Epileptic Seizure Forecasting with Generative Adversarial Networks
Many outstanding studies have reported promising results in seizure forecasting, one of the most challenging predictive data analysis problems. This is mainly because electroencephalogram (EEG) bio-signal intensity is very small, in μV range, and there are significant sensing difficulties given phys...
Saved in:
Published in | IEEE access Vol. 7; p. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many outstanding studies have reported promising results in seizure forecasting, one of the most challenging predictive data analysis problems. This is mainly because electroencephalogram (EEG) bio-signal intensity is very small, in μV range, and there are significant sensing difficulties given physiological and non-physiological artifacts. Today the process of accurate epileptic seizure identification and data labeling is done by neurologists. The current unpredictability of epileptic seizure activities together with the lack of reliable treatment for patients living with drug resistant forms of epilepsy creates an urgency for research into accurate, sensitive and patient-specific seizure forecasting. Most seizure forecasting algorithms use only labeled data for training purposes. As the seizure data is labeled manually by neurologists, preparing the labeled data is expensive and time consuming, making the best use of the data critical. In this article, we propose an approach that can make use of not only labeled EEG signals but also the unlabeled ones which are more accessible. We use the short-time Fourier transform on 28-s EEG windows as a pre-processing step. A generative adversarial network (GAN) is trained in an unsupervised manner where information of seizure onset is disregarded. The trained Discriminator of the GAN is then used as a feature extractor. Features generated by the feature extractor are classified by two fully-connected layers (can be replaced by any classifier) for the labeled EEG signals. This semi-supervised patient-specific seizure forecasting method achieves an out-of-sample testing area under the operating characteristic curve (AUC) of 77.68%, 75.47% and 65.05% for the CHB-MIT scalp EEG dataset, the Freiburg Hospital intracranial EEG dataset and the EPILEPSIAE dataset, respectively. Unsupervised training without the need for labeling is important because not only it can be performed in real-time during EEG signal recording, but also it does not require feature engineering effort for each patient. To the best of our knowledge, this is the first application of GAN to seizure forecasting. |
---|---|
AbstractList | Many outstanding studies have reported promising results in seizure forecasting, one of the most challenging predictive data analysis problems. This is mainly because electroencephalogram (EEG) bio-signal intensity is very small, in $\mu \text{V}$ range, and there are significant sensing difficulties given physiological and non-physiological artifacts. Today the process of accurate epileptic seizure identification and data labeling is done by neurologists. The current unpredictability of epileptic seizure activities together with the lack of reliable treatment for patients living with drug resistant forms of epilepsy creates an urgency for research into accurate, sensitive and patient-specific seizure forecasting. Most seizure forecasting algorithms use only labeled data for training purposes. As the seizure data is labeled manually by neurologists, preparing the labeled data is expensive and time consuming, making the best use of the data critical. In this article, we propose an approach that can make use of not only labeled EEG signals but also the unlabeled ones which are more accessible. We use the short-time Fourier transform on 28-s EEG windows as a pre-processing step. A generative adversarial network (GAN) is trained in an unsupervised manner where information of seizure onset is disregarded. The trained Discriminator of the GAN is then used as a feature extractor. Features generated by the feature extractor are classified by two fully-connected layers (can be replaced by any classifier) for the labeled EEG signals. This semi-supervised patient-specific seizure forecasting method achieves an out-of-sample testing area under the operating characteristic curve (AUC) of 77.68%, 75.47% and 65.05% for the CHB-MIT scalp EEG dataset, the Freiburg Hospital intracranial EEG dataset and the EPILEPSIAE dataset, respectively. Unsupervised training without the need for labeling is important because not only it can be performed in real-time during EEG signal recording, but also it does not require feature engineering effort for each patient. To the best of our knowledge, this is the first application of GAN to seizure forecasting. Many outstanding studies have reported promising results in seizure forecasting, one of the most challenging predictive data analysis problems. This is mainly because electroencephalogram (EEG) bio-signal intensity is very small, in μV range, and there are significant sensing difficulties given physiological and non-physiological artifacts. Today the process of accurate epileptic seizure identification and data labeling is done by neurologists. The current unpredictability of epileptic seizure activities together with the lack of reliable treatment for patients living with drug resistant forms of epilepsy creates an urgency for research into accurate, sensitive and patient-specific seizure forecasting. Most seizure forecasting algorithms use only labeled data for training purposes. As the seizure data is labeled manually by neurologists, preparing the labeled data is expensive and time consuming, making the best use of the data critical. In this article, we propose an approach that can make use of not only labeled EEG signals but also the unlabeled ones which are more accessible. We use the short-time Fourier transform on 28-s EEG windows as a pre-processing step. A generative adversarial network (GAN) is trained in an unsupervised manner where information of seizure onset is disregarded. The trained Discriminator of the GAN is then used as a feature extractor. Features generated by the feature extractor are classified by two fully-connected layers (can be replaced by any classifier) for the labeled EEG signals. This semi-supervised patient-specific seizure forecasting method achieves an out-of-sample testing area under the operating characteristic curve (AUC) of 77.68%, 75.47% and 65.05% for the CHB-MIT scalp EEG dataset, the Freiburg Hospital intracranial EEG dataset and the EPILEPSIAE dataset, respectively. Unsupervised training without the need for labeling is important because not only it can be performed in real-time during EEG signal recording, but also it does not require feature engineering effort for each patient. To the best of our knowledge, this is the first application of GAN to seizure forecasting. |
Author | Truong, Nhan Duy Kavehei, Omid Bonyadi, Mohammad Reza Querlioz, Damien Kuhlmann, Levin Zhou, Luping |
Author_xml | – sequence: 1 givenname: Nhan Duy surname: Truong fullname: Truong, Nhan Duy organization: Faculty of Engineering, The University of Sydney, NSW 2006, Australia and The University of Sydney Nano Institute, NSW 2006, Australia – sequence: 2 givenname: Levin surname: Kuhlmann fullname: Kuhlmann, Levin organization: Faculty of Information Technology, Monash University, VIC 3800, Australia and Department of Medicine-St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC 3065, Australia – sequence: 3 givenname: Mohammad Reza surname: Bonyadi fullname: Bonyadi, Mohammad Reza organization: Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia – sequence: 4 givenname: Damien surname: Querlioz fullname: Querlioz, Damien organization: Center for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France – sequence: 5 givenname: Luping surname: Zhou fullname: Zhou, Luping organization: Faculty of Engineering, The University of Sydney, NSW 2006, Australia – sequence: 6 givenname: Omid surname: Kavehei fullname: Kavehei, Omid organization: Faculty of Engineering, The University of Sydney, NSW 2006, Australia and The University of Sydney Nano Institute, NSW 2006, Australia |
BackLink | https://hal.science/hal-03041220$$DView record in HAL |
BookMark | eNpVkc1qGzEUhUVJoUmaJ8hmIKss7Oh_pKVrnMRg2oXbtbge3UnkTkauNHZon75yx4RUWujqcM4Hl3NBzvrYIyHXjE4Zo_ZuNp8v1uspp8xOuZVSW_aBnHOm7UQooc_ezZ_IVc5bWo4pkqrPyZfFLnS4G0JTrTH82Ses7mPCBvIQ-qfqNQzP1QP2mGAIB6xm_oApQwrQVV9xeI3pZ_5MPrbQZbw6vZfkx_3i-_xxsvr2sJzPVpNGSj5Mal5ro5miG2-l8bbV4GmjpRQKfPlYweuWKuB-s1FWtbSuZUu1EFaBZkyIS7IcuT7C1u1SeIH020UI7p8Q05ODVBbp0Km2oTUALUgvmw0FaYRvLEha-9YIWVi3I-sZuv9Qj7OVO2pUUMk4pwdWvDejd5firz3mwW3jPvVlVcelUlowY3RxidHVpJhzwvYNy6g79uTGntyxJ3fqqaSux1RAxLeEMUrwcv8CmxON1Q |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_108565 crossref_primary_10_1098_rsos_220374 crossref_primary_10_3389_fnhum_2021_765525 crossref_primary_10_1016_j_heliyon_2023_e22431 crossref_primary_10_1145_3464423 crossref_primary_10_1016_j_bspc_2023_104693 crossref_primary_10_1109_TNSRE_2022_3222095 crossref_primary_10_1142_S0129065721500489 crossref_primary_10_1016_j_bspc_2023_104798 crossref_primary_10_3389_fneur_2021_721491 crossref_primary_10_1016_j_jneumeth_2022_109483 crossref_primary_10_1016_j_bspc_2021_102963 crossref_primary_10_1016_j_bbe_2021_01_006 crossref_primary_10_1016_j_compbiomed_2022_106053 crossref_primary_10_1109_TBME_2022_3171982 crossref_primary_10_3390_app12094158 crossref_primary_10_1109_ACCESS_2020_3024580 crossref_primary_10_1109_TNSRE_2021_3125023 crossref_primary_10_1109_TNSRE_2021_3103210 crossref_primary_10_3390_app132111631 crossref_primary_10_1111_epi_17415 crossref_primary_10_1371_journal_pone_0267452 crossref_primary_10_1186_s12984_023_01169_w crossref_primary_10_1007_s10489_023_04582_9 crossref_primary_10_1016_j_compbiomed_2024_108510 crossref_primary_10_1007_s11227_023_05299_9 crossref_primary_10_1111_exsy_13447 crossref_primary_10_3389_fnhum_2022_913777 crossref_primary_10_2174_18741207_v16_e2208300 crossref_primary_10_1016_j_measurement_2022_111948 crossref_primary_10_3389_fphys_2023_1248899 crossref_primary_10_1038_s41598_024_64802_1 crossref_primary_10_3389_fneur_2021_705119 crossref_primary_10_1016_j_bbe_2021_11_002 crossref_primary_10_1007_s11265_021_01659_x crossref_primary_10_3389_fnins_2023_1184990 crossref_primary_10_1038_s41598_023_30864_w crossref_primary_10_1109_RBME_2020_3008792 crossref_primary_10_3389_fnhum_2021_643386 crossref_primary_10_3390_biology11030469 |
Cites_doi | 10.1109/CIBCB.2015.7300286 10.1001/jamaneurol.2018.1264 10.1109/TBDATA.2017.2769670 10.1093/brain/awy210 10.1111/epi.13670 10.1111/j.1528-1167.2011.03138.x 10.1109/TBCAS.2015.2477264 10.1148/radiology.148.3.6878708 10.1109/TBME.2016.2553131 10.1038/s41582-018-0055-2 10.1016/j.clinph.2013.09.047 10.1109/ACCESS.2018.2833746 10.1109/EMBC.2014.6944546 10.1111/j.1528-1167.2012.03564.x 10.1016/j.neunet.2018.04.018 10.1016/j.clinph.2006.07.312 10.1016/j.eswa.2017.05.055 10.1109/BIBE.2013.6701528 10.1016/j.cmpb.2017.04.001 10.1016/j.physd.2004.02.013 10.1016/j.clinph.2013.10.051 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 1XC VOOES DOA |
DOI | 10.1109/ACCESS.2019.2944691 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_5fc07aa0327d4cb0a483dc9a407df834 oai_HAL_hal_03041220v1 10_1109_ACCESS_2019_2944691 8853232 |
Genre | orig-research |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS 4.4 AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c442t-727686150bd948d9f6ad0c64435adf6a9327f05a2dbb595f0774f063395a61133 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:12:25 EDT 2024 Tue Oct 15 15:04:34 EDT 2024 Thu Oct 10 18:21:07 EDT 2024 Fri Aug 23 00:51:19 EDT 2024 Wed Jun 26 19:27:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-727686150bd948d9f6ad0c64435adf6a9327f05a2dbb595f0774f063395a61133 |
ORCID | 0000-0002-2753-5553 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8853232 |
PQID | 2455631886 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2455631886 hal_primary_oai_HAL_hal_03041220v1 crossref_primary_10_1109_ACCESS_2019_2944691 ieee_primary_8853232 doaj_primary_oai_doaj_org_article_5fc07aa0327d4cb0a483dc9a407df834 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 sun (ref26) 2017 radford (ref19) 2015 (ref22) 2003 ref24 shoeb (ref21) 2009 truong (ref20) 2019 goodfellow (ref25) 2014 ref27 park (ref9) 2011; 52 kingma (ref28) 2014 ref29 ref8 ref7 ref4 abdelhameed (ref18) 2018 ref3 klatt (ref23) 2012; 53 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1109/CIBCB.2015.7300286 – ident: ref29 doi: 10.1001/jamaneurol.2018.1264 – ident: ref17 doi: 10.1109/TBDATA.2017.2769670 – ident: ref3 doi: 10.1093/brain/awy210 – ident: ref2 doi: 10.1111/epi.13670 – year: 2015 ident: ref19 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv 1511 06434 contributor: fullname: radford – volume: 52 start-page: 1761 year: 2011 ident: ref9 article-title: Seizure prediction with spectral power of EEG using cost-sensitive support vector machines publication-title: Epilepsia doi: 10.1111/j.1528-1167.2011.03138.x contributor: fullname: park – start-page: 1186 year: 2018 ident: ref18 article-title: Semi-supervised deep learning system for epileptic seizures onset prediction publication-title: Proc IEEE Int Conf Mach Learn Appl contributor: fullname: abdelhameed – ident: ref10 doi: 10.1109/TBCAS.2015.2477264 – ident: ref27 doi: 10.1148/radiology.148.3.6878708 – ident: ref6 doi: 10.1109/TBME.2016.2553131 – ident: ref1 doi: 10.1038/s41582-018-0055-2 – year: 2009 ident: ref21 article-title: Application of machine learning to epileptic seizure onset detection and treatment contributor: fullname: shoeb – ident: ref7 doi: 10.1016/j.clinph.2013.09.047 – ident: ref14 doi: 10.1109/ACCESS.2018.2833746 – ident: ref16 doi: 10.1109/EMBC.2014.6944546 – volume: 53 start-page: 1669 year: 2012 ident: ref23 article-title: The EPILEPSIAE database: An extensive electroencephalography database of epilepsy patients publication-title: Epilepsia doi: 10.1111/j.1528-1167.2012.03564.x contributor: fullname: klatt – year: 2003 ident: ref22 publication-title: EEG Database at the Epilepsy Center of the University Hospital of Freiburg Germany – year: 2019 ident: ref20 article-title: Semi-supervised seizure prediction with generative adversarial networks publication-title: Proc IEEE Eng Med Biol Soc Annu Int Conf (EMBC) contributor: fullname: truong – ident: ref12 doi: 10.1016/j.neunet.2018.04.018 – ident: ref5 doi: 10.1016/j.clinph.2006.07.312 – ident: ref24 doi: 10.1016/j.eswa.2017.05.055 – ident: ref15 doi: 10.1109/BIBE.2013.6701528 – year: 2017 ident: ref26 publication-title: Deep Convolutional Generative Adversarial Networks in Tensorflow contributor: fullname: sun – start-page: 2672 year: 2014 ident: ref25 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: goodfellow – ident: ref11 doi: 10.1016/j.cmpb.2017.04.001 – ident: ref4 doi: 10.1016/j.physd.2004.02.013 – ident: ref8 doi: 10.1016/j.clinph.2013.10.051 – start-page: 3581 year: 2014 ident: ref28 article-title: Semi-supervised learning with deep generative models publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: kingma |
SSID | ssj0000816957 |
Score | 2.4508786 |
Snippet | Many outstanding studies have reported promising results in seizure forecasting, one of the most challenging predictive data analysis problems. This is mainly... |
SourceID | doaj hal proquest crossref ieee |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Adversarial networks Algorithms Biomedical signal processing Convulsions & seizures Data analysis Datasets Electroencephalography Engineering Sciences Epilepsy Feature extraction Forecasting Fourier transforms Gallium nitride Generative adversarial networks Hospitals iEEG Labelling Neural network Physiology sEEG Seizure forecasting Seizures Sensitivity Training Windows (intervals) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwwIKIhCQRFiJOA4dmKPpaKqEHQBBJvlp2ApqA8Gfj13cYqKGFgY41iJfec7fxdfviPkrGQm-sB8Dlgh5px7n5va2zxab1hQpRUU_x2-G1ejR37zLJ5XSn1hTliiB06CuxTR0doYWrLac2ep4bL0ThkIRHyUZWICpWolmGp8sCwqJeqWZgjuX_YHA5gR5nKpC6YgCFLFj62oYeyHDeYF8yGbQiu_vHOz5Qy3yVaLFbN-GuMOWQuTXbK5wiDYIVfX72DWYPYuuw-vn4tpyLDYpjMzTGfOnl7nL1lilka3ljXll2cGF102Tgngsz3yOLx-GIzytixC7jhn8xwQRyWRx916xaVXsTKeOsA1pTAeLgCR1ZEKw7y1QolIAeFFQCKlEqYqICbdJ-uTt0k4IFmILppQmSiYxQNUCwYZjZPcWhulY11yvpSQfk_sF7qJGqjSSaAaBapbgXbJFUrxuytSVzcNoFDdKlT_pdAuOQUd_HjGqH-rsQ2PcQvG6Ae8qYMq-u4lAXUANuyS3lJlurXFmWYcSdAKKavD_xjfEdnAOafPMD2yPp8uwjEAk7k9adbgF06D3eY priority: 102 providerName: Directory of Open Access Journals |
Title | Epileptic Seizure Forecasting with Generative Adversarial Networks |
URI | https://ieeexplore.ieee.org/document/8853232 https://www.proquest.com/docview/2455631886 https://hal.science/hal-03041220 https://doaj.org/article/5fc07aa0327d4cb0a483dc9a407df834 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQoLTq8lKEOJLFcezEPi4r0AoBF4rEzfJTrSotiN3lwK9nxsmuoPTQWxI5ie2xPd-Mx98AHNfcphB5KBErpFKIEErbBlcmFyyPunaS0dnh65tmcicu7-X9GpyszsLEGHPwWRzSZd7LDw9-Qa6yU4W6BRHAOqy3WndntVb-FEogoWXbEwtVTJ-OxmNsA0Vv6SHXaPbo6p3yyRz9qFJ-UQRkTq3yYT3OSuZiE66X1etiS_4MF3M39C9_MTf-b_234EuPNotRNzy2YS1Ov8LnNxyEO3B2_ogLAy4cvriNv18WT7GgdJ3ezigguiA_bdFxU9PCWOQEzjNLw7a46ULIZ9_g7uL853hS9okVSi8En5eIWRpFTPAuaKGCTo0NzCMyqqUNeIOYrk1MWh6ck1omhhgxIZaptbRNhVbtd9iYPkzjDyhi8snGxibJHW3BOpzSyXolnHNJeT6Ak2WPm8eOP8Nku4Np0wnIkIBML6ABnJFUVkWJ_Do_wH40_VwyMnnWWsuwlkF4x6xQdfDaom0akqrFAI5Qpu--MRldGXpGG8EV5-wZ_7RDAlqV6mUzgP3lEDD9bJ4ZLohGrVKq2f33W3vwiVrRuWb2YWP-tIgHCFbm7jAb-Yd5rL4ChD7oGw |
link.rule.ids | 230,315,783,787,799,867,888,2109,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2V9gAc2kJBpC2wQhy7qddrb-xjGrUKkORCK_Vm-VMgpLRqEg799cx4N1FbOHDbXXl3bY_teTMevwH4XHObQuShRKyQSiFCKO0guDK5YHnUtZOMzg5PZ834Sny9ltdbcLI5CxNjzMFnsU-XeS8_3PgVucpOFeoWRADPYAdxtWra01objwqlkNBy0FELVUyfDkcjbAXFb-k-12j46OqR-sks_ahUflAMZE6u8teKnNXMxR5M1xVso0t-9VdL1_f3T7gb_7cF-7Db4c1i2A6QV7AV56_h5QMWwgM4O7_FpQGXDl98jz_vV3exoISd3i4oJLogT23RslPT0ljkFM4LSwO3mLVB5Is3cHVxfjkal11qhdILwZclopZGERe8C1qooFNjA_OIjWppA94gqhskJi0PzkktE0OUmBDN1FrapkK79i1sz2_m8R0UMflkY2OT5I42YR1O6mS9Es65pDzvwcm6x81ty6BhsuXBtGkFZEhAphNQD85IKpuiRH-dH2A_mm42GZk8G1jLsJZBeMesUHXw2qJ1GpKqRQ8-oUwffWM8nBh6RlvBFefsN_7pgAS0KdXJpgfH6yFguvm8MFwQkVqlVHP477c-wvPx5XRiJl9m347gBbWoddQcw_bybhXfI3RZug95xP4BUfXqcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epileptic+Seizure+Forecasting+With+Generative+Adversarial+Networks&rft.jtitle=IEEE+access&rft.au=Truong%2C+Nhan+Duy&rft.au=Kuhlmann%2C+Levin&rft.au=Bonyadi%2C+Mohammad+Reza&rft.au=Querlioz%2C+Damien&rft.date=2019-01-01&rft.pub=IEEE&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=143999&rft.epage=144009&rft_id=info:doi/10.1109%2FACCESS.2019.2944691&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03041220v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |