimator. Lastly, we apply several methods to analyze the data set from a recently-conducted GenIMS study.
AbstractList Censored observations are a common occurrence in biomedical data sets. Although a large amount of research has been devoted to estimation and inference for data with censored responses, very little research has focused on proper statistical procedures when predictors are censored. In this paper, we consider statistical methods for dealing with multiple predictors subject to detection limits within the context of generalized linear models. We investigate and adapt several conventional methods and develop a new multiple imputation approach for analyzing data sets with predictors censored due to detection limits. We establish the consistency and asymptotic normality of the proposed multiple imputation estimator and suggest a computationally simple and consistent variance estimator. We also demonstrate that the conditional mean imputation method often leads to inconsistent estimates in generalized linear models, while several other methods are either computationally intensive or lead to parameter estimates that are biased or more variable compared to the proposed multiple imputation estimator. In an extensive simulation study, we assess the bias and variability of different approaches within the context of a logistic regression model and compare variance estimation methods for the proposed multiple imputation estimator. Lastly, we apply several methods to analyze the data set from a recently-conducted GenIMS study.Censored observations are a common occurrence in biomedical data sets. Although a large amount of research has been devoted to estimation and inference for data with censored responses, very little research has focused on proper statistical procedures when predictors are censored. In this paper, we consider statistical methods for dealing with multiple predictors subject to detection limits within the context of generalized linear models. We investigate and adapt several conventional methods and develop a new multiple imputation approach for analyzing data sets with predictors censored due to detection limits. We establish the consistency and asymptotic normality of the proposed multiple imputation estimator and suggest a computationally simple and consistent variance estimator. We also demonstrate that the conditional mean imputation method often leads to inconsistent estimates in generalized linear models, while several other methods are either computationally intensive or lead to parameter estimates that are biased or more variable compared to the proposed multiple imputation estimator. In an extensive simulation study, we assess the bias and variability of different approaches within the context of a logistic regression model and compare variance estimation methods for the proposed multiple imputation estimator. Lastly, we apply several methods to analyze the data set from a recently-conducted GenIMS study.
Censored observations are a common occurrence in biomedical data sets. Although a large amount of research has been devoted to estimation and inference for data with censored responses, very little research has focused on proper statistical procedures when predictors are censored. In this paper, we consider statistical methods for dealing with multiple predictors subject to detection limits within the context of generalized linear models. We investigate and adapt several conventional methods and develop a new multiple imputation approach for analyzing data sets with predictors censored due to detection limits. We establish the consistency and asymptotic normality of the proposed multiple imputation estimator and suggest a computationally simple and consistent variance estimator. We also demonstrate that the conditional mean imputation method often leads to inconsistent estimates in generalized linear models, while several other methods are either computationally intensive or lead to parameter estimates that are biased or more variable compared to the proposed multiple imputation estimator. In an extensive simulation study, we assess the bias and variability of different approaches within the context of a logistic regression model and compare variance estimation methods for the proposed multiple imputation estimator. Lastly, we apply several methods to analyze the data set from a recently-conducted GenIMS study.
Author Zhang, Daowen
Bernhardt, Paul W.
Wang, Huixia J.
Author_xml – sequence: 1
  givenname: Paul W.
  surname: Bernhardt
  fullname: Bernhardt, Paul W.
  organization: Department of Mathematics and Statistics, Villanova University
– sequence: 2
  givenname: Huixia J.
  surname: Wang
  fullname: Wang, Huixia J.
  email: hwang3@ncsu.edu
  organization: Department of Statistics, North Carolina State University
– sequence: 3
  givenname: Daowen
  surname: Zhang
  fullname: Zhang, Daowen
  organization: Department of Statistics, North Carolina State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26257836$$D View this record in MEDLINE/PubMed
BookMark eNp9kU-PFCEQxYlZ4_7RD-DFcPTSSjE00BcTM-pqMhsPq0dDaLp6h0kPrECv0U8vnVkn6mFPVML7vaq8d05OQgxIyHNgr4Ax9ToDbyU0DFZNx7quEY_IGWipGlCKnxxnKU7Jec47xqRUXfeEnHLJW6VX8ox8uy62-Fy8sxO9wrKNQ6ZjTPQSAyY7-V840I0PaBO9igNOmf7wZUvX8c4mbwtmej33O3SFlkjfYamTj6Eie1_yU_J4tFPGZ_fvBfn64f2X9cdm8_ny0_rtpnFC8NJ0dtSicyDFgCgE06OWvdDQY-taAAcWxwFa1I71GpXTotWCqdUw1ACs5qsL8ubgezv3exwchlJvN7fJ7236aaL15t-f4LfmJt4Z0dYopK4GL-8NUvw-Yy5m77PDabIB45wNaC4lB4BF-uLvXcclfzKtAjgIXIo5JxyPEmBm6c0cejO1N7P0ZkRl1H-M80sxcTnXTw-S_EDmuiXcYDK7OKdQ034A-g3mEa3A
CitedBy_id crossref_primary_10_1016_j_ecoenv_2019_109944
crossref_primary_10_1016_j_ijheh_2022_114070
crossref_primary_10_1097_EDE_0000000000001052
crossref_primary_10_1080_00031305_2023_2282629
crossref_primary_10_1016_j_ijheh_2019_04_002
crossref_primary_10_1007_s40300_023_00263_2
crossref_primary_10_3390_stats5020029
crossref_primary_10_1515_ijb_2017_0058
crossref_primary_10_1002_sim_9343
crossref_primary_10_1177_0962280217690414
crossref_primary_10_1371_journal_pmen_0000005
crossref_primary_10_1016_j_envpol_2022_120901
crossref_primary_10_1080_10618600_2022_2035233
crossref_primary_10_3390_nu11020420
crossref_primary_10_1002_sim_7942
crossref_primary_10_1002_sim_6830
crossref_primary_10_1109_TSIPN_2016_2570679
crossref_primary_10_1007_s00520_023_07654_1
crossref_primary_10_1111_nhs_12346
crossref_primary_10_1007_s12561_023_09408_3
crossref_primary_10_1002_sim_7816
crossref_primary_10_1186_s12940_018_0400_3
crossref_primary_10_1080_10618600_2024_2444323
crossref_primary_10_1146_annurev_statistics_040522_095944
crossref_primary_10_1016_j_csda_2013_07_027
crossref_primary_10_1016_j_ijheh_2021_113895
crossref_primary_10_1007_s10654_020_00625_4
Cites_doi 10.1007/s10651-012-0191-6
10.1111/1467-9876.00207
10.1097/EDE.0b013e3181ce97d8
10.1111/j.0006-341X.1999.00625.x
10.1046/j.1467-9876.2003.05168.x
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2435::AID-SIM267>3.0.CO;2-B
10.1289/ehp.7199
10.2307/3315865
10.1198/0003130031450
10.1214/07-AOS564
10.1093/biomet/65.1.141
10.1093/infdis/175.2.247
10.1198/jbes.2009.06119
10.1198/016214501750332866
10.2307/2533289
10.1080/01621459.2011.643198
10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O
10.1093/biomet/73.3.635
10.1002/sim.1923
10.1016/j.csda.2011.11.010
10.1002/sim.4280
10.1002/sim.901
10.1002/cjs.5550340408
10.1093/biomet/85.4.935
10.1198/016214502388618744
10.1080/1047322X.1990.10389587
10.1002/1521-4036(200209)44:6<657::AID-BIMJ657>3.0.CO;2-Z
10.1093/biomet/87.1.113
10.1002/sim.1601
10.1001/archinte.167.15.1655
10.1214/08-AOS657
10.1093/biomet/80.1.27
10.1002/sim.4503
10.1080/02664763.2012.681362
10.1111/j.1468-2354.2007.00470.x
10.1198/016214504000001844
ContentType Journal Article
Copyright International Chinese Statistical Association 2013
Copyright_xml – notice: International Chinese Statistical Association 2013
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s12561-013-9099-4
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 1867-1772
EndPage 89
ExternalDocumentID PMC4526268
26257836
10_1007_s12561_013_9099_4
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA085848
– fundername: NIAID NIH HHS
  grantid: R37 AI031789
GroupedDBID ---
-5D
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
203
29Q
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
6NX
8UJ
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
BA0
BAPOH
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9R
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7U
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
7X8
ABRTQ
5PM
ID FETCH-LOGICAL-c442t-9af849c164dee4408f86b481be5c511c1aefd15e8c0b8e7c84584073dd125a823
IEDL.DBID U2A
ISSN 1867-1764
IngestDate Thu Aug 21 18:02:42 EDT 2025
Sun Aug 24 03:53:10 EDT 2025
Thu Apr 03 07:07:00 EDT 2025
Tue Jul 01 04:17:04 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Fri Feb 21 02:43:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Censored predictor
Complete case
Conditional mean imputation
Improper multiple imputation
Detection limit
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-9af849c164dee4408f86b481be5c511c1aefd15e8c0b8e7c84584073dd125a823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1007/s12561-013-9099-4
PMID 26257836
PQID 1826621118
PQPubID 23479
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4526268
proquest_miscellaneous_1826621118
pubmed_primary_26257836
crossref_primary_10_1007_s12561_013_9099_4
crossref_citationtrail_10_1007_s12561_013_9099_4
springer_journals_10_1007_s12561_013_9099_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Journal of the International Chinese Statistical Association
PublicationTitle Statistics in biosciences
PublicationTitleAbbrev Stat Biosci
PublicationTitleAlternate Stat Biosci
PublicationYear 2015
Publisher Springer US
Publisher_xml – name: Springer US
References Lyles, Lyles, Taylor (CR20) 2000; 49
Hughes (CR12) 1999; 55
Herring, Ibrahim, Lipsitz (CR9) 2004; 53
Clayton (CR4) 1978; 65
Austin, Hoch (CR3) 2004; 23
Wu, Chen, Ware, Koyama (CR41) 2012; 39
Tsiatis (CR36) 2006
CR10
Lyles, Fan, Chauchoowon (CR21) 2001; 20
Wang, Feng (CR38) 2012; 107
Wu (CR42) 2002; 97
Nie, Chu, Liu, Cole, Vexler, Schisterman (CR26) 2010; 21S
Robins, Wang (CR32) 2000; 87
Ibrahim, Chen, Lipsitz, Herring (CR14) 2005; 100
Nan, Kalbfleisch, Yu (CR25) 2009; 37
Schaubel, Cai (CR34) 2006; 34
Tsimikas, Bantis, Georgiou (CR37) 2012; 56
Pettitt (CR28) 1986; 73
Helsel (CR7) 2012
Wang, Fygenson (CR39) 2009; 37
Ibrahim, Chen, Lipsitz (CR13) 2002; 30
CR6
Lee, Kong, Weissfeld (CR16) 2012; 31
Hornung, Reed (CR11) 1990; 5
Piepho, Thoni, Müller (CR29) 2002; 44
Rigobon, Stoker (CR31) 2009; 27
Rubin (CR33) 1987
May, Ibrahim, Chu (CR23) 2011; 30
Herring, Ibrahim (CR8) 2001; 96
Lynn (CR22) 2001; 20
Rigobon, Stoker (CR30) 2007; 48
Moulton, Halsey (CR24) 1995; 51
Arunajadai, Rauh (CR1) 2012; 157
Firth (CR5) 1993; 23
Paxton, Coombs, McElrath, Keefer, Hughes, Sinagil, Chernoff, Demeter, Williams, Corey (CR27) 1997; 175
Wang, Robins (CR40) 1998; 84
Austin, Brunner (CR2) 2003; 57
Thiebaut, Jacqmin-Gadda, Babiker, Commenges (CR35) 2005; 24
Little (CR18) 1992; 87
Lipsitz, Ibrahim, Chen, Peterson (CR17) 1999; 18
Lubin, Colt, Camann, Davis, Cerhan, Severson, Bernstein, Hartge (CR19) 2004; 112
Kellum, Kong, Fink, Weissfeld, Yealy, Pinsky, Fine, Krichevsky, Delude, Angus (CR15) 2007; 167
9099_CR10
RH Lyles (9099_CR20) 2000; 49
DB Rubin (9099_CR33) 1987
H Wang (9099_CR38) 2012; 107
WB Paxton (9099_CR27) 1997; 175
R Rigobon (9099_CR31) 2009; 27
JH Lubin (9099_CR19) 2004; 112
H Wu (9099_CR41) 2012; 39
AH Herring (9099_CR8) 2001; 96
PC Austin (9099_CR2) 2003; 57
PC Austin (9099_CR3) 2004; 23
JG Ibrahim (9099_CR14) 2005; 100
AA Tsiatis (9099_CR36) 2006
JA Kellum (9099_CR15) 2007; 167
B Nan (9099_CR25) 2009; 37
H-P Piepho (9099_CR29) 2002; 44
D Firth (9099_CR5) 1993; 23
AH Herring (9099_CR9) 2004; 53
JP Hughes (9099_CR12) 1999; 55
RC May (9099_CR23) 2011; 30
RW Hornung (9099_CR11) 1990; 5
M Lee (9099_CR16) 2012; 31
JM Robins (9099_CR32) 2000; 87
SR Lipsitz (9099_CR17) 1999; 18
RJA Little (9099_CR18) 1992; 87
DG Clayton (9099_CR4) 1978; 65
SG Arunajadai (9099_CR1) 2012; 157
LH Moulton (9099_CR24) 1995; 51
JG Ibrahim (9099_CR13) 2002; 30
N Wang (9099_CR40) 1998; 84
H Wang (9099_CR39) 2009; 37
DR Helsel (9099_CR7) 2012
R Rigobon (9099_CR30) 2007; 48
HS Lynn (9099_CR22) 2001; 20
L Wu (9099_CR42) 2002; 97
DE Schaubel (9099_CR34) 2006; 34
R Thiebaut (9099_CR35) 2005; 24
RH Lyles (9099_CR21) 2001; 20
L Nie (9099_CR26) 2010; 21S
AN Pettitt (9099_CR28) 1986; 73
9099_CR6
JV Tsimikas (9099_CR37) 2012; 56
10474151 - Stat Med. 1999 Sep 15-30;18(17-18):2435-48
21710558 - Stat Med. 2011 Sep 10;30(20):2551-61
21422965 - Epidemiology. 2010 Jul;21 Suppl 4:S17-24
23049157 - J Appl Stat. 2012;39(8):1733-1747
11568949 - Stat Med. 2001 Oct 15;20(19):2921-33
8589241 - Biometrics. 1995 Dec;51(4):1570-8
11135346 - Stat Med. 2001 Jan 15;20(1):33-45
15579415 - Environ Health Perspect. 2004 Dec;112(17):1691-6
22359320 - Stat Med. 2012 Jul 30;31(17):1838-48
17698689 - Arch Intern Med. 2007 Aug 13-27;167(15):1655-63
9203644 - J Infect Dis. 1997 Feb;175(2):247-54
11318225 - Biometrics. 1999 Jun;55(2):625-9
14748036 - Stat Med. 2004 Feb 15;23(3):411-29
15523706 - Stat Med. 2005 Jan 15;24(1):65-82
References_xml – volume: 157
  start-page: 369
  year: 2012
  end-page: 391
  ident: CR1
  article-title: Handling covariates subject to limits of detection in regression
  publication-title: Environ Ecol Stat
  doi: 10.1007/s10651-012-0191-6
– volume: 49
  start-page: 485
  year: 2000
  end-page: 497
  ident: CR20
  article-title: Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop-outs
  publication-title: J R Stat Soc, Ser C, Appl Stat
  doi: 10.1111/1467-9876.00207
– year: 2012
  ident: CR7
  publication-title: Statistics for censored environmental data using minitab and R
– volume: 21S
  start-page: S17
  year: 2010
  end-page: S24
  ident: CR26
  article-title: Linear regression with an independent variable subject to a detection limit
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181ce97d8
– volume: 55
  start-page: 625
  year: 1999
  end-page: 629
  ident: CR12
  article-title: Mixed effects models with censored data with application to HIV RNA levels
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00625.x
– volume: 53
  start-page: 293
  year: 2004
  end-page: 310
  ident: CR9
  article-title: Non-ignorable missing covariate data in survival analysis: a case-study of an international breast cancer study group trial
  publication-title: J R Stat Soc, Ser C, Appl Stat
  doi: 10.1046/j.1467-9876.2003.05168.x
– volume: 18
  start-page: 2435
  year: 1999
  end-page: 2448
  ident: CR17
  article-title: Non-ignorable missing covariates in generalized linear models
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2435::AID-SIM267>3.0.CO;2-B
– volume: 112
  start-page: 1691
  year: 2004
  end-page: 1696
  ident: CR19
  article-title: Epidemiologic evaluation of measurement data in the presence of detection limits
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.7199
– volume: 30
  start-page: 55
  year: 2002
  end-page: 78
  ident: CR13
  article-title: Bayesian methods for generalized linear models with covariates missing at random
  publication-title: Can J Stat
  doi: 10.2307/3315865
– volume: 57
  start-page: 97
  year: 2003
  end-page: 104
  ident: CR2
  article-title: Type I error inflation in the presence of a ceiling effect
  publication-title: Am Stat
  doi: 10.1198/0003130031450
– ident: CR10
– volume: 37
  start-page: 756
  year: 2009
  end-page: 781
  ident: CR39
  article-title: Inference for censored quantile regression models in longitudinal studies
  publication-title: Ann Stat
  doi: 10.1214/07-AOS564
– volume: 65
  start-page: 677
  year: 1978
  end-page: 692
  ident: CR4
  article-title: A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence
  publication-title: Biometrika
  doi: 10.1093/biomet/65.1.141
– ident: CR6
– volume: 175
  start-page: 247
  year: 1997
  end-page: 254
  ident: CR27
  article-title: Longitudinal analysis of quantitative virologic measures in human immunodeficiency virus-infected subjects with ≥400 cd4 lymphocytes: implications for applying measurements to individual patients
  publication-title: J Infect Dis
  doi: 10.1093/infdis/175.2.247
– volume: 27
  start-page: 340
  year: 2009
  end-page: 353
  ident: CR31
  article-title: Bias from censored regressors
  publication-title: J Bus Econ Stat
  doi: 10.1198/jbes.2009.06119
– volume: 96
  start-page: 292
  year: 2001
  end-page: 302
  ident: CR8
  article-title: Likelihood-based methods for missing covariates in the Cox proportional hazards model
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501750332866
– volume: 51
  start-page: 1570
  year: 1995
  end-page: 1578
  ident: CR24
  article-title: A mixture model with detection limits for regression analysis of antibody response to vaccine
  publication-title: Biometrics
  doi: 10.2307/2533289
– volume: 107
  start-page: 194
  year: 2012
  end-page: 204
  ident: CR38
  article-title: Multiple imputation for m-regression with censored covariates
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2011.643198
– volume: 20
  start-page: 33
  year: 2001
  end-page: 45
  ident: CR22
  article-title: Maximum likelihood inference for left-censored HIV RNA data
  publication-title: Stat Med
  doi: 10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O
– volume: 87
  start-page: 1227
  year: 1992
  end-page: 1237
  ident: CR18
  article-title: Regression with missing x’s: a review
  publication-title: J Am Stat Assoc
– volume: 73
  start-page: 635
  year: 1986
  end-page: 643
  ident: CR28
  article-title: Censored observations, repeated measures and mixed effects models—An approach using the em algorithm and normal errors
  publication-title: Biometrika
  doi: 10.1093/biomet/73.3.635
– volume: 24
  start-page: 65
  year: 2005
  end-page: 82
  ident: CR35
  article-title: Joint modelling of bivariate longitudinal data with informative dropout and left-censoring, with application to the evolution of cd4+ cell count and HIV RNA viral load in response to treatment of HIV infection
  publication-title: Stat Med
  doi: 10.1002/sim.1923
– volume: 56
  start-page: 1854
  year: 2012
  end-page: 1868
  ident: CR37
  article-title: Inference in generalized linear regression models with a censored covariate
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2011.11.010
– volume: 30
  start-page: 2551
  year: 2011
  end-page: 2561
  ident: CR23
  article-title: Maximum likelihood estimation in generalized linear models with multiple covariates subject to detection limits
  publication-title: Stat Med
  doi: 10.1002/sim.4280
– volume: 20
  start-page: 2921
  year: 2001
  end-page: 2933
  ident: CR21
  article-title: Correlation coefficient estimation involving a left censored laboratory assay variable
  publication-title: Stat Med
  doi: 10.1002/sim.901
– volume: 34
  start-page: 677
  year: 2006
  end-page: 692
  ident: CR34
  article-title: Multiple imputation methods for recurrent event data with missing event category
  publication-title: Can J Stat
  doi: 10.1002/cjs.5550340408
– volume: 84
  start-page: 935
  year: 1998
  end-page: 948
  ident: CR40
  article-title: Large-sample theory for parametric multiple imputation procedures
  publication-title: Biometrika
  doi: 10.1093/biomet/85.4.935
– volume: 97
  start-page: 955
  year: 2002
  end-page: 964
  ident: CR42
  article-title: A joint model for nonlinear mixed-effects models with censoring and covariates measured with error, with applications to aids studies
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214502388618744
– volume: 5
  start-page: 46
  year: 1990
  end-page: 51
  ident: CR11
  article-title: Estimation of average concentration in the presence of nondetectable values
  publication-title: Appl Occup Environ Hyg
  doi: 10.1080/1047322X.1990.10389587
– volume: 44
  start-page: 657
  year: 2002
  end-page: 670
  ident: CR29
  article-title: Estimating the product-moment correlation in samples with censoring on both variables
  publication-title: Biom J
  doi: 10.1002/1521-4036(200209)44:6<657::AID-BIMJ657>3.0.CO;2-Z
– volume: 87
  start-page: 113
  year: 2000
  end-page: 124
  ident: CR32
  article-title: Inference for imputation estimators
  publication-title: Biometrika
  doi: 10.1093/biomet/87.1.113
– volume: 23
  start-page: 411
  year: 2004
  end-page: 429
  ident: CR3
  article-title: Estimating linear regression models in the presence of a censored independent variable
  publication-title: Stat Med
  doi: 10.1002/sim.1601
– volume: 167
  start-page: 1655
  year: 2007
  end-page: 1663
  ident: CR15
  article-title: Understanding the inflammatory cytokine response in pneumonia and sepsis
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.167.15.1655
– volume: 37
  start-page: 2351
  year: 2009
  end-page: 2376
  ident: CR25
  article-title: Asymptotic theory for the semiparametric accelerated failure time model with missing data
  publication-title: Ann Stat
  doi: 10.1214/08-AOS657
– volume: 23
  start-page: 27
  year: 1993
  end-page: 38
  ident: CR5
  article-title: Bias reduction of maximum likelihood estimates
  publication-title: Biometrika
  doi: 10.1093/biomet/80.1.27
– volume: 31
  start-page: 1838
  year: 2012
  end-page: 1848
  ident: CR16
  article-title: Multiple imputation for left-censored biomarker data based on Gibbs sampling method
  publication-title: Stat Med
  doi: 10.1002/sim.4503
– year: 1987
  ident: CR33
  article-title: Multiple imputation for nonresponse
  publication-title: Surveys
– volume: 39
  start-page: 1733
  year: 2012
  end-page: 1747
  ident: CR41
  article-title: A Bayesian approach for generalized linear models with explanatory biomarker measurement variables subject to detection limit—An application to acute lung injury
  publication-title: Appl Stat
  doi: 10.1080/02664763.2012.681362
– volume: 48
  start-page: 1441
  year: 2007
  end-page: 1467
  ident: CR30
  article-title: Estimation with censored regressors: basic issues
  publication-title: Int Econ Rev
  doi: 10.1111/j.1468-2354.2007.00470.x
– year: 2006
  ident: CR36
  publication-title: Semiparametric theory and missing data
– volume: 100
  start-page: 332
  year: 2005
  end-page: 346
  ident: CR14
  article-title: Missing-data methods for generalized linear models: a comparative review
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000001844
– volume: 87
  start-page: 113
  year: 2000
  ident: 9099_CR32
  publication-title: Biometrika
  doi: 10.1093/biomet/87.1.113
– volume: 23
  start-page: 411
  year: 2004
  ident: 9099_CR3
  publication-title: Stat Med
  doi: 10.1002/sim.1601
– volume: 21S
  start-page: S17
  year: 2010
  ident: 9099_CR26
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181ce97d8
– volume: 23
  start-page: 27
  year: 1993
  ident: 9099_CR5
  publication-title: Biometrika
  doi: 10.1093/biomet/80.1.27
– volume-title: Surveys
  year: 1987
  ident: 9099_CR33
– volume: 24
  start-page: 65
  year: 2005
  ident: 9099_CR35
  publication-title: Stat Med
  doi: 10.1002/sim.1923
– volume: 87
  start-page: 1227
  year: 1992
  ident: 9099_CR18
  publication-title: J Am Stat Assoc
– volume: 20
  start-page: 33
  year: 2001
  ident: 9099_CR22
  publication-title: Stat Med
  doi: 10.1002/1097-0258(20010115)20:1<33::AID-SIM640>3.0.CO;2-O
– ident: 9099_CR10
– volume: 31
  start-page: 1838
  year: 2012
  ident: 9099_CR16
  publication-title: Stat Med
  doi: 10.1002/sim.4503
– volume: 84
  start-page: 935
  year: 1998
  ident: 9099_CR40
  publication-title: Biometrika
  doi: 10.1093/biomet/85.4.935
– volume: 157
  start-page: 369
  year: 2012
  ident: 9099_CR1
  publication-title: Environ Ecol Stat
  doi: 10.1007/s10651-012-0191-6
– ident: 9099_CR6
– volume: 97
  start-page: 955
  year: 2002
  ident: 9099_CR42
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214502388618744
– volume: 44
  start-page: 657
  year: 2002
  ident: 9099_CR29
  publication-title: Biom J
  doi: 10.1002/1521-4036(200209)44:6<657::AID-BIMJ657>3.0.CO;2-Z
– volume: 30
  start-page: 2551
  year: 2011
  ident: 9099_CR23
  publication-title: Stat Med
  doi: 10.1002/sim.4280
– volume: 37
  start-page: 756
  year: 2009
  ident: 9099_CR39
  publication-title: Ann Stat
  doi: 10.1214/07-AOS564
– volume: 57
  start-page: 97
  year: 2003
  ident: 9099_CR2
  publication-title: Am Stat
  doi: 10.1198/0003130031450
– volume: 175
  start-page: 247
  year: 1997
  ident: 9099_CR27
  publication-title: J Infect Dis
  doi: 10.1093/infdis/175.2.247
– volume: 53
  start-page: 293
  year: 2004
  ident: 9099_CR9
  publication-title: J R Stat Soc, Ser C, Appl Stat
  doi: 10.1046/j.1467-9876.2003.05168.x
– volume: 48
  start-page: 1441
  year: 2007
  ident: 9099_CR30
  publication-title: Int Econ Rev
  doi: 10.1111/j.1468-2354.2007.00470.x
– volume: 34
  start-page: 677
  year: 2006
  ident: 9099_CR34
  publication-title: Can J Stat
  doi: 10.1002/cjs.5550340408
– volume: 55
  start-page: 625
  year: 1999
  ident: 9099_CR12
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00625.x
– volume: 56
  start-page: 1854
  year: 2012
  ident: 9099_CR37
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2011.11.010
– volume: 73
  start-page: 635
  year: 1986
  ident: 9099_CR28
  publication-title: Biometrika
  doi: 10.1093/biomet/73.3.635
– volume: 96
  start-page: 292
  year: 2001
  ident: 9099_CR8
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501750332866
– volume: 167
  start-page: 1655
  year: 2007
  ident: 9099_CR15
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.167.15.1655
– volume-title: Semiparametric theory and missing data
  year: 2006
  ident: 9099_CR36
– volume: 100
  start-page: 332
  year: 2005
  ident: 9099_CR14
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000001844
– volume: 27
  start-page: 340
  year: 2009
  ident: 9099_CR31
  publication-title: J Bus Econ Stat
  doi: 10.1198/jbes.2009.06119
– volume: 112
  start-page: 1691
  year: 2004
  ident: 9099_CR19
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.7199
– volume: 30
  start-page: 55
  year: 2002
  ident: 9099_CR13
  publication-title: Can J Stat
  doi: 10.2307/3315865
– volume: 20
  start-page: 2921
  year: 2001
  ident: 9099_CR21
  publication-title: Stat Med
  doi: 10.1002/sim.901
– volume: 5
  start-page: 46
  year: 1990
  ident: 9099_CR11
  publication-title: Appl Occup Environ Hyg
  doi: 10.1080/1047322X.1990.10389587
– volume: 65
  start-page: 677
  year: 1978
  ident: 9099_CR4
  publication-title: Biometrika
  doi: 10.1093/biomet/65.1.141
– volume: 18
  start-page: 2435
  year: 1999
  ident: 9099_CR17
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2435::AID-SIM267>3.0.CO;2-B
– volume: 107
  start-page: 194
  year: 2012
  ident: 9099_CR38
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2011.643198
– volume-title: Statistics for censored environmental data using minitab and R
  year: 2012
  ident: 9099_CR7
– volume: 37
  start-page: 2351
  year: 2009
  ident: 9099_CR25
  publication-title: Ann Stat
  doi: 10.1214/08-AOS657
– volume: 39
  start-page: 1733
  year: 2012
  ident: 9099_CR41
  publication-title: Appl Stat
  doi: 10.1080/02664763.2012.681362
– volume: 49
  start-page: 485
  year: 2000
  ident: 9099_CR20
  publication-title: J R Stat Soc, Ser C, Appl Stat
  doi: 10.1111/1467-9876.00207
– volume: 51
  start-page: 1570
  year: 1995
  ident: 9099_CR24
  publication-title: Biometrics
  doi: 10.2307/2533289
– reference: 21422965 - Epidemiology. 2010 Jul;21 Suppl 4:S17-24
– reference: 11568949 - Stat Med. 2001 Oct 15;20(19):2921-33
– reference: 10474151 - Stat Med. 1999 Sep 15-30;18(17-18):2435-48
– reference: 11318225 - Biometrics. 1999 Jun;55(2):625-9
– reference: 9203644 - J Infect Dis. 1997 Feb;175(2):247-54
– reference: 11135346 - Stat Med. 2001 Jan 15;20(1):33-45
– reference: 17698689 - Arch Intern Med. 2007 Aug 13-27;167(15):1655-63
– reference: 8589241 - Biometrics. 1995 Dec;51(4):1570-8
– reference: 23049157 - J Appl Stat. 2012;39(8):1733-1747
– reference: 15523706 - Stat Med. 2005 Jan 15;24(1):65-82
– reference: 15579415 - Environ Health Perspect. 2004 Dec;112(17):1691-6
– reference: 21710558 - Stat Med. 2011 Sep 10;30(20):2551-61
– reference: 22359320 - Stat Med. 2012 Jul 30;31(17):1838-48
– reference: 14748036 - Stat Med. 2004 Feb 15;23(3):411-29
SSID ssj0066799
Score 2.1161175
Snippet Censored observations are a common occurrence in biomedical data sets. Although a large amount of research has been devoted to estimation and inference for...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 68
SubjectTerms Biostatistics
Health Sciences
Mathematics and Statistics
Medicine
Statistics
Statistics for Life Sciences
Theoretical Ecology/Statistics
Title Statistical Methods for Generalized Linear Models with Covariates Subject to Detection Limits
URI https://link.springer.com/article/10.1007/s12561-013-9099-4
https://www.ncbi.nlm.nih.gov/pubmed/26257836
https://www.proquest.com/docview/1826621118
https://pubmed.ncbi.nlm.nih.gov/PMC4526268
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20gvQiWr_qR1nBkxIwyWazObbVKkp7slAPEpLNBgVJxaQe_PXObJKW-gWeSulmKXmbmfcyu28ATjGpJSIKAkvzwLU45gBLqtSxVKoimdquVAbp4UjcjPntxJtU57jzerd7XZI0kXpx2A2zM0lf1wrIVpKvwppH0h0X8djp1uFXCN80jSSjNnI_5HUp86cplpPRN4b5faPkl2qpSUKDTdio2CPrlnBvwYrOWrA-rOrjLWgSdyytl7fhcf4FLxmaTtE5Q47KKqvp5w-dMNSiuNYZtUR7yRm9lWX96TsKaOKgDMMKvadhxZRd6sLs2sqYOROV78B4cHXfv7GqbgqWQggKK4hSyQOF8ijRmvpMp1LEHFmr9hSyLmVHOk1sTyM6sdS-klRBxQCQJHjXIum4u9DIppneBxbHykehplCNJDx2_SgNbBl7OpY8kUHkteGivq2hqqzGqePFS7gwSSYkQkQiJCRC3oaz-SWvpc_GX4NPaqxCfBqoxBFlejrLQ1JLAjWtLduwV2I3n84RFJ5c0QZ_CdX5AHLaXv4le34yjtvUh90ROOd5jX9YPer57__y4F-jD6GJXMwr91IeQaN4m-lj5DtF3IG17qDXG9Hn9cPdVces9098lPr4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50BfUivl2fETwpBdumaXpc1GV97J52YS8S2jRFQbpiqwd_vTNpu7K-wGNpGkq_ZuabzOQbgBN0aqmIo8gxPPIdjj7AkTrzHJ3pWGauL7VFuj8QvRG_GQfj-hx30VS7NylJa6k_D7uhd6bQ13cikpXk87CAXEBSHdfI6zTmV4jQNo0koTZSP-RNKvOnKWad0TeG-b1Q8ku21Dqh7iqs1OyRdSq412DO5Ouw2K_z4-uwTNyxkl7egPvpBT7St52iC4YcldVS04_vJmUYi-K_zqgl2lPBaFeWXUzeMIAmDsrQrNA-DSsn7NKUtmorZ_ZMVLEJo-7V8KLn1N0UHI0QlE4UZ5JHGsOj1BjqM51JkXBkrSbQyLq0G5ssdQOD6CTShFpSBhUNQJriV4ul529BK5_kZgdYkugQAzWN0UjKEz-Ms8iVSWASyVMZxUEbzpvPqnQtNU4dL57Up0gyIaEQCUVIKN6G0-kjz5XOxl-DjxusFK4GSnHEuZm8FoqiJYExrSvbsF1hN53OE2SefNGGcAbV6QBS2p69kz8-WMVt6sPuCZzzrMFf1Uu9-P0td_81-giWesP-nbq7HtzuwTLysqCqq9yHVvnyag6Q-5TJof3XPwC_Hfrb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gHgRXV_rM4InpWjbNE2P4rr4WvHgghcJbZLiwtJdbPXgr3emj5X1BR5Lk1D6JTPfZJJvAA7RqRkRR5FjeeQ7HH2AI3XqOTrVsUxdX-oS6d6duOzz68fgsa5zmjen3ZuUZHWngVSasuJkbNKTz4tv6KkpDPadiCQm-SzMozV2aVr3vbPGFAsRlgUkSbSNlBB5k9b8aYhpx_SNbX4_NPklc1o6pO4yLNVMkp1V0K_AjM1asNCrc-UtWCQeWckwr8LT5AG79Mqq0TlDvspq2enBuzUM41Kc94zKow1zRju07Hz0hsE08VGGJob2bFgxYh1blCe4Mlbej8rXoN-9eDi_dOrKCo5GOAonilPJI42hkrGWak6nUiQcGawNNDIw7cY2NW5gEalE2lBLyqaiMTAG_1osPX8d5rJRZjeBJYkOMWjTGJkYnvhhnEauTAKbSG5kFAdtOG1-q9K17DhVvxiqT8FkQkIhEoqQULwNR5Mu40pz46_GBw1WClcGpTvizI5ec0WRk8D41pVt2KiwmwznCTJVvmhDOIXqpAGpbk-_yQbPpfo21WT3BI553OCv6mWf__6VW_9qvQ8L952uur26u9mGRaRoQXXEcgfmipdXu4s0qEj2yqn-AQdd_xc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Methods+for+Generalized+Linear+Models+with+Covariates+Subject+to+Detection+Limits&rft.jtitle=Statistics+in+biosciences&rft.au=Bernhardt%2C+Paul+W&rft.au=Wang%2C+Huixia+J&rft.au=Zhang%2C+Daowen&rft.date=2015-05-01&rft.issn=1867-1764&rft.volume=7&rft.issue=1&rft.spage=68&rft_id=info:doi/10.1007%2Fs12561-013-9099-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1764&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1764&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1764&client=summon