Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides

Iron-based superconductors all share the same building blocks. So why do local magnetic properties vary from one compound to another? A new theoretical model explains the variation in physical properties and links it to the structural differences, providing a description for a wide range of material...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 10; no. 12; pp. 932 - 935
Main Authors Yin, Z. P., Haule, K., Kotliar, G.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Iron-based superconductors all share the same building blocks. So why do local magnetic properties vary from one compound to another? A new theoretical model explains the variation in physical properties and links it to the structural differences, providing a description for a wide range of materials. The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity 1 . They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature ( T c ). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available 2 . Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments 3 .
AbstractList Iron-based superconductors all share the same building blocks. So why do local magnetic properties vary from one compound to another? A new theoretical model explains the variation in physical properties and links it to the structural differences, providing a description for a wide range of materials. The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity 1 . They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature ( T c ). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available 2 . Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments 3 .
The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (T(c)). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments. [PUBLICATION ABSTRACT]
The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (T(c)). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments.The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (T(c)). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments.
The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (T sub(c)). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments.
The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (T(c)). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments.
Author Kotliar, G.
Haule, K.
Yin, Z. P.
Author_xml – sequence: 1
  givenname: Z. P.
  surname: Yin
  fullname: Yin, Z. P.
  email: yinzping@physics.rutgers.edu
  organization: Department of Physics and Astronomy, Rutgers University, Department of Physics and Astronomy, Stony Brook University
– sequence: 2
  givenname: K.
  surname: Haule
  fullname: Haule, K.
  organization: Department of Physics and Astronomy, Rutgers University
– sequence: 3
  givenname: G.
  surname: Kotliar
  fullname: Kotliar, G.
  organization: Department of Physics and Astronomy, Rutgers University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21927004$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOxCAUhonRON4Sn8A0btTF6OFS2i7NxFs0caPrhlIYmbR0BLrwbXwWn0zqjGMyGlfAf77_AOffRZu2swqhQwznGGh-YVsRKCawgXYwy_iYcQ6byz3GhIzQrvczAILTlG-jEcEFyQDYDgr3xqpgZKJd74MTwXQ2EbZOwotKrAi9U0mnv06tmC7QoTwXTqwEH0RQPjE2MS7a59bIYOqoDOQgfbzLF9HIbqrsoO-jLS0arw6W6x56vr56mtyOHx5v7iaXD2PJGAnjLEs1LRRToGmOQWuSk0xVvGCSpYKSQnJR40pUUEENHCjTeV5RrGM1Z1TTPXSy6Dt33WuvfChb46VqGmFV1_uygLTgLCckkqf_khhwwdOcpTiix2vorOudjf8oCwKExdlnETpaQn3VqrqcO9MK91Z-D_7nQuk6753SKwRDOWRafmca0fM1VJrwFVTMyzR_Gc4WBh972qlyPy_8xX4CuQ6yUA
CitedBy_id crossref_primary_10_1103_PhysRevB_103_054503
crossref_primary_10_1103_PhysRevB_91_041112
crossref_primary_10_1103_PhysRevB_103_054505
crossref_primary_10_1088_1367_2630_abfb3d
crossref_primary_10_1016_j_aop_2016_11_011
crossref_primary_10_1016_j_heliyon_2024_e25965
crossref_primary_10_1103_PhysRevB_110_155101
crossref_primary_10_1103_PhysRevLett_133_046502
crossref_primary_10_1038_ncomms8777
crossref_primary_10_1126_science_aal1575
crossref_primary_10_1103_PhysRevB_108_115147
crossref_primary_10_3389_fphy_2022_915619
crossref_primary_10_1103_PhysRevB_96_144509
crossref_primary_10_1038_s41467_024_54330_x
crossref_primary_10_1103_PhysRevB_86_195133
crossref_primary_10_1103_PhysRevB_86_081106
crossref_primary_10_1103_PhysRevB_99_075142
crossref_primary_10_1103_PhysRevB_100_115159
crossref_primary_10_7566_JPSJ_89_051006
crossref_primary_10_1103_PhysRevLett_109_187005
crossref_primary_10_1103_PhysRevB_110_245139
crossref_primary_10_1038_s41467_020_17462_4
crossref_primary_10_1103_PhysRevB_103_165110
crossref_primary_10_1063_1_4864442
crossref_primary_10_1103_PhysRevB_107_134512
crossref_primary_10_1088_1361_648X_ab7600
crossref_primary_10_1103_PhysRevB_101_045108
crossref_primary_10_1038_s41467_021_21460_5
crossref_primary_10_1038_nnano_2015_225
crossref_primary_10_1088_1742_6596_592_1_012055
crossref_primary_10_1103_PhysRevB_86_195141
crossref_primary_10_1103_PhysRevB_99_235142
crossref_primary_10_1103_PhysRevLett_110_067003
crossref_primary_10_1038_s41535_020_00295_1
crossref_primary_10_7566_JPSJ_84_093703
crossref_primary_10_1103_PhysRevB_94_094504
crossref_primary_10_1103_PhysRevB_93_125135
crossref_primary_10_1103_PhysRevB_109_L241106
crossref_primary_10_1103_PhysRevB_103_155107
crossref_primary_10_1103_PhysRevB_110_L140507
crossref_primary_10_1146_annurev_conmatphys_020911_125045
crossref_primary_10_1038_s41535_021_00336_3
crossref_primary_10_1103_PhysRevX_10_011034
crossref_primary_10_1103_PhysRevB_104_115122
crossref_primary_10_1038_srep46439
crossref_primary_10_1103_PhysRevB_87_024504
crossref_primary_10_1103_PhysRevB_106_L161112
crossref_primary_10_1063_1_4818790
crossref_primary_10_1103_PhysRevB_105_045130
crossref_primary_10_1103_PhysRevLett_108_177007
crossref_primary_10_1088_0953_8984_28_48_485401
crossref_primary_10_1103_PhysRevB_103_075112
crossref_primary_10_1103_PhysRevB_90_094511
crossref_primary_10_1103_PhysRevB_109_195111
crossref_primary_10_1103_PhysRevB_103_165133
crossref_primary_10_1103_PhysRevB_93_241116
crossref_primary_10_1103_PhysRevB_98_024507
crossref_primary_10_1103_PhysRevB_103_075110
crossref_primary_10_1103_PhysRevB_95_075115
crossref_primary_10_1103_PhysRevB_101_241108
crossref_primary_10_1103_PhysRevB_94_024512
crossref_primary_10_1103_PhysRevB_104_L121109
crossref_primary_10_1088_1361_648X_aa9caa
crossref_primary_10_1088_1361_648X_ab3b3b
crossref_primary_10_7498_aps_67_20180627
crossref_primary_10_1103_PhysRevB_106_L081104
crossref_primary_10_1103_PhysRevB_87_174503
crossref_primary_10_1103_PhysRevB_94_094523
crossref_primary_10_1103_PhysRevB_104_115107
crossref_primary_10_1103_PhysRevB_109_115114
crossref_primary_10_1103_PhysRevB_95_054501
crossref_primary_10_1103_PhysRevLett_109_236403
crossref_primary_10_1103_PhysRevB_84_245112
crossref_primary_10_1103_PhysRevB_90_060501
crossref_primary_10_1103_PhysRevB_102_235121
crossref_primary_10_1103_PhysRevB_98_014504
crossref_primary_10_1016_j_rinp_2024_107446
crossref_primary_10_1021_acs_inorgchem_8b03089
crossref_primary_10_1103_PhysRevB_89_085127
crossref_primary_10_1103_PhysRevB_95_214510
crossref_primary_10_1103_PhysRevB_85_064522
crossref_primary_10_1557_opl_2012_1247
crossref_primary_10_1103_PhysRevB_99_134520
crossref_primary_10_1088_0953_8984_26_37_376002
crossref_primary_10_1103_PhysRevB_97_205123
crossref_primary_10_1103_PhysRevLett_112_187202
crossref_primary_10_1103_PhysRevMaterials_6_055004
crossref_primary_10_1103_PhysRevB_103_155115
crossref_primary_10_1103_PhysRevB_85_165103
crossref_primary_10_1038_s41535_019_0175_y
crossref_primary_10_1103_PhysRevResearch_6_023124
crossref_primary_10_1103_PhysRevB_102_054430
crossref_primary_10_1103_PhysRevB_100_205134
crossref_primary_10_1103_PhysRevB_109_024506
crossref_primary_10_1103_PhysRevLett_112_187204
crossref_primary_10_1038_s42005_021_00736_8
crossref_primary_10_1088_0953_8984_26_47_473202
crossref_primary_10_1103_PhysRevB_92_054515
crossref_primary_10_1103_PhysRevB_98_045138
crossref_primary_10_1103_PhysRevB_111_035127
crossref_primary_10_1103_PhysRevB_88_144518
crossref_primary_10_1103_PhysRevX_10_031052
crossref_primary_10_1103_PhysRevB_92_085116
crossref_primary_10_1038_s41524_022_00937_x
crossref_primary_10_1103_PhysRevB_100_085104
crossref_primary_10_1103_PhysRevLett_111_027002
crossref_primary_10_1103_PhysRevLett_131_256002
crossref_primary_10_1134_S1063776118040106
crossref_primary_10_1103_RevModPhys_87_855
crossref_primary_10_1103_PhysRevB_86_035152
crossref_primary_10_1103_PhysRevB_99_245156
crossref_primary_10_1063_1_5067367
crossref_primary_10_1103_PhysRevB_104_125130
crossref_primary_10_1103_PhysRevLett_115_136401
crossref_primary_10_1103_PhysRevB_101_024510
crossref_primary_10_1103_PhysRevB_100_245109
crossref_primary_10_1038_s41535_018_0105_4
crossref_primary_10_1103_PhysRevB_93_115138
crossref_primary_10_1103_PhysRevB_94_075153
crossref_primary_10_1103_PhysRevB_110_075160
crossref_primary_10_1016_j_crhy_2015_05_004
crossref_primary_10_1103_PhysRevB_87_045122
crossref_primary_10_1103_PhysRevB_90_014503
crossref_primary_10_1103_PhysRevB_104_165111
crossref_primary_10_1103_PhysRevB_88_134510
crossref_primary_10_1038_s41535_023_00568_5
crossref_primary_10_1103_PhysRevB_98_045105
crossref_primary_10_1140_epjb_e2016_60842_y
crossref_primary_10_1038_s42005_022_01089_6
crossref_primary_10_1103_PhysRevB_91_184503
crossref_primary_10_1103_PhysRevB_99_184505
crossref_primary_10_1103_PhysRevB_96_121103
crossref_primary_10_1103_PhysRevLett_117_047003
crossref_primary_10_1088_1361_648X_aa85f4
crossref_primary_10_1103_PhysRevB_107_235103
crossref_primary_10_1103_PhysRevLett_109_047001
crossref_primary_10_1103_PhysRevX_11_031013
crossref_primary_10_1103_PhysRevB_99_134501
crossref_primary_10_1103_PhysRevX_15_011012
crossref_primary_10_1088_0256_307X_40_1_017401
crossref_primary_10_1103_PhysRevB_96_134519
crossref_primary_10_1103_PhysRevB_98_174415
crossref_primary_10_1038_s41563_018_0151_0
crossref_primary_10_1103_PhysRevB_101_174509
crossref_primary_10_1103_PhysRevLett_122_046401
crossref_primary_10_1021_acs_jpcc_1c08142
crossref_primary_10_1103_PhysRevB_105_035125
crossref_primary_10_1016_j_jallcom_2021_160888
crossref_primary_10_1103_PhysRevB_107_235118
crossref_primary_10_1103_PhysRevB_98_014512
crossref_primary_10_1103_PhysRevB_98_161116
crossref_primary_10_1103_PhysRevB_98_014517
crossref_primary_10_7566_JPSJ_93_033701
crossref_primary_10_1103_PhysRevB_95_144511
crossref_primary_10_1038_s41467_019_10257_2
crossref_primary_10_1103_PhysRevB_87_125138
crossref_primary_10_21468_SciPostPhys_10_5_117
crossref_primary_10_1088_1367_2630_aa5a71
crossref_primary_10_1038_nature14090
crossref_primary_10_1016_j_ssc_2020_114121
crossref_primary_10_1103_PhysRevLett_110_167002
crossref_primary_10_1103_PhysRevB_107_115144
crossref_primary_10_1126_sciadv_aay4517
crossref_primary_10_1103_PhysRevX_13_011010
crossref_primary_10_1038_srep11399
crossref_primary_10_1103_PhysRevB_102_195103
crossref_primary_10_1103_PhysRevB_90_035104
crossref_primary_10_1103_PhysRevB_91_224507
crossref_primary_10_1103_PhysRevB_92_035104
crossref_primary_10_1103_PhysRevB_104_165135
crossref_primary_10_1038_s41586_019_1408_8
crossref_primary_10_1103_PhysRevB_104_165138
crossref_primary_10_1103_PhysRevB_89_100402
crossref_primary_10_1021_acs_inorgchem_0c01817
crossref_primary_10_1103_PhysRevB_105_L081111
crossref_primary_10_1039_C6DT03486A
crossref_primary_10_1016_j_ssc_2013_03_003
crossref_primary_10_1073_pnas_2401430121
crossref_primary_10_1103_PhysRevB_102_245111
crossref_primary_10_1038_srep02555
crossref_primary_10_1103_PhysRevB_96_201108
crossref_primary_10_1103_PhysRevB_102_245119
crossref_primary_10_1103_PhysRevB_106_245112
crossref_primary_10_1103_PhysRevB_98_115128
crossref_primary_10_1016_j_cpc_2021_107991
crossref_primary_10_1103_PhysRevB_102_195115
crossref_primary_10_31857_S1234567823080050
crossref_primary_10_1103_PhysRevB_90_121114
crossref_primary_10_1103_PhysRevB_90_121113
crossref_primary_10_1088_1468_6996_13_5_054305
crossref_primary_10_1103_PhysRevB_94_235126
crossref_primary_10_1103_PhysRevLett_123_216401
crossref_primary_10_1103_RevModPhys_85_849
crossref_primary_10_1103_PhysRevB_85_174522
crossref_primary_10_1103_PhysRevLett_110_207205
crossref_primary_10_1063_5_0047264
crossref_primary_10_1103_PhysRevB_102_125130
crossref_primary_10_1088_1361_648X_ab85f0
crossref_primary_10_7566_JPSJ_83_104703
crossref_primary_10_1103_PhysRevLett_121_077001
crossref_primary_10_1103_PhysRevLett_125_077001
crossref_primary_10_1103_PhysRevB_90_035128
crossref_primary_10_1016_j_physc_2018_07_003
crossref_primary_10_1103_PhysRevX_13_011032
crossref_primary_10_1016_j_physc_2015_02_020
crossref_primary_10_1103_PhysRevLett_120_267001
crossref_primary_10_1103_PhysRevB_89_020501
crossref_primary_10_1140_epjst_e2017_70049_3
crossref_primary_10_1103_PhysRevLett_114_047001
crossref_primary_10_1209_0295_5075_118_17004
crossref_primary_10_1073_pnas_1117366109
crossref_primary_10_1103_PhysRevB_106_094510
crossref_primary_10_1103_PhysRevB_96_014523
crossref_primary_10_1103_PhysRevB_105_155131
crossref_primary_10_1038_s41535_020_0212_x
crossref_primary_10_1103_PhysRevB_97_115165
crossref_primary_10_1103_PhysRevMaterials_7_034801
crossref_primary_10_1103_PhysRevB_98_041108
crossref_primary_10_1088_1674_1056_25_5_057201
crossref_primary_10_1103_PhysRevB_93_205106
crossref_primary_10_1103_PhysRevB_92_075136
crossref_primary_10_1073_pnas_2001141117
crossref_primary_10_1103_PhysRevB_107_115116
crossref_primary_10_1038_ncomms6738
crossref_primary_10_1103_PhysRevB_89_020511
crossref_primary_10_1103_PhysRevB_97_224519
crossref_primary_10_1103_PhysRevB_90_195146
crossref_primary_10_1103_PhysRevB_92_115142
crossref_primary_10_1103_PhysRevLett_119_067004
crossref_primary_10_1103_PhysRevB_94_235147
crossref_primary_10_1088_1674_1056_ab75d4
crossref_primary_10_1016_j_physc_2015_02_011
crossref_primary_10_1103_PhysRevB_85_094505
crossref_primary_10_1103_PhysRevB_102_035109
crossref_primary_10_1103_PhysRevResearch_4_023232
crossref_primary_10_1103_PhysRevB_92_174524
crossref_primary_10_1209_0295_5075_128_47004
crossref_primary_10_1007_s40766_021_00025_8
crossref_primary_10_1103_PhysRevB_103_L241117
crossref_primary_10_1016_j_physc_2016_10_006
crossref_primary_10_1103_PhysRevB_92_174522
crossref_primary_10_1103_PhysRevLett_123_027203
crossref_primary_10_1007_s11433_022_1888_2
crossref_primary_10_1016_j_aop_2018_10_017
crossref_primary_10_1103_PhysRevB_97_045119
crossref_primary_10_1088_1361_648X_aab284
crossref_primary_10_1038_srep10392
crossref_primary_10_1103_PhysRevB_94_205113
crossref_primary_10_1016_j_cossms_2013_05_003
crossref_primary_10_1103_PhysRevB_100_235123
crossref_primary_10_1103_PhysRevLett_112_177001
crossref_primary_10_1126_sciadv_aao2682
crossref_primary_10_1103_PhysRevB_86_024401
crossref_primary_10_1088_1361_648X_ab151f
crossref_primary_10_1002_pssb_201700006
crossref_primary_10_1103_PhysRevLett_123_146402
crossref_primary_10_1103_PhysRevB_102_161118
crossref_primary_10_1103_PhysRevB_105_235130
crossref_primary_10_1103_PhysRevB_107_045147
crossref_primary_10_1103_PhysRevB_94_165140
crossref_primary_10_1088_0953_8984_28_14_145701
crossref_primary_10_1103_PhysRevB_107_125166
crossref_primary_10_1103_PhysRevB_96_035144
crossref_primary_10_1103_PhysRevB_97_115141
crossref_primary_10_1103_PhysRevLett_115_116401
crossref_primary_10_1002_pssr_201600279
crossref_primary_10_1103_PhysRevB_96_060504
crossref_primary_10_1103_PhysRevB_96_245128
crossref_primary_10_1088_1361_648X_aa9103
crossref_primary_10_1088_1367_2630_17_7_073027
crossref_primary_10_1002_adma_202208833
crossref_primary_10_1103_PhysRevB_89_134507
crossref_primary_10_7498_aps_69_20200717
crossref_primary_10_1016_j_ssc_2017_01_024
crossref_primary_10_7566_JPSJ_87_041005
crossref_primary_10_1103_PhysRevLett_122_017001
crossref_primary_10_1038_s41535_021_00341_6
crossref_primary_10_1103_PhysRevB_97_045118
crossref_primary_10_1038_s41535_017_0019_6
crossref_primary_10_1103_PhysRevB_96_195121
crossref_primary_10_1103_PhysRevX_4_031041
crossref_primary_10_1103_PhysRevB_93_085137
crossref_primary_10_1103_PhysRevLett_134_076504
crossref_primary_10_1360_SSPMA_2022_0058
crossref_primary_10_1038_s41467_023_37792_3
crossref_primary_10_1103_PhysRevB_102_014406
crossref_primary_10_1103_PhysRevB_96_045130
crossref_primary_10_1103_PhysRevB_93_104515
crossref_primary_10_1103_PhysRevLett_129_096403
crossref_primary_10_1103_PhysRevB_93_104517
crossref_primary_10_1038_s41535_020_0221_9
crossref_primary_10_1103_PhysRevB_96_245111
crossref_primary_10_1103_PhysRevLett_129_096404
crossref_primary_10_1103_PhysRevB_105_155101
crossref_primary_10_1103_PhysRevB_96_035137
crossref_primary_10_1103_PhysRevB_97_184431
crossref_primary_10_1103_PhysRevB_98_075155
crossref_primary_10_1038_s41524_022_00867_8
crossref_primary_10_1103_PhysRevB_104_075101
crossref_primary_10_1103_PhysRevB_97_024519
crossref_primary_10_3389_fphy_2021_578347
crossref_primary_10_1073_pnas_2200405119
crossref_primary_10_1103_PhysRevB_89_134515
crossref_primary_10_1103_PhysRevResearch_5_033134
crossref_primary_10_1038_srep12421
crossref_primary_10_1038_s42005_022_00911_5
crossref_primary_10_1103_PhysRevB_95_144407
crossref_primary_10_1021_acs_nanolett_2c04169
crossref_primary_10_1063_1_4865557
crossref_primary_10_1080_00018732_2014_940227
crossref_primary_10_1140_epjb_e2016_60588_6
crossref_primary_10_1002_cphc_201900002
crossref_primary_10_1103_PhysRevB_102_115134
crossref_primary_10_1016_j_physc_2015_03_001
crossref_primary_10_1038_s42005_023_01314_w
crossref_primary_10_1103_PhysRevB_99_134103
crossref_primary_10_1103_PhysRevB_108_045428
crossref_primary_10_1073_pnas_1721493115
crossref_primary_10_1103_PhysRevB_99_020404
crossref_primary_10_1103_PhysRevB_87_241105
crossref_primary_10_1038_natrevmats_2016_17
crossref_primary_10_1088_0953_8984_28_42_425702
crossref_primary_10_7566_JPSJ_93_044711
crossref_primary_10_1088_0953_8984_28_29_293002
crossref_primary_10_1103_PhysRevB_102_014502
crossref_primary_10_1103_PhysRevB_105_165127
crossref_primary_10_1103_PhysRevB_110_054509
crossref_primary_10_1107_S2052520614023634
crossref_primary_10_3389_fphy_2022_919784
crossref_primary_10_1103_PhysRevB_99_035118
crossref_primary_10_1103_PhysRevLett_122_117204
crossref_primary_10_1002_pssb_201600164
crossref_primary_10_1088_0953_2048_25_8_084007
crossref_primary_10_1038_s41563_021_00984_7
crossref_primary_10_1103_PhysRevLett_132_226501
crossref_primary_10_1103_PhysRevB_94_224511
crossref_primary_10_1002_pssb_201900229
crossref_primary_10_1038_s41586_021_04073_2
crossref_primary_10_1103_PhysRevB_102_115144
crossref_primary_10_1038_ncomms2428
crossref_primary_10_1088_2053_1591_1_3_036001
crossref_primary_10_1103_PhysRevB_89_184513
crossref_primary_10_1103_PhysRevLett_119_096401
crossref_primary_10_1088_1361_6633_80_1_014503
crossref_primary_10_1103_PhysRevLett_124_136406
crossref_primary_10_1103_PhysRevB_90_144503
crossref_primary_10_1103_PhysRevLett_115_106402
crossref_primary_10_1103_PhysRevB_104_L241101
crossref_primary_10_1103_PhysRevB_88_081107
crossref_primary_10_1103_PhysRevB_110_125132
crossref_primary_10_1038_s41467_023_39827_1
crossref_primary_10_1103_PhysRevB_98_064508
crossref_primary_10_1103_PhysRevB_98_064507
crossref_primary_10_1103_PhysRevB_93_020301
crossref_primary_10_1103_PhysRevB_93_041101
crossref_primary_10_3389_fphy_2020_00284
crossref_primary_10_1038_s42005_023_01481_w
crossref_primary_10_1038_srep18620
crossref_primary_10_1103_PhysRevLett_109_237010
crossref_primary_10_1002_adma_201404079
crossref_primary_10_1103_PhysRevB_104_L161110
crossref_primary_10_1103_PhysRevLett_109_237011
crossref_primary_10_1103_PhysRevB_103_125125
crossref_primary_10_1038_nphys3456
crossref_primary_10_1088_1367_2630_18_10_103033
crossref_primary_10_15407_ufm_18_01_001
crossref_primary_10_1103_PhysRevB_86_020510
crossref_primary_10_1103_PhysRevB_91_195149
crossref_primary_10_1103_PhysRevX_10_041008
crossref_primary_10_1038_s42005_022_00805_6
crossref_primary_10_1073_pnas_2105190118
crossref_primary_10_1103_PhysRevB_101_245146
crossref_primary_10_1016_j_actamat_2023_119251
crossref_primary_10_1103_PhysRevB_95_014511
crossref_primary_10_1103_PhysRevB_86_064437
crossref_primary_10_3389_fphy_2014_00017
crossref_primary_10_1088_2399_6528_aace29
crossref_primary_10_1103_PhysRevB_101_165107
crossref_primary_10_1126_sciadv_aao6791
crossref_primary_10_1016_j_commatsci_2019_05_034
crossref_primary_10_1103_PhysRevB_103_205132
crossref_primary_10_1103_PhysRevResearch_5_L022058
crossref_primary_10_1002_pssb_202100169
crossref_primary_10_1038_s41467_024_53722_3
crossref_primary_10_1103_PhysRevLett_112_217202
crossref_primary_10_1103_PhysRevB_95_081106
crossref_primary_10_1103_PhysRevLett_111_217002
crossref_primary_10_1103_PhysRevLett_125_177001
crossref_primary_10_1038_s42005_019_0107_y
crossref_primary_10_7566_JPSJ_82_034714
crossref_primary_10_1088_0953_8984_27_33_335504
crossref_primary_10_1103_PhysRevB_107_L081114
crossref_primary_10_1103_PhysRevB_107_L220410
crossref_primary_10_1103_PhysRevB_88_174516
crossref_primary_10_1103_PhysRevX_6_021032
crossref_primary_10_1103_PhysRevB_84_174517
crossref_primary_10_1088_0953_8984_25_12_125601
crossref_primary_10_1103_PhysRevB_103_024406
crossref_primary_10_1103_PhysRevLett_116_147001
crossref_primary_10_1103_PhysRevLett_118_017204
crossref_primary_10_1002_adfm_202102917
crossref_primary_10_1103_PhysRevB_93_054516
crossref_primary_10_1103_PhysRevB_86_134503
crossref_primary_10_1103_PhysRevB_96_045114
crossref_primary_10_1103_PhysRevB_98_214508
crossref_primary_10_1038_nphys3116
crossref_primary_10_1103_PhysRevB_90_180403
crossref_primary_10_1063_pt_wqrz_qpjx
crossref_primary_10_1103_PhysRevB_95_205118
crossref_primary_10_1103_PhysRevB_107_205152
crossref_primary_10_1103_PhysRevB_95_205117
crossref_primary_10_1093_nsr_nwu007
crossref_primary_10_1093_pnasnexus_pgad164
crossref_primary_10_1088_0953_8984_26_37_375601
crossref_primary_10_1103_PhysRevB_97_214511
crossref_primary_10_1103_PhysRevB_90_165123
crossref_primary_10_1103_PhysRevB_90_165122
crossref_primary_10_1103_PhysRevLett_132_236505
crossref_primary_10_1088_1361_648X_aa669d
crossref_primary_10_1038_s41586_025_08703_x
crossref_primary_10_1073_pnas_2321193121
crossref_primary_10_1103_PhysRevMaterials_3_064404
crossref_primary_10_1038_s41598_017_06591_4
crossref_primary_10_1103_PhysRevB_95_195111
crossref_primary_10_1103_PhysRevB_91_140503
crossref_primary_10_1021_acs_nanolett_9b05167
crossref_primary_10_1103_PhysRevLett_125_166401
crossref_primary_10_1103_PhysRevLett_134_116504
crossref_primary_10_1103_PhysRevLett_117_097001
crossref_primary_10_1007_s10853_021_06210_8
crossref_primary_10_1038_nphys2438
crossref_primary_10_1103_PhysRevB_106_115114
crossref_primary_10_1103_PhysRevB_93_134515
crossref_primary_10_1007_s10948_016_3626_8
crossref_primary_10_1016_j_inoche_2019_107605
crossref_primary_10_1103_PhysRevB_96_125111
crossref_primary_10_1103_PhysRevB_99_125130
crossref_primary_10_1103_PhysRevLett_116_237003
crossref_primary_10_1103_PhysRevB_96_125110
crossref_primary_10_1103_PhysRevB_90_085110
crossref_primary_10_1103_PhysRevLett_113_027002
crossref_primary_10_1007_s11467_016_0572_7
crossref_primary_10_1103_PhysRevB_102_081108
crossref_primary_10_1103_PhysRevB_104_024512
crossref_primary_10_1088_1674_1056_24_11_117405
crossref_primary_10_1103_PhysRevB_102_081105
crossref_primary_10_1103_PhysRevB_95_094504
crossref_primary_10_1103_PhysRevB_92_195128
crossref_primary_10_1103_PhysRevLett_111_207002
crossref_primary_10_3389_fphy_2022_859017
crossref_primary_10_1088_1367_2630_16_8_083025
crossref_primary_10_1103_PhysRevB_109_165111
crossref_primary_10_1103_PhysRevB_102_241108
crossref_primary_10_1103_PhysRevB_87_224512
crossref_primary_10_1103_PhysRevB_88_184413
crossref_primary_10_1039_D4NJ03944K
crossref_primary_10_1007_s11434_016_1087_x
crossref_primary_10_1063_1_5034488
crossref_primary_10_1103_PhysRevB_98_155116
crossref_primary_10_1103_PhysRevB_89_220506
crossref_primary_10_1073_pnas_1703295114
crossref_primary_10_1088_1361_648X_ac1766
crossref_primary_10_1103_PhysRevX_6_041045
crossref_primary_10_1016_j_jmmm_2020_166872
crossref_primary_10_1007_s40766_019_0001_1
crossref_primary_10_1209_0295_5075_106_67004
crossref_primary_10_1209_0295_5075_113_27001
crossref_primary_10_1073_pnas_1414094112
crossref_primary_10_1103_PhysRevB_103_045134
crossref_primary_10_1126_science_aak9946
crossref_primary_10_1021_acs_nanolett_3c04098
crossref_primary_10_1103_PhysRevLett_134_016501
crossref_primary_10_1073_pnas_1702234114
crossref_primary_10_1016_j_ssc_2019_113800
crossref_primary_10_1103_PhysRevB_105_075119
crossref_primary_10_1103_PhysRevB_87_064409
crossref_primary_10_1103_PhysRevB_95_060505
crossref_primary_10_1103_PhysRevB_87_161122
crossref_primary_10_1103_PhysRevLett_124_206405
crossref_primary_10_1103_PhysRevB_89_094514
crossref_primary_10_1103_PhysRevB_105_245115
crossref_primary_10_1103_PhysRevB_89_220502
crossref_primary_10_1103_PhysRevB_99_125113
crossref_primary_10_1103_PhysRevB_96_184418
crossref_primary_10_1103_PhysRevLett_109_126408
crossref_primary_10_1103_PhysRevMaterials_1_034406
crossref_primary_10_1021_acs_nanolett_2c01282
crossref_primary_10_1038_s41467_024_49674_3
crossref_primary_10_1103_PhysRevB_88_184515
crossref_primary_10_1038_nphys3434
crossref_primary_10_1038_s42005_024_01874_5
crossref_primary_10_1103_PhysRevB_89_205121
crossref_primary_10_1103_PhysRevLett_124_237001
crossref_primary_10_1103_PhysRevB_101_235154
crossref_primary_10_1063_1_4969042
crossref_primary_10_1103_PhysRevB_103_045121
crossref_primary_10_1088_1361_648X_ab9566
crossref_primary_10_1038_nnano_2015_193
crossref_primary_10_1103_PhysRevB_94_195146
crossref_primary_10_1146_annurev_conmatphys_033117_054137
crossref_primary_10_1038_srep24479
crossref_primary_10_1088_0256_307X_40_11_117103
crossref_primary_10_1038_s41467_024_51255_3
crossref_primary_10_1088_1361_648X_aafdce
crossref_primary_10_1073_pnas_2001123117
crossref_primary_10_1103_PhysRevB_108_L081102
crossref_primary_10_1103_PhysRevLett_118_167003
crossref_primary_10_1360_SSPMA_2023_0264
crossref_primary_10_1103_PhysRevLett_119_227003
crossref_primary_10_1103_PhysRevB_93_224506
crossref_primary_10_1016_j_aop_2019_03_024
crossref_primary_10_1002_pssb_201600208
crossref_primary_10_1103_PhysRevB_94_201109
crossref_primary_10_1142_S0217979221502775
crossref_primary_10_1103_PhysRevB_94_035108
crossref_primary_10_1103_PhysRevLett_112_106405
crossref_primary_10_1103_PhysRevB_97_104502
crossref_primary_10_1021_acs_inorgchem_8b00179
crossref_primary_10_1103_PhysRevB_92_235138
crossref_primary_10_1016_j_jmmm_2013_09_029
crossref_primary_10_1103_PhysRevB_111_L041102
crossref_primary_10_7566_JPSJ_82_123712
crossref_primary_10_1038_nmat3654
crossref_primary_10_1103_PhysRevB_104_045128
crossref_primary_10_1038_nphys2877
crossref_primary_10_1103_PhysRevB_99_024509
crossref_primary_10_1088_0953_8984_26_42_425501
crossref_primary_10_1103_PhysRevLett_116_247001
crossref_primary_10_1103_PhysRevB_107_214452
crossref_primary_10_1103_PhysRevLett_121_197001
crossref_primary_10_1038_s41535_020_00253_x
crossref_primary_10_1103_PhysRevB_95_174504
crossref_primary_10_1103_PhysRevB_90_205131
crossref_primary_10_1103_PhysRevLett_110_146402
crossref_primary_10_1103_PhysRevMaterials_3_085001
crossref_primary_10_1103_PhysRevB_106_184422
crossref_primary_10_1103_PhysRevB_85_180405
crossref_primary_10_1021_acs_inorgchem_2c00568
crossref_primary_10_1103_PhysRevB_87_165139
crossref_primary_10_1103_PhysRevLett_125_247001
crossref_primary_10_1103_PhysRevX_8_041056
crossref_primary_10_1038_s41535_018_0122_3
crossref_primary_10_1088_0953_8984_26_1_015701
crossref_primary_10_1103_PhysRevB_102_205127
crossref_primary_10_1103_PhysRevMaterials_1_024409
crossref_primary_10_1088_1361_648X_aaa43e
crossref_primary_10_1080_08940886_2023_2226048
crossref_primary_10_1002_adma_201401518
crossref_primary_10_1103_PhysRevB_98_195137
crossref_primary_10_1103_PhysRevB_93_144404
crossref_primary_10_1002_pssb_201600350
crossref_primary_10_1088_1367_2630_16_6_063020
crossref_primary_10_1039_D4FD00053F
crossref_primary_10_1002_pssb_201600351
crossref_primary_10_1103_PhysRevB_100_161113
crossref_primary_10_1038_s41467_021_23536_8
crossref_primary_10_1103_PhysRevB_99_174517
crossref_primary_10_1103_PhysRevB_97_134503
crossref_primary_10_1038_nphys3629
crossref_primary_10_1088_1361_648X_aa5486
crossref_primary_10_1103_PhysRevLett_126_206401
crossref_primary_10_1088_1742_6596_449_1_012025
crossref_primary_10_1103_PhysRevB_104_014507
crossref_primary_10_1088_1361_6633_ab6a43
crossref_primary_10_1103_PhysRevB_87_195144
crossref_primary_10_1103_PhysRevLett_125_086401
crossref_primary_10_1063_1_4985157
crossref_primary_10_3390_sym13020169
crossref_primary_10_1016_j_crhy_2015_10_007
crossref_primary_10_1103_PhysRevB_109_195145
crossref_primary_10_1103_PhysRevB_94_115151
crossref_primary_10_3389_fphy_2022_886459
crossref_primary_10_1088_0953_8984_26_35_356002
crossref_primary_10_1016_j_crhy_2015_10_002
crossref_primary_10_1103_PhysRevB_93_214506
crossref_primary_10_1103_PhysRevLett_129_046402
crossref_primary_10_1038_npjquantmats_2016_1
crossref_primary_10_1038_s41467_018_06181_6
crossref_primary_10_1103_PhysRevB_86_165117
crossref_primary_10_1038_s42005_023_01154_8
crossref_primary_10_1103_PhysRevB_94_115159
crossref_primary_10_1103_PhysRevB_88_094501
crossref_primary_10_9714_psac_2014_16_2_007
crossref_primary_10_1142_S0217984920400515
crossref_primary_10_1038_ncomms13879
crossref_primary_10_1088_1361_648X_ab8849
crossref_primary_10_1103_PhysRevB_98_214518
crossref_primary_10_1073_pnas_1118371109
crossref_primary_10_1038_s41524_020_00414_3
crossref_primary_10_3390_sym12091402
crossref_primary_10_1103_PhysRevB_88_045105
crossref_primary_10_1088_2053_1583_3_1_014005
crossref_primary_10_1103_PhysRevLett_117_137001
crossref_primary_10_1103_PhysRevB_85_085105
crossref_primary_10_1103_PhysRevB_88_115130
crossref_primary_10_1103_PhysRevB_111_115118
crossref_primary_10_1002_andp_202000399
crossref_primary_10_1103_PhysRevB_99_014509
crossref_primary_10_1038_ncomms6044
crossref_primary_10_1038_s41524_019_0251_7
crossref_primary_10_1103_PhysRevB_109_045146
crossref_primary_10_1103_PhysRevB_102_155135
crossref_primary_10_1103_PhysRevB_110_L041403
crossref_primary_10_1103_PhysRevB_98_035143
crossref_primary_10_1103_PhysRevLett_121_187003
crossref_primary_10_1134_S0021364023600647
crossref_primary_10_1103_PhysRevB_94_024412
crossref_primary_10_1021_acs_nanolett_1c04863
crossref_primary_10_1103_PhysRevB_89_125115
crossref_primary_10_1103_PhysRevB_90_104518
crossref_primary_10_1103_PhysRevB_102_085101
crossref_primary_10_1016_j_physb_2023_415603
crossref_primary_10_1103_PhysRevB_94_045132
crossref_primary_10_1103_PhysRevB_86_064411
crossref_primary_10_1103_PhysRevB_106_184507
crossref_primary_10_1103_PhysRevLett_119_157001
crossref_primary_10_1088_0953_8984_28_45_453001
crossref_primary_10_1038_srep06543
crossref_primary_10_1073_pnas_1523064113
crossref_primary_10_1002_pssb_201600149
crossref_primary_10_1103_PhysRevE_93_063313
crossref_primary_10_1103_PhysRevLett_130_066401
crossref_primary_10_1103_PhysRevB_92_134522
crossref_primary_10_1103_PhysRevB_90_241105
crossref_primary_10_1088_0953_8984_27_18_183201
crossref_primary_10_1038_ncomms11116
crossref_primary_10_1103_PhysRevB_97_235157
crossref_primary_10_1103_PhysRevB_95_184504
crossref_primary_10_1103_PhysRevB_92_165102
crossref_primary_10_1103_PhysRevB_93_245110
crossref_primary_10_1103_PhysRevB_89_140506
crossref_primary_10_1103_PhysRevMaterials_7_104006
crossref_primary_10_1103_PhysRevB_94_014503
crossref_primary_10_1016_j_cpc_2019_07_003
crossref_primary_10_1103_PhysRevB_88_195116
crossref_primary_10_1016_j_physleta_2012_04_015
crossref_primary_10_1103_PhysRevB_105_125140
crossref_primary_10_1103_PhysRevResearch_2_043293
crossref_primary_10_1002_adma_202307942
crossref_primary_10_1103_PhysRevB_90_125102
crossref_primary_10_1103_PhysRevB_96_085129
crossref_primary_10_1103_PhysRevLett_109_177001
crossref_primary_10_1103_PhysRevB_94_115146
crossref_primary_10_1103_PhysRevB_90_075136
crossref_primary_10_1103_PhysRevLett_117_036401
crossref_primary_10_1103_PhysRevB_89_024509
crossref_primary_10_1103_PhysRevB_96_075102
crossref_primary_10_1016_j_heliyon_2020_e03763
crossref_primary_10_1103_PhysRevB_95_184516
crossref_primary_10_1103_PhysRevB_91_054512
crossref_primary_10_1140_epjst_e2017_70054_6
crossref_primary_10_1038_s41535_017_0059_y
crossref_primary_10_1103_PhysRevB_86_155107
crossref_primary_10_1103_PhysRevB_94_045115
crossref_primary_10_1088_0953_8984_26_17_173202
crossref_primary_10_1103_PhysRevLett_117_117201
crossref_primary_10_1103_PhysRevLett_123_256401
crossref_primary_10_1103_PhysRevB_87_144517
crossref_primary_10_1038_srep04120
crossref_primary_10_1038_s42005_019_0236_3
Cites_doi 10.1143/PTP.49.1483
10.1103/PhysRevB.78.140504
10.1038/nphys1923
10.1103/PhysRevB.79.060504
10.1103/PhysRevLett.105.067002
10.1103/PhysRevLett.101.257005
10.1103/PhysRevLett.101.257003
10.1103/PhysRevB.81.094523
10.1103/PhysRevB.82.184511
10.1103/PhysRevB.83.054510
10.1103/PhysRevB.80.024515
10.1088/1367-2630/11/2/025021
10.1103/PhysRevB.81.100502
10.1209/0295-5075/83/47001
10.1103/PhysRevB.83.132501
10.1103/PhysRevLett.102.126401
10.1038/nphys1759
10.1103/PhysRevB.80.100507
10.1038/nphys1160
10.1103/PhysRevLett.102.247001
10.1103/PhysRevB.78.100506
10.1021/ja800073m
10.1103/PhysRevB.82.064409
10.1103/PhysRevB.80.174510
10.1103/PhysRevLett.104.097002
ContentType Journal Article
Copyright Springer Nature Limited 2011
Copyright Nature Publishing Group Dec 2011
Copyright_xml – notice: Springer Nature Limited 2011
– notice: Copyright Nature Publishing Group Dec 2011
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7U5
L7M
7X8
DOI 10.1038/nmat3120
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 935
ExternalDocumentID 2580756971
21927004
10_1038_nmat3120
Genre Letter
Correspondence
Feature
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7U5
L7M
PUEGO
7X8
ID FETCH-LOGICAL-c442t-775f39e4e0f3810ff2827eb694c45a329c6ad1bab0b0d06034f88b31f45a843f3
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Thu Jul 10 23:20:07 EDT 2025
Sun Aug 24 03:52:56 EDT 2025
Fri Jul 25 09:10:30 EDT 2025
Mon Jul 21 05:47:56 EDT 2025
Tue Jul 01 02:13:52 EDT 2025
Thu Apr 24 22:50:20 EDT 2025
Fri Feb 21 02:38:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-775f39e4e0f3810ff2827eb694c45a329c6ad1bab0b0d06034f88b31f45a843f3
Notes SourceType-Scholarly Journals-1
ObjectType-Correspondence-2
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Correspondence-1
PMID 21927004
PQID 920244667
PQPubID 27576
PageCount 4
ParticipantIDs proquest_miscellaneous_905964822
proquest_miscellaneous_1019658451
proquest_journals_920244667
pubmed_primary_21927004
crossref_primary_10_1038_nmat3120
crossref_citationtrail_10_1038_nmat3120
springer_journals_10_1038_nmat3120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2011
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Goldman (CR13) 2008; 78
Hu (CR17) 2008; 101
Yi (CR23) 2009; 80
Kamihara (CR1) 2008; 130
Zhang (CR26) 2011; 83
Borisenko (CR22) 2010; 105
Haule, Kotliar (CR4) 2009; 11
Li (CR9) 2010; 82
Mazin, Johannes (CR5) 2009; 5
Okada, Yosida (CR25) 1973; 49
Zhao (CR12) 2008; 78
Yi (CR27) 2009; 80
Yu (CR7) 2011; 83
Xiao (CR11) 2010; 81
Paglione, Greene (CR2) 2010; 6
Bao (CR6) 2009; 102
Yin, Haule, Kotliar (CR14) 2011; 7
Xiao (CR10) 2009; 79
Yamasaki (CR21) 2010; 82
Hu (CR16) 2009; 80
Qazilbash (CR19) 2009; 5
Tamai (CR20) 2010; 104
CR24
Ding (CR3) 2008; 83
Huang (CR8) 2008; 101
de’ Medici (CR15) 2009; 102
Chen (CR18) 2010; 81
K Haule (BFnmat3120_CR4) 2009; 11
II Mazin (BFnmat3120_CR5) 2009; 5
AI Goldman (BFnmat3120_CR13) 2008; 78
Y Zhang (BFnmat3120_CR26) 2011; 83
H Ding (BFnmat3120_CR3) 2008; 83
WQ Yu (BFnmat3120_CR7) 2011; 83
ZP Yin (BFnmat3120_CR14) 2011; 7
ZG Chen (BFnmat3120_CR18) 2010; 81
I Okada (BFnmat3120_CR25) 1973; 49
A Yamasaki (BFnmat3120_CR21) 2010; 82
Y Xiao (BFnmat3120_CR11) 2010; 81
L de’ Medici (BFnmat3120_CR15) 2009; 102
J Zhao (BFnmat3120_CR12) 2008; 78
M Yi (BFnmat3120_CR23) 2009; 80
MM Qazilbash (BFnmat3120_CR19) 2009; 5
SV Borisenko (BFnmat3120_CR22) 2010; 105
H-F Li (BFnmat3120_CR9) 2010; 82
WZ Hu (BFnmat3120_CR16) 2009; 80
Y Xiao (BFnmat3120_CR10) 2009; 79
BFnmat3120_CR24
Y Kamihara (BFnmat3120_CR1) 2008; 130
M Yi (BFnmat3120_CR27) 2009; 80
Q Huang (BFnmat3120_CR8) 2008; 101
WZ Hu (BFnmat3120_CR17) 2008; 101
W Bao (BFnmat3120_CR6) 2009; 102
J Paglione (BFnmat3120_CR2) 2010; 6
A Tamai (BFnmat3120_CR20) 2010; 104
20867999 - Phys Rev Lett. 2010 Aug 6;105(6):067002
18293989 - J Am Chem Soc. 2008 Mar 19;130(11):3296-7
19113744 - Phys Rev Lett. 2008 Dec 19;101(25):257003
19659037 - Phys Rev Lett. 2009 Jun 19;102(24):247001
19113746 - Phys Rev Lett. 2008 Dec 19;101(25):257005
19392299 - Phys Rev Lett. 2009 Mar 27;102(12):126401
20367005 - Phys Rev Lett. 2010 Mar 5;104(9):097002
References_xml – volume: 49
  start-page: 1483
  year: 1973
  end-page: 1502
  ident: CR25
  article-title: Singlet ground state of the localized -electrons coupled with conduction electrons in metals
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.49.1483
– volume: 78
  start-page: 140504
  year: 2008
  ident: CR12
  article-title: Spin and lattice structure of single crystal SrFe As
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.140504
– volume: 7
  start-page: 294
  year: 2011
  end-page: 297
  ident: CR14
  article-title: Magnetism and charge dynamics in iron pnictides
  publication-title: Nature Phys.
  doi: 10.1038/nphys1923
– volume: 79
  start-page: 060504
  year: 2009
  ident: CR10
  article-title: Magnetic order in CaFe Co AsF ( =0, 0.06, 0.12) superconductor compounds
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.060504
– volume: 105
  start-page: 067002
  year: 2010
  ident: CR22
  article-title: Superconductivity without magnetism in LiFeAs
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.067002
– volume: 101
  start-page: 257005
  year: 2008
  ident: CR17
  article-title: Origin of the spin density wave instability in AFe As (A=Ba, Sr) as revealed by optical spectroscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.257005
– volume: 101
  start-page: 257003
  year: 2008
  ident: CR8
  article-title: Magnetic order in BaFe As , the parent compound of the FeAs based superconductors in a new structural family
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.257003
– volume: 81
  start-page: 094523
  year: 2010
  ident: CR11
  article-title: Neutron diffraction study on phase transition and thermal expansion of SrFeAsF
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.094523
– volume: 82
  start-page: 184511
  year: 2010
  ident: CR21
  article-title: Electron correlation in FeSe superconductor studied by bulk-sensitive photoemission spectroscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.184511
– volume: 83
  start-page: 054510
  year: 2011
  ident: CR26
  article-title: Orbital characters of bands in iron-based superconductor BaFe Co As
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.054510
– volume: 80
  start-page: 024515
  year: 2009
  ident: CR27
  article-title: Electronic structure of the BaFe As family of iron-pnictide superconductors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.024515
– volume: 5
  start-page: 647
  year: 2009
  end-page: 650
  ident: CR19
  article-title: Electronic correlations in the iron pnictides
  publication-title: Nature Phys.
– volume: 11
  start-page: 025021
  year: 2009
  ident: CR4
  article-title: Coherence-incoherence crossover in the normal state of iron-oxypnictides and importance of the Hund’s rule coupling
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/2/025021
– volume: 81
  start-page: 100502
  year: 2010
  ident: CR18
  article-title: Optical spectroscopy study on single crystalline LaFeAsO
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.100502
– volume: 83
  start-page: 47001
  year: 2008
  ident: CR3
  article-title: Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba K Fe As
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/83/47001
– volume: 83
  start-page: 132501
  year: 2011
  ident: CR7
  article-title: Na and As NMR study of antiferromagnetism and spin fluctuations on NaFeAs single crystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.132501
– volume: 102
  start-page: 126401
  year: 2009
  ident: CR15
  article-title: Orbital-selective Mott transition out of band degeneracy lifting
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.126401
– volume: 6
  start-page: 645
  year: 2010
  end-page: 658
  ident: CR2
  article-title: High-temperature superconductivity in iron-based materials
  publication-title: Nature Phys.
  doi: 10.1038/nphys1759
– volume: 80
  start-page: 100507
  year: 2009
  ident: CR16
  article-title: Optical study on the spin-density wave properties in single crystalline Na FeAs
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.100507
– volume: 5
  start-page: 141
  year: 2009
  end-page: 145
  ident: CR5
  article-title: A key role for unusual spin dynamics in ferropnictides
  publication-title: Nature Phys.
  doi: 10.1038/nphys1160
– volume: 102
  start-page: 247001
  year: 2009
  ident: CR6
  article-title: Incommensurate magnetic order in the -Fe(Te,Se) superconductor systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.247001
– volume: 78
  start-page: 100506
  year: 2008
  ident: CR13
  article-title: Lattice and magnetic instabilities in CaFe As : A single crystal neutron diffraction study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.100506
– volume: 130
  start-page: 3296
  year: 2008
  end-page: 3297
  ident: CR1
  article-title: Iron-based layered superconductor La[O F ]FeAs ( =0.05–0.12) with =26 K
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800073m
– volume: 82
  start-page: 064409
  year: 2010
  ident: CR9
  article-title: Phase transitions and iron-ordered moment form factor in LaFeAsO
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.064409
– volume: 80
  start-page: 174510
  year: 2009
  ident: CR23
  article-title: Unconventional electronic reconstruction in undoped (Ba,Sr)Fe As across the spin density wave transition
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.174510
– ident: CR24
– volume: 104
  start-page: 097002
  year: 2010
  ident: CR20
  article-title: Strong electron correlations in the normal state of FeSe Te
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.097002
– volume: 79
  start-page: 060504
  year: 2009
  ident: BFnmat3120_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.060504
– volume: 101
  start-page: 257003
  year: 2008
  ident: BFnmat3120_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.257003
– volume: 81
  start-page: 094523
  year: 2010
  ident: BFnmat3120_CR11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.094523
– volume: 82
  start-page: 184511
  year: 2010
  ident: BFnmat3120_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.184511
– volume: 130
  start-page: 3296
  year: 2008
  ident: BFnmat3120_CR1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800073m
– volume: 83
  start-page: 054510
  year: 2011
  ident: BFnmat3120_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.054510
– volume: 82
  start-page: 064409
  year: 2010
  ident: BFnmat3120_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.064409
– volume: 80
  start-page: 100507
  year: 2009
  ident: BFnmat3120_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.100507
– volume: 104
  start-page: 097002
  year: 2010
  ident: BFnmat3120_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.097002
– volume: 49
  start-page: 1483
  year: 1973
  ident: BFnmat3120_CR25
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.49.1483
– volume: 105
  start-page: 067002
  year: 2010
  ident: BFnmat3120_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.067002
– volume: 80
  start-page: 174510
  year: 2009
  ident: BFnmat3120_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.174510
– volume: 80
  start-page: 024515
  year: 2009
  ident: BFnmat3120_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.024515
– volume: 5
  start-page: 647
  year: 2009
  ident: BFnmat3120_CR19
  publication-title: Nature Phys.
– volume: 83
  start-page: 132501
  year: 2011
  ident: BFnmat3120_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.132501
– ident: BFnmat3120_CR24
– volume: 6
  start-page: 645
  year: 2010
  ident: BFnmat3120_CR2
  publication-title: Nature Phys.
  doi: 10.1038/nphys1759
– volume: 5
  start-page: 141
  year: 2009
  ident: BFnmat3120_CR5
  publication-title: Nature Phys.
  doi: 10.1038/nphys1160
– volume: 11
  start-page: 025021
  year: 2009
  ident: BFnmat3120_CR4
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/2/025021
– volume: 78
  start-page: 140504
  year: 2008
  ident: BFnmat3120_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.140504
– volume: 81
  start-page: 100502
  year: 2010
  ident: BFnmat3120_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.100502
– volume: 78
  start-page: 100506
  year: 2008
  ident: BFnmat3120_CR13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.100506
– volume: 83
  start-page: 47001
  year: 2008
  ident: BFnmat3120_CR3
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/83/47001
– volume: 102
  start-page: 126401
  year: 2009
  ident: BFnmat3120_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.126401
– volume: 101
  start-page: 257005
  year: 2008
  ident: BFnmat3120_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.257005
– volume: 7
  start-page: 294
  year: 2011
  ident: BFnmat3120_CR14
  publication-title: Nature Phys.
  doi: 10.1038/nphys1923
– volume: 102
  start-page: 247001
  year: 2009
  ident: BFnmat3120_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.247001
– reference: 19659037 - Phys Rev Lett. 2009 Jun 19;102(24):247001
– reference: 19113744 - Phys Rev Lett. 2008 Dec 19;101(25):257003
– reference: 19113746 - Phys Rev Lett. 2008 Dec 19;101(25):257005
– reference: 20367005 - Phys Rev Lett. 2010 Mar 5;104(9):097002
– reference: 18293989 - J Am Chem Soc. 2008 Mar 19;130(11):3296-7
– reference: 20867999 - Phys Rev Lett. 2010 Aug 6;105(6):067002
– reference: 19392299 - Phys Rev Lett. 2009 Mar 27;102(12):126401
SSID ssj0021556
Score 2.5912948
Snippet Iron-based superconductors all share the same building blocks. So why do local magnetic properties vary from one compound to another? A new theoretical model...
The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 932
SubjectTerms 639/301/119/997
639/638/298/924
Band structure of solids
Biomaterials
Chalcogenides
Chemistry and Materials Science
Condensed Matter Physics
Gaps
High temperature
Iron
Iron compounds
Kinetics
letter
Materials Science
Nanotechnology
Optical and Electronic Materials
Physical properties
Superconductivity
Superconductors
Transition temperature
Transition temperatures
Title Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides
URI https://link.springer.com/article/10.1038/nmat3120
https://www.ncbi.nlm.nih.gov/pubmed/21927004
https://www.proquest.com/docview/920244667
https://www.proquest.com/docview/1019658451
https://www.proquest.com/docview/905964822
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xuMABAeWxvGSqSpwiktjJxidEKxYEAlUVSHuLbMemlZZkIbv_nxnnASotlyjxjBLLduxvPONvAL6FqVE8SnVQcJsEQmkXyCIxQWwkmkQm1kPPxHR7l149iOtxMm5jc-o2rLKbE_1EXVSG9shPJVrp5Hscnk2fA0oaRc7VNoPGIiwTcxlFdA3Hb_YWLpXN4aJhGiCsiDvuWZ6dlggHeURJvt-vRh8g5gf3qF91Ruuw1sJFdt707wYs2HITVt-RCH6B-gbvUczcy7wjwWWqLBhCO9bwdrLK-acn9diokphIv_sCf66oZn9KRsfe2LSkkyIFlpCmLzK_1cRUONyoeAseRhf3P66CNpVCYISIZ4ihE8elFTZ0ROnlHFpalA1FCiMSxWNpUlVEWulQh0WYhly4LNM8cijNBHd8G5bKqrS7wBAkaZdEVqaxFARgVMEzY7PUuChSOhrASdekuWl5xindxST3_m6e5V3jD-C415w23Br_0NnveiVv_64678cCvqGX4m9Bvg5V2mpeU-Qa0dqIBOvD_qMjKfWQQIQ0gJ2mv_tq4DxOHnkxgK_dAHj7_N913Pu0jvuw4vehfQjMASzNXub2EIHMTB_54YrXbHR5BMvfL-5-_noFPAz2XA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcUMujLH1gEIhT1CR2svEBIdR22bJtT63UW7AdG5BKsjS7Qv1R_Y_MOOtQtcCtt8QeJZY9tr_xeL4BeBPnRvEk11HFbRYJpV0kq8xEqZFoEplUDz0T09FxPj4Vn8-ysyW4CrEwdK0yrIl-oa4aQ2fkOxKtdPI9Dj9Mf0aUNIqcqyGDRqcVE3v5Cy229v3BHg7v2zQd7Z_sjqNFUoHICJHOEE1mjksrbOyI3Mo5tDkoL4gURmSKp9Lkqkq00rGOqziPuXBFoXnisLYQ3HH87j1YEZxLmlDF6FNv3-HW3AUzDfMIYUwauG55sVMj_OQJJRW_vvvdgrS33LF-lxutwqMFPGUfO31agyVbP4aH10gLn0A7wWesZu5iHkh3maorhlCSdTyhrHH-7Yf62olSNZGM9wU-jqll32tGYXZsWlNkSoUlJOmLzDd1bhpUbyp-Cqd30svPYLluavscGIIy7bLEyjyVggCTqnhhbJEblyRKJwN4F7q0NAtec0qvcV56_zovytD5A3jVS047Lo-_yGyEUSkXs7kte93DL_S1OA3Jt6Jq28xbuilHNDoiw_awf8hISnUkEJENYL0b774ZuG_QDQAxgNdBAf78_mYbX_y3jS_h_vjk6LA8PDiebMADfwbur99swvLsYm63EETN9LZXXQZf7nqu_AY-aDAn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4sLWAQiFO0cew8fKgQoqxaFioOVNpbsB2bVirJ0uwK8dP4d8w4j1YUuPWW2KPEsmfib-KZbwBexJnVgmcmqoRLI6mNj1SV2iixCl0im5g8MDF9PMj2DuX7RbrYgF9DLgyFVQ7fxPChrhpL_8inCr10OnvMp76Pivi0O3u9_B5RASk6aB2qaXQaMnc_f6D31u7s7-JSv0yS2bvPb_eivsBAZKVMVogsUy-Uky72RHTlPfofVCNESStTLRJlM11xo01s4irOYiF9URjBPfYWUniBz70CV3ORcjKxfHHm6-E23SU25VmEkCYZeG9FMa0RigpOBcbP74QX4O2Fo9mw481uwc0eqrI3nW7dhg1X34Eb5wgM70I7x2vsZv50PRDwMl1XDGEl6zhDWePD3Tf9tROlbiIcHxtCTlPLjmtGKXdsWVOWSoUtJBma7JE-sQ2qOjXfg8NLmeX7sFk3tXsIDAGa8Sl3KkuUJPCkK1FYV2TWc64Nn8CrYUpL23OcU6mNkzKctYuiHCZ_As9GyWXH6_EXma1hVcrestty1EN8wtiLJknnLLp2zbqlqDmi1JEpjof9Q0ZR2SOJ6GwCD7r1HoeBewhFA8gJPB8U4Oz1f47x0X_H-BSuoZWUH_YP5ltwPfwOD5E427C5Ol27x4inVuZJ0FwGXy7bVH4DHNI0VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+frustration+and+the+nature+of+the+magnetic+and+paramagnetic+states+in+iron+pnictides+and+iron%C2%A0chalcogenides&rft.jtitle=Nature+materials&rft.au=Yin%2C+Z.+P.&rft.au=Haule%2C+K.&rft.au=Kotliar%2C+G.&rft.date=2011-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=10&rft.issue=12&rft.spage=932&rft.epage=935&rft_id=info:doi/10.1038%2Fnmat3120&rft.externalDocID=10_1038_nmat3120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon