Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides
Iron-based superconductors all share the same building blocks. So why do local magnetic properties vary from one compound to another? A new theoretical model explains the variation in physical properties and links it to the structural differences, providing a description for a wide range of material...
Saved in:
Published in | Nature materials Vol. 10; no. 12; pp. 932 - 935 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2011
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Iron-based superconductors all share the same building blocks. So why do local magnetic properties vary from one compound to another? A new theoretical model explains the variation in physical properties and links it to the structural differences, providing a description for a wide range of materials.
The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity
1
. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (
T
c
). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available
2
. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments
3
. |
---|---|
AbstractList | Iron-based superconductors all share the same building blocks. So why do local magnetic properties vary from one compound to another? A new theoretical model explains the variation in physical properties and links it to the structural differences, providing a description for a wide range of materials.
The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity
1
. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (
T
c
). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available
2
. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments
3
. The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (T(c)). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments. [PUBLICATION ABSTRACT] The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (T(c)). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments.The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (T(c)). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments. The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (T sub(c)). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments. The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (T(c)). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments. |
Author | Kotliar, G. Haule, K. Yin, Z. P. |
Author_xml | – sequence: 1 givenname: Z. P. surname: Yin fullname: Yin, Z. P. email: yinzping@physics.rutgers.edu organization: Department of Physics and Astronomy, Rutgers University, Department of Physics and Astronomy, Stony Brook University – sequence: 2 givenname: K. surname: Haule fullname: Haule, K. organization: Department of Physics and Astronomy, Rutgers University – sequence: 3 givenname: G. surname: Kotliar fullname: Kotliar, G. organization: Department of Physics and Astronomy, Rutgers University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21927004$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctOxCAUhonRON4Sn8A0btTF6OFS2i7NxFs0caPrhlIYmbR0BLrwbXwWn0zqjGMyGlfAf77_AOffRZu2swqhQwznGGh-YVsRKCawgXYwy_iYcQ6byz3GhIzQrvczAILTlG-jEcEFyQDYDgr3xqpgZKJd74MTwXQ2EbZOwotKrAi9U0mnv06tmC7QoTwXTqwEH0RQPjE2MS7a59bIYOqoDOQgfbzLF9HIbqrsoO-jLS0arw6W6x56vr56mtyOHx5v7iaXD2PJGAnjLEs1LRRToGmOQWuSk0xVvGCSpYKSQnJR40pUUEENHCjTeV5RrGM1Z1TTPXSy6Dt33WuvfChb46VqGmFV1_uygLTgLCckkqf_khhwwdOcpTiix2vorOudjf8oCwKExdlnETpaQn3VqrqcO9MK91Z-D_7nQuk6753SKwRDOWRafmca0fM1VJrwFVTMyzR_Gc4WBh972qlyPy_8xX4CuQ6yUA |
CitedBy_id | crossref_primary_10_1103_PhysRevB_103_054503 crossref_primary_10_1103_PhysRevB_91_041112 crossref_primary_10_1103_PhysRevB_103_054505 crossref_primary_10_1088_1367_2630_abfb3d crossref_primary_10_1016_j_aop_2016_11_011 crossref_primary_10_1016_j_heliyon_2024_e25965 crossref_primary_10_1103_PhysRevB_110_155101 crossref_primary_10_1103_PhysRevLett_133_046502 crossref_primary_10_1038_ncomms8777 crossref_primary_10_1126_science_aal1575 crossref_primary_10_1103_PhysRevB_108_115147 crossref_primary_10_3389_fphy_2022_915619 crossref_primary_10_1103_PhysRevB_96_144509 crossref_primary_10_1038_s41467_024_54330_x crossref_primary_10_1103_PhysRevB_86_195133 crossref_primary_10_1103_PhysRevB_86_081106 crossref_primary_10_1103_PhysRevB_99_075142 crossref_primary_10_1103_PhysRevB_100_115159 crossref_primary_10_7566_JPSJ_89_051006 crossref_primary_10_1103_PhysRevLett_109_187005 crossref_primary_10_1103_PhysRevB_110_245139 crossref_primary_10_1038_s41467_020_17462_4 crossref_primary_10_1103_PhysRevB_103_165110 crossref_primary_10_1063_1_4864442 crossref_primary_10_1103_PhysRevB_107_134512 crossref_primary_10_1088_1361_648X_ab7600 crossref_primary_10_1103_PhysRevB_101_045108 crossref_primary_10_1038_s41467_021_21460_5 crossref_primary_10_1038_nnano_2015_225 crossref_primary_10_1088_1742_6596_592_1_012055 crossref_primary_10_1103_PhysRevB_86_195141 crossref_primary_10_1103_PhysRevB_99_235142 crossref_primary_10_1103_PhysRevLett_110_067003 crossref_primary_10_1038_s41535_020_00295_1 crossref_primary_10_7566_JPSJ_84_093703 crossref_primary_10_1103_PhysRevB_94_094504 crossref_primary_10_1103_PhysRevB_93_125135 crossref_primary_10_1103_PhysRevB_109_L241106 crossref_primary_10_1103_PhysRevB_103_155107 crossref_primary_10_1103_PhysRevB_110_L140507 crossref_primary_10_1146_annurev_conmatphys_020911_125045 crossref_primary_10_1038_s41535_021_00336_3 crossref_primary_10_1103_PhysRevX_10_011034 crossref_primary_10_1103_PhysRevB_104_115122 crossref_primary_10_1038_srep46439 crossref_primary_10_1103_PhysRevB_87_024504 crossref_primary_10_1103_PhysRevB_106_L161112 crossref_primary_10_1063_1_4818790 crossref_primary_10_1103_PhysRevB_105_045130 crossref_primary_10_1103_PhysRevLett_108_177007 crossref_primary_10_1088_0953_8984_28_48_485401 crossref_primary_10_1103_PhysRevB_103_075112 crossref_primary_10_1103_PhysRevB_90_094511 crossref_primary_10_1103_PhysRevB_109_195111 crossref_primary_10_1103_PhysRevB_103_165133 crossref_primary_10_1103_PhysRevB_93_241116 crossref_primary_10_1103_PhysRevB_98_024507 crossref_primary_10_1103_PhysRevB_103_075110 crossref_primary_10_1103_PhysRevB_95_075115 crossref_primary_10_1103_PhysRevB_101_241108 crossref_primary_10_1103_PhysRevB_94_024512 crossref_primary_10_1103_PhysRevB_104_L121109 crossref_primary_10_1088_1361_648X_aa9caa crossref_primary_10_1088_1361_648X_ab3b3b crossref_primary_10_7498_aps_67_20180627 crossref_primary_10_1103_PhysRevB_106_L081104 crossref_primary_10_1103_PhysRevB_87_174503 crossref_primary_10_1103_PhysRevB_94_094523 crossref_primary_10_1103_PhysRevB_104_115107 crossref_primary_10_1103_PhysRevB_109_115114 crossref_primary_10_1103_PhysRevB_95_054501 crossref_primary_10_1103_PhysRevLett_109_236403 crossref_primary_10_1103_PhysRevB_84_245112 crossref_primary_10_1103_PhysRevB_90_060501 crossref_primary_10_1103_PhysRevB_102_235121 crossref_primary_10_1103_PhysRevB_98_014504 crossref_primary_10_1016_j_rinp_2024_107446 crossref_primary_10_1021_acs_inorgchem_8b03089 crossref_primary_10_1103_PhysRevB_89_085127 crossref_primary_10_1103_PhysRevB_95_214510 crossref_primary_10_1103_PhysRevB_85_064522 crossref_primary_10_1557_opl_2012_1247 crossref_primary_10_1103_PhysRevB_99_134520 crossref_primary_10_1088_0953_8984_26_37_376002 crossref_primary_10_1103_PhysRevB_97_205123 crossref_primary_10_1103_PhysRevLett_112_187202 crossref_primary_10_1103_PhysRevMaterials_6_055004 crossref_primary_10_1103_PhysRevB_103_155115 crossref_primary_10_1103_PhysRevB_85_165103 crossref_primary_10_1038_s41535_019_0175_y crossref_primary_10_1103_PhysRevResearch_6_023124 crossref_primary_10_1103_PhysRevB_102_054430 crossref_primary_10_1103_PhysRevB_100_205134 crossref_primary_10_1103_PhysRevB_109_024506 crossref_primary_10_1103_PhysRevLett_112_187204 crossref_primary_10_1038_s42005_021_00736_8 crossref_primary_10_1088_0953_8984_26_47_473202 crossref_primary_10_1103_PhysRevB_92_054515 crossref_primary_10_1103_PhysRevB_98_045138 crossref_primary_10_1103_PhysRevB_111_035127 crossref_primary_10_1103_PhysRevB_88_144518 crossref_primary_10_1103_PhysRevX_10_031052 crossref_primary_10_1103_PhysRevB_92_085116 crossref_primary_10_1038_s41524_022_00937_x crossref_primary_10_1103_PhysRevB_100_085104 crossref_primary_10_1103_PhysRevLett_111_027002 crossref_primary_10_1103_PhysRevLett_131_256002 crossref_primary_10_1134_S1063776118040106 crossref_primary_10_1103_RevModPhys_87_855 crossref_primary_10_1103_PhysRevB_86_035152 crossref_primary_10_1103_PhysRevB_99_245156 crossref_primary_10_1063_1_5067367 crossref_primary_10_1103_PhysRevB_104_125130 crossref_primary_10_1103_PhysRevLett_115_136401 crossref_primary_10_1103_PhysRevB_101_024510 crossref_primary_10_1103_PhysRevB_100_245109 crossref_primary_10_1038_s41535_018_0105_4 crossref_primary_10_1103_PhysRevB_93_115138 crossref_primary_10_1103_PhysRevB_94_075153 crossref_primary_10_1103_PhysRevB_110_075160 crossref_primary_10_1016_j_crhy_2015_05_004 crossref_primary_10_1103_PhysRevB_87_045122 crossref_primary_10_1103_PhysRevB_90_014503 crossref_primary_10_1103_PhysRevB_104_165111 crossref_primary_10_1103_PhysRevB_88_134510 crossref_primary_10_1038_s41535_023_00568_5 crossref_primary_10_1103_PhysRevB_98_045105 crossref_primary_10_1140_epjb_e2016_60842_y crossref_primary_10_1038_s42005_022_01089_6 crossref_primary_10_1103_PhysRevB_91_184503 crossref_primary_10_1103_PhysRevB_99_184505 crossref_primary_10_1103_PhysRevB_96_121103 crossref_primary_10_1103_PhysRevLett_117_047003 crossref_primary_10_1088_1361_648X_aa85f4 crossref_primary_10_1103_PhysRevB_107_235103 crossref_primary_10_1103_PhysRevLett_109_047001 crossref_primary_10_1103_PhysRevX_11_031013 crossref_primary_10_1103_PhysRevB_99_134501 crossref_primary_10_1103_PhysRevX_15_011012 crossref_primary_10_1088_0256_307X_40_1_017401 crossref_primary_10_1103_PhysRevB_96_134519 crossref_primary_10_1103_PhysRevB_98_174415 crossref_primary_10_1038_s41563_018_0151_0 crossref_primary_10_1103_PhysRevB_101_174509 crossref_primary_10_1103_PhysRevLett_122_046401 crossref_primary_10_1021_acs_jpcc_1c08142 crossref_primary_10_1103_PhysRevB_105_035125 crossref_primary_10_1016_j_jallcom_2021_160888 crossref_primary_10_1103_PhysRevB_107_235118 crossref_primary_10_1103_PhysRevB_98_014512 crossref_primary_10_1103_PhysRevB_98_161116 crossref_primary_10_1103_PhysRevB_98_014517 crossref_primary_10_7566_JPSJ_93_033701 crossref_primary_10_1103_PhysRevB_95_144511 crossref_primary_10_1038_s41467_019_10257_2 crossref_primary_10_1103_PhysRevB_87_125138 crossref_primary_10_21468_SciPostPhys_10_5_117 crossref_primary_10_1088_1367_2630_aa5a71 crossref_primary_10_1038_nature14090 crossref_primary_10_1016_j_ssc_2020_114121 crossref_primary_10_1103_PhysRevLett_110_167002 crossref_primary_10_1103_PhysRevB_107_115144 crossref_primary_10_1126_sciadv_aay4517 crossref_primary_10_1103_PhysRevX_13_011010 crossref_primary_10_1038_srep11399 crossref_primary_10_1103_PhysRevB_102_195103 crossref_primary_10_1103_PhysRevB_90_035104 crossref_primary_10_1103_PhysRevB_91_224507 crossref_primary_10_1103_PhysRevB_92_035104 crossref_primary_10_1103_PhysRevB_104_165135 crossref_primary_10_1038_s41586_019_1408_8 crossref_primary_10_1103_PhysRevB_104_165138 crossref_primary_10_1103_PhysRevB_89_100402 crossref_primary_10_1021_acs_inorgchem_0c01817 crossref_primary_10_1103_PhysRevB_105_L081111 crossref_primary_10_1039_C6DT03486A crossref_primary_10_1016_j_ssc_2013_03_003 crossref_primary_10_1073_pnas_2401430121 crossref_primary_10_1103_PhysRevB_102_245111 crossref_primary_10_1038_srep02555 crossref_primary_10_1103_PhysRevB_96_201108 crossref_primary_10_1103_PhysRevB_102_245119 crossref_primary_10_1103_PhysRevB_106_245112 crossref_primary_10_1103_PhysRevB_98_115128 crossref_primary_10_1016_j_cpc_2021_107991 crossref_primary_10_1103_PhysRevB_102_195115 crossref_primary_10_31857_S1234567823080050 crossref_primary_10_1103_PhysRevB_90_121114 crossref_primary_10_1103_PhysRevB_90_121113 crossref_primary_10_1088_1468_6996_13_5_054305 crossref_primary_10_1103_PhysRevB_94_235126 crossref_primary_10_1103_PhysRevLett_123_216401 crossref_primary_10_1103_RevModPhys_85_849 crossref_primary_10_1103_PhysRevB_85_174522 crossref_primary_10_1103_PhysRevLett_110_207205 crossref_primary_10_1063_5_0047264 crossref_primary_10_1103_PhysRevB_102_125130 crossref_primary_10_1088_1361_648X_ab85f0 crossref_primary_10_7566_JPSJ_83_104703 crossref_primary_10_1103_PhysRevLett_121_077001 crossref_primary_10_1103_PhysRevLett_125_077001 crossref_primary_10_1103_PhysRevB_90_035128 crossref_primary_10_1016_j_physc_2018_07_003 crossref_primary_10_1103_PhysRevX_13_011032 crossref_primary_10_1016_j_physc_2015_02_020 crossref_primary_10_1103_PhysRevLett_120_267001 crossref_primary_10_1103_PhysRevB_89_020501 crossref_primary_10_1140_epjst_e2017_70049_3 crossref_primary_10_1103_PhysRevLett_114_047001 crossref_primary_10_1209_0295_5075_118_17004 crossref_primary_10_1073_pnas_1117366109 crossref_primary_10_1103_PhysRevB_106_094510 crossref_primary_10_1103_PhysRevB_96_014523 crossref_primary_10_1103_PhysRevB_105_155131 crossref_primary_10_1038_s41535_020_0212_x crossref_primary_10_1103_PhysRevB_97_115165 crossref_primary_10_1103_PhysRevMaterials_7_034801 crossref_primary_10_1103_PhysRevB_98_041108 crossref_primary_10_1088_1674_1056_25_5_057201 crossref_primary_10_1103_PhysRevB_93_205106 crossref_primary_10_1103_PhysRevB_92_075136 crossref_primary_10_1073_pnas_2001141117 crossref_primary_10_1103_PhysRevB_107_115116 crossref_primary_10_1038_ncomms6738 crossref_primary_10_1103_PhysRevB_89_020511 crossref_primary_10_1103_PhysRevB_97_224519 crossref_primary_10_1103_PhysRevB_90_195146 crossref_primary_10_1103_PhysRevB_92_115142 crossref_primary_10_1103_PhysRevLett_119_067004 crossref_primary_10_1103_PhysRevB_94_235147 crossref_primary_10_1088_1674_1056_ab75d4 crossref_primary_10_1016_j_physc_2015_02_011 crossref_primary_10_1103_PhysRevB_85_094505 crossref_primary_10_1103_PhysRevB_102_035109 crossref_primary_10_1103_PhysRevResearch_4_023232 crossref_primary_10_1103_PhysRevB_92_174524 crossref_primary_10_1209_0295_5075_128_47004 crossref_primary_10_1007_s40766_021_00025_8 crossref_primary_10_1103_PhysRevB_103_L241117 crossref_primary_10_1016_j_physc_2016_10_006 crossref_primary_10_1103_PhysRevB_92_174522 crossref_primary_10_1103_PhysRevLett_123_027203 crossref_primary_10_1007_s11433_022_1888_2 crossref_primary_10_1016_j_aop_2018_10_017 crossref_primary_10_1103_PhysRevB_97_045119 crossref_primary_10_1088_1361_648X_aab284 crossref_primary_10_1038_srep10392 crossref_primary_10_1103_PhysRevB_94_205113 crossref_primary_10_1016_j_cossms_2013_05_003 crossref_primary_10_1103_PhysRevB_100_235123 crossref_primary_10_1103_PhysRevLett_112_177001 crossref_primary_10_1126_sciadv_aao2682 crossref_primary_10_1103_PhysRevB_86_024401 crossref_primary_10_1088_1361_648X_ab151f crossref_primary_10_1002_pssb_201700006 crossref_primary_10_1103_PhysRevLett_123_146402 crossref_primary_10_1103_PhysRevB_102_161118 crossref_primary_10_1103_PhysRevB_105_235130 crossref_primary_10_1103_PhysRevB_107_045147 crossref_primary_10_1103_PhysRevB_94_165140 crossref_primary_10_1088_0953_8984_28_14_145701 crossref_primary_10_1103_PhysRevB_107_125166 crossref_primary_10_1103_PhysRevB_96_035144 crossref_primary_10_1103_PhysRevB_97_115141 crossref_primary_10_1103_PhysRevLett_115_116401 crossref_primary_10_1002_pssr_201600279 crossref_primary_10_1103_PhysRevB_96_060504 crossref_primary_10_1103_PhysRevB_96_245128 crossref_primary_10_1088_1361_648X_aa9103 crossref_primary_10_1088_1367_2630_17_7_073027 crossref_primary_10_1002_adma_202208833 crossref_primary_10_1103_PhysRevB_89_134507 crossref_primary_10_7498_aps_69_20200717 crossref_primary_10_1016_j_ssc_2017_01_024 crossref_primary_10_7566_JPSJ_87_041005 crossref_primary_10_1103_PhysRevLett_122_017001 crossref_primary_10_1038_s41535_021_00341_6 crossref_primary_10_1103_PhysRevB_97_045118 crossref_primary_10_1038_s41535_017_0019_6 crossref_primary_10_1103_PhysRevB_96_195121 crossref_primary_10_1103_PhysRevX_4_031041 crossref_primary_10_1103_PhysRevB_93_085137 crossref_primary_10_1103_PhysRevLett_134_076504 crossref_primary_10_1360_SSPMA_2022_0058 crossref_primary_10_1038_s41467_023_37792_3 crossref_primary_10_1103_PhysRevB_102_014406 crossref_primary_10_1103_PhysRevB_96_045130 crossref_primary_10_1103_PhysRevB_93_104515 crossref_primary_10_1103_PhysRevLett_129_096403 crossref_primary_10_1103_PhysRevB_93_104517 crossref_primary_10_1038_s41535_020_0221_9 crossref_primary_10_1103_PhysRevB_96_245111 crossref_primary_10_1103_PhysRevLett_129_096404 crossref_primary_10_1103_PhysRevB_105_155101 crossref_primary_10_1103_PhysRevB_96_035137 crossref_primary_10_1103_PhysRevB_97_184431 crossref_primary_10_1103_PhysRevB_98_075155 crossref_primary_10_1038_s41524_022_00867_8 crossref_primary_10_1103_PhysRevB_104_075101 crossref_primary_10_1103_PhysRevB_97_024519 crossref_primary_10_3389_fphy_2021_578347 crossref_primary_10_1073_pnas_2200405119 crossref_primary_10_1103_PhysRevB_89_134515 crossref_primary_10_1103_PhysRevResearch_5_033134 crossref_primary_10_1038_srep12421 crossref_primary_10_1038_s42005_022_00911_5 crossref_primary_10_1103_PhysRevB_95_144407 crossref_primary_10_1021_acs_nanolett_2c04169 crossref_primary_10_1063_1_4865557 crossref_primary_10_1080_00018732_2014_940227 crossref_primary_10_1140_epjb_e2016_60588_6 crossref_primary_10_1002_cphc_201900002 crossref_primary_10_1103_PhysRevB_102_115134 crossref_primary_10_1016_j_physc_2015_03_001 crossref_primary_10_1038_s42005_023_01314_w crossref_primary_10_1103_PhysRevB_99_134103 crossref_primary_10_1103_PhysRevB_108_045428 crossref_primary_10_1073_pnas_1721493115 crossref_primary_10_1103_PhysRevB_99_020404 crossref_primary_10_1103_PhysRevB_87_241105 crossref_primary_10_1038_natrevmats_2016_17 crossref_primary_10_1088_0953_8984_28_42_425702 crossref_primary_10_7566_JPSJ_93_044711 crossref_primary_10_1088_0953_8984_28_29_293002 crossref_primary_10_1103_PhysRevB_102_014502 crossref_primary_10_1103_PhysRevB_105_165127 crossref_primary_10_1103_PhysRevB_110_054509 crossref_primary_10_1107_S2052520614023634 crossref_primary_10_3389_fphy_2022_919784 crossref_primary_10_1103_PhysRevB_99_035118 crossref_primary_10_1103_PhysRevLett_122_117204 crossref_primary_10_1002_pssb_201600164 crossref_primary_10_1088_0953_2048_25_8_084007 crossref_primary_10_1038_s41563_021_00984_7 crossref_primary_10_1103_PhysRevLett_132_226501 crossref_primary_10_1103_PhysRevB_94_224511 crossref_primary_10_1002_pssb_201900229 crossref_primary_10_1038_s41586_021_04073_2 crossref_primary_10_1103_PhysRevB_102_115144 crossref_primary_10_1038_ncomms2428 crossref_primary_10_1088_2053_1591_1_3_036001 crossref_primary_10_1103_PhysRevB_89_184513 crossref_primary_10_1103_PhysRevLett_119_096401 crossref_primary_10_1088_1361_6633_80_1_014503 crossref_primary_10_1103_PhysRevLett_124_136406 crossref_primary_10_1103_PhysRevB_90_144503 crossref_primary_10_1103_PhysRevLett_115_106402 crossref_primary_10_1103_PhysRevB_104_L241101 crossref_primary_10_1103_PhysRevB_88_081107 crossref_primary_10_1103_PhysRevB_110_125132 crossref_primary_10_1038_s41467_023_39827_1 crossref_primary_10_1103_PhysRevB_98_064508 crossref_primary_10_1103_PhysRevB_98_064507 crossref_primary_10_1103_PhysRevB_93_020301 crossref_primary_10_1103_PhysRevB_93_041101 crossref_primary_10_3389_fphy_2020_00284 crossref_primary_10_1038_s42005_023_01481_w crossref_primary_10_1038_srep18620 crossref_primary_10_1103_PhysRevLett_109_237010 crossref_primary_10_1002_adma_201404079 crossref_primary_10_1103_PhysRevB_104_L161110 crossref_primary_10_1103_PhysRevLett_109_237011 crossref_primary_10_1103_PhysRevB_103_125125 crossref_primary_10_1038_nphys3456 crossref_primary_10_1088_1367_2630_18_10_103033 crossref_primary_10_15407_ufm_18_01_001 crossref_primary_10_1103_PhysRevB_86_020510 crossref_primary_10_1103_PhysRevB_91_195149 crossref_primary_10_1103_PhysRevX_10_041008 crossref_primary_10_1038_s42005_022_00805_6 crossref_primary_10_1073_pnas_2105190118 crossref_primary_10_1103_PhysRevB_101_245146 crossref_primary_10_1016_j_actamat_2023_119251 crossref_primary_10_1103_PhysRevB_95_014511 crossref_primary_10_1103_PhysRevB_86_064437 crossref_primary_10_3389_fphy_2014_00017 crossref_primary_10_1088_2399_6528_aace29 crossref_primary_10_1103_PhysRevB_101_165107 crossref_primary_10_1126_sciadv_aao6791 crossref_primary_10_1016_j_commatsci_2019_05_034 crossref_primary_10_1103_PhysRevB_103_205132 crossref_primary_10_1103_PhysRevResearch_5_L022058 crossref_primary_10_1002_pssb_202100169 crossref_primary_10_1038_s41467_024_53722_3 crossref_primary_10_1103_PhysRevLett_112_217202 crossref_primary_10_1103_PhysRevB_95_081106 crossref_primary_10_1103_PhysRevLett_111_217002 crossref_primary_10_1103_PhysRevLett_125_177001 crossref_primary_10_1038_s42005_019_0107_y crossref_primary_10_7566_JPSJ_82_034714 crossref_primary_10_1088_0953_8984_27_33_335504 crossref_primary_10_1103_PhysRevB_107_L081114 crossref_primary_10_1103_PhysRevB_107_L220410 crossref_primary_10_1103_PhysRevB_88_174516 crossref_primary_10_1103_PhysRevX_6_021032 crossref_primary_10_1103_PhysRevB_84_174517 crossref_primary_10_1088_0953_8984_25_12_125601 crossref_primary_10_1103_PhysRevB_103_024406 crossref_primary_10_1103_PhysRevLett_116_147001 crossref_primary_10_1103_PhysRevLett_118_017204 crossref_primary_10_1002_adfm_202102917 crossref_primary_10_1103_PhysRevB_93_054516 crossref_primary_10_1103_PhysRevB_86_134503 crossref_primary_10_1103_PhysRevB_96_045114 crossref_primary_10_1103_PhysRevB_98_214508 crossref_primary_10_1038_nphys3116 crossref_primary_10_1103_PhysRevB_90_180403 crossref_primary_10_1063_pt_wqrz_qpjx crossref_primary_10_1103_PhysRevB_95_205118 crossref_primary_10_1103_PhysRevB_107_205152 crossref_primary_10_1103_PhysRevB_95_205117 crossref_primary_10_1093_nsr_nwu007 crossref_primary_10_1093_pnasnexus_pgad164 crossref_primary_10_1088_0953_8984_26_37_375601 crossref_primary_10_1103_PhysRevB_97_214511 crossref_primary_10_1103_PhysRevB_90_165123 crossref_primary_10_1103_PhysRevB_90_165122 crossref_primary_10_1103_PhysRevLett_132_236505 crossref_primary_10_1088_1361_648X_aa669d crossref_primary_10_1038_s41586_025_08703_x crossref_primary_10_1073_pnas_2321193121 crossref_primary_10_1103_PhysRevMaterials_3_064404 crossref_primary_10_1038_s41598_017_06591_4 crossref_primary_10_1103_PhysRevB_95_195111 crossref_primary_10_1103_PhysRevB_91_140503 crossref_primary_10_1021_acs_nanolett_9b05167 crossref_primary_10_1103_PhysRevLett_125_166401 crossref_primary_10_1103_PhysRevLett_134_116504 crossref_primary_10_1103_PhysRevLett_117_097001 crossref_primary_10_1007_s10853_021_06210_8 crossref_primary_10_1038_nphys2438 crossref_primary_10_1103_PhysRevB_106_115114 crossref_primary_10_1103_PhysRevB_93_134515 crossref_primary_10_1007_s10948_016_3626_8 crossref_primary_10_1016_j_inoche_2019_107605 crossref_primary_10_1103_PhysRevB_96_125111 crossref_primary_10_1103_PhysRevB_99_125130 crossref_primary_10_1103_PhysRevLett_116_237003 crossref_primary_10_1103_PhysRevB_96_125110 crossref_primary_10_1103_PhysRevB_90_085110 crossref_primary_10_1103_PhysRevLett_113_027002 crossref_primary_10_1007_s11467_016_0572_7 crossref_primary_10_1103_PhysRevB_102_081108 crossref_primary_10_1103_PhysRevB_104_024512 crossref_primary_10_1088_1674_1056_24_11_117405 crossref_primary_10_1103_PhysRevB_102_081105 crossref_primary_10_1103_PhysRevB_95_094504 crossref_primary_10_1103_PhysRevB_92_195128 crossref_primary_10_1103_PhysRevLett_111_207002 crossref_primary_10_3389_fphy_2022_859017 crossref_primary_10_1088_1367_2630_16_8_083025 crossref_primary_10_1103_PhysRevB_109_165111 crossref_primary_10_1103_PhysRevB_102_241108 crossref_primary_10_1103_PhysRevB_87_224512 crossref_primary_10_1103_PhysRevB_88_184413 crossref_primary_10_1039_D4NJ03944K crossref_primary_10_1007_s11434_016_1087_x crossref_primary_10_1063_1_5034488 crossref_primary_10_1103_PhysRevB_98_155116 crossref_primary_10_1103_PhysRevB_89_220506 crossref_primary_10_1073_pnas_1703295114 crossref_primary_10_1088_1361_648X_ac1766 crossref_primary_10_1103_PhysRevX_6_041045 crossref_primary_10_1016_j_jmmm_2020_166872 crossref_primary_10_1007_s40766_019_0001_1 crossref_primary_10_1209_0295_5075_106_67004 crossref_primary_10_1209_0295_5075_113_27001 crossref_primary_10_1073_pnas_1414094112 crossref_primary_10_1103_PhysRevB_103_045134 crossref_primary_10_1126_science_aak9946 crossref_primary_10_1021_acs_nanolett_3c04098 crossref_primary_10_1103_PhysRevLett_134_016501 crossref_primary_10_1073_pnas_1702234114 crossref_primary_10_1016_j_ssc_2019_113800 crossref_primary_10_1103_PhysRevB_105_075119 crossref_primary_10_1103_PhysRevB_87_064409 crossref_primary_10_1103_PhysRevB_95_060505 crossref_primary_10_1103_PhysRevB_87_161122 crossref_primary_10_1103_PhysRevLett_124_206405 crossref_primary_10_1103_PhysRevB_89_094514 crossref_primary_10_1103_PhysRevB_105_245115 crossref_primary_10_1103_PhysRevB_89_220502 crossref_primary_10_1103_PhysRevB_99_125113 crossref_primary_10_1103_PhysRevB_96_184418 crossref_primary_10_1103_PhysRevLett_109_126408 crossref_primary_10_1103_PhysRevMaterials_1_034406 crossref_primary_10_1021_acs_nanolett_2c01282 crossref_primary_10_1038_s41467_024_49674_3 crossref_primary_10_1103_PhysRevB_88_184515 crossref_primary_10_1038_nphys3434 crossref_primary_10_1038_s42005_024_01874_5 crossref_primary_10_1103_PhysRevB_89_205121 crossref_primary_10_1103_PhysRevLett_124_237001 crossref_primary_10_1103_PhysRevB_101_235154 crossref_primary_10_1063_1_4969042 crossref_primary_10_1103_PhysRevB_103_045121 crossref_primary_10_1088_1361_648X_ab9566 crossref_primary_10_1038_nnano_2015_193 crossref_primary_10_1103_PhysRevB_94_195146 crossref_primary_10_1146_annurev_conmatphys_033117_054137 crossref_primary_10_1038_srep24479 crossref_primary_10_1088_0256_307X_40_11_117103 crossref_primary_10_1038_s41467_024_51255_3 crossref_primary_10_1088_1361_648X_aafdce crossref_primary_10_1073_pnas_2001123117 crossref_primary_10_1103_PhysRevB_108_L081102 crossref_primary_10_1103_PhysRevLett_118_167003 crossref_primary_10_1360_SSPMA_2023_0264 crossref_primary_10_1103_PhysRevLett_119_227003 crossref_primary_10_1103_PhysRevB_93_224506 crossref_primary_10_1016_j_aop_2019_03_024 crossref_primary_10_1002_pssb_201600208 crossref_primary_10_1103_PhysRevB_94_201109 crossref_primary_10_1142_S0217979221502775 crossref_primary_10_1103_PhysRevB_94_035108 crossref_primary_10_1103_PhysRevLett_112_106405 crossref_primary_10_1103_PhysRevB_97_104502 crossref_primary_10_1021_acs_inorgchem_8b00179 crossref_primary_10_1103_PhysRevB_92_235138 crossref_primary_10_1016_j_jmmm_2013_09_029 crossref_primary_10_1103_PhysRevB_111_L041102 crossref_primary_10_7566_JPSJ_82_123712 crossref_primary_10_1038_nmat3654 crossref_primary_10_1103_PhysRevB_104_045128 crossref_primary_10_1038_nphys2877 crossref_primary_10_1103_PhysRevB_99_024509 crossref_primary_10_1088_0953_8984_26_42_425501 crossref_primary_10_1103_PhysRevLett_116_247001 crossref_primary_10_1103_PhysRevB_107_214452 crossref_primary_10_1103_PhysRevLett_121_197001 crossref_primary_10_1038_s41535_020_00253_x crossref_primary_10_1103_PhysRevB_95_174504 crossref_primary_10_1103_PhysRevB_90_205131 crossref_primary_10_1103_PhysRevLett_110_146402 crossref_primary_10_1103_PhysRevMaterials_3_085001 crossref_primary_10_1103_PhysRevB_106_184422 crossref_primary_10_1103_PhysRevB_85_180405 crossref_primary_10_1021_acs_inorgchem_2c00568 crossref_primary_10_1103_PhysRevB_87_165139 crossref_primary_10_1103_PhysRevLett_125_247001 crossref_primary_10_1103_PhysRevX_8_041056 crossref_primary_10_1038_s41535_018_0122_3 crossref_primary_10_1088_0953_8984_26_1_015701 crossref_primary_10_1103_PhysRevB_102_205127 crossref_primary_10_1103_PhysRevMaterials_1_024409 crossref_primary_10_1088_1361_648X_aaa43e crossref_primary_10_1080_08940886_2023_2226048 crossref_primary_10_1002_adma_201401518 crossref_primary_10_1103_PhysRevB_98_195137 crossref_primary_10_1103_PhysRevB_93_144404 crossref_primary_10_1002_pssb_201600350 crossref_primary_10_1088_1367_2630_16_6_063020 crossref_primary_10_1039_D4FD00053F crossref_primary_10_1002_pssb_201600351 crossref_primary_10_1103_PhysRevB_100_161113 crossref_primary_10_1038_s41467_021_23536_8 crossref_primary_10_1103_PhysRevB_99_174517 crossref_primary_10_1103_PhysRevB_97_134503 crossref_primary_10_1038_nphys3629 crossref_primary_10_1088_1361_648X_aa5486 crossref_primary_10_1103_PhysRevLett_126_206401 crossref_primary_10_1088_1742_6596_449_1_012025 crossref_primary_10_1103_PhysRevB_104_014507 crossref_primary_10_1088_1361_6633_ab6a43 crossref_primary_10_1103_PhysRevB_87_195144 crossref_primary_10_1103_PhysRevLett_125_086401 crossref_primary_10_1063_1_4985157 crossref_primary_10_3390_sym13020169 crossref_primary_10_1016_j_crhy_2015_10_007 crossref_primary_10_1103_PhysRevB_109_195145 crossref_primary_10_1103_PhysRevB_94_115151 crossref_primary_10_3389_fphy_2022_886459 crossref_primary_10_1088_0953_8984_26_35_356002 crossref_primary_10_1016_j_crhy_2015_10_002 crossref_primary_10_1103_PhysRevB_93_214506 crossref_primary_10_1103_PhysRevLett_129_046402 crossref_primary_10_1038_npjquantmats_2016_1 crossref_primary_10_1038_s41467_018_06181_6 crossref_primary_10_1103_PhysRevB_86_165117 crossref_primary_10_1038_s42005_023_01154_8 crossref_primary_10_1103_PhysRevB_94_115159 crossref_primary_10_1103_PhysRevB_88_094501 crossref_primary_10_9714_psac_2014_16_2_007 crossref_primary_10_1142_S0217984920400515 crossref_primary_10_1038_ncomms13879 crossref_primary_10_1088_1361_648X_ab8849 crossref_primary_10_1103_PhysRevB_98_214518 crossref_primary_10_1073_pnas_1118371109 crossref_primary_10_1038_s41524_020_00414_3 crossref_primary_10_3390_sym12091402 crossref_primary_10_1103_PhysRevB_88_045105 crossref_primary_10_1088_2053_1583_3_1_014005 crossref_primary_10_1103_PhysRevLett_117_137001 crossref_primary_10_1103_PhysRevB_85_085105 crossref_primary_10_1103_PhysRevB_88_115130 crossref_primary_10_1103_PhysRevB_111_115118 crossref_primary_10_1002_andp_202000399 crossref_primary_10_1103_PhysRevB_99_014509 crossref_primary_10_1038_ncomms6044 crossref_primary_10_1038_s41524_019_0251_7 crossref_primary_10_1103_PhysRevB_109_045146 crossref_primary_10_1103_PhysRevB_102_155135 crossref_primary_10_1103_PhysRevB_110_L041403 crossref_primary_10_1103_PhysRevB_98_035143 crossref_primary_10_1103_PhysRevLett_121_187003 crossref_primary_10_1134_S0021364023600647 crossref_primary_10_1103_PhysRevB_94_024412 crossref_primary_10_1021_acs_nanolett_1c04863 crossref_primary_10_1103_PhysRevB_89_125115 crossref_primary_10_1103_PhysRevB_90_104518 crossref_primary_10_1103_PhysRevB_102_085101 crossref_primary_10_1016_j_physb_2023_415603 crossref_primary_10_1103_PhysRevB_94_045132 crossref_primary_10_1103_PhysRevB_86_064411 crossref_primary_10_1103_PhysRevB_106_184507 crossref_primary_10_1103_PhysRevLett_119_157001 crossref_primary_10_1088_0953_8984_28_45_453001 crossref_primary_10_1038_srep06543 crossref_primary_10_1073_pnas_1523064113 crossref_primary_10_1002_pssb_201600149 crossref_primary_10_1103_PhysRevE_93_063313 crossref_primary_10_1103_PhysRevLett_130_066401 crossref_primary_10_1103_PhysRevB_92_134522 crossref_primary_10_1103_PhysRevB_90_241105 crossref_primary_10_1088_0953_8984_27_18_183201 crossref_primary_10_1038_ncomms11116 crossref_primary_10_1103_PhysRevB_97_235157 crossref_primary_10_1103_PhysRevB_95_184504 crossref_primary_10_1103_PhysRevB_92_165102 crossref_primary_10_1103_PhysRevB_93_245110 crossref_primary_10_1103_PhysRevB_89_140506 crossref_primary_10_1103_PhysRevMaterials_7_104006 crossref_primary_10_1103_PhysRevB_94_014503 crossref_primary_10_1016_j_cpc_2019_07_003 crossref_primary_10_1103_PhysRevB_88_195116 crossref_primary_10_1016_j_physleta_2012_04_015 crossref_primary_10_1103_PhysRevB_105_125140 crossref_primary_10_1103_PhysRevResearch_2_043293 crossref_primary_10_1002_adma_202307942 crossref_primary_10_1103_PhysRevB_90_125102 crossref_primary_10_1103_PhysRevB_96_085129 crossref_primary_10_1103_PhysRevLett_109_177001 crossref_primary_10_1103_PhysRevB_94_115146 crossref_primary_10_1103_PhysRevB_90_075136 crossref_primary_10_1103_PhysRevLett_117_036401 crossref_primary_10_1103_PhysRevB_89_024509 crossref_primary_10_1103_PhysRevB_96_075102 crossref_primary_10_1016_j_heliyon_2020_e03763 crossref_primary_10_1103_PhysRevB_95_184516 crossref_primary_10_1103_PhysRevB_91_054512 crossref_primary_10_1140_epjst_e2017_70054_6 crossref_primary_10_1038_s41535_017_0059_y crossref_primary_10_1103_PhysRevB_86_155107 crossref_primary_10_1103_PhysRevB_94_045115 crossref_primary_10_1088_0953_8984_26_17_173202 crossref_primary_10_1103_PhysRevLett_117_117201 crossref_primary_10_1103_PhysRevLett_123_256401 crossref_primary_10_1103_PhysRevB_87_144517 crossref_primary_10_1038_srep04120 crossref_primary_10_1038_s42005_019_0236_3 |
Cites_doi | 10.1143/PTP.49.1483 10.1103/PhysRevB.78.140504 10.1038/nphys1923 10.1103/PhysRevB.79.060504 10.1103/PhysRevLett.105.067002 10.1103/PhysRevLett.101.257005 10.1103/PhysRevLett.101.257003 10.1103/PhysRevB.81.094523 10.1103/PhysRevB.82.184511 10.1103/PhysRevB.83.054510 10.1103/PhysRevB.80.024515 10.1088/1367-2630/11/2/025021 10.1103/PhysRevB.81.100502 10.1209/0295-5075/83/47001 10.1103/PhysRevB.83.132501 10.1103/PhysRevLett.102.126401 10.1038/nphys1759 10.1103/PhysRevB.80.100507 10.1038/nphys1160 10.1103/PhysRevLett.102.247001 10.1103/PhysRevB.78.100506 10.1021/ja800073m 10.1103/PhysRevB.82.064409 10.1103/PhysRevB.80.174510 10.1103/PhysRevLett.104.097002 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2011 Copyright Nature Publishing Group Dec 2011 |
Copyright_xml | – notice: Springer Nature Limited 2011 – notice: Copyright Nature Publishing Group Dec 2011 |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7U5 L7M 7X8 |
DOI | 10.1038/nmat3120 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 935 |
ExternalDocumentID | 2580756971 21927004 10_1038_nmat3120 |
Genre | Letter Correspondence Feature |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI PRINS Q9U 7U5 L7M PUEGO 7X8 |
ID | FETCH-LOGICAL-c442t-775f39e4e0f3810ff2827eb694c45a329c6ad1bab0b0d06034f88b31f45a843f3 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Thu Jul 10 23:20:07 EDT 2025 Sun Aug 24 03:52:56 EDT 2025 Fri Jul 25 09:10:30 EDT 2025 Mon Jul 21 05:47:56 EDT 2025 Tue Jul 01 02:13:52 EDT 2025 Thu Apr 24 22:50:20 EDT 2025 Fri Feb 21 02:38:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-775f39e4e0f3810ff2827eb694c45a329c6ad1bab0b0d06034f88b31f45a843f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Correspondence-2 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Correspondence-1 |
PMID | 21927004 |
PQID | 920244667 |
PQPubID | 27576 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_905964822 proquest_miscellaneous_1019658451 proquest_journals_920244667 pubmed_primary_21927004 crossref_primary_10_1038_nmat3120 crossref_citationtrail_10_1038_nmat3120 springer_journals_10_1038_nmat3120 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-12-01 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nature Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2011 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Goldman (CR13) 2008; 78 Hu (CR17) 2008; 101 Yi (CR23) 2009; 80 Kamihara (CR1) 2008; 130 Zhang (CR26) 2011; 83 Borisenko (CR22) 2010; 105 Haule, Kotliar (CR4) 2009; 11 Li (CR9) 2010; 82 Mazin, Johannes (CR5) 2009; 5 Okada, Yosida (CR25) 1973; 49 Zhao (CR12) 2008; 78 Yi (CR27) 2009; 80 Yu (CR7) 2011; 83 Xiao (CR11) 2010; 81 Paglione, Greene (CR2) 2010; 6 Bao (CR6) 2009; 102 Yin, Haule, Kotliar (CR14) 2011; 7 Xiao (CR10) 2009; 79 Yamasaki (CR21) 2010; 82 Hu (CR16) 2009; 80 Qazilbash (CR19) 2009; 5 Tamai (CR20) 2010; 104 CR24 Ding (CR3) 2008; 83 Huang (CR8) 2008; 101 de’ Medici (CR15) 2009; 102 Chen (CR18) 2010; 81 K Haule (BFnmat3120_CR4) 2009; 11 II Mazin (BFnmat3120_CR5) 2009; 5 AI Goldman (BFnmat3120_CR13) 2008; 78 Y Zhang (BFnmat3120_CR26) 2011; 83 H Ding (BFnmat3120_CR3) 2008; 83 WQ Yu (BFnmat3120_CR7) 2011; 83 ZP Yin (BFnmat3120_CR14) 2011; 7 ZG Chen (BFnmat3120_CR18) 2010; 81 I Okada (BFnmat3120_CR25) 1973; 49 A Yamasaki (BFnmat3120_CR21) 2010; 82 Y Xiao (BFnmat3120_CR11) 2010; 81 L de’ Medici (BFnmat3120_CR15) 2009; 102 J Zhao (BFnmat3120_CR12) 2008; 78 M Yi (BFnmat3120_CR23) 2009; 80 MM Qazilbash (BFnmat3120_CR19) 2009; 5 SV Borisenko (BFnmat3120_CR22) 2010; 105 H-F Li (BFnmat3120_CR9) 2010; 82 WZ Hu (BFnmat3120_CR16) 2009; 80 Y Xiao (BFnmat3120_CR10) 2009; 79 BFnmat3120_CR24 Y Kamihara (BFnmat3120_CR1) 2008; 130 M Yi (BFnmat3120_CR27) 2009; 80 Q Huang (BFnmat3120_CR8) 2008; 101 WZ Hu (BFnmat3120_CR17) 2008; 101 W Bao (BFnmat3120_CR6) 2009; 102 J Paglione (BFnmat3120_CR2) 2010; 6 A Tamai (BFnmat3120_CR20) 2010; 104 20867999 - Phys Rev Lett. 2010 Aug 6;105(6):067002 18293989 - J Am Chem Soc. 2008 Mar 19;130(11):3296-7 19113744 - Phys Rev Lett. 2008 Dec 19;101(25):257003 19659037 - Phys Rev Lett. 2009 Jun 19;102(24):247001 19113746 - Phys Rev Lett. 2008 Dec 19;101(25):257005 19392299 - Phys Rev Lett. 2009 Mar 27;102(12):126401 20367005 - Phys Rev Lett. 2010 Mar 5;104(9):097002 |
References_xml | – volume: 49 start-page: 1483 year: 1973 end-page: 1502 ident: CR25 article-title: Singlet ground state of the localized -electrons coupled with conduction electrons in metals publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.49.1483 – volume: 78 start-page: 140504 year: 2008 ident: CR12 article-title: Spin and lattice structure of single crystal SrFe As publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.140504 – volume: 7 start-page: 294 year: 2011 end-page: 297 ident: CR14 article-title: Magnetism and charge dynamics in iron pnictides publication-title: Nature Phys. doi: 10.1038/nphys1923 – volume: 79 start-page: 060504 year: 2009 ident: CR10 article-title: Magnetic order in CaFe Co AsF ( =0, 0.06, 0.12) superconductor compounds publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.060504 – volume: 105 start-page: 067002 year: 2010 ident: CR22 article-title: Superconductivity without magnetism in LiFeAs publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.067002 – volume: 101 start-page: 257005 year: 2008 ident: CR17 article-title: Origin of the spin density wave instability in AFe As (A=Ba, Sr) as revealed by optical spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.257005 – volume: 101 start-page: 257003 year: 2008 ident: CR8 article-title: Magnetic order in BaFe As , the parent compound of the FeAs based superconductors in a new structural family publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.257003 – volume: 81 start-page: 094523 year: 2010 ident: CR11 article-title: Neutron diffraction study on phase transition and thermal expansion of SrFeAsF publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.094523 – volume: 82 start-page: 184511 year: 2010 ident: CR21 article-title: Electron correlation in FeSe superconductor studied by bulk-sensitive photoemission spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.184511 – volume: 83 start-page: 054510 year: 2011 ident: CR26 article-title: Orbital characters of bands in iron-based superconductor BaFe Co As publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.054510 – volume: 80 start-page: 024515 year: 2009 ident: CR27 article-title: Electronic structure of the BaFe As family of iron-pnictide superconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.024515 – volume: 5 start-page: 647 year: 2009 end-page: 650 ident: CR19 article-title: Electronic correlations in the iron pnictides publication-title: Nature Phys. – volume: 11 start-page: 025021 year: 2009 ident: CR4 article-title: Coherence-incoherence crossover in the normal state of iron-oxypnictides and importance of the Hund’s rule coupling publication-title: New J. Phys. doi: 10.1088/1367-2630/11/2/025021 – volume: 81 start-page: 100502 year: 2010 ident: CR18 article-title: Optical spectroscopy study on single crystalline LaFeAsO publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.100502 – volume: 83 start-page: 47001 year: 2008 ident: CR3 article-title: Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba K Fe As publication-title: Europhys. Lett. doi: 10.1209/0295-5075/83/47001 – volume: 83 start-page: 132501 year: 2011 ident: CR7 article-title: Na and As NMR study of antiferromagnetism and spin fluctuations on NaFeAs single crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.132501 – volume: 102 start-page: 126401 year: 2009 ident: CR15 article-title: Orbital-selective Mott transition out of band degeneracy lifting publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.126401 – volume: 6 start-page: 645 year: 2010 end-page: 658 ident: CR2 article-title: High-temperature superconductivity in iron-based materials publication-title: Nature Phys. doi: 10.1038/nphys1759 – volume: 80 start-page: 100507 year: 2009 ident: CR16 article-title: Optical study on the spin-density wave properties in single crystalline Na FeAs publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.100507 – volume: 5 start-page: 141 year: 2009 end-page: 145 ident: CR5 article-title: A key role for unusual spin dynamics in ferropnictides publication-title: Nature Phys. doi: 10.1038/nphys1160 – volume: 102 start-page: 247001 year: 2009 ident: CR6 article-title: Incommensurate magnetic order in the -Fe(Te,Se) superconductor systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.247001 – volume: 78 start-page: 100506 year: 2008 ident: CR13 article-title: Lattice and magnetic instabilities in CaFe As : A single crystal neutron diffraction study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.100506 – volume: 130 start-page: 3296 year: 2008 end-page: 3297 ident: CR1 article-title: Iron-based layered superconductor La[O F ]FeAs ( =0.05–0.12) with =26 K publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800073m – volume: 82 start-page: 064409 year: 2010 ident: CR9 article-title: Phase transitions and iron-ordered moment form factor in LaFeAsO publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.064409 – volume: 80 start-page: 174510 year: 2009 ident: CR23 article-title: Unconventional electronic reconstruction in undoped (Ba,Sr)Fe As across the spin density wave transition publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.174510 – ident: CR24 – volume: 104 start-page: 097002 year: 2010 ident: CR20 article-title: Strong electron correlations in the normal state of FeSe Te publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.097002 – volume: 79 start-page: 060504 year: 2009 ident: BFnmat3120_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.060504 – volume: 101 start-page: 257003 year: 2008 ident: BFnmat3120_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.257003 – volume: 81 start-page: 094523 year: 2010 ident: BFnmat3120_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.094523 – volume: 82 start-page: 184511 year: 2010 ident: BFnmat3120_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.184511 – volume: 130 start-page: 3296 year: 2008 ident: BFnmat3120_CR1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800073m – volume: 83 start-page: 054510 year: 2011 ident: BFnmat3120_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.054510 – volume: 82 start-page: 064409 year: 2010 ident: BFnmat3120_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.064409 – volume: 80 start-page: 100507 year: 2009 ident: BFnmat3120_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.100507 – volume: 104 start-page: 097002 year: 2010 ident: BFnmat3120_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.097002 – volume: 49 start-page: 1483 year: 1973 ident: BFnmat3120_CR25 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.49.1483 – volume: 105 start-page: 067002 year: 2010 ident: BFnmat3120_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.067002 – volume: 80 start-page: 174510 year: 2009 ident: BFnmat3120_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.174510 – volume: 80 start-page: 024515 year: 2009 ident: BFnmat3120_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.024515 – volume: 5 start-page: 647 year: 2009 ident: BFnmat3120_CR19 publication-title: Nature Phys. – volume: 83 start-page: 132501 year: 2011 ident: BFnmat3120_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.132501 – ident: BFnmat3120_CR24 – volume: 6 start-page: 645 year: 2010 ident: BFnmat3120_CR2 publication-title: Nature Phys. doi: 10.1038/nphys1759 – volume: 5 start-page: 141 year: 2009 ident: BFnmat3120_CR5 publication-title: Nature Phys. doi: 10.1038/nphys1160 – volume: 11 start-page: 025021 year: 2009 ident: BFnmat3120_CR4 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/2/025021 – volume: 78 start-page: 140504 year: 2008 ident: BFnmat3120_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.140504 – volume: 81 start-page: 100502 year: 2010 ident: BFnmat3120_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.100502 – volume: 78 start-page: 100506 year: 2008 ident: BFnmat3120_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.100506 – volume: 83 start-page: 47001 year: 2008 ident: BFnmat3120_CR3 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/83/47001 – volume: 102 start-page: 126401 year: 2009 ident: BFnmat3120_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.126401 – volume: 101 start-page: 257005 year: 2008 ident: BFnmat3120_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.257005 – volume: 7 start-page: 294 year: 2011 ident: BFnmat3120_CR14 publication-title: Nature Phys. doi: 10.1038/nphys1923 – volume: 102 start-page: 247001 year: 2009 ident: BFnmat3120_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.247001 – reference: 19659037 - Phys Rev Lett. 2009 Jun 19;102(24):247001 – reference: 19113744 - Phys Rev Lett. 2008 Dec 19;101(25):257003 – reference: 19113746 - Phys Rev Lett. 2008 Dec 19;101(25):257005 – reference: 20367005 - Phys Rev Lett. 2010 Mar 5;104(9):097002 – reference: 18293989 - J Am Chem Soc. 2008 Mar 19;130(11):3296-7 – reference: 20867999 - Phys Rev Lett. 2010 Aug 6;105(6):067002 – reference: 19392299 - Phys Rev Lett. 2009 Mar 27;102(12):126401 |
SSID | ssj0021556 |
Score | 2.5912948 |
Snippet | Iron-based superconductors all share the same building blocks. So why do local magnetic properties vary from one compound to another? A new theoretical model... The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 932 |
SubjectTerms | 639/301/119/997 639/638/298/924 Band structure of solids Biomaterials Chalcogenides Chemistry and Materials Science Condensed Matter Physics Gaps High temperature Iron Iron compounds Kinetics letter Materials Science Nanotechnology Optical and Electronic Materials Physical properties Superconductivity Superconductors Transition temperature Transition temperatures |
Title | Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides |
URI | https://link.springer.com/article/10.1038/nmat3120 https://www.ncbi.nlm.nih.gov/pubmed/21927004 https://www.proquest.com/docview/920244667 https://www.proquest.com/docview/1019658451 https://www.proquest.com/docview/905964822 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xuMABAeWxvGSqSpwiktjJxidEKxYEAlUVSHuLbMemlZZkIbv_nxnnASotlyjxjBLLduxvPONvAL6FqVE8SnVQcJsEQmkXyCIxQWwkmkQm1kPPxHR7l149iOtxMm5jc-o2rLKbE_1EXVSG9shPJVrp5Hscnk2fA0oaRc7VNoPGIiwTcxlFdA3Hb_YWLpXN4aJhGiCsiDvuWZ6dlggHeURJvt-vRh8g5gf3qF91Ruuw1sJFdt707wYs2HITVt-RCH6B-gbvUczcy7wjwWWqLBhCO9bwdrLK-acn9diokphIv_sCf66oZn9KRsfe2LSkkyIFlpCmLzK_1cRUONyoeAseRhf3P66CNpVCYISIZ4ihE8elFTZ0ROnlHFpalA1FCiMSxWNpUlVEWulQh0WYhly4LNM8cijNBHd8G5bKqrS7wBAkaZdEVqaxFARgVMEzY7PUuChSOhrASdekuWl5xindxST3_m6e5V3jD-C415w23Br_0NnveiVv_64678cCvqGX4m9Bvg5V2mpeU-Qa0dqIBOvD_qMjKfWQQIQ0gJ2mv_tq4DxOHnkxgK_dAHj7_N913Pu0jvuw4vehfQjMASzNXub2EIHMTB_54YrXbHR5BMvfL-5-_noFPAz2XA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcUMujLH1gEIhT1CR2svEBIdR22bJtT63UW7AdG5BKsjS7Qv1R_Y_MOOtQtcCtt8QeJZY9tr_xeL4BeBPnRvEk11HFbRYJpV0kq8xEqZFoEplUDz0T09FxPj4Vn8-ysyW4CrEwdK0yrIl-oa4aQ2fkOxKtdPI9Dj9Mf0aUNIqcqyGDRqcVE3v5Cy229v3BHg7v2zQd7Z_sjqNFUoHICJHOEE1mjksrbOyI3Mo5tDkoL4gURmSKp9Lkqkq00rGOqziPuXBFoXnisLYQ3HH87j1YEZxLmlDF6FNv3-HW3AUzDfMIYUwauG55sVMj_OQJJRW_vvvdgrS33LF-lxutwqMFPGUfO31agyVbP4aH10gLn0A7wWesZu5iHkh3maorhlCSdTyhrHH-7Yf62olSNZGM9wU-jqll32tGYXZsWlNkSoUlJOmLzDd1bhpUbyp-Cqd30svPYLluavscGIIy7bLEyjyVggCTqnhhbJEblyRKJwN4F7q0NAtec0qvcV56_zovytD5A3jVS047Lo-_yGyEUSkXs7kte93DL_S1OA3Jt6Jq28xbuilHNDoiw_awf8hISnUkEJENYL0b774ZuG_QDQAxgNdBAf78_mYbX_y3jS_h_vjk6LA8PDiebMADfwbur99swvLsYm63EETN9LZXXQZf7nqu_AY-aDAn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4sLWAQiFO0cew8fKgQoqxaFioOVNpbsB2bVirJ0uwK8dP4d8w4j1YUuPWW2KPEsmfib-KZbwBexJnVgmcmqoRLI6mNj1SV2iixCl0im5g8MDF9PMj2DuX7RbrYgF9DLgyFVQ7fxPChrhpL_8inCr10OnvMp76Pivi0O3u9_B5RASk6aB2qaXQaMnc_f6D31u7s7-JSv0yS2bvPb_eivsBAZKVMVogsUy-Uky72RHTlPfofVCNESStTLRJlM11xo01s4irOYiF9URjBPfYWUniBz70CV3ORcjKxfHHm6-E23SU25VmEkCYZeG9FMa0RigpOBcbP74QX4O2Fo9mw481uwc0eqrI3nW7dhg1X34Eb5wgM70I7x2vsZv50PRDwMl1XDGEl6zhDWePD3Tf9tROlbiIcHxtCTlPLjmtGKXdsWVOWSoUtJBma7JE-sQ2qOjXfg8NLmeX7sFk3tXsIDAGa8Sl3KkuUJPCkK1FYV2TWc64Nn8CrYUpL23OcU6mNkzKctYuiHCZ_As9GyWXH6_EXma1hVcrestty1EN8wtiLJknnLLp2zbqlqDmi1JEpjof9Q0ZR2SOJ6GwCD7r1HoeBewhFA8gJPB8U4Oz1f47x0X_H-BSuoZWUH_YP5ltwPfwOD5E427C5Ol27x4inVuZJ0FwGXy7bVH4DHNI0VA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+frustration+and+the+nature+of+the+magnetic+and+paramagnetic+states+in+iron+pnictides+and+iron%C2%A0chalcogenides&rft.jtitle=Nature+materials&rft.au=Yin%2C+Z.+P.&rft.au=Haule%2C+K.&rft.au=Kotliar%2C+G.&rft.date=2011-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=10&rft.issue=12&rft.spage=932&rft.epage=935&rft_id=info:doi/10.1038%2Fnmat3120&rft.externalDocID=10_1038_nmat3120 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |