Brainstem Mechanisms of Pain Modulation: A within-Subjects 7T fMRI Study of Placebo Analgesic and Nocebo Hyperalgesic Responses

Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia re...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 41; no. 47; pp. 9794 - 9806
Main Authors Crawford, Lewis S., Mills, Emily P., Hanson, Theo, Macey, Paul M., Glarin, Rebecca, Macefield, Vaughan G., Keay, Kevin A., Henderson, Luke A.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 24.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia remain to be directly addressed. This study used ultra-high-field 7 tesla functional MRI (fMRI) to accurately resolve differences in brainstem circuitry present during the generation of placebo analgesia and nocebo hyperalgesia in healthy human participants ( N = 25, 12 male). Over 2 successive days, through blinded application of altered thermal stimuli, participants were deceptively conditioned to believe that two inert creams labeled lidocaine (placebo) and capsaicin (nocebo) were acting to modulate their pain relative to a third Vaseline (control) cream. In a subsequent test phase, fMRI image sets were collected while participants were given identical noxious stimuli to all three cream sites. Pain intensity ratings were collected and placebo and nocebo responses determined. Brainstem-specific fMRI analysis revealed altered activity in key pain modulatory nuclei, including a disparate recruitment of the periaqueductal gray (PAG)–rostral ventromedial medulla (RVM) pathway when both greater placebo and nocebo effects were observed. Additionally, we found that placebo and nocebo responses differentially activated the parabrachial nucleus but overlapped in engagement of the substantia nigra and locus coeruleus. These data reveal that placebo and nocebo effects are generated through differential engagement of the PAG–RVM pathway, which in concert with other brainstem sites likely influences the experience of pain by modulating activity at the level of the dorsal horn. SIGNIFICANCE STATEMENT Understanding endogenous pain modulatory mechanisms would support development of effective clinical treatment strategies for both acute and chronic pain. Specific brainstem nuclei have long been known to play a central role in nociceptive modulation; however, because of the small size and complex organization of the nuclei, previous neuroimaging efforts have been limited in directly identifying how these subcortical networks interact during the development of antinociceptive and pro-nociceptive effects. We used ultra-high-field fMRI to resolve brainstem structures and measure signal change during placebo analgesia and nocebo hyperalgesia. We define overlapping and disparate brainstem circuitry responsible for altering pain perception. These findings extend our understanding of the detailed organization and function of discrete brainstem nuclei involved in pain processing and modulation.
AbstractList Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia remain to be directly addressed. This study used ultra-high-field 7 tesla functional MRI (fMRI) to accurately resolve differences in brainstem circuitry present during the generation of placebo analgesia and nocebo hyperalgesia in healthy human participants ( N = 25, 12 male). Over 2 successive days, through blinded application of altered thermal stimuli, participants were deceptively conditioned to believe that two inert creams labeled lidocaine (placebo) and capsaicin (nocebo) were acting to modulate their pain relative to a third Vaseline (control) cream. In a subsequent test phase, fMRI image sets were collected while participants were given identical noxious stimuli to all three cream sites. Pain intensity ratings were collected and placebo and nocebo responses determined. Brainstem-specific fMRI analysis revealed altered activity in key pain modulatory nuclei, including a disparate recruitment of the periaqueductal gray (PAG)–rostral ventromedial medulla (RVM) pathway when both greater placebo and nocebo effects were observed. Additionally, we found that placebo and nocebo responses differentially activated the parabrachial nucleus but overlapped in engagement of the substantia nigra and locus coeruleus. These data reveal that placebo and nocebo effects are generated through differential engagement of the PAG–RVM pathway, which in concert with other brainstem sites likely influences the experience of pain by modulating activity at the level of the dorsal horn. SIGNIFICANCE STATEMENT Understanding endogenous pain modulatory mechanisms would support development of effective clinical treatment strategies for both acute and chronic pain. Specific brainstem nuclei have long been known to play a central role in nociceptive modulation; however, because of the small size and complex organization of the nuclei, previous neuroimaging efforts have been limited in directly identifying how these subcortical networks interact during the development of antinociceptive and pro-nociceptive effects. We used ultra-high-field fMRI to resolve brainstem structures and measure signal change during placebo analgesia and nocebo hyperalgesia. We define overlapping and disparate brainstem circuitry responsible for altering pain perception. These findings extend our understanding of the detailed organization and function of discrete brainstem nuclei involved in pain processing and modulation.
Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia remain to be directly addressed. This study used ultra-high-field 7 tesla functional MRI (fMRI) to accurately resolve differences in brainstem circuitry present during the generation of placebo analgesia and nocebo hyperalgesia in healthy human participants (N = 25, 12 male). Over 2 successive days, through blinded application of altered thermal stimuli, participants were deceptively conditioned to believe that two inert creams labeled lidocaine (placebo) and capsaicin (nocebo) were acting to modulate their pain relative to a third Vaseline (control) cream. In a subsequent test phase, fMRI image sets were collected while participants were given identical noxious stimuli to all three cream sites. Pain intensity ratings were collected and placebo and nocebo responses determined. Brainstem-specific fMRI analysis revealed altered activity in key pain modulatory nuclei, including a disparate recruitment of the periaqueductal gray (PAG)–rostral ventromedial medulla (RVM) pathway when both greater placebo and nocebo effects were observed. Additionally, we found that placebo and nocebo responses differentially activated the parabrachial nucleus but overlapped in engagement of the substantia nigra and locus coeruleus. These data reveal that placebo and nocebo effects are generated through differential engagement of the PAG–RVM pathway, which in concert with other brainstem sites likely influences the experience of pain by modulating activity at the level of the dorsal horn. SIGNIFICANCE STATEMENT Understanding endogenous pain modulatory mechanisms would support development of effective clinical treatment strategies for both acute and chronic pain. Specific brainstem nuclei have long been known to play a central role in nociceptive modulation; however, because of the small size and complex organization of the nuclei, previous neuroimaging efforts have been limited in directly identifying how these subcortical networks interact during the development of antinociceptive and pro-nociceptive effects. We used ultra-high-field fMRI to resolve brainstem structures and measure signal change during placebo analgesia and nocebo hyperalgesia. We define overlapping and disparate brainstem circuitry responsible for altering pain perception. These findings extend our understanding of the detailed organization and function of discrete brainstem nuclei involved in pain processing and modulation.
Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia remain to be directly addressed. This study used ultra-high-field 7 tesla functional MRI (fMRI) to accurately resolve differences in brainstem circuitry present during the generation of placebo analgesia and nocebo hyperalgesia in healthy human participants (N = 25, 12 male). Over 2 successive days, through blinded application of altered thermal stimuli, participants were deceptively conditioned to believe that two inert creams labeled lidocaine (placebo) and capsaicin (nocebo) were acting to modulate their pain relative to a third Vaseline (control) cream. In a subsequent test phase, fMRI image sets were collected while participants were given identical noxious stimuli to all three cream sites. Pain intensity ratings were collected and placebo and nocebo responses determined. Brainstem-specific fMRI analysis revealed altered activity in key pain modulatory nuclei, including a disparate recruitment of the periaqueductal gray (PAG)-rostral ventromedial medulla (RVM) pathway when both greater placebo and nocebo effects were observed. Additionally, we found that placebo and nocebo responses differentially activated the parabrachial nucleus but overlapped in engagement of the substantia nigra and locus coeruleus. These data reveal that placebo and nocebo effects are generated through differential engagement of the PAG-RVM pathway, which in concert with other brainstem sites likely influences the experience of pain by modulating activity at the level of the dorsal horn.SIGNIFICANCE STATEMENT Understanding endogenous pain modulatory mechanisms would support development of effective clinical treatment strategies for both acute and chronic pain. Specific brainstem nuclei have long been known to play a central role in nociceptive modulation; however, because of the small size and complex organization of the nuclei, previous neuroimaging efforts have been limited in directly identifying how these subcortical networks interact during the development of antinociceptive and pro-nociceptive effects. We used ultra-high-field fMRI to resolve brainstem structures and measure signal change during placebo analgesia and nocebo hyperalgesia. We define overlapping and disparate brainstem circuitry responsible for altering pain perception. These findings extend our understanding of the detailed organization and function of discrete brainstem nuclei involved in pain processing and modulation.Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia remain to be directly addressed. This study used ultra-high-field 7 tesla functional MRI (fMRI) to accurately resolve differences in brainstem circuitry present during the generation of placebo analgesia and nocebo hyperalgesia in healthy human participants (N = 25, 12 male). Over 2 successive days, through blinded application of altered thermal stimuli, participants were deceptively conditioned to believe that two inert creams labeled lidocaine (placebo) and capsaicin (nocebo) were acting to modulate their pain relative to a third Vaseline (control) cream. In a subsequent test phase, fMRI image sets were collected while participants were given identical noxious stimuli to all three cream sites. Pain intensity ratings were collected and placebo and nocebo responses determined. Brainstem-specific fMRI analysis revealed altered activity in key pain modulatory nuclei, including a disparate recruitment of the periaqueductal gray (PAG)-rostral ventromedial medulla (RVM) pathway when both greater placebo and nocebo effects were observed. Additionally, we found that placebo and nocebo responses differentially activated the parabrachial nucleus but overlapped in engagement of the substantia nigra and locus coeruleus. These data reveal that placebo and nocebo effects are generated through differential engagement of the PAG-RVM pathway, which in concert with other brainstem sites likely influences the experience of pain by modulating activity at the level of the dorsal horn.SIGNIFICANCE STATEMENT Understanding endogenous pain modulatory mechanisms would support development of effective clinical treatment strategies for both acute and chronic pain. Specific brainstem nuclei have long been known to play a central role in nociceptive modulation; however, because of the small size and complex organization of the nuclei, previous neuroimaging efforts have been limited in directly identifying how these subcortical networks interact during the development of antinociceptive and pro-nociceptive effects. We used ultra-high-field fMRI to resolve brainstem structures and measure signal change during placebo analgesia and nocebo hyperalgesia. We define overlapping and disparate brainstem circuitry responsible for altering pain perception. These findings extend our understanding of the detailed organization and function of discrete brainstem nuclei involved in pain processing and modulation.
Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia remain to be directly addressed. This study used ultra-high-field 7 tesla functional MRI (fMRI) to accurately resolve differences in brainstem circuitry present during the generation of placebo analgesia and nocebo hyperalgesia in healthy human participants ( = 25, 12 male). Over 2 successive days, through blinded application of altered thermal stimuli, participants were deceptively conditioned to believe that two inert creams labeled lidocaine (placebo) and capsaicin (nocebo) were acting to modulate their pain relative to a third Vaseline (control) cream. In a subsequent test phase, fMRI image sets were collected while participants were given identical noxious stimuli to all three cream sites. Pain intensity ratings were collected and placebo and nocebo responses determined. Brainstem-specific fMRI analysis revealed altered activity in key pain modulatory nuclei, including a disparate recruitment of the periaqueductal gray (PAG)-rostral ventromedial medulla (RVM) pathway when both greater placebo and nocebo effects were observed. Additionally, we found that placebo and nocebo responses differentially activated the parabrachial nucleus but overlapped in engagement of the substantia nigra and locus coeruleus. These data reveal that placebo and nocebo effects are generated through differential engagement of the PAG-RVM pathway, which in concert with other brainstem sites likely influences the experience of pain by modulating activity at the level of the dorsal horn. Understanding endogenous pain modulatory mechanisms would support development of effective clinical treatment strategies for both acute and chronic pain. Specific brainstem nuclei have long been known to play a central role in nociceptive modulation; however, because of the small size and complex organization of the nuclei, previous neuroimaging efforts have been limited in directly identifying how these subcortical networks interact during the development of antinociceptive and pro-nociceptive effects. We used ultra-high-field fMRI to resolve brainstem structures and measure signal change during placebo analgesia and nocebo hyperalgesia. We define overlapping and disparate brainstem circuitry responsible for altering pain perception. These findings extend our understanding of the detailed organization and function of discrete brainstem nuclei involved in pain processing and modulation.
Author Macey, Paul M.
Glarin, Rebecca
Hanson, Theo
Keay, Kevin A.
Crawford, Lewis S.
Macefield, Vaughan G.
Mills, Emily P.
Henderson, Luke A.
Author_xml – sequence: 1
  givenname: Lewis S.
  orcidid: 0000-0003-2231-5196
  surname: Crawford
  fullname: Crawford, Lewis S.
– sequence: 2
  givenname: Emily P.
  surname: Mills
  fullname: Mills, Emily P.
– sequence: 3
  givenname: Theo
  surname: Hanson
  fullname: Hanson, Theo
– sequence: 4
  givenname: Paul M.
  orcidid: 0000-0003-4093-7458
  surname: Macey
  fullname: Macey, Paul M.
– sequence: 5
  givenname: Rebecca
  surname: Glarin
  fullname: Glarin, Rebecca
– sequence: 6
  givenname: Vaughan G.
  orcidid: 0000-0003-3325-6566
  surname: Macefield
  fullname: Macefield, Vaughan G.
– sequence: 7
  givenname: Kevin A.
  orcidid: 0000-0003-3934-4380
  surname: Keay
  fullname: Keay, Kevin A.
– sequence: 8
  givenname: Luke A.
  orcidid: 0000-0002-1026-0151
  surname: Henderson
  fullname: Henderson, Luke A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34697093$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9v0zAUxS00xLrCV5gs8cJLiu04doIQUqkGK1o31G7PluM_q6vELnEC6hNfHbfbKtgLT5bv_Z2rY99zBk588AaAc4wmuCD5-2_XF3fLm9VsPkElYhnBE4IIfgFGqVtlhCJ8AkaIcJQxyukpOItxgxDiCPNX4DSnrOKoykfg9-dOOh9708KFUWvpXWwjDBZ-T2W4CHpoZO-C_wCn8Jfr185nq6HeGNVHyG-hXSzncNUPenfQNFKZOsCpl829iU5B6TW8Dofi5W5ruqf60sRt8NHE1-CllU00bx7PMbj7cnE7u8yubr7OZ9OrTFFK-qysDCVWYyYrZYiSpcqrnFrGDK-1shLXBSeaWau1SResDdVW4bLQdV1RnOdj8Olh7naoW6OV8X0yI7ada2W3E0E68W_Hu7W4Dz9FyTBhacIYvHsc0IUfg4m9aF1UpmmkN2GIghQlowXjeZnQt8_QTRi69CeJYojnhPO8SNT5346OVp52kwD2AKguxNgZe0QwEvsQiGMIxD4EgmCxD0ESfnwmVK4_bDG9zDX_k_8BNVW7Vw
CitedBy_id crossref_primary_10_1523_JNEUROSCI_2544_21_2022
crossref_primary_10_1016_j_neuint_2023_105630
crossref_primary_10_1038_s41467_024_50103_8
crossref_primary_10_3389_fpain_2022_869215
crossref_primary_10_1111_cns_14389
crossref_primary_10_1097_j_pain_0000000000002704
crossref_primary_10_1523_ENEURO_0488_23_2024
crossref_primary_10_1097_PR9_0000000000001013
crossref_primary_10_3389_fnint_2024_1457936
crossref_primary_10_3389_fpain_2022_932476
crossref_primary_10_7554_eLife_97793
crossref_primary_10_1016_j_neuroimage_2022_119408
crossref_primary_10_1172_JCI154588
crossref_primary_10_3389_fphar_2023_1159753
crossref_primary_10_1097_SPC_0000000000000598
crossref_primary_10_7554_eLife_97793_3
crossref_primary_10_1093_cercor_bhad247
crossref_primary_10_1038_s41386_023_01673_6
crossref_primary_10_1007_s00210_022_02280_w
crossref_primary_10_7554_eLife_73353
crossref_primary_10_1016_j_physbeh_2023_114116
crossref_primary_10_1093_abm_kaac081
crossref_primary_10_1111_ejn_15687
crossref_primary_10_1016_j_neuroimage_2022_119828
crossref_primary_10_1038_s42003_023_04951_7
crossref_primary_10_1038_s44271_024_00069_6
crossref_primary_10_1016_j_bbr_2022_113861
crossref_primary_10_2147_JPR_S446803
crossref_primary_10_3390_jcm12124113
crossref_primary_10_1113_JP287222
crossref_primary_10_3390_ijms232416031
crossref_primary_10_1097_WCO_0000000000001284
crossref_primary_10_1002_hbm_25999
crossref_primary_10_3389_fpsyt_2022_817179
crossref_primary_10_1038_d41586_021_02939_z
Cites_doi 10.1523/JNEUROSCI.2552-18.2019
10.1016/j.jpain.2015.05.001
10.1016/j.neuroscience.2012.03.038
10.1016/j.jclinepi.2011.01.008
10.1016/j.neuroimage.2017.02.052
10.1016/S0361-9230(00)00313-0
10.1016/0304-3959(89)90080-8
10.1016/S0361-9230(96)00262-6
10.1016/0006-8993(86)90958-3
10.1017/S1461145712000673
10.1523/JNEUROSCI.2043-18.2019
10.1016/j.pain.2005.03.014
10.1080/00029157.2014.976785
10.1073/pnas.76.7.3528
10.1523/JNEUROSCI.17-10-03751.1997
10.1007/s00787-018-1244-7
10.1016/j.neuroimage.2007.01.024
10.1523/JNEUROSCI.1828-04.2004
10.7554/eLife.32930
10.1152/jn.1983.49.3.582
10.1097/j.pain.0000000000001302
10.1016/j.neuron.2007.07.012
10.1126/science.aan1221
10.3390/ph3082661
10.1001/archgenpsychiatry.2007.34
10.1016/0006-8993(83)90111-7
10.1016/j.neuroimage.2006.05.056
10.1016/j.brainresrev.2008.12.009
10.1016/j.pneurobio.2017.10.008
10.1152/jn.1994.72.3.1161
10.1212/01.wnl.0000318225.51122.63
10.1523/JNEUROSCI.03-12-02545.1983
10.1093/oso/9780195051063.003.0005
10.1126/science.1067176
10.1007/s11682-017-9675-1
10.1073/pnas.0702413104
10.1371/journal.pbio.1002570
10.1016/j.neuroimage.2020.117548
10.1523/JNEUROSCI.2193-16.2016
10.1073/pnas.1306095110
10.1016/j.ibror.2020.01.003
10.1523/JNEUROSCI.2277-15.2015
10.1016/S0079-6123(08)61871-3
10.1016/j.cophys.2019.06.004
10.1038/nature08028
10.1016/j.neuroimage.2016.08.038
10.1016/j.neuroimage.2012.01.067
10.1097/j.pain.0000000000000688
10.1038/nm.2435
10.1016/0304-3959(90)90057-K
10.1016/0006-8993(94)91638-1
10.3389/fnana.00051
10.1037/cns0000007
10.1016/j.pain.2005.08.027
10.1002/cne.21891
10.1016/S0896-6273(02)00967-4
10.1002/ejp.1510
10.1093/pm/pnx177
10.3389/fnins.2020.00006
10.1016/j.neuroimage.2011.11.095
10.1523/JNEUROSCI.0439-05.2005
10.1016/j.neuroscience.2007.03.016
10.1523/ENEURO.0202-17.2017
10.1098/rsta.2015.0189
10.1038/35053509
10.1016/j.jpain.2014.02.010
10.1155/2009/462879
10.1016/j.neuroimage.2015.02.026
10.1002/hbm.23117
10.1016/j.neuron.2009.07.014
10.1172/JCI43766
10.1016/j.bbi.2006.01.007
10.1113/eph8702357
10.1007/s00108-017-0294-0
10.3758/BRM.41.4.1149
10.1016/j.brainresrev.2004.07.004
10.1016/0166-2236(94)90047-7
10.1016/S0140-6736(09)61706-2
10.1038/nature03658
10.1016/j.neuroimage.2004.01.046
10.1002/cne.902900404
10.1016/j.neuroimage.2015.03.015
10.1126/science.1093065
10.3389/fpsyg.2017.00244
10.1038/312755a0
10.1038/s41593-017-0012-1
10.1016/j.neuroimage.2015.08.060
10.1037/h0045106
10.1016/0304-3959(83)90203-8
10.1038/nrn1431
10.2217/pmt.15.3
10.1523/JNEUROSCI.19-01-00484.1999
10.1016/0304-3959(85)90088-0
10.1016/j.neuroimage.2019.116510
10.1007/s00213-006-0502-4
10.1016/j.neuroimage.2007.07.057
10.1016/j.neulet.2012.03.039
ContentType Journal Article
Copyright Copyright © 2021 the authors.
Copyright Society for Neuroscience Nov 24, 2021
Copyright © 2021 the authors 2021
Copyright_xml – notice: Copyright © 2021 the authors.
– notice: Copyright Society for Neuroscience Nov 24, 2021
– notice: Copyright © 2021 the authors 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
DOI 10.1523/JNEUROSCI.0806-21.2021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
Animal Behavior Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 9806
ExternalDocumentID PMC8612641
34697093
10_1523_JNEUROSCI_0806_21_2021
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 1032072; 1059182
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
YBU
YHG
YKV
YNH
YSK
AFHIN
AIZTS
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
ID FETCH-LOGICAL-c442t-89e42fd16a9ce2ca8c3934f66e7bdcfa1b572d6ffddea1b1de4dfc185dbb94133
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:03:02 EDT 2025
Fri Jul 11 03:30:42 EDT 2025
Mon Jun 30 16:58:02 EDT 2025
Wed Feb 19 02:26:07 EST 2025
Thu Apr 24 23:02:51 EDT 2025
Tue Jul 01 04:16:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords nociception
hyperalgesia
placebo
analgesia
nocebo
pain modulation
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2021 the authors.
SfN exclusive license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-89e42fd16a9ce2ca8c3934f66e7bdcfa1b572d6ffddea1b1de4dfc185dbb94133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: L.S.C., E.P.M., K.A.K., and L.A.H. designed research; L.S.C., E.P.M., T.H., V.G.M., and L.A.H. performed research; P.M.M. and R.G. contributed unpublished reagents/analytic tools; L.S.C., T.H., and P.M.M. analyzed data; L.S.C. wrote the paper.
ORCID 0000-0003-3934-4380
0000-0003-2231-5196
0000-0002-1026-0151
0000-0003-4093-7458
0000-0003-3325-6566
OpenAccessLink https://escholarship.org/content/qt0h592376/qt0h592376.pdf
PMID 34697093
PQID 2607327735
PQPubID 2049535
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8612641
proquest_miscellaneous_2586456738
proquest_journals_2607327735
pubmed_primary_34697093
crossref_primary_10_1523_JNEUROSCI_0806_21_2021
crossref_citationtrail_10_1523_JNEUROSCI_0806_21_2021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-24
20211124
PublicationDateYYYYMMDD 2021-11-24
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2021
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041803492974000_41.47.9794.50
2023041803492974000_41.47.9794.52
2023041803492974000_41.47.9794.51
2023041803492974000_41.47.9794.54
2023041803492974000_41.47.9794.53
2023041803492974000_41.47.9794.56
2023041803492974000_41.47.9794.55
2023041803492974000_41.47.9794.58
2023041803492974000_41.47.9794.57
2023041803492974000_41.47.9794.59
2023041803492974000_41.47.9794.41
2023041803492974000_41.47.9794.40
2023041803492974000_41.47.9794.43
2023041803492974000_41.47.9794.42
2023041803492974000_41.47.9794.45
2023041803492974000_41.47.9794.44
2023041803492974000_41.47.9794.47
2023041803492974000_41.47.9794.46
2023041803492974000_41.47.9794.49
2023041803492974000_41.47.9794.48
2023041803492974000_41.47.9794.4
2023041803492974000_41.47.9794.72
2023041803492974000_41.47.9794.5
2023041803492974000_41.47.9794.71
2023041803492974000_41.47.9794.2
2023041803492974000_41.47.9794.74
2023041803492974000_41.47.9794.3
2023041803492974000_41.47.9794.73
2023041803492974000_41.47.9794.76
2023041803492974000_41.47.9794.1
2023041803492974000_41.47.9794.75
2023041803492974000_41.47.9794.78
2023041803492974000_41.47.9794.77
2023041803492974000_41.47.9794.79
2023041803492974000_41.47.9794.70
2023041803492974000_41.47.9794.61
2023041803492974000_41.47.9794.63
2023041803492974000_41.47.9794.62
2023041803492974000_41.47.9794.65
2023041803492974000_41.47.9794.64
2023041803492974000_41.47.9794.67
2023041803492974000_41.47.9794.66
2023041803492974000_41.47.9794.69
2023041803492974000_41.47.9794.68
2023041803492974000_41.47.9794.8
2023041803492974000_41.47.9794.9
2023041803492974000_41.47.9794.6
2023041803492974000_41.47.9794.7
2023041803492974000_41.47.9794.94
2023041803492974000_41.47.9794.93
2023041803492974000_41.47.9794.96
2023041803492974000_41.47.9794.95
2023041803492974000_41.47.9794.10
2023041803492974000_41.47.9794.98
2023041803492974000_41.47.9794.97
2023041803492974000_41.47.9794.12
2023041803492974000_41.47.9794.11
2023041803492974000_41.47.9794.99
2023041803492974000_41.47.9794.14
2023041803492974000_41.47.9794.13
2023041803492974000_41.47.9794.16
2023041803492974000_41.47.9794.15
2023041803492974000_41.47.9794.18
2023041803492974000_41.47.9794.17
2023041803492974000_41.47.9794.19
Oliva (2023041803492974000_41.47.9794.60) 2021; 226
2023041803492974000_41.47.9794.90
2023041803492974000_41.47.9794.92
2023041803492974000_41.47.9794.91
2023041803492974000_41.47.9794.83
2023041803492974000_41.47.9794.82
2023041803492974000_41.47.9794.85
2023041803492974000_41.47.9794.84
2023041803492974000_41.47.9794.87
2023041803492974000_41.47.9794.86
2023041803492974000_41.47.9794.89
2023041803492974000_41.47.9794.88
2023041803492974000_41.47.9794.81
2023041803492974000_41.47.9794.80
2023041803492974000_41.47.9794.30
2023041803492974000_41.47.9794.32
2023041803492974000_41.47.9794.31
2023041803492974000_41.47.9794.34
2023041803492974000_41.47.9794.33
2023041803492974000_41.47.9794.36
2023041803492974000_41.47.9794.35
2023041803492974000_41.47.9794.38
2023041803492974000_41.47.9794.37
2023041803492974000_41.47.9794.39
2023041803492974000_41.47.9794.21
2023041803492974000_41.47.9794.20
2023041803492974000_41.47.9794.23
2023041803492974000_41.47.9794.22
2023041803492974000_41.47.9794.25
2023041803492974000_41.47.9794.24
2023041803492974000_41.47.9794.27
2023041803492974000_41.47.9794.26
2023041803492974000_41.47.9794.29
2023041803492974000_41.47.9794.28
2023041803492974000_41.47.9794.100
35444008 - J Neurosci. 2022 Apr 20;42(16):3302-3304
References_xml – ident: 2023041803492974000_41.47.9794.12
  doi: 10.1523/JNEUROSCI.2552-18.2019
– ident: 2023041803492974000_41.47.9794.64
– ident: 2023041803492974000_41.47.9794.80
  doi: 10.1016/j.jpain.2015.05.001
– ident: 2023041803492974000_41.47.9794.95
  doi: 10.1016/j.neuroscience.2012.03.038
– ident: 2023041803492974000_41.47.9794.36
  doi: 10.1016/j.jclinepi.2011.01.008
– ident: 2023041803492974000_41.47.9794.78
  doi: 10.1016/j.neuroimage.2017.02.052
– ident: 2023041803492974000_41.47.9794.6
  doi: 10.1016/S0361-9230(00)00313-0
– ident: 2023041803492974000_41.47.9794.90
  doi: 10.1016/0304-3959(89)90080-8
– ident: 2023041803492974000_41.47.9794.98
  doi: 10.1016/S0361-9230(96)00262-6
– ident: 2023041803492974000_41.47.9794.14
  doi: 10.1016/0006-8993(86)90958-3
– ident: 2023041803492974000_41.47.9794.99
  doi: 10.1017/S1461145712000673
– ident: 2023041803492974000_41.47.9794.42
  doi: 10.1523/JNEUROSCI.2043-18.2019
– ident: 2023041803492974000_41.47.9794.88
  doi: 10.1016/j.pain.2005.03.014
– ident: 2023041803492974000_41.47.9794.26
  doi: 10.1080/00029157.2014.976785
– ident: 2023041803492974000_41.47.9794.44
  doi: 10.1073/pnas.76.7.3528
– ident: 2023041803492974000_41.47.9794.38
  doi: 10.1523/JNEUROSCI.17-10-03751.1997
– ident: 2023041803492974000_41.47.9794.55
  doi: 10.1007/s00787-018-1244-7
– ident: 2023041803492974000_41.47.9794.49
  doi: 10.1016/j.neuroimage.2007.01.024
– ident: 2023041803492974000_41.47.9794.53
  doi: 10.1523/JNEUROSCI.1828-04.2004
– ident: 2023041803492974000_41.47.9794.28
  doi: 10.7554/eLife.32930
– ident: 2023041803492974000_41.47.9794.50
  doi: 10.1152/jn.1983.49.3.582
– ident: 2023041803492974000_41.47.9794.83
  doi: 10.1097/j.pain.0000000000001302
– ident: 2023041803492974000_41.47.9794.86
  doi: 10.1016/j.neuron.2007.07.012
– ident: 2023041803492974000_41.47.9794.85
  doi: 10.1126/science.aan1221
– ident: 2023041803492974000_41.47.9794.62
  doi: 10.3390/ph3082661
– ident: 2023041803492974000_41.47.9794.79
  doi: 10.1001/archgenpsychiatry.2007.34
– ident: 2023041803492974000_41.47.9794.34
  doi: 10.1016/0006-8993(83)90111-7
– ident: 2023041803492974000_41.47.9794.17
  doi: 10.1016/j.neuroimage.2006.05.056
– ident: 2023041803492974000_41.47.9794.31
  doi: 10.1016/j.brainresrev.2008.12.009
– ident: 2023041803492974000_41.47.9794.73
  doi: 10.1016/j.pneurobio.2017.10.008
– ident: 2023041803492974000_41.47.9794.57
  doi: 10.1152/jn.1994.72.3.1161
– ident: 2023041803492974000_41.47.9794.8
  doi: 10.1212/01.wnl.0000318225.51122.63
– ident: 2023041803492974000_41.47.9794.56
– ident: 2023041803492974000_41.47.9794.23
  doi: 10.1523/JNEUROSCI.03-12-02545.1983
– ident: 2023041803492974000_41.47.9794.46
  doi: 10.1093/oso/9780195051063.003.0005
– ident: 2023041803492974000_41.47.9794.66
  doi: 10.1126/science.1067176
– ident: 2023041803492974000_41.47.9794.75
  doi: 10.1007/s11682-017-9675-1
– ident: 2023041803492974000_41.47.9794.94
  doi: 10.1073/pnas.0702413104
– ident: 2023041803492974000_41.47.9794.84
  doi: 10.1371/journal.pbio.1002570
– volume: 226
  start-page: 117548
  year: 2021
  ident: 2023041803492974000_41.47.9794.60
  article-title: Parallel cortical-brainstem pathways to attentional analgesia
  publication-title: Neuroimag
  doi: 10.1016/j.neuroimage.2020.117548
– ident: 2023041803492974000_41.47.9794.11
  doi: 10.1523/JNEUROSCI.2193-16.2016
– ident: 2023041803492974000_41.47.9794.72
  doi: 10.1073/pnas.1306095110
– ident: 2023041803492974000_41.47.9794.33
  doi: 10.1016/j.ibror.2020.01.003
– ident: 2023041803492974000_41.47.9794.63
  doi: 10.1523/JNEUROSCI.2277-15.2015
– ident: 2023041803492974000_41.47.9794.5
  doi: 10.1016/S0079-6123(08)61871-3
– ident: 2023041803492974000_41.47.9794.7
  doi: 10.1016/j.cophys.2019.06.004
– ident: 2023041803492974000_41.47.9794.52
  doi: 10.1038/nature08028
– ident: 2023041803492974000_41.47.9794.82
  doi: 10.1016/j.neuroimage.2016.08.038
– ident: 2023041803492974000_41.47.9794.71
  doi: 10.1016/j.neuroimage.2012.01.067
– ident: 2023041803492974000_41.47.9794.69
  doi: 10.1097/j.pain.0000000000000688
– ident: 2023041803492974000_41.47.9794.9
  doi: 10.1038/nm.2435
– ident: 2023041803492974000_41.47.9794.91
  doi: 10.1016/0304-3959(90)90057-K
– ident: 2023041803492974000_41.47.9794.81
  doi: 10.1016/0006-8993(94)91638-1
– ident: 2023041803492974000_41.47.9794.51
  doi: 10.3389/fnana.00051
– ident: 2023041803492974000_41.47.9794.41
  doi: 10.1037/cns0000007
– ident: 2023041803492974000_41.47.9794.10
  doi: 10.1016/j.pain.2005.08.027
– ident: 2023041803492974000_41.47.9794.40
  doi: 10.1002/cne.21891
– ident: 2023041803492974000_41.47.9794.76
  doi: 10.1016/S0896-6273(02)00967-4
– ident: 2023041803492974000_41.47.9794.18
  doi: 10.1002/ejp.1510
– ident: 2023041803492974000_41.47.9794.3
  doi: 10.1093/pm/pnx177
– ident: 2023041803492974000_41.47.9794.32
  doi: 10.3389/fnins.2020.00006
– ident: 2023041803492974000_41.47.9794.65
– ident: 2023041803492974000_41.47.9794.45
  doi: 10.1016/j.neuroimage.2011.11.095
– ident: 2023041803492974000_41.47.9794.100
  doi: 10.1523/JNEUROSCI.0439-05.2005
– ident: 2023041803492974000_41.47.9794.89
  doi: 10.1016/j.neuroscience.2007.03.016
– ident: 2023041803492974000_41.47.9794.13
  doi: 10.1523/ENEURO.0202-17.2017
– ident: 2023041803492974000_41.47.9794.77
  doi: 10.1098/rsta.2015.0189
– ident: 2023041803492974000_41.47.9794.37
  doi: 10.1038/35053509
– ident: 2023041803492974000_41.47.9794.39
  doi: 10.1016/j.jpain.2014.02.010
– ident: 2023041803492974000_41.47.9794.48
  doi: 10.1155/2009/462879
– ident: 2023041803492974000_41.47.9794.21
  doi: 10.1016/j.neuroimage.2015.02.026
– ident: 2023041803492974000_41.47.9794.15
  doi: 10.1002/hbm.23117
– ident: 2023041803492974000_41.47.9794.19
  doi: 10.1016/j.neuron.2009.07.014
– ident: 2023041803492974000_41.47.9794.61
  doi: 10.1172/JCI43766
– ident: 2023041803492974000_41.47.9794.93
  doi: 10.1016/j.bbi.2006.01.007
– ident: 2023041803492974000_41.47.9794.27
  doi: 10.1113/eph8702357
– ident: 2023041803492974000_41.47.9794.30
  doi: 10.1007/s00108-017-0294-0
– ident: 2023041803492974000_41.47.9794.20
  doi: 10.3758/BRM.41.4.1149
– ident: 2023041803492974000_41.47.9794.87
  doi: 10.1016/j.brainresrev.2004.07.004
– ident: 2023041803492974000_41.47.9794.4
  doi: 10.1016/0166-2236(94)90047-7
– ident: 2023041803492974000_41.47.9794.24
  doi: 10.1016/S0140-6736(09)61706-2
– ident: 2023041803492974000_41.47.9794.35
  doi: 10.1038/nature03658
– ident: 2023041803492974000_41.47.9794.67
  doi: 10.1016/j.neuroimage.2004.01.046
– ident: 2023041803492974000_41.47.9794.96
  doi: 10.1002/cne.902900404
– ident: 2023041803492974000_41.47.9794.25
  doi: 10.1016/j.neuroimage.2015.03.015
– ident: 2023041803492974000_41.47.9794.92
  doi: 10.1126/science.1093065
– ident: 2023041803492974000_41.47.9794.59
  doi: 10.3389/fpsyg.2017.00244
– ident: 2023041803492974000_41.47.9794.43
  doi: 10.1038/312755a0
– ident: 2023041803492974000_41.47.9794.68
  doi: 10.1038/s41593-017-0012-1
– ident: 2023041803492974000_41.47.9794.97
  doi: 10.1016/j.neuroimage.2015.08.060
– ident: 2023041803492974000_41.47.9794.58
  doi: 10.1037/h0045106
– ident: 2023041803492974000_41.47.9794.29
  doi: 10.1016/0304-3959(83)90203-8
– ident: 2023041803492974000_41.47.9794.22
  doi: 10.1038/nrn1431
– ident: 2023041803492974000_41.47.9794.54
  doi: 10.2217/pmt.15.3
– ident: 2023041803492974000_41.47.9794.1
  doi: 10.1523/JNEUROSCI.19-01-00484.1999
– ident: 2023041803492974000_41.47.9794.47
  doi: 10.1016/0304-3959(85)90088-0
– ident: 2023041803492974000_41.47.9794.74
  doi: 10.1016/j.neuroimage.2019.116510
– ident: 2023041803492974000_41.47.9794.70
  doi: 10.1007/s00213-006-0502-4
– ident: 2023041803492974000_41.47.9794.16
  doi: 10.1016/j.neuroimage.2007.07.057
– ident: 2023041803492974000_41.47.9794.2
  doi: 10.1016/j.neulet.2012.03.039
– reference: 35444008 - J Neurosci. 2022 Apr 20;42(16):3302-3304
SSID ssj0007017
Score 2.5304155
Snippet Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9794
SubjectTerms Adult
Analgesia
Analgesics
Brain stem
Brain Stem - physiology
Capsaicin
Circuits
Dorsal horn
Female
Functional magnetic resonance imaging
Humans
Hyperalgesia - physiopathology
Lidocaine
Locus coeruleus
Magnetic Resonance Imaging
Male
Medical imaging
Medulla oblongata
Modulation
Neuroimaging
Nocebo Effect
Nocebos
Nuclei
Pain
Pain perception
Pain Perception - physiology
Parabrachial nucleus
Perception
Periaqueductal gray area
Placebos
Placebos - pharmacology
Stimuli
Substantia nigra
Thermal stimuli
Within-subjects design
Title Brainstem Mechanisms of Pain Modulation: A within-Subjects 7T fMRI Study of Placebo Analgesic and Nocebo Hyperalgesic Responses
URI https://www.ncbi.nlm.nih.gov/pubmed/34697093
https://www.proquest.com/docview/2607327735
https://www.proquest.com/docview/2586456738
https://pubmed.ncbi.nlm.nih.gov/PMC8612641
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCgPIIFLRIiEvl1F7vrm1uJWqVliSU4ki5WX7sQipqozxUwYU_xI9k9hHbSSteFytZP9bKfJmdmZ35BqFXeSGYnwWg_agnHBq6uZNJyh0mWAGrlcypbuczGvPBhJ5O2bTT-dnKWlots17-_ca6kv-RKoyBXFWV7D9Itn4oDMBnkC8cQcJw_CsZv1X9HRQT8_5IqAre2eLSJLXBsOpyZltzmepzFXGdlQ5oigudwRHE-3J0fqIzCfU2-5mKqGeV5in5JBaWyHVc6cEB-Kvz9fi5Say16YcXDeBa5m2LKLPGTn-eXq2T6YfiarZoAq-qJtFURuiAy1mjGdfVaYpFoBU_N6F2ldhoA7o2dEE8VcNHWqHLVl7qePuljAokATi31PTx6QmrooneE_LaOtyQZ1msGgpPq5GjwDRRvrZUME1ZcTpWGZMf-yc9MJ25Q1TIwJRsb3Jzj98nx5PhMImPpvEtdJuAU6L6Zbz70HDTB67u71y_s61Hh3kObp5l0xS65t9sp-m27J74HrprJYoPDfruo44oH6BdwMiyuvyGX2OdQqz3ZnbRjxqQuAEkriRWgMQNIN_gQ7wFRxzEWMERazjqewwccQ1HDHDEBo64DUdcw_Ehmhwfxf2BYzt8ODmlZOmEkaBEFh5Po1yQPA1zP_Kp5FwEWZHL1MtYQAouJSzC8MUrBC1kDiZmkWURmF_-I7RTVqV4grAfEsHDiAniSpozN418WbgsFGCjSVhnuoitf-wkt_T3qgvLl0S5wSCkpBZSooSUEC9RQuqig_q-r4YA5o937K1lmVhlsUgIh7UUUOOzLnpZnwZVrvbn0lJUK7iGhRz8mcAPu-ixEX09pU95FLiR30XBBijqCxRN_OaZcvZZ08WH4MRw6j39_Ws9Q3eav-ge2lnOV-I52NvL7IWG-S9xv9gf
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brainstem+Mechanisms+of+Pain+Modulation%3A+A+within-Subjects+7T+fMRI+Study+of+Placebo+Analgesic+and+Nocebo+Hyperalgesic+Responses&rft.jtitle=The+Journal+of+neuroscience&rft.au=Crawford%2C+Lewis+S&rft.au=Mills%2C+Emily+P&rft.au=Hanson%2C+Theo&rft.au=Macey%2C+Paul+M&rft.date=2021-11-24&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=41&rft.issue=47&rft.spage=9794&rft_id=info:doi/10.1523%2FJNEUROSCI.0806-21.2021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon