Epileptic Seizure Forecasting with Generative Adversarial Networks

Many outstanding studies have reported promising results in seizure forecasting, one of the most challenging predictive data analysis problems. This is mainly because electroencephalogram (EEG) bio-signal intensity is very small, in μV range, and there are significant sensing difficulties given phys...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; p. 1
Main Authors Truong, Nhan Duy, Kuhlmann, Levin, Bonyadi, Mohammad Reza, Querlioz, Damien, Zhou, Luping, Kavehei, Omid
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many outstanding studies have reported promising results in seizure forecasting, one of the most challenging predictive data analysis problems. This is mainly because electroencephalogram (EEG) bio-signal intensity is very small, in μV range, and there are significant sensing difficulties given physiological and non-physiological artifacts. Today the process of accurate epileptic seizure identification and data labeling is done by neurologists. The current unpredictability of epileptic seizure activities together with the lack of reliable treatment for patients living with drug resistant forms of epilepsy creates an urgency for research into accurate, sensitive and patient-specific seizure forecasting. Most seizure forecasting algorithms use only labeled data for training purposes. As the seizure data is labeled manually by neurologists, preparing the labeled data is expensive and time consuming, making the best use of the data critical. In this article, we propose an approach that can make use of not only labeled EEG signals but also the unlabeled ones which are more accessible. We use the short-time Fourier transform on 28-s EEG windows as a pre-processing step. A generative adversarial network (GAN) is trained in an unsupervised manner where information of seizure onset is disregarded. The trained Discriminator of the GAN is then used as a feature extractor. Features generated by the feature extractor are classified by two fully-connected layers (can be replaced by any classifier) for the labeled EEG signals. This semi-supervised patient-specific seizure forecasting method achieves an out-of-sample testing area under the operating characteristic curve (AUC) of 77.68%, 75.47% and 65.05% for the CHB-MIT scalp EEG dataset, the Freiburg Hospital intracranial EEG dataset and the EPILEPSIAE dataset, respectively. Unsupervised training without the need for labeling is important because not only it can be performed in real-time during EEG signal recording, but also it does not require feature engineering effort for each patient. To the best of our knowledge, this is the first application of GAN to seizure forecasting.
AbstractList Many outstanding studies have reported promising results in seizure forecasting, one of the most challenging predictive data analysis problems. This is mainly because electroencephalogram (EEG) bio-signal intensity is very small, in $\mu \text{V}$ range, and there are significant sensing difficulties given physiological and non-physiological artifacts. Today the process of accurate epileptic seizure identification and data labeling is done by neurologists. The current unpredictability of epileptic seizure activities together with the lack of reliable treatment for patients living with drug resistant forms of epilepsy creates an urgency for research into accurate, sensitive and patient-specific seizure forecasting. Most seizure forecasting algorithms use only labeled data for training purposes. As the seizure data is labeled manually by neurologists, preparing the labeled data is expensive and time consuming, making the best use of the data critical. In this article, we propose an approach that can make use of not only labeled EEG signals but also the unlabeled ones which are more accessible. We use the short-time Fourier transform on 28-s EEG windows as a pre-processing step. A generative adversarial network (GAN) is trained in an unsupervised manner where information of seizure onset is disregarded. The trained Discriminator of the GAN is then used as a feature extractor. Features generated by the feature extractor are classified by two fully-connected layers (can be replaced by any classifier) for the labeled EEG signals. This semi-supervised patient-specific seizure forecasting method achieves an out-of-sample testing area under the operating characteristic curve (AUC) of 77.68%, 75.47% and 65.05% for the CHB-MIT scalp EEG dataset, the Freiburg Hospital intracranial EEG dataset and the EPILEPSIAE dataset, respectively. Unsupervised training without the need for labeling is important because not only it can be performed in real-time during EEG signal recording, but also it does not require feature engineering effort for each patient. To the best of our knowledge, this is the first application of GAN to seizure forecasting.
Many outstanding studies have reported promising results in seizure forecasting, one of the most challenging predictive data analysis problems. This is mainly because electroencephalogram (EEG) bio-signal intensity is very small, in μV range, and there are significant sensing difficulties given physiological and non-physiological artifacts. Today the process of accurate epileptic seizure identification and data labeling is done by neurologists. The current unpredictability of epileptic seizure activities together with the lack of reliable treatment for patients living with drug resistant forms of epilepsy creates an urgency for research into accurate, sensitive and patient-specific seizure forecasting. Most seizure forecasting algorithms use only labeled data for training purposes. As the seizure data is labeled manually by neurologists, preparing the labeled data is expensive and time consuming, making the best use of the data critical. In this article, we propose an approach that can make use of not only labeled EEG signals but also the unlabeled ones which are more accessible. We use the short-time Fourier transform on 28-s EEG windows as a pre-processing step. A generative adversarial network (GAN) is trained in an unsupervised manner where information of seizure onset is disregarded. The trained Discriminator of the GAN is then used as a feature extractor. Features generated by the feature extractor are classified by two fully-connected layers (can be replaced by any classifier) for the labeled EEG signals. This semi-supervised patient-specific seizure forecasting method achieves an out-of-sample testing area under the operating characteristic curve (AUC) of 77.68%, 75.47% and 65.05% for the CHB-MIT scalp EEG dataset, the Freiburg Hospital intracranial EEG dataset and the EPILEPSIAE dataset, respectively. Unsupervised training without the need for labeling is important because not only it can be performed in real-time during EEG signal recording, but also it does not require feature engineering effort for each patient. To the best of our knowledge, this is the first application of GAN to seizure forecasting.
Author Truong, Nhan Duy
Kavehei, Omid
Bonyadi, Mohammad Reza
Querlioz, Damien
Kuhlmann, Levin
Zhou, Luping
Author_xml – sequence: 1
  givenname: Nhan Duy
  surname: Truong
  fullname: Truong, Nhan Duy
  organization: Faculty of Engineering, The University of Sydney, NSW 2006, Australia and The University of Sydney Nano Institute, NSW 2006, Australia
– sequence: 2
  givenname: Levin
  surname: Kuhlmann
  fullname: Kuhlmann, Levin
  organization: Faculty of Information Technology, Monash University, VIC 3800, Australia and Department of Medicine-St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC 3065, Australia
– sequence: 3
  givenname: Mohammad Reza
  surname: Bonyadi
  fullname: Bonyadi, Mohammad Reza
  organization: Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia
– sequence: 4
  givenname: Damien
  surname: Querlioz
  fullname: Querlioz, Damien
  organization: Center for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
– sequence: 5
  givenname: Luping
  surname: Zhou
  fullname: Zhou, Luping
  organization: Faculty of Engineering, The University of Sydney, NSW 2006, Australia
– sequence: 6
  givenname: Omid
  surname: Kavehei
  fullname: Kavehei, Omid
  organization: Faculty of Engineering, The University of Sydney, NSW 2006, Australia and The University of Sydney Nano Institute, NSW 2006, Australia
BackLink https://hal.science/hal-03041220$$DView record in HAL
BookMark eNpVkc1qGzEUhUVJoUmaJ8hmIKss7Oh_pKVrnMRg2oXbtbge3UnkTkauNHZon75yx4RUWujqcM4Hl3NBzvrYIyHXjE4Zo_ZuNp8v1uspp8xOuZVSW_aBnHOm7UQooc_ezZ_IVc5bWo4pkqrPyZfFLnS4G0JTrTH82Ses7mPCBvIQ-qfqNQzP1QP2mGAIB6xm_oApQwrQVV9xeI3pZ_5MPrbQZbw6vZfkx_3i-_xxsvr2sJzPVpNGSj5Mal5ro5miG2-l8bbV4GmjpRQKfPlYweuWKuB-s1FWtbSuZUu1EFaBZkyIS7IcuT7C1u1SeIH020UI7p8Q05ODVBbp0Km2oTUALUgvmw0FaYRvLEha-9YIWVi3I-sZuv9Qj7OVO2pUUMk4pwdWvDejd5firz3mwW3jPvVlVcelUlowY3RxidHVpJhzwvYNy6g79uTGntyxJ3fqqaSux1RAxLeEMUrwcv8CmxON1Q
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108565
crossref_primary_10_1098_rsos_220374
crossref_primary_10_3389_fnhum_2021_765525
crossref_primary_10_1016_j_heliyon_2023_e22431
crossref_primary_10_1145_3464423
crossref_primary_10_1016_j_bspc_2023_104693
crossref_primary_10_1109_TNSRE_2022_3222095
crossref_primary_10_1142_S0129065721500489
crossref_primary_10_1016_j_bspc_2023_104798
crossref_primary_10_3389_fneur_2021_721491
crossref_primary_10_1016_j_jneumeth_2022_109483
crossref_primary_10_1016_j_bspc_2021_102963
crossref_primary_10_1016_j_bbe_2021_01_006
crossref_primary_10_1016_j_compbiomed_2022_106053
crossref_primary_10_1109_TBME_2022_3171982
crossref_primary_10_3390_app12094158
crossref_primary_10_1109_ACCESS_2020_3024580
crossref_primary_10_1109_TNSRE_2021_3125023
crossref_primary_10_1109_TNSRE_2021_3103210
crossref_primary_10_3390_app132111631
crossref_primary_10_1111_epi_17415
crossref_primary_10_1371_journal_pone_0267452
crossref_primary_10_1186_s12984_023_01169_w
crossref_primary_10_1007_s10489_023_04582_9
crossref_primary_10_1016_j_compbiomed_2024_108510
crossref_primary_10_1007_s11227_023_05299_9
crossref_primary_10_1111_exsy_13447
crossref_primary_10_3389_fnhum_2022_913777
crossref_primary_10_2174_18741207_v16_e2208300
crossref_primary_10_1016_j_measurement_2022_111948
crossref_primary_10_3389_fphys_2023_1248899
crossref_primary_10_1038_s41598_024_64802_1
crossref_primary_10_3389_fneur_2021_705119
crossref_primary_10_1016_j_bbe_2021_11_002
crossref_primary_10_1007_s11265_021_01659_x
crossref_primary_10_3389_fnins_2023_1184990
crossref_primary_10_1038_s41598_023_30864_w
crossref_primary_10_1109_RBME_2020_3008792
crossref_primary_10_3389_fnhum_2021_643386
crossref_primary_10_3390_biology11030469
Cites_doi 10.1109/CIBCB.2015.7300286
10.1001/jamaneurol.2018.1264
10.1109/TBDATA.2017.2769670
10.1093/brain/awy210
10.1111/epi.13670
10.1111/j.1528-1167.2011.03138.x
10.1109/TBCAS.2015.2477264
10.1148/radiology.148.3.6878708
10.1109/TBME.2016.2553131
10.1038/s41582-018-0055-2
10.1016/j.clinph.2013.09.047
10.1109/ACCESS.2018.2833746
10.1109/EMBC.2014.6944546
10.1111/j.1528-1167.2012.03564.x
10.1016/j.neunet.2018.04.018
10.1016/j.clinph.2006.07.312
10.1016/j.eswa.2017.05.055
10.1109/BIBE.2013.6701528
10.1016/j.cmpb.2017.04.001
10.1016/j.physd.2004.02.013
10.1016/j.clinph.2013.10.051
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
1XC
VOOES
DOA
DOI 10.1109/ACCESS.2019.2944691
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_5fc07aa0327d4cb0a483dc9a407df834
oai_HAL_hal_03041220v1
10_1109_ACCESS_2019_2944691
8853232
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
4.4
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c442t-727686150bd948d9f6ad0c64435adf6a9327f05a2dbb595f0774f063395a61133
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:12:25 EDT 2024
Tue Oct 15 15:04:34 EDT 2024
Thu Oct 10 18:21:07 EDT 2024
Fri Aug 23 00:51:19 EDT 2024
Wed Jun 26 19:27:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-727686150bd948d9f6ad0c64435adf6a9327f05a2dbb595f0774f063395a61133
