Electrospinning: Application and Prospects for Urologic Tissue Engineering
Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstruc...
Saved in:
Published in | Frontiers in bioengineering and biotechnology Vol. 8; p. 579925 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
07.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-4185 2296-4185 |
DOI | 10.3389/fbioe.2020.579925 |
Cover
Loading…
Abstract | Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells' function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area.Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells' function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area. |
---|---|
AbstractList | Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells' function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area.Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells' function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area. Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells’ function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area. |
Author | Shakhssalim, Nasser Naji, Mohammad Ramakrishna, Seeram Zamani, Masoud |
AuthorAffiliation | 2 Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran 3 Department of Mechanical Engineering, National University of Singapore , Singapore , Singapore 1 Department of Chemical and Biological Engineering, University at Buffalo, State University of New York , Amherst, NY , United States |
AuthorAffiliation_xml | – name: 2 Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran – name: 3 Department of Mechanical Engineering, National University of Singapore , Singapore , Singapore – name: 1 Department of Chemical and Biological Engineering, University at Buffalo, State University of New York , Amherst, NY , United States |
Author_xml | – sequence: 1 givenname: Masoud surname: Zamani fullname: Zamani, Masoud – sequence: 2 givenname: Nasser surname: Shakhssalim fullname: Shakhssalim, Nasser – sequence: 3 givenname: Seeram surname: Ramakrishna fullname: Ramakrishna, Seeram – sequence: 4 givenname: Mohammad surname: Naji fullname: Naji, Mohammad |
BookMark | eNp9kUFvFCEUx4mpsbX2A3ibo5fdwgMGxoNJ06y2poke2jNhmDcjDQsjzDbx28vuNsZ68AThvf-Pl_d7S05iikjIe0bXnOvucux9wjVQoGupug7kK3IG0LUrwbQ8-et-Si5KeaSUMpBKanhDTjlnTCktz8jXTUC35FRmH6OP08fmap6Dd3bxKTY2Ds33fbH2lGZMuXnIKaTJu-bel7LDZhMnHxFzjb4jr0cbCl48n-fk4fPm_vpmdffty-311d3KCQHLSgHnHNExRSXwtpejVEyK0VnsWCuFhpbjqIUSqs4spLWKAx9B9xT5oJCfk9sjd0j20czZb23-ZZL15vCQ8mRsXrwLaAYQjgPtkaMQ0g267kMD7wfZMea4rqxPR9a867c4OIxLtuEF9GUl-h9mSk9GSdW2ag_48AzI6ecOy2K2vjgMwUZMu2JASKmrrxZqKzu2urrRknH88w2jZq_UHJSavVJzVFoz6p-M88vBTZ3Gh_8kfwNveKeD |
CitedBy_id | crossref_primary_10_3390_ijms232214074 crossref_primary_10_1016_j_actbio_2022_03_011 crossref_primary_10_1088_1758_5090_ad8965 crossref_primary_10_3389_fbioe_2022_1092543 crossref_primary_10_1016_j_matdes_2022_110821 crossref_primary_10_1038_s41598_024_75699_1 crossref_primary_10_1002_btm2_10268 crossref_primary_10_5812_gct_133958 crossref_primary_10_1016_j_devcel_2022_07_004 crossref_primary_10_1016_j_procbio_2024_04_038 crossref_primary_10_3390_pharmaceutics15020417 crossref_primary_10_3390_ijms231810519 crossref_primary_10_1557_s43578_021_00255_w crossref_primary_10_1016_j_matdes_2022_111286 crossref_primary_10_3390_biom13081167 crossref_primary_10_1016_j_ijbiomac_2021_09_014 |
Cites_doi | 10.1007/s11255-014-0854-3 10.1016/j.aju.2012.01.008 10.1016/j.biomaterials.2014.12.027 10.3109/21691401.2014.913053 10.1089/end.2005.19.1069 10.1007/978-3-642-02824-3_3 10.1038/s41585-019-0198-y 10.1016/s0090-4295(97)00632-8 10.1007/s11934-015-0567-x 10.1098/rsif.2010.0520 10.1016/j.biomaterials.2014.04.002 10.1016/j.ucl.2005.11.005 10.1097/00002480-200005000-00005 10.1002/nau.23339 10.1038/nrurol.2018.5 10.3390/app9050910 10.1002/ar.1091510305 10.3390/pharmaceutics11070305 10.1002/jbm.b.30128 10.1016/j.juro.2007.11.101 10.1002/mame.201200323 10.1038/6146 10.1111/j.1651-2227.2012.02659.x 10.1016/j.biomaterials.2004.07.011 10.5489/cuaj.4826 10.1002/jbm.b.33591 10.1002/app.27063 10.1016/j.jpurol.2011.03.002 10.3390/ijms17081262 10.1371/journal.pone.0120244 10.1088/1748-6041/2/4/008 10.1007/s13770-019-00193-z 10.1007/978-3-319-70049-6_1 10.1063/5.0012309 10.3109/03008207.2015.1035376 10.1590/s1677-55382011000600005 10.1016/j.ymeth.2008.10.014 10.1016/j.eururo.2010.12.004 10.5301/ijao.5000130 10.1002/bit.22912 10.1002/jbm.a.34889 10.1590/s1677-5538.ibju.2013.03.16 10.1007/s10439-018-02182-0 10.1016/j.msec.2008.08.015 10.1016/s0022-5347(17)39852-x 10.1088/1748-6041/8/4/045013 10.1007/s00345-008-0318-4 10.3390/membranes8030062 10.1007/s003450050002 10.1016/j.biomaterials.2009.04.008 10.1007/bf00134307 10.1016/j.transproceed.2015.10.035 10.1016/j.jpurol.2012.12.001 10.1016/j.ajur.2018.02.002 10.1533/9780857092915.1.67 10.2147/ijn.s44901 10.1055/s-0030-1254297 10.1016/j.actbio.2014.01.028 10.1016/j.juro.2014.01.116 10.1166/jnn.2013.7193 10.1002/9781118863343.ch17 10.5301/ijao.5000175 10.1016/j.gene.2019.01.037 10.1016/j.transproceed.2012.08.023 10.1089/ten.tea.2018.0255 10.1016/j.juro.2012.08.197 10.1007/978-981-13-0947-2_23 10.1002/jbm.a.20037 10.4103/0970-1591.120114 10.1097/mot.0000000000000084 10.1007/s00467-008-0764-7 10.1097/00005392-200301000-00040 10.1111/j.1464-410x.2011.10650.x 10.1163/156856208784089599 10.1371/journal.pone.0091592 10.1111/j.1464-410x.2004.05088.x 10.1016/j.jss.2018.04.006 10.1055/s-0034-1394155 10.1201/9780203491232.ch12 10.5213/inj.2012.16.3.102 10.1007/s10237-007-0095-9 10.1016/s0090-4295(97)00644-4 10.1101/cshperspect.a005058 10.1016/j.actbio.2016.07.033 10.1038/nrurol.2009.201 10.1152/physrev.00038.2003 10.1016/s0140-6736(06)68438-9 10.1016/j.ucl.2016.08.003 10.1089/end.2014.0522 10.1016/j.juro.2008.09.019 10.1002/term.2366 10.1002/marc.201000379 10.1016/j.addr.2014.08.011 10.1016/j.actbio.2018.08.010 10.1016/j.actbio.2016.12.034 10.1089/ten.teb.2018.0345 10.12659/msm.891042 10.1080/00365590802025857 10.1088/0957-4484/20/8/085104 10.1016/j.jss.2013.04.016 10.1016/j.biomaterials.2012.10.075 10.1016/s0140-6736(10)62354-9 10.1002/wnan.1611 10.1007/s003450050007 10.1177/1535370216640148 10.1097/01.ju.0000146554.79487.7f 10.1016/j.addr.2014.11.020 10.1111/iep.12011 10.1007/978-3-319-70049-6_5 10.1007/s11255-016-1259-2 10.1016/j.urology.2012.01.044 10.1016/j.trsl.2013.11.003 10.3390/ijms20071763 10.1016/j.juro.2013.10.103 10.1155/2019/9046430 10.3390/ijms19061796 10.1002/term.1632 10.1046/j.1600-0854.2003.00156.x 10.1016/j.eururo.2012.07.041 10.1371/journal.pone.0105295 10.1016/j.gene.2018.07.046 10.1007/s10856-012-4688-1 10.1371/journal.pone.0106023 10.2147/ijn.s80810 10.1016/s0022-5347(17)49268-8 10.1016/j.ajur.2018.02.003 10.1016/j.jss.2012.01.047 10.1155/2016/5710798 10.1007/s00383-012-3063-0 10.1002/jbm.a.34134 10.2106/00004623-200407000-00029 10.1016/j.juro.2011.10.043 10.1177/039139881003300305 10.1166/jnn.2015.10747 10.1002/jbm.a.34182 10.1016/j.juro.2015.07.098 10.1111/j.1464-410x.2010.09310.x 10.1186/s13287-017-0500-y 10.1002/adhm.201800465 10.1002/jbm.a.35544 10.1039/c6nr01169a 10.1089/ten.teb.2012.0737 10.1016/j.msec.2017.02.064 10.1002/jbm.a.35535 10.1055/s-2008-1072319 10.1371/journal.pone.0118653 10.1016/s0142-9612(03)00123-6 10.1089/ten.tea.2017.0347 10.4103/1319-2442.106311 10.1111/j.1464-410x.2009.08366.x 10.1097/00005392-200212000-00084 10.1007/s13770-019-00187-x 10.1016/j.biomaterials.2006.01.026 10.1111/j.1464-410x.2006.06447.x 10.1016/j.juro.2009.05.023 10.5114/aoms.2015.50977 10.1097/01.ju.0000134886.44065.00 10.3390/ijms161126050 10.1089/ten.teb.2013.0126 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Zamani, Shakhssalim, Ramakrishna and Naji. Copyright © 2020 Zamani, Shakhssalim, Ramakrishna and Naji. 2020 Zamani, Shakhssalim, Ramakrishna and Naji |
Copyright_xml | – notice: Copyright © 2020 Zamani, Shakhssalim, Ramakrishna and Naji. – notice: Copyright © 2020 Zamani, Shakhssalim, Ramakrishna and Naji. 2020 Zamani, Shakhssalim, Ramakrishna and Naji |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fbioe.2020.579925 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-4185 |
ExternalDocumentID | oai_doaj_org_article_d24c320be3e445cd8418823bd5911c38 PMC7576678 10_3389_fbioe_2020_579925 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
ID | FETCH-LOGICAL-c442t-72333eec1705236b5f57154fcae916548263ef8474700045aa7323f28b0e3d7e3 |
IEDL.DBID | DOA |
ISSN | 2296-4185 |
IngestDate | Wed Aug 27 01:26:12 EDT 2025 Thu Aug 21 13:33:24 EDT 2025 Fri Jul 11 08:23:12 EDT 2025 Tue Jul 01 02:45:32 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-72333eec1705236b5f57154fcae916548263ef8474700045aa7323f28b0e3d7e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology Edited by: Francesca Taraballi, Houston Methodist Research Institute, United States Reviewed by: Elif Vardar, Centre Hospitalier Universitaire Vaudois (CHUV), Switzerland; Gustavo A. Abraham, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina |
OpenAccessLink | https://doaj.org/article/d24c320be3e445cd8418823bd5911c38 |
PMID | 33117785 |
PQID | 2455833862 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d24c320be3e445cd8418823bd5911c38 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7576678 proquest_miscellaneous_2455833862 crossref_primary_10_3389_fbioe_2020_579925 crossref_citationtrail_10_3389_fbioe_2020_579925 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-07 |
PublicationDateYYYYMMDD | 2020-10-07 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in bioengineering and biotechnology |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Pattison (B100) 2005; 26 Salehipour (B111) 2013; 24 El-Kassaby (B41) 2003; 169 El-Hakim (B39) 2005; 19 Tyritzis (B136) 2015; 29 Brown (B25) 2014; 163 Shakhssalim (B118) 2013; 36 Yoo (B160) 1998; 51 Liu (B77) 2009; 30 Kloskowski (B68) 2013; 36 Sun (B130) 2010; 31 Delacroix (B36) 2010; 23 Kennedy (B65) 2017; 50 Naji (B92) 2015; 11 Backhaus (B14) 2002; 168 Meng (B87) 2015; 47 Ahvaz (B3) 2012; 23 Pant (B98) 2019; 11 Thapa (B132); 24 Jung (B63) 2012; 16 Bertschy (B20) 2000; 10 Veeratterapillay (B139) 2013; 29 de Kemp (B34) 2015; 10 Eylert (B44) 2019 Parpala-Sparman (B99) 2008; 42 Vass (B138) 2019; 12 Biers (B22) 2012; 109 Xie (B153) 2013; 184 Xie (B152) 2000; 46 Sivaraman (B128) 2019; 47 Baker (B15) 2006; 27 Azevedo (B13) 2005 Zhao (B166) 2012; 178 Muschler (B90) 2004; 86 Stankus (B129) 2008; 19 Orabi (B96) 2013; 63 Wang (B144); 15 Xu (B154) 2015; 10 Caione (B29) 2012; 28 Sharifiaghdas (B120) 2014; 11 Zhao (B165) 2016; 8 Karahaliloğlu (B64) 2016; 44 de Jonge (B32) 2018; 12 Raya-Rivera (B108) 2011; 377 Falke (B45) 2000; 18 Simaioforidis (B125) 2013; 19 Li (B72) 2018; 78 Zhang (B162) 2015; 16 Lumen (B83) 2011; 37 El-Tabey (B43) 2012; 10 Lin (B75) 2013; 20 Pederzoli (B103) 2019; 16 McManus (B86) 2007; 2 Sack (B110) 2016; 17 Feng (B47) 2019; 25 Ghafari (B52) 2017; 24 Lumen (B84) 2016; 195 Lv (B85) 2016; 17 Bergsma (B19) 1995; 6 Derakhshan (B37) 2016; 48 Shi (B122) 2012; 100 Mirzaei (B88) 2019; 694 Pazhanimala (B102) 2019; 9 Simsek (B126); 5 Ajalloueian (B5) 2018; 15 Chung (B31) 2014; 9 Kim (B66) 2000; 18 Peterson (B104) 2004; 94 Pawlina (B101) 2018 Schaefer (B114) 2013; 9 Verla (B140) 2019; 2019 Baltaci (B16) 1998; 51 Guideline (B55) 2005; 4 Armatys (B11) 2009; 181 Shakhssalim (B119) 2017; 75 Shrestha (B124) 2019; 16 Aitken (B4) 2009; 6 Holland (B56) 2019; 8 Nuss (B94) 2012; 187 Andersson (B8) 2004; 84 Liao (B73) 2008; 28 Shakhssalim (B117) 2012; 9 Ardeshirylajimi (B10) 2018; 676 Algarrahi (B7) 2018; 229 Oberpenning (B95) 1999; 17 Rashidbenam (B107) 2019; 16 Thapa (B133); 67 Ajalloueian (B6) 2014; 35 Yao (B157) 2013; 8 Fossum (B49) 2012; 101 Ahvaz (B2) 2013; 13 Gild (B53) 2018; 5 Bhattarai (B21) 2018; 8 Del Gaudio (B35) 2013; 8 Horst (B58) 2017; 105 Wolfe (B148) 2011 Rourke (B109) 2012; 79 Gómez-Blanco (B54) 2016; 2016 Zhang (B163) 2006; 98 Pinnagoda (B105) 2016; 43 Shen (B121) 2010; 33 Kundu (B70) 2011; 108 Shoae-Hassani (B123) 2015; 9 Nagatomi (B91) 2008; 7 Liverani (B80) 2017 Liu (B79) 2020; 4 Wilson (B146) 2011 Browne (B26) 2017; 44 Chun (B30) 2009; 20 Yin (B159) 2015; 44 Brovold (B24) 2018 Fu (B51) 2009; 104 Horst (B59) 2014; 102 Abbas (B1) 2019; 20 Wang (B142) 2014; 20 Yao (B158) 2016; 8 le Roux (B71) 2005; 173 Kloskowski (B67) 2014; 9 Wang (B143); 10 Sayeg (B113) 2013; 39 Wei (B145) 2015; 47 Lin (B76) 2015; 82 Traxer (B134) 2013; 189 el-Kassaby (B40) 2008; 179 Muhamad (B89) 2014 Nam (B93) 2008; 107 Janke (B61) 2019; 25 Huang (B60) 2016; 104 Zhang (B164) 2005; 72 FitzGerald (B48) 2014; 27 Serrano-Aroca (B116) 2018; 19 Tachibana (B131) 1985; 133 Wolf (B147) 2015; 84 Burke (B27) 2017 Atala (B12) 2006; 367 Xue (B155) 2016; 241 Krishnan (B69) 2013; 298 Farhat (B46) 2008; 26 Lu (B81) 2011; 3 Joseph (B62) 2014; 191 Wang (B141) 2015; 56 Selim (B115) 2011; 107 de Jonge (B33) 2018; 24 Turner (B135) 2011; 59 Liao (B74) 2013; 45 Lumen (B82) 2009; 182 Horst (B57) 2013; 34 Apodaca (B9) 2004; 5 Sartoneva (B112) 2010; 8 Uchida (B137) 2016; 104 Fu (B50) 2012; 100 Woodburne (B150) 1965; 151 Simsek (B127); 12 Elliott (B42) 2006; 33 Wong (B149) 2014; 10 Benson (B18) 1990; 143 Liu (B78) 2017; 8 Osman (B97) 2004; 172 Wu (B151) 2018; 37 Pokrywczynska (B106) 2014; 9 Bouhout (B23) 2011; 7 Bauer (B17) 2008; 23 Byron (B28) 2013; 94 Eberli (B38) 2009; 47 Zhang (B161) 2014; 192 Yamany (B156) 2014; 19 |
References_xml | – volume: 47 start-page: 95 year: 2015 ident: B145 article-title: Preparation of PCL/silk fibroin/collagen electrospun fiber for urethral reconstruction. publication-title: Int. Urol. Nephrol. doi: 10.1007/s11255-014-0854-3 – volume: 10 start-page: 192 year: 2012 ident: B43 article-title: Cell-seeded tubular acellular matrix for replacing a long circumferential urethral defect in a canine model: is it clinically applicable? publication-title: Arab J. Urol. doi: 10.1016/j.aju.2012.01.008 – volume: 44 start-page: 173 year: 2015 ident: B159 article-title: Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation. publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.12.027 – volume: 44 start-page: 74 year: 2016 ident: B64 article-title: Surface-modified bacterial nanofibrillar PHB scaffolds for bladder tissue repair. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.3109/21691401.2014.913053 – volume: 19 start-page: 1069 year: 2005 ident: B39 article-title: First prize: ureteral segmental replacement revisited. publication-title: J. Endourol. doi: 10.1089/end.2005.19.1069 – start-page: 41 year: 2011 ident: B148 article-title: Natural and synthetic scaffolds publication-title: Tissue Engineering: From Lab to Clinic. Berlin, Heidelberg doi: 10.1007/978-3-642-02824-3_3 – volume: 16 start-page: 453 year: 2019 ident: B103 article-title: Regenerative and engineered options for urethroplasty. publication-title: Nat. Rev. Urol. doi: 10.1038/s41585-019-0198-y – volume: 51 start-page: 400 year: 1998 ident: B16 article-title: Failure of ureteral replacement with Gore-Tex tube grafts. publication-title: Urology doi: 10.1016/s0090-4295(97)00632-8 – volume: 17 year: 2016 ident: B110 article-title: Silk fibroin scaffolds for urologic tissue engineering. publication-title: Curr. Urol. Rep. doi: 10.1007/s11934-015-0567-x – volume: 8 start-page: 671 year: 2010 ident: B112 article-title: Comparison of a poly-l-lactide-co-?-caprolactone and human amniotic membrane for urothelium tissue engineering applications. publication-title: J. R. Soc. Interf. doi: 10.1098/rsif.2010.0520 – volume: 35 start-page: 5741 year: 2014 ident: B6 article-title: Constructs of electrospun PLGA, compressed collagen and minced urothelium for minimally manipulated autologous bladder tissue expansion. publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.04.002 – volume: 33 start-page: 55 year: 2006 ident: B42 article-title: Ureteral injuries: external and iatrogenic. publication-title: Urol. Clin. North Am. doi: 10.1016/j.ucl.2005.11.005 – volume: 46 start-page: 268 year: 2000 ident: B152 article-title: Use of reconstructed small intestine submucosa for urinary tract replacement. publication-title: Asaio J. doi: 10.1097/00002480-200005000-00005 – volume: 37 start-page: 744 year: 2018 ident: B151 article-title: A real−world experience with augmentation enterocystoplasty—high patient satisfaction with high complication rates. publication-title: Neurourol. Urodyn. doi: 10.1002/nau.23339 – volume: 15 year: 2018 ident: B5 article-title: Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. publication-title: Nat. Rev. Urol. doi: 10.1038/nrurol.2018.5 – year: 2014 ident: B89 article-title: Designing polymeric nanoparticles for targeted drug delivery system publication-title: Nanomed – volume: 9 year: 2019 ident: B102 article-title: Electrospun nanometer to micrometer scale biomimetic synthetic membrane scaffolds in drug delivery and tissue engineering: a review. publication-title: Appl. Sci. doi: 10.3390/app9050910 – volume: 151 start-page: 243 year: 1965 ident: B150 article-title: The ureter, ureterovesical junction, and vesical trigone. publication-title: Anatom. Record. doi: 10.1002/ar.1091510305 – volume: 11 year: 2019 ident: B98 article-title: Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11070305 – volume: 72 start-page: 156 year: 2005 ident: B164 article-title: Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. publication-title: J. Biomed. Mater. Res. Part B. doi: 10.1002/jbm.b.30128 – volume: 179 start-page: 1432 year: 2008 ident: B40 article-title: Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. publication-title: J. Urol. doi: 10.1016/j.juro.2007.11.101 – volume: 298 start-page: 1034 year: 2013 ident: B69 article-title: Green processing of nanofibers for regenerative medicine. publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201200323 – volume: 17 year: 1999 ident: B95 article-title: De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. publication-title: Nat. Biotechnol. doi: 10.1038/6146 – volume: 101 start-page: 755 year: 2012 ident: B49 article-title: Prepubertal follow-up after hypospadias repair with autologous in vitro cultured urothelial cells. publication-title: Acta Paediatr. doi: 10.1111/j.1651-2227.2012.02659.x – volume: 26 start-page: 2491 year: 2005 ident: B100 article-title: Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.07.011 – volume: 12 ident: B127 article-title: Developing improved tissue-engineered buccal mucosa grafts for urethral reconstruction. publication-title: Can. Urol. Assoc. J. doi: 10.5489/cuaj.4826 – volume: 105 start-page: 658 year: 2017 ident: B58 article-title: Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering. publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.33591 – volume: 107 start-page: 1547 year: 2008 ident: B93 article-title: Materials selection and residual solvent retention in biodegradable electrospun fibers. publication-title: J. Appl. Polymer Sci. doi: 10.1002/app.27063 – volume: 7 start-page: 276 year: 2011 ident: B23 article-title: Bladder substitute reconstructed in a physiological pressure environment. publication-title: J. Pediatr. Urol. doi: 10.1016/j.jpurol.2011.03.002 – volume: 17 year: 2016 ident: B85 article-title: Electrospun poly (l-lactide)/poly (ethylene glycol) scaffolds seeded with human amniotic mesenchymal stem cells for urethral epithelium repair. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17081262 – volume: 10 year: 2015 ident: B154 article-title: tissue-specific scaffold for tissue engineering-based ureteral reconstruction. publication-title: PLoS One doi: 10.1371/journal.pone.0120244 – volume: 2 start-page: 257 year: 2007 ident: B86 article-title: Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. publication-title: Biomed. Mater. doi: 10.1088/1748-6041/2/4/008 – volume: 16 start-page: 365 year: 2019 ident: B107 article-title: Overview of urethral reconstruction by tissue engineering: current strategies, clinical status and future direction. publication-title: Tissue Eng. Regen. Med. doi: 10.1007/s13770-019-00193-z – start-page: 1 year: 2017 ident: B27 article-title: Reproducibility and robustness in electrospinning with a view to medical device manufacturing publication-title: Electrospun Biomaterials and Related Technologies doi: 10.1007/978-3-319-70049-6_1 – volume: 4 year: 2020 ident: B79 article-title: Electrospinning and emerging healthcare and medicine possibilities. publication-title: APL Bioeng. doi: 10.1063/5.0012309 – volume: 56 start-page: 434 year: 2015 ident: B141 article-title: Repair of urethral defects with polylactid acid fibrous membrane seeded with adipose-derived stem cells in a rabbit model. publication-title: Connect Tissue Res. doi: 10.3109/03008207.2015.1035376 – volume: 37 start-page: 712 year: 2011 ident: B83 article-title: Assessment of the short-term functional outcome after urethroplasty: a prospective analysis. publication-title: Int. Braz. J. Urol. doi: 10.1590/s1677-55382011000600005 – volume: 47 start-page: 109 year: 2009 ident: B38 article-title: Composite scaffolds for the engineering of hollow organs and tissues. publication-title: Methods doi: 10.1016/j.ymeth.2008.10.014 – volume: 59 start-page: 447 year: 2011 ident: B135 article-title: Transplantation of autologous differentiated urothelium in an experimental model of composite cystoplasty. publication-title: Eur. Urol. doi: 10.1016/j.eururo.2010.12.004 – volume: 36 start-page: 392 year: 2013 ident: B68 article-title: Tissue engineering and ureter regeneration: is it possible? publication-title: Int. J. Artif. Organs doi: 10.5301/ijao.5000130 – volume: 108 start-page: 207 year: 2011 ident: B70 article-title: Composite thin film and electrospun biomaterials for urologic tissue reconstruction. publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22912 – volume: 102 start-page: 2116 year: 2014 ident: B59 article-title: Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration. publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.34889 – volume: 39 start-page: 414 year: 2013 ident: B113 article-title: Integration of collagen matrices into the urethra when implanted as onlay graft. publication-title: Int. Braz. J. Urol. doi: 10.1590/s1677-5538.ibju.2013.03.16 – volume: 47 start-page: 891 year: 2019 ident: B128 article-title: Evaluation of poly (Carbonate-Urethane) urea (PCUU) scaffolds for urinary bladder tissue engineering. publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-018-02182-0 – volume: 28 start-page: 1189 year: 2008 ident: B73 article-title: Stem cells and biomimetic materials strategies for tissue engineering. publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2008.08.015 – volume: 143 start-page: 20 year: 1990 ident: B18 article-title: Ureteral reconstruction and bypass: experience with ileal interposition, the Boari flap-psoas hitch and renal autotransplantation. publication-title: J. Urol. doi: 10.1016/s0022-5347(17)39852-x – volume: 8 year: 2013 ident: B35 article-title: Evaluation of electrospun bioresorbable scaffolds for tissue-engineered urinary bladder augmentation. publication-title: Biomed. Mater. doi: 10.1088/1748-6041/8/4/045013 – volume: 11 start-page: 1620 year: 2014 ident: B120 article-title: Comparing supportive properties of poly lactic-co-glycolic acid (PLGA), PLGA/collagen and human amniotic membrane for human urothelial and smooth muscle cells engineering. publication-title: Urol. J. – volume: 26 start-page: 301 year: 2008 ident: B46 article-title: Does mechanical stimulation have any role in urinary bladder tissue engineering? publication-title: World J. Urol. doi: 10.1007/s00345-008-0318-4 – volume: 8 year: 2018 ident: B21 article-title: A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. publication-title: Membranes doi: 10.3390/membranes8030062 – volume: 18 start-page: 2 year: 2000 ident: B66 article-title: Biomaterials for tissue engineering. publication-title: World J. Urol. doi: 10.1007/s003450050002 – volume: 30 start-page: 3865 year: 2009 ident: B77 article-title: Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering. publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.04.008 – volume: 6 start-page: 715 year: 1995 ident: B19 article-title: Biocompatibility and degradation mechanisms of predegraded and non-predegraded poly (lactide) implants: an animal study. publication-title: J. Mater. Sci. doi: 10.1007/bf00134307 – volume: 47 start-page: 3002 year: 2015 ident: B87 article-title: Seeding homologous adipose-derived stem cells and bladder smooth muscle cells into bladder submucosa matrix for reconstructing the ureter in a rabbit model. publication-title: Transplant. Proc. doi: 10.1016/j.transproceed.2015.10.035 – volume: 9 start-page: 878 year: 2013 ident: B114 article-title: Bladder augmentation with small intestinal submucosa leads to unsatisfactory long-term results. publication-title: J. Pediatr. Urol. doi: 10.1016/j.jpurol.2012.12.001 – volume: 5 start-page: 69 ident: B126 article-title: Overcoming scarring in the urethra: challenges for tissue engineering. publication-title: Asian J. Urol. doi: 10.1016/j.ajur.2018.02.002 – start-page: 67 year: 2011 ident: B146 article-title: Regulatory issues relating to electrospinning publication-title: Electrospinning for Tissue Regeneration doi: 10.1533/9780857092915.1.67 – volume: 8 year: 2013 ident: B157 article-title: Nanostructured polyurethane-poly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: an in vivo study. publication-title: Int. J. Nanomed. doi: 10.2147/ijn.s44901 – volume: 23 start-page: 104 year: 2010 ident: B36 article-title: Urinary tract injures: recognition and management. publication-title: Clin. Colon Rectal Surg. doi: 10.1055/s-0030-1254297 – volume: 10 start-page: 1806 year: 2014 ident: B149 article-title: Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.01.028 – volume: 192 start-page: 544 year: 2014 ident: B161 article-title: Tissue engineered cystoplasty augmentation for treatment of neurogenic bladder using small intestinal submucosa: an exploratory study. publication-title: J. Urol. doi: 10.1016/j.juro.2014.01.116 – volume: 13 start-page: 4736 year: 2013 ident: B2 article-title: Mechanical characteristics of electrospun aligned PCL/PLLA nanofibrous scaffolds conduct cell differentiation in human bladder tissue engineering. publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2013.7193 – start-page: 349 year: 2019 ident: B44 article-title: Bladder and Urethra Structure and Function. publication-title: Blandy’s Urol. doi: 10.1002/9781118863343.ch17 – volume: 36 start-page: 113 year: 2013 ident: B118 article-title: Bladder smooth muscle cells interaction and proliferation on PCL/PLLA electrospun nanofibrous scaffold. publication-title: Int. J. Artif. Organs doi: 10.5301/ijao.5000175 – volume: 694 start-page: 26 year: 2019 ident: B88 article-title: Bladder smooth muscle cell differentiation of the human induced pluripotent stem cells on electrospun Poly (lactide-co-glycolide) nanofibrous structure. publication-title: Gene doi: 10.1016/j.gene.2019.01.037 – volume: 45 start-page: 730 year: 2013 ident: B74 article-title: Construction of ureteral grafts by seeding bone marrow mesenchymal stem cells and smooth muscle cells into bladder acellular matrix. publication-title: Transplant. Proc. doi: 10.1016/j.transproceed.2012.08.023 – volume: 25 start-page: 1289 year: 2019 ident: B47 article-title: Electrospun nanofibers with core-shell structure for treatment of bladder regeneration. publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2018.0255 – volume: 189 start-page: 580 year: 2013 ident: B134 article-title: Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. publication-title: J. Urol. doi: 10.1016/j.juro.2012.08.197 – start-page: 421 year: 2018 ident: B24 publication-title: Naturally-Derived Biomaterials for Tissue Engineering Applications. Novel Biomaterials for Regenerative Medicine. doi: 10.1007/978-981-13-0947-2_23 – volume: 67 start-page: 1374 ident: B133 article-title: Polymers with nano−dimensional surface features enhance bladder smooth muscle cell adhesion. publication-title: J. Biomed. Mater. Res. Part A. doi: 10.1002/jbm.a.20037 – volume: 29 start-page: 322 year: 2013 ident: B139 article-title: Augmentation cystoplasty: contemporary indications, techniques and complications. publication-title: Indian J. Urol. doi: 10.4103/0970-1591.120114 – volume: 19 start-page: 323 year: 2014 ident: B156 article-title: Formation and regeneration of the urothelium. publication-title: Curr. Opin. Organ Transplant. doi: 10.1097/mot.0000000000000084 – volume: 23 start-page: 541 year: 2008 ident: B17 article-title: Neurogenic bladder: etiology and assessment. publication-title: Pediatr. Nephrol. doi: 10.1007/s00467-008-0764-7 – volume: 169 start-page: 170 year: 2003 ident: B41 article-title: Urethral stricture repair with an off-the-shelf collagen matrix. publication-title: J. Urol. doi: 10.1097/00005392-200301000-00040 – volume: 109 start-page: 1280 year: 2012 ident: B22 article-title: The past, present and future of augmentation cystoplasty. publication-title: BJU Int. doi: 10.1111/j.1464-410x.2011.10650.x – volume: 19 start-page: 635 year: 2008 ident: B129 article-title: Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. publication-title: J. Biomater. Sci. Polymer Ed. doi: 10.1163/156856208784089599 – volume: 9 year: 2014 ident: B31 article-title: Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty. publication-title: PLoS One doi: 10.1371/journal.pone.0091592 – volume: 94 start-page: 971 year: 2004 ident: B104 article-title: Management of urethral stricture disease: developing options for surgical intervention. publication-title: BJU Int. doi: 10.1111/j.1464-410x.2004.05088.x – volume: 229 start-page: 192 year: 2018 ident: B7 article-title: Repair of injured urethras with silk fibroin scaffolds in a rabbit model of onlay urethroplasty. publication-title: J. Surg. Res. doi: 10.1016/j.jss.2018.04.006 – volume: 27 start-page: 140 year: 2014 ident: B48 article-title: Biologic versus synthetic mesh reinforcement: what are the pros and cons? publication-title: Clin. Colon Rectal Surg. doi: 10.1055/s-0034-1394155 – volume: 24 start-page: 3476 year: 2017 ident: B52 article-title: Mechanical reinforcement of urinary bladder matrix by electrospun polycaprolactone nanofibers. publication-title: Sci. Iran. – year: 2005 ident: B13 publication-title: Understanding the Enzymatic Degradation of Biodegradable Polymers and Strategies to Control their Degradation Rate. doi: 10.1201/9780203491232.ch12 – volume: 16 year: 2012 ident: B63 article-title: Clinical and functional anatomy of the urethral sphincter. publication-title: Int. Neurourol. J. doi: 10.5213/inj.2012.16.3.102 – volume: 7 start-page: 395 year: 2008 ident: B91 article-title: Contribution of the extracellular matrix to the viscoelastic behavior of the urinary bladder wall. publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-007-0095-9 – volume: 51 start-page: 221 year: 1998 ident: B160 article-title: Bladder augmentation using allogenic bladder submucosa seeded with cells. publication-title: Urology doi: 10.1016/s0090-4295(97)00644-4 – volume: 3 year: 2011 ident: B81 article-title: Extracellular matrix degradation and remodeling in development and disease. publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a005058 – volume: 43 start-page: 208 year: 2016 ident: B105 article-title: Engineered acellular collagen scaffold for endogenous cell guidance, a novel approach in urethral regeneration. publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.07.033 – volume: 6 year: 2009 ident: B4 article-title: The bladder extracellular matrix. Part I: architecture, development and disease. publication-title: Nat. Rev. Urol. doi: 10.1038/nrurol.2009.201 – volume: 84 start-page: 935 year: 2004 ident: B8 article-title: Urinary bladder contraction and relaxation: physiology and pathophysiology. publication-title: Physiol. Rev. doi: 10.1152/physrev.00038.2003 – volume: 367 start-page: 1241 year: 2006 ident: B12 article-title: Tissue-engineered autologous bladders for patients needing cystoplasty. publication-title: Lancet doi: 10.1016/s0140-6736(06)68438-9 – volume: 8 year: 2016 ident: B165 article-title: Differentiate into urothelium and smooth muscle cells from adipose tissue-derived stem cells for ureter reconstruction in a rabbit model. publication-title: Am. J. Transl. Res. – volume: 44 start-page: 127 year: 2017 ident: B26 article-title: Use of alternative techniques and grafts in urethroplasty. publication-title: Urol. Clin. doi: 10.1016/j.ucl.2016.08.003 – volume: 29 start-page: 124 year: 2015 ident: B136 article-title: Ureteral strictures revisited…trying to see the light at the end of the tunnel: a comprehensive review. publication-title: J. Endourol. doi: 10.1089/end.2014.0522 – volume: 181 start-page: 177 year: 2009 ident: B11 article-title: Use of ileum as ureteral replacement in urological reconstruction. publication-title: J. Urol. doi: 10.1016/j.juro.2008.09.019 – volume: 12 start-page: 80 year: 2018 ident: B32 article-title: Ureteral reconstruction with reinforced collagen scaffolds in a porcine model. publication-title: J. Tissue Eng. Regener. Med. doi: 10.1002/term.2366 – volume: 31 start-page: 2077 year: 2010 ident: B130 article-title: Nanofibers by green electrospinning of aqueous suspensions of biodegradable block copolyesters for applications in medicine, pharmacy and agriculture. publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201000379 – volume: 84 start-page: 208 year: 2015 ident: B147 article-title: Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2014.08.011 – volume: 78 start-page: 111 year: 2018 ident: B72 article-title: Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes. publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.08.010 – volume: 50 start-page: 41 year: 2017 ident: B65 article-title: Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: implications for scaffold design and performance. publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.12.034 – volume: 25 start-page: 237 year: 2019 ident: B61 article-title: Reconstruction strategies of the ureter and urinary diversion using tissue engineering approaches. publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2018.0345 – volume: 20 start-page: 2430 year: 2014 ident: B142 article-title: Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury models. publication-title: Med. Sci. Monit. doi: 10.12659/msm.891042 – volume: 42 start-page: 422 year: 2008 ident: B99 article-title: Increasing numbers of ureteric injuries after the introduction of laparoscopic surgery. publication-title: Scand. J. Urol. Nephrol. doi: 10.1080/00365590802025857 – volume: 20 year: 2009 ident: B30 article-title: The role of polymer nanosurface roughness and submicron pores in improving bladder urothelial cell density and inhibiting calcium oxalate stone formation. publication-title: Nanotechnology doi: 10.1088/0957-4484/20/8/085104 – volume: 184 start-page: 774 year: 2013 ident: B153 article-title: Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction. publication-title: J. Surg. Res. doi: 10.1016/j.jss.2013.04.016 – volume: 34 start-page: 1537 year: 2013 ident: B57 article-title: A bilayered hybrid microfibrous PLGA–acellular matrix scaffold for hollow organ tissue engineering. publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.10.075 – volume: 377 start-page: 1175 year: 2011 ident: B108 article-title: Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. publication-title: Lancet doi: 10.1016/s0140-6736(10)62354-9 – volume: 12 year: 2019 ident: B138 article-title: Scale−up of electrospinning technology: applications in the pharmaceutical industry. publication-title: Wiley Interdiscip. Rev. doi: 10.1002/wnan.1611 – volume: 18 start-page: 36 year: 2000 ident: B45 article-title: Tissue engineering of the bladder. publication-title: World J. Urol. doi: 10.1007/s003450050007 – volume: 241 start-page: 1416 year: 2016 ident: B155 article-title: Seeding cell approach for tissue-engineered urethral reconstruction in animal study: a systematic review and meta-analysis. publication-title: Exp. Biol. Med. doi: 10.1177/1535370216640148 – volume: 173 start-page: 140 year: 2005 ident: B71 article-title: Endoscopic urethroplasty with unseeded small intestinal submucosa collagen matrix grafts: a pilot study. publication-title: J. Urol. doi: 10.1097/01.ju.0000146554.79487.7f – volume: 82 start-page: 47 year: 2015 ident: B76 article-title: Biomatrices for bladder reconstruction. publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2014.11.020 – volume: 94 start-page: 75 year: 2013 ident: B28 article-title: Defining the extracellular matrix using proteomics. publication-title: Int. J. Exp. Pathol. doi: 10.1111/iep.12011 – start-page: 149 year: 2017 ident: B80 publication-title: Biomaterials Produced via Green Electrospinning. Electrospun Biomaterials and Related Technologies. doi: 10.1007/978-3-319-70049-6_5 – volume: 48 start-page: 1097 year: 2016 ident: B37 article-title: Electrospun PLLA nanofiber scaffolds for bladder smooth muscle reconstruction. publication-title: Int. Urol. Nephrol. doi: 10.1007/s11255-016-1259-2 – volume: 79 start-page: 1163 year: 2012 ident: B109 article-title: The clinical spectrum of the presenting signs and symptoms of anterior urethral stricture: detailed analysis of a single institutional cohort. publication-title: Urology doi: 10.1016/j.urology.2012.01.044 – volume: 163 start-page: 268 year: 2014 ident: B25 article-title: Extracellular matrix as an inductive scaffold for functional tissue reconstruction. publication-title: Transl. Res. doi: 10.1016/j.trsl.2013.11.003 – volume: 20 year: 2019 ident: B1 article-title: From acellular matrices to smart polymers: degradable scaffolds that are transforming the shape of urethral tissue engineering. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20071763 – volume: 191 start-page: 1389 year: 2014 ident: B62 article-title: Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with spina bifida. publication-title: J. Urol. doi: 10.1016/j.juro.2013.10.103 – volume: 2019 year: 2019 ident: B140 article-title: Comprehensive review emphasizing anatomy, etiology, diagnosis, and treatment of male urethral stricture disease. publication-title: Biomed. Res. Int. doi: 10.1155/2019/9046430 – volume: 19 year: 2018 ident: B116 article-title: Bioengineering approaches for bladder regeneration. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19061796 – volume: 9 start-page: 1268 year: 2015 ident: B123 article-title: Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk–collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall. publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.1632 – volume: 5 start-page: 117 year: 2004 ident: B9 article-title: The uroepithelium: not just a passive barrier. publication-title: Traffic doi: 10.1046/j.1600-0854.2003.00156.x – volume: 63 start-page: 531 year: 2013 ident: B96 article-title: Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. publication-title: Eur. Urol. doi: 10.1016/j.eururo.2012.07.041 – volume: 9 year: 2014 ident: B106 article-title: Is the poly (L-Lactide-Co–Caprolactone) nanofibrous membrane suitable for urinary bladder regeneration? publication-title: PLoS One doi: 10.1371/journal.pone.0105295 – volume: 676 start-page: 195 year: 2018 ident: B10 article-title: Biomimetic scaffold containing PVDF nanofibers with sustained TGF-β release in combination with AT-MSCs for bladder tissue engineering. publication-title: Gene doi: 10.1016/j.gene.2018.07.046 – volume: 23 start-page: 2281 year: 2012 ident: B3 article-title: Effective combination of hydrostatic pressure and aligned nanofibrous scaffolds on human bladder smooth muscle cells: implication for bladder tissue engineering. publication-title: J. Mater. Sci. doi: 10.1007/s10856-012-4688-1 – volume: 9 year: 2014 ident: B67 article-title: Ureter regeneration–the proper scaffold has to be defined. publication-title: PLoS One doi: 10.1371/journal.pone.0106023 – volume: 10 ident: B143 article-title: Characterization of nanostructured ureteral stent with gradient degradation in a porcine model. publication-title: Int. J. Nanomed. doi: 10.2147/ijn.s80810 – volume: 133 start-page: 866 year: 1985 ident: B131 article-title: Ureteral replacement using collagen sponge tube grafts. publication-title: J. Urol. doi: 10.1016/s0022-5347(17)49268-8 – volume: 5 start-page: 101 year: 2018 ident: B53 article-title: Adult iatrogenic ureteral injury and stricture–incidence and treatment strategies. publication-title: Asian J. Urol. doi: 10.1016/j.ajur.2018.02.003 – volume: 178 start-page: 55 year: 2012 ident: B166 article-title: Differentiation of adipose-derived stem cells promotes regeneration of smooth muscle for ureteral tissue engineering. publication-title: J. Surg. Res. doi: 10.1016/j.jss.2012.01.047 – volume: 2016 year: 2016 ident: B54 article-title: Fluid structural analysis of urine flow in a stented ureter. publication-title: Comput. Math. Methods Med. doi: 10.1155/2016/5710798 – volume: 28 start-page: 421 year: 2012 ident: B29 article-title: Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. publication-title: Pediatr. Surg. Int. doi: 10.1007/s00383-012-3063-0 – volume: 100 start-page: 1725 year: 2012 ident: B50 article-title: New ureteral scaffold constructed with composite poly (L−lactic acid)–collagen and urothelial cells by new centrifugal seeding system. publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.34134 – year: 2018 ident: B101 publication-title: Histology: a Text and Atlas: with Correlated Cell and Molecular Biology. – volume: 86 start-page: 1541 year: 2004 ident: B90 article-title: Engineering principles of clinical cell-based tissue engineering. publication-title: JBJS doi: 10.2106/00004623-200407000-00029 – volume: 187 start-page: 559 year: 2012 ident: B94 article-title: Presenting symptoms of anterior urethral stricture disease: a disease specific, patient reported questionnaire to measure outcomes. publication-title: J. Urol. doi: 10.1016/j.juro.2011.10.043 – volume: 33 start-page: 161 year: 2010 ident: B121 article-title: Construction of ureteral grafts by seeding urothelial cells and bone marrow mesenchymal stem cells into polycaprolactone-lecithin electrospun fibers. publication-title: Int. J. Artif. Organs doi: 10.1177/039139881003300305 – volume: 9 start-page: 410 year: 2012 ident: B117 article-title: Bladder tissue engineering using biocompatible nanofibrous electrospun constructs: feasibility and safety investigation. publication-title: Urol. J. – volume: 15 start-page: 9899 ident: B144 article-title: A nanostructured degradable ureteral stent fabricated by electrospinning for upper urinary tract reconstruction. publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2015.10747 – volume: 100 start-page: 2612 year: 2012 ident: B122 article-title: Tissue engineering of ureteral grafts by seeding urothelial differentiated hADSCs onto biodegradable ureteral scaffolds. publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.34182 – volume: 195 start-page: 112 year: 2016 ident: B84 article-title: Buccal versus lingual mucosa graft in anterior urethroplasty: a prospective comparison of surgical outcome and donor site morbidity. publication-title: J. Urol. doi: 10.1016/j.juro.2015.07.098 – volume: 107 start-page: 296 year: 2011 ident: B115 article-title: Developing biodegradable scaffolds for tissue engineering of the urethra. publication-title: BJU Int. doi: 10.1111/j.1464-410x.2010.09310.x – volume: 8 year: 2017 ident: B78 article-title: Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-017-0500-y – volume: 8 year: 2019 ident: B56 article-title: The biomedical use of silk: past, present, future. publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201800465 – volume: 104 start-page: 94 year: 2016 ident: B137 article-title: Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications. publication-title: J. Biomed. Mater. Res. A. doi: 10.1002/jbm.a.35544 – volume: 8 start-page: 10252 year: 2016 ident: B158 article-title: Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth. publication-title: Nanoscale doi: 10.1039/c6nr01169a – volume: 19 start-page: 413 year: 2013 ident: B125 article-title: Ureteral tissue engineering: where are we and how to proceed? publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2012.0737 – volume: 75 start-page: 877 year: 2017 ident: B119 article-title: Bladder smooth muscle cells on electrospun poly (ε-caprolactone)/poly (l-lactic acid) scaffold promote bladder regeneration in a canine model. publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.02.064 – volume: 104 start-page: 9 year: 2016 ident: B60 article-title: Tissue performance of bladder following stretched electrospun silk fibroin matrix and bladder acellular matrix implantation in a rabbit model. publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.35535 – volume: 10 start-page: 30 year: 2000 ident: B20 article-title: Enterocystoplasty complications in children. A study of 30 cases. publication-title: Eur. J. Pediatr. Surg. doi: 10.1055/s-2008-1072319 – volume: 10 year: 2015 ident: B34 article-title: Tissue engineering for human urethral reconstruction: systematic review of recent literature. publication-title: PLoS One doi: 10.1371/journal.pone.0118653 – volume: 24 start-page: 2915 ident: B132 article-title: Nano-structured polymers enhance bladder smooth muscle cell function. publication-title: Biomaterials doi: 10.1016/s0142-9612(03)00123-6 – volume: 24 start-page: 863 year: 2018 ident: B33 article-title: Ureteral reconstruction in goats using tissue-engineered templates and subcutaneous preimplantation. publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2017.0347 – volume: 24 year: 2013 ident: B111 article-title: Is amniotic membrane a suitable biomaterial for reconstruction of long ureteral defects. publication-title: Saudi J. Kidney Dis. Transpl. doi: 10.4103/1319-2442.106311 – volume: 104 start-page: 263 year: 2009 ident: B51 article-title: Biodegradable urethral stents seeded with autologous urethral epithelial cells in the treatment of post−traumatic urethral stricture: a feasibility study in a rabbit model. publication-title: BJU Int. doi: 10.1111/j.1464-410x.2009.08366.x – volume: 168 start-page: 2600 year: 2002 ident: B14 article-title: Alterations in the molecular determinants of bladder compliance at hydrostatic pressures less than 40 cm. H2O. publication-title: J. Urol. doi: 10.1097/00005392-200212000-00084 – volume: 4 start-page: 1 year: 2005 ident: B55 article-title: Impurities: guideline for residual solvents Q3C (R5). publication-title: Curr. Step – volume: 16 start-page: 201 year: 2019 ident: B124 article-title: Stem cells seeded on multilayered scaffolds implanted into an injured bladder rat model improves bladder function. publication-title: Tissue Eng. Regen. Med. doi: 10.1007/s13770-019-00187-x – volume: 27 start-page: 3136 year: 2006 ident: B15 article-title: Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.026 – volume: 98 start-page: 1100 year: 2006 ident: B163 article-title: Challenges in a larger bladder replacement with cell−seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. publication-title: BJU Int. doi: 10.1111/j.1464-410x.2006.06447.x – volume: 182 start-page: 983 year: 2009 ident: B82 article-title: Etiology of urethral stricture disease in the 21st century. publication-title: J. Urol. doi: 10.1016/j.juro.2009.05.023 – volume: 11 year: 2015 ident: B92 article-title: Supportive features of a new hybrid scaffold for urothelium engineering. publication-title: Arch. Med. Sci. AMS doi: 10.5114/aoms.2015.50977 – volume: 172 start-page: 1151 year: 2004 ident: B97 article-title: Canine ureteral replacement with long acellular matrix tube: is it clinically applicable? publication-title: J. Urol. doi: 10.1097/01.ju.0000134886.44065.00 – volume: 16 start-page: 27659 year: 2015 ident: B162 article-title: Application of Wnt pathway inhibitor delivering scaffold for inhibiting fibrosis in urethra strictures: in vitro and in vivo study. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms161126050 – volume: 20 start-page: 73 year: 2013 ident: B75 article-title: Understanding roles of porcine small intestinal submucosa in urinary bladder regeneration: identification of variable regenerative characteristics of small intestinal submucosa. publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2013.0126 |
SSID | ssj0001257582 |
Score | 2.2516525 |
SecondaryResourceType | review_article |
Snippet | Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 579925 |
SubjectTerms | Bioengineering and Biotechnology biopolymers regeneration scaffold ureter urethra urinary tract |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZCeoFDBZSqKQ8ZqadKmzp-4F0khGgVhCKBOBCJm7XrHbeR0AaSIMG_Z8a7SbMS6qnXtb2PmbXn-_z4hrFvwShrrYCkpEVCDUoleaZNklE2aw8iV4Em9K9vTq7GenRv7jtsmd6qMeD8XWpH-aTGs4f-y9PrOXb4M2KcGG9_hGIyJcVLKfrGZpk0G-wDBiZLmRyuG7RfT7kgNkllvbb5fstWdIoi_i3k2d43uRaILrfZxwZB8ova5TusA9Uu21rTFfzERsM6uc38cRIzEp3yi7_r1DyvSn5LhbSRgyNo5eNZPQTyu-gGvnazPTa-HN79ukqapAmJ11ouEiuVUgCeZHKkOilMMBZhUvA5ZHRyCemEgoAxSduI5_LcKokOSQsBqrSgPrNuNa3gC-OZTstSFkGAB-R9RSptDj6kgzAQwou0x8TSWM43iuKU2OLBIbMg-7poX0f2dbV9e-z7qsljLafxr8o_yQOriqSEHS9MZ79d07FcKbVXUhSgQGtSOtADJA2qKA0O417hSx4v_eew59BySF7B9HnupDZ05AwpXY_ZlmNbT2yXVJM_UYPbIk_DOP_1f7ziPtukr45bBO0B6y5mz3CIUGdRHMUf-A1SkP3K priority: 102 providerName: Scholars Portal |
Title | Electrospinning: Application and Prospects for Urologic Tissue Engineering |
URI | https://www.proquest.com/docview/2455833862 https://pubmed.ncbi.nlm.nih.gov/PMC7576678 https://doaj.org/article/d24c320be3e445cd8418823bd5911c38 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygvGYkJKeDaTp2wFdSqQgIxtBKblThnUQmlqI__z51dIFlgYcmQOIlzPue-8_m-Y-zKp8oYIyCpKEioQamkyHWa5FTN2oEolKcF_afn3miiH1_T10apL9oTFumBo-BuK6mdkqIEBVpTJrvuIihUZZXiNHUqpPmizWs4U3F1BWFIJmMYE72w_NaX0xnRYkpxk5o8p9LYDUMU-PpbILO9RbJhc4a7bGcNFnk_dnKPbUC9z7YbFIIH7HEQ69gsPqah-NAd7_-EpHlRV_yFLtKeDY74lE_m8W_Hx0HivPGwQzYZDsYPo2RdHyFxWstlYqRSCsARI45UvTL1qUFE5F0BOSUpoeegwKP50SZAt6IwSqLss1KAqgyoI7ZZz2o4ZjzXWVXJ0gtwgC5emUlTgPNZ13eFcCLrMPElLOvW5OFUw-LdohNB8rVBvpbka6N8O-z6-5aPyJzxW-N7GoHvhkR6HU6gKti1Kti_VKHDLr_Gz-IkochHUcNstbBSp5Rdht5bh5nWwLbe2L5ST98C3bZBlwxN-sl_dPGUbdFXh92A5oxtLucrOEdUsywvggLj8UlnnxgJ9fU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospinning%3A+Application+and+Prospects+for+Urologic+Tissue+Engineering&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Masoud+Zamani&rft.au=Nasser+Shakhssalim&rft.au=Seeram+Ramakrishna&rft.au=Mohammad+Naji&rft.date=2020-10-07&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-4185&rft.volume=8&rft_id=info:doi/10.3389%2Ffbioe.2020.579925&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d24c320be3e445cd8418823bd5911c38 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon |