Error analysis of Legendre-Galerkin spectral method for a parabolic equation with Dirichlet-Type non-local boundary conditions
An efficient Legendre-Galerkin spectral method and its error analysis for a one-dimensional parabolic equation with Dirichlet-type non-local boundary conditions are presented in this paper. The spatial discretization is based on Galerkin formulation and the Legendre orthogonal polynomials, while the...
Saved in:
Published in | Mathematical modelling and analysis Vol. 26; no. 2; pp. 287 - 303 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Vilnius
Vilnius Gediminas Technical University
26.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An efficient Legendre-Galerkin spectral method and its error analysis for a one-dimensional parabolic equation with Dirichlet-type non-local boundary conditions are presented in this paper. The spatial discretization is based on Galerkin formulation and the Legendre orthogonal polynomials, while the time derivative is discretized by using the symmetric Euler finite difference schema. The stability and convergence of the semi-discrete spectral approximation are rigorously set up by following a novel approach to overcome difficulties caused by the non-locality of the boundary condition. Several numerical tests are included to confirm the efficacy of the proposed method and to support the theoretical results. |
---|---|
AbstractList | An efficient Legendre-Galerkin spectral method and its error analysis for a one-dimensional parabolic equation with Dirichlet-type non-local boundary conditions are presented in this paper. The spatial discretization is based on Galerkin formulation and the Legendre orthogonal polynomials, while the time derivative is discretized by using the symmetric Euler finite difference schema. The stability and convergence of the semi-discrete spectral approximation are rigorously set up by following a novel approach to overcome difficulties caused by the non-locality of the boundary condition. Several numerical tests are included to confirm the efficacy of the proposed method and to support the theoretical results. An efficient Legendre-Galerkin spectral method and its error analysis for a one-dimensional parabolic equation with Dirichlet-type non-local boundary conditions are presented in this paper. The spatial discretization is based on Galerkin formulation and the Legendre orthogonal polynomials, while the time derivative is discretized by using the symmetric Euler finite difference schema. The stability and convergence of the semi-discrete spectral approximation are rigorously set up by following a novel approach to overcome difficulties caused by the non-locality of the boundary condition. Several numerical tests are included to confirm the efficacy of the proposed method and to support the theoretical results. Keywords: spectral methods, Galerkin method, parabolic equation, non-local boundary conditions, error estimate. AMS Subject Classification: 65M70; 65M12; 65N35; 35K20. |
Audience | Academic |
Author | Chattouh, Abdeldjalil Saoudi, Khaled |
Author_xml | – sequence: 1 givenname: Abdeldjalil orcidid: 0000-0001-5962-0966 surname: Chattouh fullname: Chattouh, Abdeldjalil organization: ICOSI Laboratory, Department of Mathematics and Informatics, Faculty of Sciences and Technology University Khenchela, P.O. Box 1252, 40004 Khenchela, Algeria – sequence: 2 givenname: Khaled orcidid: 0000-0003-1249-8857 surname: Saoudi fullname: Saoudi, Khaled organization: ICOSI Laboratory, Department of Mathematics and Informatics, Faculty of Sciences and Technology University Khenchela, P.O. Box 1252, 40004 Khenchela, Algeria |
BookMark | eNp1kc1v1DAQxSNUJNrClbMlxDGL4691jlUppdJKXMrZmtjjXS9JnNpZ0F742_FugEpIyAdb4_nNPL13VV2MccSqetvQFddCfRgGWDHKmlXDtJIvqstGCV1z2dCL8uYtqxVr2avqKuc9pVIyTS-rn3cpxURghP6YQybRkw1ucXQJ63voMX0LI8kT2jlBTwacd9ERfyLIBAm62AdL8OkAc4gj-RHmHfkYUrC7Huf68TghKSrrPtpCd_EwOkhHYuPowgnIr6uXHvqMb37f19XXT3ePt5_rzZf7h9ubTW2FYHO9Vh11tNGeO--sVFKuFWqtaOdph7pFyTvHle0EBd4JBM1h7VjXdkqAK7_X1cMy10XYmymFoegwEYI5F2LaGkhzsD0avxYohBNWtSAc8NYzUBRESwUyhbTMerfMmlJ8OmCezT4eUjEwGyZ5q3WxmpWu1dK1LS6aMPpYHLTlOBxCMQB9KPUbpYRohZb0GbAp5pzQ_5XZUHMK2JSAzSlgcw64AOIfwIb5nEPZFPr_Y-8X7Hvox3DIz-r_OLD0_QKJqbui |
CitedBy_id | crossref_primary_10_31197_atnaa_1139533 crossref_primary_10_1016_j_rinam_2024_100505 crossref_primary_10_1007_s40065_022_00371_3 |
Cites_doi | 10.1029/95WR01396 10.3846/13926292.2017.1342709 10.1016/j.apm.2011.07.059 10.1002/num.22411 10.1007/s40314-017-0553-7 10.2478/cmam-2012-0006 10.1080/01630563.2010.526734 10.3846/mma.2020.8023 10.1007/978-3-540-30726-6 10.1007/978-94-017-9454-1 10.1080/01630563.2014.908208 10.1016/j.amc.2008.03.008 10.1016/j.camwa.2016.01.017 10.15388/Informatica.2013.396 10.3846/13926292.2014.910562 10.1090/qam/963580 10.1186/s13661-019-1202-4 10.1016/j.cam.2011.05.038 10.1080/00207160903229881 10.1016/S1570-8659(97)80003-8 10.15388/NA.2017.2.8 10.1016/j.amc.2018.03.072 10.1080/17415977.2011.579608 10.1007/s10915-015-0145-x 10.1007/s11075-016-0192-x 10.1007/s40324-018-0165-1 10.1016/j.apm.2008.03.006 10.15632/jtam-pl.55.2.571 10.1016/S0377-0427(99)00200-9 10.1016/j.amc.2005.08.011 |
ContentType | Journal Article |
Copyright | Copyright (c) 2021 The Author(s). Published by Vilnius Gediminas Technical University. COPYRIGHT 2021 Vilnius Gediminas Technical University 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright (c) 2021 The Author(s). Published by Vilnius Gediminas Technical University. – notice: COPYRIGHT 2021 Vilnius Gediminas Technical University – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | ABJBJ AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M2O M7S MBDVC P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3846/mma.2021.12865 |
DatabaseName | VILNIUS TECH Press Open Access Scientific Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Research Library Engineering Database Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1648-3510 |
EndPage | 303 |
ExternalDocumentID | oai_doaj_org_article_f74e44d4c69a4da39f2a60a4904e26e0 A664494850 10_3846_mma_2021_12865 oai:ojs2.journals.vilniustech.lt:article/12865 |
GeographicLocations | Algeria |
GeographicLocations_xml | – name: Algeria |
GroupedDBID | .7F .QJ 4.4 5GY 8FE 8FG 8G5 AAENE ABCCY ABDBF ABFIM ABJBJ ABJCF ABJNI ABPEM ABTAI ABUWG ACGFO ACGFS ACIWK ACUHS ADBBV ADCVX AENEX AFKRA AGMYJ AIJEM ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AVBZW AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CE4 CS3 DU5 DWQXO EN8 ESX E~A E~B GNUQQ GROUPED_DOAJ GTTXZ GUQSH H13 HCIFZ HF~ HZ~ H~P I-F IAO ITC J.P K6V K7- L6V M2O M7S NA5 O9- OK1 P2P PADUT PHGZM PHGZT PQGLB PQQKQ PTHSS S-T TDBHL TFL TFW TR2 TUS UT5 UU3 ~8M ~S~ AAYXX CITATION PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N MBDVC P62 PKEHL PQEST PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c442t-76b0d018f3dfdc565576e8860bf0be89e53bd36cb40a3b4ea83a7d2b9b64ade53 |
IEDL.DBID | BENPR |
ISSN | 1392-6292 |
IngestDate | Wed Aug 27 01:29:08 EDT 2025 Fri Jul 25 12:14:13 EDT 2025 Tue Jun 10 20:43:24 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Tue Jul 01 04:16:27 EDT 2025 Tue Aug 12 21:21:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | error estimate spectral methods Galerkin method non-local boundary conditions parabolic equation |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-76b0d018f3dfdc565576e8860bf0be89e53bd36cb40a3b4ea83a7d2b9b64ade53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1249-8857 0000-0001-5962-0966 |
OpenAccessLink | https://doaj.org/article/f74e44d4c69a4da39f2a60a4904e26e0 |
PQID | 2539883922 |
PQPubID | 1386354 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f74e44d4c69a4da39f2a60a4904e26e0 proquest_journals_2539883922 gale_infotracacademiconefile_A664494850 crossref_primary_10_3846_mma_2021_12865 crossref_citationtrail_10_3846_mma_2021_12865 vilnius_journals_article_12865 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210526 |
PublicationDateYYYYMMDD | 2021-05-26 |
PublicationDate_xml | – month: 05 year: 2021 text: 20210526 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Vilnius |
PublicationPlace_xml | – name: Vilnius |
PublicationTitle | Mathematical modelling and analysis |
PublicationTitleAbbrev | MMA |
PublicationYear | 2021 |
Publisher | Vilnius Gediminas Technical University |
Publisher_xml | – name: Vilnius Gediminas Technical University |
References | key-10.3846/mma.2021.12865-30 key-10.3846/mma.2021.12865-10 key-10.3846/mma.2021.12865-32 key-10.3846/mma.2021.12865-31 key-10.3846/mma.2021.12865-12 key-10.3846/mma.2021.12865-11 key-10.3846/mma.2021.12865-14 key-10.3846/mma.2021.12865-13 key-10.3846/mma.2021.12865-6 key-10.3846/mma.2021.12865-16 key-10.3846/mma.2021.12865-7 key-10.3846/mma.2021.12865-15 key-10.3846/mma.2021.12865-4 key-10.3846/mma.2021.12865-18 key-10.3846/mma.2021.12865-5 key-10.3846/mma.2021.12865-17 key-10.3846/mma.2021.12865-8 key-10.3846/mma.2021.12865-9 key-10.3846/mma.2021.12865-21 key-10.3846/mma.2021.12865-20 key-10.3846/mma.2021.12865-23 key-10.3846/mma.2021.12865-22 key-10.3846/mma.2021.12865-25 key-10.3846/mma.2021.12865-24 key-10.3846/mma.2021.12865-26 key-10.3846/mma.2021.12865-29 key-10.3846/mma.2021.12865-28 R. Michael, J.H. William and A.N. John (key-10.3846/mma.2021.12865-19) 1987; 35 B. Shizgal (key-10.3846/mma.2021.12865-27) 2015 key-10.3846/mma.2021.12865-2 key-10.3846/mma.2021.12865-3 key-10.3846/mma.2021.12865-1 |
References_xml | – ident: key-10.3846/mma.2021.12865-12 doi: 10.1029/95WR01396 – ident: key-10.3846/mma.2021.12865-16 doi: 10.3846/13926292.2017.1342709 – ident: key-10.3846/mma.2021.12865-31 doi: 10.1016/j.apm.2011.07.059 – ident: key-10.3846/mma.2021.12865-2 doi: 10.1002/num.22411 – ident: key-10.3846/mma.2021.12865-11 doi: 10.1007/s40314-017-0553-7 – volume: 35 volume-title: Pitman Monographs and Surveys in Pure and Applied Mathematics year: 1987 ident: key-10.3846/mma.2021.12865-19 article-title: Mathematical problems in viscoelasticity – ident: key-10.3846/mma.2021.12865-24 doi: 10.2478/cmam-2012-0006 – ident: key-10.3846/mma.2021.12865-8 doi: 10.1080/01630563.2010.526734 – ident: key-10.3846/mma.2021.12865-10 doi: 10.3846/mma.2020.8023 – ident: key-10.3846/mma.2021.12865-5 doi: 10.1007/978-3-540-30726-6 – volume-title: Spectral methods in chemistry and physics year: 2015 ident: key-10.3846/mma.2021.12865-27 doi: 10.1007/978-94-017-9454-1 – ident: key-10.3846/mma.2021.12865-7 doi: 10.1080/01630563.2014.908208 – ident: key-10.3846/mma.2021.12865-20 doi: 10.1016/j.amc.2008.03.008 – ident: key-10.3846/mma.2021.12865-13 doi: 10.1016/j.camwa.2016.01.017 – ident: key-10.3846/mma.2021.12865-21 doi: 10.15388/Informatica.2013.396 – ident: key-10.3846/mma.2021.12865-9 doi: 10.3846/13926292.2014.910562 – ident: key-10.3846/mma.2021.12865-6 doi: 10.1090/qam/963580 – ident: key-10.3846/mma.2021.12865-23 doi: 10.1186/s13661-019-1202-4 – ident: key-10.3846/mma.2021.12865-30 doi: 10.1016/j.cam.2011.05.038 – ident: key-10.3846/mma.2021.12865-32 doi: 10.1080/00207160903229881 – ident: key-10.3846/mma.2021.12865-3 doi: 10.1016/S1570-8659(97)80003-8 – ident: key-10.3846/mma.2021.12865-15 doi: 10.15388/NA.2017.2.8 – ident: key-10.3846/mma.2021.12865-22 doi: 10.1016/j.amc.2018.03.072 – ident: key-10.3846/mma.2021.12865-28 doi: 10.1080/17415977.2011.579608 – ident: key-10.3846/mma.2021.12865-14 doi: 10.1007/s10915-015-0145-x – ident: key-10.3846/mma.2021.12865-25 – ident: key-10.3846/mma.2021.12865-4 doi: 10.1007/s11075-016-0192-x – ident: key-10.3846/mma.2021.12865-17 doi: 10.1007/s40324-018-0165-1 – ident: key-10.3846/mma.2021.12865-29 doi: 10.1016/j.apm.2008.03.006 – ident: key-10.3846/mma.2021.12865-26 doi: 10.15632/jtam-pl.55.2.571 – ident: key-10.3846/mma.2021.12865-18 doi: 10.1016/S0377-0427(99)00200-9 – ident: key-10.3846/mma.2021.12865-1 doi: 10.1016/j.amc.2005.08.011 |
SSID | ssj0055280 |
Score | 2.214463 |
Snippet | An efficient Legendre-Galerkin spectral method and its error analysis for a one-dimensional parabolic equation with Dirichlet-type non-local boundary... |
SourceID | doaj proquest gale crossref vilnius |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 287 |
SubjectTerms | Boundary conditions Boundary value problems Differential equations, Partial Dirichlet problem Discretization Error analysis error estimate Finite difference method Galerkin method Mathematical analysis Mathematical research non-local boundary conditions Parabola parabolic equation Polynomials Spectra Spectral methods |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxwxDI4qTvSACrRiW0A5IHFKmUky2eQICIoQ4lQkblGeYiW62w5LJS78duxkFhYh1Euvk2TiiZ3YztifCdkTIgcNbcyYccOk8C0zHZcMLFeZQIMgYghGW1yqsyt5ft1dL5X6wpiwCg9cF-4gwxgpowzKOBmdMJk71ThpGniXSsVbB523cKbqGdx1XNf8YMOZ4oZXuEYByvbgV4Eb4u33FpMyX6mjgtr_9mwG0_jv5HY6ub9bUj2nn8jaYDPSw0rrOvmQphvk4xKS4CZ5POn7WU_dADFCZ5leJJCN2Cf2A-bBG3Fasip7eFMtG00zjqAI_u0RHZimPxX3m-LlLIXDcBJugK0MfVU6nU1ZUXzUl0pM_QMFVzrWiK_P5Or05OfxGRtKK7AgJZ-zsfJNbFqdRcwxgFEHbkfSWjU-Nz5pkzrho1DBy8YJL5PTwo0j98Yr6SK0fiErMG_aIpSbkDkWLdfgyoG96cvPSuB_G3Pyzo0IW6ywDQPuOJa_uLXgfyBHLHDEIkds4ciI7D_3_10RN97teYQMe-6FSNnlAciPHeTH_kt-YDpkt8X9DGQFN6QlwMchMpY9VGAxIoQO9NxeSIQdNvqd5Z0wGo1MPiK7g5S8tC6IKOR-_R_kfiOruAAYv8DVNlmZ9_dpB8yiud8tO-AJZBMKRw priority: 102 providerName: Directory of Open Access Journals |
Title | Error analysis of Legendre-Galerkin spectral method for a parabolic equation with Dirichlet-Type non-local boundary conditions |
URI | https://journals.vilniustech.lt/index.php/MMA/article/view/12865 https://www.proquest.com/docview/2539883922 https://doaj.org/article/f74e44d4c69a4da39f2a60a4904e26e0 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbo9gIHxFMslJUPSJxME9vx2ifUot1WCFUIUak3y6_ASu2mzW6RuPDbmXGctgjBNXZiOzOel8ffEPJGiDZoaGPGzCsmha-ZabhkYLnKBBoEEUMw2-JEHZ_Kj2fNWQm4bUpa5SgTs6COXcAY-T5vhNGozfn7yyuGVaPwdLWU0NghuyCCtZ6Q3cPFyecvoyxuGq6He8KGM8UNH2AbBSjd_YsMO8TrdzVezvxDLWX0_r9lNJjIP1bn69X15o4KWj4iD4vtSA8GYj8m99L6CXlwB1HwKfm16Puup65AjdCupZ8S8EjsEzuCcTAyTvPtyh6-NJSPpi2-QREE3CNKME1XA_43xSAtBaG4Ct-BvAx9Vrru1iwrQOpzRab-JwWXOg6ZX8_I6XLx9cMxKyUWWJCSb9lc-SpWtW5FbGMA4w7cj6S1qnxb-aRNaoSPQgUvKye8TE4LN4_cG6-ki9D6nExg3PSCUG5Cy7F4uQaXDuxOnw8tgQ_q2Cbv3JSw8Q_bUPDHsQzGuQU_BCligSIWKWIzRabk7U3_ywF54589D5FgN70QMTs_6PpvtmxA2wLvSRllUMbJ6IRpuVOVk6YCnlSpguGQ3Bb3NUwruHI9ARaHCFn2QIHliFA60HNv5AhbNvzG3rLnlMwKl9y2jpPI0335__dfkfu4NMxQ4GqPTLb9dXoNhs_Wz8iOXh7NCo_PcvjgN5DcBQQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOFU-xtBQfQJxMs7bjjQ8IFeh2S5eeWqk34yesVDZtdgvqhZ_Eb2TGSdoiBLdeEye2M-N5OJ7vI-SFEMlXcI9pPSqYFG7IdMklg8hVRvAgiBiCpy0O1ORIfjwuj1fIr74WBo9V9jYxG-pQe9wj3-Kl0BV6c_729IwhaxT-Xe0pNFq12I8XPyBlW7zZ-wDyfcn5eOfw_YR1rALMS8mXbKRcEYphlURIwUM8AxF3rCpVuFS4WOlYCheE8k4WVjgZbSXsKHCnnZI2RGSJAJN_Swrw5FiZPt7tLX9Z8qqtStacKa55CxIpwMVvfcsgR3z4eoiloH84wcwV8LdHgID8--xkPjtfXHN443tkrYtU6XarWvfJSpw_IHev4Rc-JD93mqZuqO2ATWid6DSCRoYmsl3oB_fhaa7lbOBNLVk1TfgERchxh5jENJ61aOMUt4QpmOCZ_wrKxDBDpvN6zrK7pS7zPzUXFBL40J4ze0SObuTTPyar0G98QijXPnGkSq8ggYQo1-VfpKB1w5Cis3ZAWP-Fje_QzpF048RA1oMSMSARgxIxWSID8uqy_WmL8_HPlu9QYJetEJ87X6ibL6Zb7iaBpksZpFfaymCFTtyqwkpdwApQsYDuUNwGrQgMy9uuGAImh3hcZltBnIrAPdByo9cI05mXhblaDAOy2WnJ1d1-EHm4T____HNye3L4aWqmewf76-QOThPPRnC1QVaXzXl8BiHX0m1mPafk800vrN8qmD_v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Error+Analysis+of+Legendre-Galerkin+Spectral+Method+for+a+Parabolic+Equation+with+Dirichlet-Type+Non-Local+Boundary+Conditions&rft.jtitle=Mathematical+modelling+and+analysis&rft.au=Chattouh%2C+Abdeldjalil&rft.au=Saoudi%2C+Khaled&rft.date=2021-05-26&rft.pub=Vilnius+Gediminas+Technical+University&rft.issn=1392-6292&rft.volume=26&rft.issue=2&rft.spage=287&rft_id=info:doi/10.3846%2Fmma.2021.12865&rft.externalDocID=A664494850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-6292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-6292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-6292&client=summon |