ORCID 0000-0002-2753-5553
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8853232
PQID 2455631886
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_2455631886
hal_primary_oai_HAL_hal_03041220v1
crossref_primary_10_1109_ACCESS_2019_2944691
ieee_primary_8853232
doaj_primary_oai_doaj_org_article_5fc07aa0327d4cb0a483dc9a407df834
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
sun (ref26) 2017
radford (ref19) 2015
(ref22) 2003
ref24
shoeb (ref21) 2009
truong (ref20) 2019
goodfellow (ref25) 2014
ref27
park (ref9) 2011; 52
kingma (ref28) 2014
ref29
ref8
ref7
ref4
abdelhameed (ref18) 2018
ref3
klatt (ref23) 2012; 53
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/CIBCB.2015.7300286
– ident: ref29
  doi: 10.1001/jamaneurol.2018.1264
– ident: ref17
  doi: 10.1109/TBDATA.2017.2769670
– ident: ref3
  doi: 10.1093/brain/awy210
– ident: ref2
  doi: 10.1111/epi.13670
– year: 2015
  ident: ref19
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv 1511 06434
  contributor:
    fullname: radford
– volume: 52
  start-page: 1761
  year: 2011
  ident: ref9
  article-title: Seizure prediction with spectral power of EEG using cost-sensitive support vector machines
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2011.03138.x
  contributor:
    fullname: park
– start-page: 1186
  year: 2018
  ident: ref18
  article-title: Semi-supervised deep learning system for epileptic seizures onset prediction
  publication-title: Proc IEEE Int Conf Mach Learn Appl
  contributor:
    fullname: abdelhameed
– ident: ref10
  doi: 10.1109/TBCAS.2015.2477264
– ident: ref27
  doi: 10.1148/radiology.148.3.6878708
– ident: ref6
  doi: 10.1109/TBME.2016.2553131
– ident: ref1
  doi: 10.1038/s41582-018-0055-2
– year: 2009
  ident: ref21
  article-title: Application of machine learning to epileptic seizure onset detection and treatment
  contributor:
    fullname: shoeb
– ident: ref7
  doi: 10.1016/j.clinph.2013.09.047
– ident: ref14
  doi: 10.1109/ACCESS.2018.2833746
– ident: ref16
  doi: 10.1109/EMBC.2014.6944546
– volume: 53
  start-page: 1669
  year: 2012
  ident: ref23
  article-title: The EPILEPSIAE database: An extensive electroencephalography database of epilepsy patients
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2012.03564.x
  contributor:
    fullname: klatt
– year: 2003
  ident: ref22
  publication-title: EEG Database at the Epilepsy Center of the University Hospital of Freiburg Germany
– year: 2019
  ident: ref20
  article-title: Semi-supervised seizure prediction with generative adversarial networks
  publication-title: Proc IEEE Eng Med Biol Soc Annu Int Conf (EMBC)
  contributor:
    fullname: truong
– ident: ref12
  doi: 10.1016/j.neunet.2018.04.018
– ident: ref5
  doi: 10.1016/j.clinph.2006.07.312
– ident: ref24
  doi: 10.1016/j.eswa.2017.05.055
– ident: ref15
  doi: 10.1109/BIBE.2013.6701528
– year: 2017
  ident: ref26
  publication-title: Deep Convolutional Generative Adversarial Networks in Tensorflow
  contributor:
    fullname: sun
– start-page: 2672
  year: 2014
  ident: ref25
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: goodfellow
– ident: ref11
  doi: 10.1016/j.cmpb.2017.04.001
– ident: ref4
  doi: 10.1016/j.physd.2004.02.013
– ident: ref8
  doi: 10.1016/j.clinph.2013.10.051
– start-page: 3581
  year: 2014
  ident: ref28
  article-title: Semi-supervised learning with deep generative models
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: kingma
SSID ssj0000816957
Score 2.4508786
Snippet Many outstanding studies have reported promising results in seizure forecasting, one of the most challenging predictive data analysis problems. This is mainly...
SourceID doaj
hal
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 1
SubjectTerms Adversarial networks
Algorithms
Biomedical signal processing
Convulsions & seizures
Data analysis
Datasets
Electroencephalography
Engineering Sciences
Epilepsy
Feature extraction
Forecasting
Fourier transforms
Gallium nitride
Generative adversarial networks
Hospitals
iEEG
Labelling
Neural network
Physiology
sEEG
Seizure forecasting
Seizures
Sensitivity
Training
Windows (intervals)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwwIKIhCQRFiJOA4dmKPpaKqEHQBBJvlp2ApqA8Gfj13cYqKGFgY41iJfec7fxdfviPkrGQm-sB8Dlgh5px7n5va2zxab1hQpRUU_x2-G1ejR37zLJ5XSn1hTliiB06CuxTR0doYWrLac2ep4bL0ThkIRHyUZWICpWolmGp8sCwqJeqWZgjuX_YHA5gR5nKpC6YgCFLFj62oYeyHDeYF8yGbQiu_vHOz5Qy3yVaLFbN-GuMOWQuTXbK5wiDYIVfX72DWYPYuuw-vn4tpyLDYpjMzTGfOnl7nL1lilka3ljXll2cGF102Tgngsz3yOLx-GIzytixC7jhn8xwQRyWRx916xaVXsTKeOsA1pTAeLgCR1ZEKw7y1QolIAeFFQCKlEqYqICbdJ-uTt0k4IFmILppQmSiYxQNUCwYZjZPcWhulY11yvpSQfk_sF7qJGqjSSaAaBapbgXbJFUrxuytSVzcNoFDdKlT_pdAuOQUd_HjGqH-rsQ2PcQvG6Ae8qYMq-u4lAXUANuyS3lJlurXFmWYcSdAKKavD_xjfEdnAOafPMD2yPp8uwjEAk7k9adbgF06D3eY
  priority: 102
  providerName: Directory of Open Access Journals
Title Epileptic Seizure Forecasting with Generative Adversarial Networks
URI https://ieeexplore.ieee.org/document/8853232
https://www.proquest.com/docview/2455631886
https://hal.science/hal-03041220
https://doaj.org/article/5fc07aa0327d4cb0a483dc9a407df834
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQoLTq8lKEOJLFcezEPi4r0AoBF4rEzfJTrSotiN3lwK9nxsmuoPTQWxI5ie2xPd-Mx98AHNfcphB5KBErpFKIEErbBlcmFyyPunaS0dnh65tmcicu7-X9GpyszsLEGHPwWRzSZd7LDw9-Qa6yU4W6BRHAOqy3WndntVb-FEogoWXbEwtVTJ-OxmNsA0Vv6SHXaPbo6p3yyRz9qFJ-UQRkTq3yYT3OSuZiE66X1etiS_4MF3M39C9_MTf-b_234EuPNotRNzy2YS1Ov8LnNxyEO3B2_ogLAy4cvriNv18WT7GgdJ3ezigguiA_bdFxU9PCWOQEzjNLw7a46ULIZ9_g7uL853hS9okVSi8En5eIWRpFTPAuaKGCTo0NzCMyqqUNeIOYrk1MWh6ck1omhhgxIZaptbRNhVbtd9iYPkzjDyhi8snGxibJHW3BOpzSyXolnHNJeT6Ak2WPm8eOP8Nku4Np0wnIkIBML6ABnJFUVkWJ_Do_wH40_VwyMnnWWsuwlkF4x6xQdfDaom0akqrFAI5Qpu--MRldGXpGG8EV5-wZ_7RDAlqV6mUzgP3lEDD9bJ4ZLohGrVKq2f33W3vwiVrRuWb2YWP-tIgHCFbm7jAb-Yd5rL4ChD7oGw
link.rule.ids 230,315,783,787,799,867,888,2109,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2V9gAc2kJBpC2wQhy7qddrb-xjGrUKkORCK_Vm-VMgpLRqEg799cx4N1FbOHDbXXl3bY_teTMevwH4XHObQuShRKyQSiFCKO0guDK5YHnUtZOMzg5PZ834Sny9ltdbcLI5CxNjzMFnsU-XeS8_3PgVucpOFeoWRADPYAdxtWra01objwqlkNBy0FELVUyfDkcjbAXFb-k-12j46OqR-sks_ahUflAMZE6u8teKnNXMxR5M1xVso0t-9VdL1_f3T7gb_7cF-7Db4c1i2A6QV7AV56_h5QMWwgM4O7_FpQGXDl98jz_vV3exoISd3i4oJLogT23RslPT0ljkFM4LSwO3mLVB5Is3cHVxfjkal11qhdILwZclopZGERe8C1qooFNjA_OIjWppA94gqhskJi0PzkktE0OUmBDN1FrapkK79i1sz2_m8R0UMflkY2OT5I42YR1O6mS9Es65pDzvwcm6x81ty6BhsuXBtGkFZEhAphNQD85IKpuiRH-dH2A_mm42GZk8G1jLsJZBeMesUHXw2qJ1GpKqRQ8-oUwffWM8nBh6RlvBFefsN_7pgAS0KdXJpgfH6yFguvm8MFwQkVqlVHP477c-wvPx5XRiJl9m347gBbWoddQcw_bybhXfI3RZug95xP4BUfXqcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epileptic+Seizure+Forecasting+With+Generative+Adversarial+Networks&rft.jtitle=IEEE+access&rft.au=Truong%2C+Nhan+Duy&rft.au=Kuhlmann%2C+Levin&rft.au=Bonyadi%2C+Mohammad+Reza&rft.au=Querlioz%2C+Damien&rft.date=2019-01-01&rft.pub=IEEE&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=143999&rft.epage=144009&rft_id=info:doi/10.1109%2FACCESS.2019.2944691&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03041220v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon