Electrospinning: Application and Prospects for Urologic Tissue Engineering

Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstruc...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in bioengineering and biotechnology Vol. 8; p. 579925
Main Authors Zamani, Masoud, Shakhssalim, Nasser, Ramakrishna, Seeram, Naji, Mohammad
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 07.10.2020
Subjects
Online AccessGet full text
ISSN2296-4185
2296-4185
DOI10.3389/fbioe.2020.579925

Cover

Loading…
Abstract Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells' function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area.Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells' function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area.
AbstractList Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells' function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area.Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells' function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area.
Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells’ function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area.
Author Shakhssalim, Nasser
Naji, Mohammad
Ramakrishna, Seeram
Zamani, Masoud
AuthorAffiliation 2 Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
3 Department of Mechanical Engineering, National University of Singapore , Singapore , Singapore
1 Department of Chemical and Biological Engineering, University at Buffalo, State University of New York , Amherst, NY , United States
AuthorAffiliation_xml – name: 2 Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
– name: 3 Department of Mechanical Engineering, National University of Singapore , Singapore , Singapore
– name: 1 Department of Chemical and Biological Engineering, University at Buffalo, State University of New York , Amherst, NY , United States
Author_xml – sequence: 1
  givenname: Masoud
  surname: Zamani
  fullname: Zamani, Masoud
– sequence: 2
  givenname: Nasser
  surname: Shakhssalim
  fullname: Shakhssalim, Nasser
– sequence: 3
  givenname: Seeram
  surname: Ramakrishna
  fullname: Ramakrishna, Seeram
– sequence: 4
  givenname: Mohammad
  surname: Naji
  fullname: Naji, Mohammad
BookMark eNp9kUFvFCEUx4mpsbX2A3ibo5fdwgMGxoNJ06y2poke2jNhmDcjDQsjzDbx28vuNsZ68AThvf-Pl_d7S05iikjIe0bXnOvucux9wjVQoGupug7kK3IG0LUrwbQ8-et-Si5KeaSUMpBKanhDTjlnTCktz8jXTUC35FRmH6OP08fmap6Dd3bxKTY2Ds33fbH2lGZMuXnIKaTJu-bel7LDZhMnHxFzjb4jr0cbCl48n-fk4fPm_vpmdffty-311d3KCQHLSgHnHNExRSXwtpejVEyK0VnsWCuFhpbjqIUSqs4spLWKAx9B9xT5oJCfk9sjd0j20czZb23-ZZL15vCQ8mRsXrwLaAYQjgPtkaMQ0g267kMD7wfZMea4rqxPR9a867c4OIxLtuEF9GUl-h9mSk9GSdW2ag_48AzI6ecOy2K2vjgMwUZMu2JASKmrrxZqKzu2urrRknH88w2jZq_UHJSavVJzVFoz6p-M88vBTZ3Gh_8kfwNveKeD
CitedBy_id crossref_primary_10_3390_ijms232214074
crossref_primary_10_1016_j_actbio_2022_03_011
crossref_primary_10_1088_1758_5090_ad8965
crossref_primary_10_3389_fbioe_2022_1092543
crossref_primary_10_1016_j_matdes_2022_110821
crossref_primary_10_1038_s41598_024_75699_1
crossref_primary_10_1002_btm2_10268
crossref_primary_10_5812_gct_133958
crossref_primary_10_1016_j_devcel_2022_07_004
crossref_primary_10_1016_j_procbio_2024_04_038
crossref_primary_10_3390_pharmaceutics15020417
crossref_primary_10_3390_ijms231810519
crossref_primary_10_1557_s43578_021_00255_w
crossref_primary_10_1016_j_matdes_2022_111286
crossref_primary_10_3390_biom13081167
crossref_primary_10_1016_j_ijbiomac_2021_09_014
Cites_doi 10.1007/s11255-014-0854-3
10.1016/j.aju.2012.01.008
10.1016/j.biomaterials.2014.12.027
10.3109/21691401.2014.913053
10.1089/end.2005.19.1069
10.1007/978-3-642-02824-3_3
10.1038/s41585-019-0198-y
10.1016/s0090-4295(97)00632-8
10.1007/s11934-015-0567-x
10.1098/rsif.2010.0520
10.1016/j.biomaterials.2014.04.002
10.1016/j.ucl.2005.11.005
10.1097/00002480-200005000-00005
10.1002/nau.23339
10.1038/nrurol.2018.5
10.3390/app9050910
10.1002/ar.1091510305
10.3390/pharmaceutics11070305
10.1002/jbm.b.30128
10.1016/j.juro.2007.11.101
10.1002/mame.201200323
10.1038/6146
10.1111/j.1651-2227.2012.02659.x
10.1016/j.biomaterials.2004.07.011
10.5489/cuaj.4826
10.1002/jbm.b.33591
10.1002/app.27063
10.1016/j.jpurol.2011.03.002
10.3390/ijms17081262
10.1371/journal.pone.0120244
10.1088/1748-6041/2/4/008
10.1007/s13770-019-00193-z
10.1007/978-3-319-70049-6_1
10.1063/5.0012309
10.3109/03008207.2015.1035376
10.1590/s1677-55382011000600005
10.1016/j.ymeth.2008.10.014
10.1016/j.eururo.2010.12.004
10.5301/ijao.5000130
10.1002/bit.22912
10.1002/jbm.a.34889
10.1590/s1677-5538.ibju.2013.03.16
10.1007/s10439-018-02182-0
10.1016/j.msec.2008.08.015
10.1016/s0022-5347(17)39852-x
10.1088/1748-6041/8/4/045013
10.1007/s00345-008-0318-4
10.3390/membranes8030062
10.1007/s003450050002
10.1016/j.biomaterials.2009.04.008
10.1007/bf00134307
10.1016/j.transproceed.2015.10.035
10.1016/j.jpurol.2012.12.001
10.1016/j.ajur.2018.02.002
10.1533/9780857092915.1.67
10.2147/ijn.s44901
10.1055/s-0030-1254297
10.1016/j.actbio.2014.01.028
10.1016/j.juro.2014.01.116
10.1166/jnn.2013.7193
10.1002/9781118863343.ch17
10.5301/ijao.5000175
10.1016/j.gene.2019.01.037
10.1016/j.transproceed.2012.08.023
10.1089/ten.tea.2018.0255
10.1016/j.juro.2012.08.197
10.1007/978-981-13-0947-2_23
10.1002/jbm.a.20037
10.4103/0970-1591.120114
10.1097/mot.0000000000000084
10.1007/s00467-008-0764-7
10.1097/00005392-200301000-00040
10.1111/j.1464-410x.2011.10650.x
10.1163/156856208784089599
10.1371/journal.pone.0091592
10.1111/j.1464-410x.2004.05088.x
10.1016/j.jss.2018.04.006
10.1055/s-0034-1394155
10.1201/9780203491232.ch12
10.5213/inj.2012.16.3.102
10.1007/s10237-007-0095-9
10.1016/s0090-4295(97)00644-4
10.1101/cshperspect.a005058
10.1016/j.actbio.2016.07.033
10.1038/nrurol.2009.201
10.1152/physrev.00038.2003
10.1016/s0140-6736(06)68438-9
10.1016/j.ucl.2016.08.003
10.1089/end.2014.0522
10.1016/j.juro.2008.09.019
10.1002/term.2366
10.1002/marc.201000379
10.1016/j.addr.2014.08.011
10.1016/j.actbio.2018.08.010
10.1016/j.actbio.2016.12.034
10.1089/ten.teb.2018.0345
10.12659/msm.891042
10.1080/00365590802025857
10.1088/0957-4484/20/8/085104
10.1016/j.jss.2013.04.016
10.1016/j.biomaterials.2012.10.075
10.1016/s0140-6736(10)62354-9
10.1002/wnan.1611
10.1007/s003450050007
10.1177/1535370216640148
10.1097/01.ju.0000146554.79487.7f
10.1016/j.addr.2014.11.020
10.1111/iep.12011
10.1007/978-3-319-70049-6_5
10.1007/s11255-016-1259-2
10.1016/j.urology.2012.01.044
10.1016/j.trsl.2013.11.003
10.3390/ijms20071763
10.1016/j.juro.2013.10.103
10.1155/2019/9046430
10.3390/ijms19061796
10.1002/term.1632
10.1046/j.1600-0854.2003.00156.x
10.1016/j.eururo.2012.07.041
10.1371/journal.pone.0105295
10.1016/j.gene.2018.07.046
10.1007/s10856-012-4688-1
10.1371/journal.pone.0106023
10.2147/ijn.s80810
10.1016/s0022-5347(17)49268-8
10.1016/j.ajur.2018.02.003
10.1016/j.jss.2012.01.047
10.1155/2016/5710798
10.1007/s00383-012-3063-0
10.1002/jbm.a.34134
10.2106/00004623-200407000-00029
10.1016/j.juro.2011.10.043
10.1177/039139881003300305
10.1166/jnn.2015.10747
10.1002/jbm.a.34182
10.1016/j.juro.2015.07.098
10.1111/j.1464-410x.2010.09310.x
10.1186/s13287-017-0500-y
10.1002/adhm.201800465
10.1002/jbm.a.35544
10.1039/c6nr01169a
10.1089/ten.teb.2012.0737
10.1016/j.msec.2017.02.064
10.1002/jbm.a.35535
10.1055/s-2008-1072319
10.1371/journal.pone.0118653
10.1016/s0142-9612(03)00123-6
10.1089/ten.tea.2017.0347
10.4103/1319-2442.106311
10.1111/j.1464-410x.2009.08366.x
10.1097/00005392-200212000-00084
10.1007/s13770-019-00187-x
10.1016/j.biomaterials.2006.01.026
10.1111/j.1464-410x.2006.06447.x
10.1016/j.juro.2009.05.023
10.5114/aoms.2015.50977
10.1097/01.ju.0000134886.44065.00
10.3390/ijms161126050
10.1089/ten.teb.2013.0126
ContentType Journal Article
Copyright Copyright © 2020 Zamani, Shakhssalim, Ramakrishna and Naji.
Copyright © 2020 Zamani, Shakhssalim, Ramakrishna and Naji. 2020 Zamani, Shakhssalim, Ramakrishna and Naji
Copyright_xml – notice: Copyright © 2020 Zamani, Shakhssalim, Ramakrishna and Naji.
– notice: Copyright © 2020 Zamani, Shakhssalim, Ramakrishna and Naji. 2020 Zamani, Shakhssalim, Ramakrishna and Naji
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fbioe.2020.579925
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-4185
ExternalDocumentID oai_doaj_org_article_d24c320be3e445cd8418823bd5911c38
PMC7576678
10_3389_fbioe_2020_579925
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c442t-72333eec1705236b5f57154fcae916548263ef8474700045aa7323f28b0e3d7e3
IEDL.DBID DOA
ISSN 2296-4185
IngestDate Wed Aug 27 01:26:12 EDT 2025
Thu Aug 21 13:33:24 EDT 2025
Fri Jul 11 08:23:12 EDT 2025
Tue Jul 01 02:45:32 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-72333eec1705236b5f57154fcae916548263ef8474700045aa7323f28b0e3d7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology
Edited by: Francesca Taraballi, Houston Methodist Research Institute, United States
Reviewed by: Elif Vardar, Centre Hospitalier Universitaire Vaudois (CHUV), Switzerland; Gustavo A. Abraham, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
OpenAccessLink https://doaj.org/article/d24c320be3e445cd8418823bd5911c38
PMID 33117785
PQID 2455833862
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d24c320be3e445cd8418823bd5911c38
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7576678
proquest_miscellaneous_2455833862
crossref_primary_10_3389_fbioe_2020_579925
crossref_citationtrail_10_3389_fbioe_2020_579925
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-07
PublicationDateYYYYMMDD 2020-10-07
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-07
  day: 07
PublicationDecade 2020
PublicationTitle Frontiers in bioengineering and biotechnology
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Pattison (B100) 2005; 26
Salehipour (B111) 2013; 24
El-Kassaby (B41) 2003; 169
El-Hakim (B39) 2005; 19
Tyritzis (B136) 2015; 29
Brown (B25) 2014; 163
Shakhssalim (B118) 2013; 36
Yoo (B160) 1998; 51
Liu (B77) 2009; 30
Kloskowski (B68) 2013; 36
Sun (B130) 2010; 31
Delacroix (B36) 2010; 23
Kennedy (B65) 2017; 50
Naji (B92) 2015; 11
Backhaus (B14) 2002; 168
Meng (B87) 2015; 47
Ahvaz (B3) 2012; 23
Pant (B98) 2019; 11
Thapa (B132); 24
Jung (B63) 2012; 16
Bertschy (B20) 2000; 10
Veeratterapillay (B139) 2013; 29
de Kemp (B34) 2015; 10
Eylert (B44) 2019
Parpala-Sparman (B99) 2008; 42
Vass (B138) 2019; 12
Biers (B22) 2012; 109
Xie (B153) 2013; 184
Xie (B152) 2000; 46
Sivaraman (B128) 2019; 47
Baker (B15) 2006; 27
Azevedo (B13) 2005
Zhao (B166) 2012; 178
Muschler (B90) 2004; 86
Stankus (B129) 2008; 19
Orabi (B96) 2013; 63
Wang (B144); 15
Xu (B154) 2015; 10
Caione (B29) 2012; 28
Sharifiaghdas (B120) 2014; 11
Zhao (B165) 2016; 8
Karahaliloğlu (B64) 2016; 44
de Jonge (B32) 2018; 12
Raya-Rivera (B108) 2011; 377
Falke (B45) 2000; 18
Simaioforidis (B125) 2013; 19
Li (B72) 2018; 78
Zhang (B162) 2015; 16
Lumen (B83) 2011; 37
El-Tabey (B43) 2012; 10
Lin (B75) 2013; 20
Pederzoli (B103) 2019; 16
McManus (B86) 2007; 2
Sack (B110) 2016; 17
Feng (B47) 2019; 25
Ghafari (B52) 2017; 24
Lumen (B84) 2016; 195
Lv (B85) 2016; 17
Bergsma (B19) 1995; 6
Derakhshan (B37) 2016; 48
Shi (B122) 2012; 100
Mirzaei (B88) 2019; 694
Pazhanimala (B102) 2019; 9
Simsek (B126); 5
Ajalloueian (B5) 2018; 15
Chung (B31) 2014; 9
Kim (B66) 2000; 18
Peterson (B104) 2004; 94
Pawlina (B101) 2018
Schaefer (B114) 2013; 9
Verla (B140) 2019; 2019
Baltaci (B16) 1998; 51
Guideline (B55) 2005; 4
Armatys (B11) 2009; 181
Shakhssalim (B119) 2017; 75
Shrestha (B124) 2019; 16
Aitken (B4) 2009; 6
Holland (B56) 2019; 8
Nuss (B94) 2012; 187
Andersson (B8) 2004; 84
Liao (B73) 2008; 28
Shakhssalim (B117) 2012; 9
Ardeshirylajimi (B10) 2018; 676
Algarrahi (B7) 2018; 229
Oberpenning (B95) 1999; 17
Rashidbenam (B107) 2019; 16
Thapa (B133); 67
Ajalloueian (B6) 2014; 35
Yao (B157) 2013; 8
Fossum (B49) 2012; 101
Ahvaz (B2) 2013; 13
Gild (B53) 2018; 5
Bhattarai (B21) 2018; 8
Del Gaudio (B35) 2013; 8
Horst (B58) 2017; 105
Wolfe (B148) 2011
Rourke (B109) 2012; 79
Gómez-Blanco (B54) 2016; 2016
Zhang (B163) 2006; 98
Pinnagoda (B105) 2016; 43
Shen (B121) 2010; 33
Kundu (B70) 2011; 108
Shoae-Hassani (B123) 2015; 9
Nagatomi (B91) 2008; 7
Liverani (B80) 2017
Liu (B79) 2020; 4
Wilson (B146) 2011
Browne (B26) 2017; 44
Chun (B30) 2009; 20
Yin (B159) 2015; 44
Brovold (B24) 2018
Fu (B51) 2009; 104
Horst (B59) 2014; 102
Abbas (B1) 2019; 20
Wang (B142) 2014; 20
Yao (B158) 2016; 8
le Roux (B71) 2005; 173
Kloskowski (B67) 2014; 9
Wang (B143); 10
Sayeg (B113) 2013; 39
Wei (B145) 2015; 47
Lin (B76) 2015; 82
Traxer (B134) 2013; 189
el-Kassaby (B40) 2008; 179
Muhamad (B89) 2014
Nam (B93) 2008; 107
Janke (B61) 2019; 25
Huang (B60) 2016; 104
Zhang (B164) 2005; 72
FitzGerald (B48) 2014; 27
Serrano-Aroca (B116) 2018; 19
Tachibana (B131) 1985; 133
Wolf (B147) 2015; 84
Burke (B27) 2017
Atala (B12) 2006; 367
Xue (B155) 2016; 241
Krishnan (B69) 2013; 298
Farhat (B46) 2008; 26
Lu (B81) 2011; 3
Joseph (B62) 2014; 191
Wang (B141) 2015; 56
Selim (B115) 2011; 107
de Jonge (B33) 2018; 24
Turner (B135) 2011; 59
Liao (B74) 2013; 45
Lumen (B82) 2009; 182
Horst (B57) 2013; 34
Apodaca (B9) 2004; 5
Sartoneva (B112) 2010; 8
Uchida (B137) 2016; 104
Fu (B50) 2012; 100
Woodburne (B150) 1965; 151
Simsek (B127); 12
Elliott (B42) 2006; 33
Wong (B149) 2014; 10
Benson (B18) 1990; 143
Liu (B78) 2017; 8
Osman (B97) 2004; 172
Wu (B151) 2018; 37
Pokrywczynska (B106) 2014; 9
Bouhout (B23) 2011; 7
Bauer (B17) 2008; 23
Byron (B28) 2013; 94
Eberli (B38) 2009; 47
Zhang (B161) 2014; 192
Yamany (B156) 2014; 19
References_xml – volume: 47
  start-page: 95
  year: 2015
  ident: B145
  article-title: Preparation of PCL/silk fibroin/collagen electrospun fiber for urethral reconstruction.
  publication-title: Int. Urol. Nephrol.
  doi: 10.1007/s11255-014-0854-3
– volume: 10
  start-page: 192
  year: 2012
  ident: B43
  article-title: Cell-seeded tubular acellular matrix for replacing a long circumferential urethral defect in a canine model: is it clinically applicable?
  publication-title: Arab J. Urol.
  doi: 10.1016/j.aju.2012.01.008
– volume: 44
  start-page: 173
  year: 2015
  ident: B159
  article-title: Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation.
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.12.027
– volume: 44
  start-page: 74
  year: 2016
  ident: B64
  article-title: Surface-modified bacterial nanofibrillar PHB scaffolds for bladder tissue repair.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.3109/21691401.2014.913053
– volume: 19
  start-page: 1069
  year: 2005
  ident: B39
  article-title: First prize: ureteral segmental replacement revisited.
  publication-title: J. Endourol.
  doi: 10.1089/end.2005.19.1069
– start-page: 41
  year: 2011
  ident: B148
  article-title: Natural and synthetic scaffolds
  publication-title: Tissue Engineering: From Lab to Clinic. Berlin, Heidelberg
  doi: 10.1007/978-3-642-02824-3_3
– volume: 16
  start-page: 453
  year: 2019
  ident: B103
  article-title: Regenerative and engineered options for urethroplasty.
  publication-title: Nat. Rev. Urol.
  doi: 10.1038/s41585-019-0198-y
– volume: 51
  start-page: 400
  year: 1998
  ident: B16
  article-title: Failure of ureteral replacement with Gore-Tex tube grafts.
  publication-title: Urology
  doi: 10.1016/s0090-4295(97)00632-8
– volume: 17
  year: 2016
  ident: B110
  article-title: Silk fibroin scaffolds for urologic tissue engineering.
  publication-title: Curr. Urol. Rep.
  doi: 10.1007/s11934-015-0567-x
– volume: 8
  start-page: 671
  year: 2010
  ident: B112
  article-title: Comparison of a poly-l-lactide-co-?-caprolactone and human amniotic membrane for urothelium tissue engineering applications.
  publication-title: J. R. Soc. Interf.
  doi: 10.1098/rsif.2010.0520
– volume: 35
  start-page: 5741
  year: 2014
  ident: B6
  article-title: Constructs of electrospun PLGA, compressed collagen and minced urothelium for minimally manipulated autologous bladder tissue expansion.
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.04.002
– volume: 33
  start-page: 55
  year: 2006
  ident: B42
  article-title: Ureteral injuries: external and iatrogenic.
  publication-title: Urol. Clin. North Am.
  doi: 10.1016/j.ucl.2005.11.005
– volume: 46
  start-page: 268
  year: 2000
  ident: B152
  article-title: Use of reconstructed small intestine submucosa for urinary tract replacement.
  publication-title: Asaio J.
  doi: 10.1097/00002480-200005000-00005
– volume: 37
  start-page: 744
  year: 2018
  ident: B151
  article-title: A real−world experience with augmentation enterocystoplasty—high patient satisfaction with high complication rates.
  publication-title: Neurourol. Urodyn.
  doi: 10.1002/nau.23339
– volume: 15
  year: 2018
  ident: B5
  article-title: Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder.
  publication-title: Nat. Rev. Urol.
  doi: 10.1038/nrurol.2018.5
– year: 2014
  ident: B89
  article-title: Designing polymeric nanoparticles for targeted drug delivery system
  publication-title: Nanomed
– volume: 9
  year: 2019
  ident: B102
  article-title: Electrospun nanometer to micrometer scale biomimetic synthetic membrane scaffolds in drug delivery and tissue engineering: a review.
  publication-title: Appl. Sci.
  doi: 10.3390/app9050910
– volume: 151
  start-page: 243
  year: 1965
  ident: B150
  article-title: The ureter, ureterovesical junction, and vesical trigone.
  publication-title: Anatom. Record.
  doi: 10.1002/ar.1091510305
– volume: 11
  year: 2019
  ident: B98
  article-title: Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review.
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11070305
– volume: 72
  start-page: 156
  year: 2005
  ident: B164
  article-title: Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds.
  publication-title: J. Biomed. Mater. Res. Part B.
  doi: 10.1002/jbm.b.30128
– volume: 179
  start-page: 1432
  year: 2008
  ident: B40
  article-title: Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures.
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2007.11.101
– volume: 298
  start-page: 1034
  year: 2013
  ident: B69
  article-title: Green processing of nanofibers for regenerative medicine.
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201200323
– volume: 17
  year: 1999
  ident: B95
  article-title: De novo reconstitution of a functional mammalian urinary bladder by tissue engineering.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/6146
– volume: 101
  start-page: 755
  year: 2012
  ident: B49
  article-title: Prepubertal follow-up after hypospadias repair with autologous in vitro cultured urothelial cells.
  publication-title: Acta Paediatr.
  doi: 10.1111/j.1651-2227.2012.02659.x
– volume: 26
  start-page: 2491
  year: 2005
  ident: B100
  article-title: Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications.
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.07.011
– volume: 12
  ident: B127
  article-title: Developing improved tissue-engineered buccal mucosa grafts for urethral reconstruction.
  publication-title: Can. Urol. Assoc. J.
  doi: 10.5489/cuaj.4826
– volume: 105
  start-page: 658
  year: 2017
  ident: B58
  article-title: Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering.
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater.
  doi: 10.1002/jbm.b.33591
– volume: 107
  start-page: 1547
  year: 2008
  ident: B93
  article-title: Materials selection and residual solvent retention in biodegradable electrospun fibers.
  publication-title: J. Appl. Polymer Sci.
  doi: 10.1002/app.27063
– volume: 7
  start-page: 276
  year: 2011
  ident: B23
  article-title: Bladder substitute reconstructed in a physiological pressure environment.
  publication-title: J. Pediatr. Urol.
  doi: 10.1016/j.jpurol.2011.03.002
– volume: 17
  year: 2016
  ident: B85
  article-title: Electrospun poly (l-lactide)/poly (ethylene glycol) scaffolds seeded with human amniotic mesenchymal stem cells for urethral epithelium repair.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17081262
– volume: 10
  year: 2015
  ident: B154
  article-title: tissue-specific scaffold for tissue engineering-based ureteral reconstruction.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0120244
– volume: 2
  start-page: 257
  year: 2007
  ident: B86
  article-title: Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction.
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/2/4/008
– volume: 16
  start-page: 365
  year: 2019
  ident: B107
  article-title: Overview of urethral reconstruction by tissue engineering: current strategies, clinical status and future direction.
  publication-title: Tissue Eng. Regen. Med.
  doi: 10.1007/s13770-019-00193-z
– start-page: 1
  year: 2017
  ident: B27
  article-title: Reproducibility and robustness in electrospinning with a view to medical device manufacturing
  publication-title: Electrospun Biomaterials and Related Technologies
  doi: 10.1007/978-3-319-70049-6_1
– volume: 4
  year: 2020
  ident: B79
  article-title: Electrospinning and emerging healthcare and medicine possibilities.
  publication-title: APL Bioeng.
  doi: 10.1063/5.0012309
– volume: 56
  start-page: 434
  year: 2015
  ident: B141
  article-title: Repair of urethral defects with polylactid acid fibrous membrane seeded with adipose-derived stem cells in a rabbit model.
  publication-title: Connect Tissue Res.
  doi: 10.3109/03008207.2015.1035376
– volume: 37
  start-page: 712
  year: 2011
  ident: B83
  article-title: Assessment of the short-term functional outcome after urethroplasty: a prospective analysis.
  publication-title: Int. Braz. J. Urol.
  doi: 10.1590/s1677-55382011000600005
– volume: 47
  start-page: 109
  year: 2009
  ident: B38
  article-title: Composite scaffolds for the engineering of hollow organs and tissues.
  publication-title: Methods
  doi: 10.1016/j.ymeth.2008.10.014
– volume: 59
  start-page: 447
  year: 2011
  ident: B135
  article-title: Transplantation of autologous differentiated urothelium in an experimental model of composite cystoplasty.
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2010.12.004
– volume: 36
  start-page: 392
  year: 2013
  ident: B68
  article-title: Tissue engineering and ureter regeneration: is it possible?
  publication-title: Int. J. Artif. Organs
  doi: 10.5301/ijao.5000130
– volume: 108
  start-page: 207
  year: 2011
  ident: B70
  article-title: Composite thin film and electrospun biomaterials for urologic tissue reconstruction.
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22912
– volume: 102
  start-page: 2116
  year: 2014
  ident: B59
  article-title: Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration.
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.34889
– volume: 39
  start-page: 414
  year: 2013
  ident: B113
  article-title: Integration of collagen matrices into the urethra when implanted as onlay graft.
  publication-title: Int. Braz. J. Urol.
  doi: 10.1590/s1677-5538.ibju.2013.03.16
– volume: 47
  start-page: 891
  year: 2019
  ident: B128
  article-title: Evaluation of poly (Carbonate-Urethane) urea (PCUU) scaffolds for urinary bladder tissue engineering.
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-02182-0
– volume: 28
  start-page: 1189
  year: 2008
  ident: B73
  article-title: Stem cells and biomimetic materials strategies for tissue engineering.
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2008.08.015
– volume: 143
  start-page: 20
  year: 1990
  ident: B18
  article-title: Ureteral reconstruction and bypass: experience with ileal interposition, the Boari flap-psoas hitch and renal autotransplantation.
  publication-title: J. Urol.
  doi: 10.1016/s0022-5347(17)39852-x
– volume: 8
  year: 2013
  ident: B35
  article-title: Evaluation of electrospun bioresorbable scaffolds for tissue-engineered urinary bladder augmentation.
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/8/4/045013
– volume: 11
  start-page: 1620
  year: 2014
  ident: B120
  article-title: Comparing supportive properties of poly lactic-co-glycolic acid (PLGA), PLGA/collagen and human amniotic membrane for human urothelial and smooth muscle cells engineering.
  publication-title: Urol. J.
– volume: 26
  start-page: 301
  year: 2008
  ident: B46
  article-title: Does mechanical stimulation have any role in urinary bladder tissue engineering?
  publication-title: World J. Urol.
  doi: 10.1007/s00345-008-0318-4
– volume: 8
  year: 2018
  ident: B21
  article-title: A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering.
  publication-title: Membranes
  doi: 10.3390/membranes8030062
– volume: 18
  start-page: 2
  year: 2000
  ident: B66
  article-title: Biomaterials for tissue engineering.
  publication-title: World J. Urol.
  doi: 10.1007/s003450050002
– volume: 30
  start-page: 3865
  year: 2009
  ident: B77
  article-title: Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering.
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.04.008
– volume: 6
  start-page: 715
  year: 1995
  ident: B19
  article-title: Biocompatibility and degradation mechanisms of predegraded and non-predegraded poly (lactide) implants: an animal study.
  publication-title: J. Mater. Sci.
  doi: 10.1007/bf00134307
– volume: 47
  start-page: 3002
  year: 2015
  ident: B87
  article-title: Seeding homologous adipose-derived stem cells and bladder smooth muscle cells into bladder submucosa matrix for reconstructing the ureter in a rabbit model.
  publication-title: Transplant. Proc.
  doi: 10.1016/j.transproceed.2015.10.035
– volume: 9
  start-page: 878
  year: 2013
  ident: B114
  article-title: Bladder augmentation with small intestinal submucosa leads to unsatisfactory long-term results.
  publication-title: J. Pediatr. Urol.
  doi: 10.1016/j.jpurol.2012.12.001
– volume: 5
  start-page: 69
  ident: B126
  article-title: Overcoming scarring in the urethra: challenges for tissue engineering.
  publication-title: Asian J. Urol.
  doi: 10.1016/j.ajur.2018.02.002
– start-page: 67
  year: 2011
  ident: B146
  article-title: Regulatory issues relating to electrospinning
  publication-title: Electrospinning for Tissue Regeneration
  doi: 10.1533/9780857092915.1.67
– volume: 8
  year: 2013
  ident: B157
  article-title: Nanostructured polyurethane-poly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: an in vivo study.
  publication-title: Int. J. Nanomed.
  doi: 10.2147/ijn.s44901
– volume: 23
  start-page: 104
  year: 2010
  ident: B36
  article-title: Urinary tract injures: recognition and management.
  publication-title: Clin. Colon Rectal Surg.
  doi: 10.1055/s-0030-1254297
– volume: 10
  start-page: 1806
  year: 2014
  ident: B149
  article-title: Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization.
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.01.028
– volume: 192
  start-page: 544
  year: 2014
  ident: B161
  article-title: Tissue engineered cystoplasty augmentation for treatment of neurogenic bladder using small intestinal submucosa: an exploratory study.
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2014.01.116
– volume: 13
  start-page: 4736
  year: 2013
  ident: B2
  article-title: Mechanical characteristics of electrospun aligned PCL/PLLA nanofibrous scaffolds conduct cell differentiation in human bladder tissue engineering.
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2013.7193
– start-page: 349
  year: 2019
  ident: B44
  article-title: Bladder and Urethra Structure and Function.
  publication-title: Blandy’s Urol.
  doi: 10.1002/9781118863343.ch17
– volume: 36
  start-page: 113
  year: 2013
  ident: B118
  article-title: Bladder smooth muscle cells interaction and proliferation on PCL/PLLA electrospun nanofibrous scaffold.
  publication-title: Int. J. Artif. Organs
  doi: 10.5301/ijao.5000175
– volume: 694
  start-page: 26
  year: 2019
  ident: B88
  article-title: Bladder smooth muscle cell differentiation of the human induced pluripotent stem cells on electrospun Poly (lactide-co-glycolide) nanofibrous structure.
  publication-title: Gene
  doi: 10.1016/j.gene.2019.01.037
– volume: 45
  start-page: 730
  year: 2013
  ident: B74
  article-title: Construction of ureteral grafts by seeding bone marrow mesenchymal stem cells and smooth muscle cells into bladder acellular matrix.
  publication-title: Transplant. Proc.
  doi: 10.1016/j.transproceed.2012.08.023
– volume: 25
  start-page: 1289
  year: 2019
  ident: B47
  article-title: Electrospun nanofibers with core-shell structure for treatment of bladder regeneration.
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2018.0255
– volume: 189
  start-page: 580
  year: 2013
  ident: B134
  article-title: Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery.
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2012.08.197
– start-page: 421
  year: 2018
  ident: B24
  publication-title: Naturally-Derived Biomaterials for Tissue Engineering Applications. Novel Biomaterials for Regenerative Medicine.
  doi: 10.1007/978-981-13-0947-2_23
– volume: 67
  start-page: 1374
  ident: B133
  article-title: Polymers with nano−dimensional surface features enhance bladder smooth muscle cell adhesion.
  publication-title: J. Biomed. Mater. Res. Part A.
  doi: 10.1002/jbm.a.20037
– volume: 29
  start-page: 322
  year: 2013
  ident: B139
  article-title: Augmentation cystoplasty: contemporary indications, techniques and complications.
  publication-title: Indian J. Urol.
  doi: 10.4103/0970-1591.120114
– volume: 19
  start-page: 323
  year: 2014
  ident: B156
  article-title: Formation and regeneration of the urothelium.
  publication-title: Curr. Opin. Organ Transplant.
  doi: 10.1097/mot.0000000000000084
– volume: 23
  start-page: 541
  year: 2008
  ident: B17
  article-title: Neurogenic bladder: etiology and assessment.
  publication-title: Pediatr. Nephrol.
  doi: 10.1007/s00467-008-0764-7
– volume: 169
  start-page: 170
  year: 2003
  ident: B41
  article-title: Urethral stricture repair with an off-the-shelf collagen matrix.
  publication-title: J. Urol.
  doi: 10.1097/00005392-200301000-00040
– volume: 109
  start-page: 1280
  year: 2012
  ident: B22
  article-title: The past, present and future of augmentation cystoplasty.
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410x.2011.10650.x
– volume: 19
  start-page: 635
  year: 2008
  ident: B129
  article-title: Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix.
  publication-title: J. Biomater. Sci. Polymer Ed.
  doi: 10.1163/156856208784089599
– volume: 9
  year: 2014
  ident: B31
  article-title: Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0091592
– volume: 94
  start-page: 971
  year: 2004
  ident: B104
  article-title: Management of urethral stricture disease: developing options for surgical intervention.
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410x.2004.05088.x
– volume: 229
  start-page: 192
  year: 2018
  ident: B7
  article-title: Repair of injured urethras with silk fibroin scaffolds in a rabbit model of onlay urethroplasty.
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2018.04.006
– volume: 27
  start-page: 140
  year: 2014
  ident: B48
  article-title: Biologic versus synthetic mesh reinforcement: what are the pros and cons?
  publication-title: Clin. Colon Rectal Surg.
  doi: 10.1055/s-0034-1394155
– volume: 24
  start-page: 3476
  year: 2017
  ident: B52
  article-title: Mechanical reinforcement of urinary bladder matrix by electrospun polycaprolactone nanofibers.
  publication-title: Sci. Iran.
– year: 2005
  ident: B13
  publication-title: Understanding the Enzymatic Degradation of Biodegradable Polymers and Strategies to Control their Degradation Rate.
  doi: 10.1201/9780203491232.ch12
– volume: 16
  year: 2012
  ident: B63
  article-title: Clinical and functional anatomy of the urethral sphincter.
  publication-title: Int. Neurourol. J.
  doi: 10.5213/inj.2012.16.3.102
– volume: 7
  start-page: 395
  year: 2008
  ident: B91
  article-title: Contribution of the extracellular matrix to the viscoelastic behavior of the urinary bladder wall.
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-007-0095-9
– volume: 51
  start-page: 221
  year: 1998
  ident: B160
  article-title: Bladder augmentation using allogenic bladder submucosa seeded with cells.
  publication-title: Urology
  doi: 10.1016/s0090-4295(97)00644-4
– volume: 3
  year: 2011
  ident: B81
  article-title: Extracellular matrix degradation and remodeling in development and disease.
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a005058
– volume: 43
  start-page: 208
  year: 2016
  ident: B105
  article-title: Engineered acellular collagen scaffold for endogenous cell guidance, a novel approach in urethral regeneration.
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.07.033
– volume: 6
  year: 2009
  ident: B4
  article-title: The bladder extracellular matrix. Part I: architecture, development and disease.
  publication-title: Nat. Rev. Urol.
  doi: 10.1038/nrurol.2009.201
– volume: 84
  start-page: 935
  year: 2004
  ident: B8
  article-title: Urinary bladder contraction and relaxation: physiology and pathophysiology.
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00038.2003
– volume: 367
  start-page: 1241
  year: 2006
  ident: B12
  article-title: Tissue-engineered autologous bladders for patients needing cystoplasty.
  publication-title: Lancet
  doi: 10.1016/s0140-6736(06)68438-9
– volume: 8
  year: 2016
  ident: B165
  article-title: Differentiate into urothelium and smooth muscle cells from adipose tissue-derived stem cells for ureter reconstruction in a rabbit model.
  publication-title: Am. J. Transl. Res.
– volume: 44
  start-page: 127
  year: 2017
  ident: B26
  article-title: Use of alternative techniques and grafts in urethroplasty.
  publication-title: Urol. Clin.
  doi: 10.1016/j.ucl.2016.08.003
– volume: 29
  start-page: 124
  year: 2015
  ident: B136
  article-title: Ureteral strictures revisited…trying to see the light at the end of the tunnel: a comprehensive review.
  publication-title: J. Endourol.
  doi: 10.1089/end.2014.0522
– volume: 181
  start-page: 177
  year: 2009
  ident: B11
  article-title: Use of ileum as ureteral replacement in urological reconstruction.
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2008.09.019
– volume: 12
  start-page: 80
  year: 2018
  ident: B32
  article-title: Ureteral reconstruction with reinforced collagen scaffolds in a porcine model.
  publication-title: J. Tissue Eng. Regener. Med.
  doi: 10.1002/term.2366
– volume: 31
  start-page: 2077
  year: 2010
  ident: B130
  article-title: Nanofibers by green electrospinning of aqueous suspensions of biodegradable block copolyesters for applications in medicine, pharmacy and agriculture.
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201000379
– volume: 84
  start-page: 208
  year: 2015
  ident: B147
  article-title: Naturally derived and synthetic scaffolds for skeletal muscle reconstruction.
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2014.08.011
– volume: 78
  start-page: 111
  year: 2018
  ident: B72
  article-title: Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes.
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.08.010
– volume: 50
  start-page: 41
  year: 2017
  ident: B65
  article-title: Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: implications for scaffold design and performance.
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.12.034
– volume: 25
  start-page: 237
  year: 2019
  ident: B61
  article-title: Reconstruction strategies of the ureter and urinary diversion using tissue engineering approaches.
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2018.0345
– volume: 20
  start-page: 2430
  year: 2014
  ident: B142
  article-title: Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury models.
  publication-title: Med. Sci. Monit.
  doi: 10.12659/msm.891042
– volume: 42
  start-page: 422
  year: 2008
  ident: B99
  article-title: Increasing numbers of ureteric injuries after the introduction of laparoscopic surgery.
  publication-title: Scand. J. Urol. Nephrol.
  doi: 10.1080/00365590802025857
– volume: 20
  year: 2009
  ident: B30
  article-title: The role of polymer nanosurface roughness and submicron pores in improving bladder urothelial cell density and inhibiting calcium oxalate stone formation.
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/8/085104
– volume: 184
  start-page: 774
  year: 2013
  ident: B153
  article-title: Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction.
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2013.04.016
– volume: 34
  start-page: 1537
  year: 2013
  ident: B57
  article-title: A bilayered hybrid microfibrous PLGA–acellular matrix scaffold for hollow organ tissue engineering.
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.10.075
– volume: 377
  start-page: 1175
  year: 2011
  ident: B108
  article-title: Tissue-engineered autologous urethras for patients who need reconstruction: an observational study.
  publication-title: Lancet
  doi: 10.1016/s0140-6736(10)62354-9
– volume: 12
  year: 2019
  ident: B138
  article-title: Scale−up of electrospinning technology: applications in the pharmaceutical industry.
  publication-title: Wiley Interdiscip. Rev.
  doi: 10.1002/wnan.1611
– volume: 18
  start-page: 36
  year: 2000
  ident: B45
  article-title: Tissue engineering of the bladder.
  publication-title: World J. Urol.
  doi: 10.1007/s003450050007
– volume: 241
  start-page: 1416
  year: 2016
  ident: B155
  article-title: Seeding cell approach for tissue-engineered urethral reconstruction in animal study: a systematic review and meta-analysis.
  publication-title: Exp. Biol. Med.
  doi: 10.1177/1535370216640148
– volume: 173
  start-page: 140
  year: 2005
  ident: B71
  article-title: Endoscopic urethroplasty with unseeded small intestinal submucosa collagen matrix grafts: a pilot study.
  publication-title: J. Urol.
  doi: 10.1097/01.ju.0000146554.79487.7f
– volume: 82
  start-page: 47
  year: 2015
  ident: B76
  article-title: Biomatrices for bladder reconstruction.
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2014.11.020
– volume: 94
  start-page: 75
  year: 2013
  ident: B28
  article-title: Defining the extracellular matrix using proteomics.
  publication-title: Int. J. Exp. Pathol.
  doi: 10.1111/iep.12011
– start-page: 149
  year: 2017
  ident: B80
  publication-title: Biomaterials Produced via Green Electrospinning. Electrospun Biomaterials and Related Technologies.
  doi: 10.1007/978-3-319-70049-6_5
– volume: 48
  start-page: 1097
  year: 2016
  ident: B37
  article-title: Electrospun PLLA nanofiber scaffolds for bladder smooth muscle reconstruction.
  publication-title: Int. Urol. Nephrol.
  doi: 10.1007/s11255-016-1259-2
– volume: 79
  start-page: 1163
  year: 2012
  ident: B109
  article-title: The clinical spectrum of the presenting signs and symptoms of anterior urethral stricture: detailed analysis of a single institutional cohort.
  publication-title: Urology
  doi: 10.1016/j.urology.2012.01.044
– volume: 163
  start-page: 268
  year: 2014
  ident: B25
  article-title: Extracellular matrix as an inductive scaffold for functional tissue reconstruction.
  publication-title: Transl. Res.
  doi: 10.1016/j.trsl.2013.11.003
– volume: 20
  year: 2019
  ident: B1
  article-title: From acellular matrices to smart polymers: degradable scaffolds that are transforming the shape of urethral tissue engineering.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20071763
– volume: 191
  start-page: 1389
  year: 2014
  ident: B62
  article-title: Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with spina bifida.
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2013.10.103
– volume: 2019
  year: 2019
  ident: B140
  article-title: Comprehensive review emphasizing anatomy, etiology, diagnosis, and treatment of male urethral stricture disease.
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2019/9046430
– volume: 19
  year: 2018
  ident: B116
  article-title: Bioengineering approaches for bladder regeneration.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19061796
– volume: 9
  start-page: 1268
  year: 2015
  ident: B123
  article-title: Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk–collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall.
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.1632
– volume: 5
  start-page: 117
  year: 2004
  ident: B9
  article-title: The uroepithelium: not just a passive barrier.
  publication-title: Traffic
  doi: 10.1046/j.1600-0854.2003.00156.x
– volume: 63
  start-page: 531
  year: 2013
  ident: B96
  article-title: Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study.
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2012.07.041
– volume: 9
  year: 2014
  ident: B106
  article-title: Is the poly (L-Lactide-Co–Caprolactone) nanofibrous membrane suitable for urinary bladder regeneration?
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0105295
– volume: 676
  start-page: 195
  year: 2018
  ident: B10
  article-title: Biomimetic scaffold containing PVDF nanofibers with sustained TGF-β release in combination with AT-MSCs for bladder tissue engineering.
  publication-title: Gene
  doi: 10.1016/j.gene.2018.07.046
– volume: 23
  start-page: 2281
  year: 2012
  ident: B3
  article-title: Effective combination of hydrostatic pressure and aligned nanofibrous scaffolds on human bladder smooth muscle cells: implication for bladder tissue engineering.
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10856-012-4688-1
– volume: 9
  year: 2014
  ident: B67
  article-title: Ureter regeneration–the proper scaffold has to be defined.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0106023
– volume: 10
  ident: B143
  article-title: Characterization of nanostructured ureteral stent with gradient degradation in a porcine model.
  publication-title: Int. J. Nanomed.
  doi: 10.2147/ijn.s80810
– volume: 133
  start-page: 866
  year: 1985
  ident: B131
  article-title: Ureteral replacement using collagen sponge tube grafts.
  publication-title: J. Urol.
  doi: 10.1016/s0022-5347(17)49268-8
– volume: 5
  start-page: 101
  year: 2018
  ident: B53
  article-title: Adult iatrogenic ureteral injury and stricture–incidence and treatment strategies.
  publication-title: Asian J. Urol.
  doi: 10.1016/j.ajur.2018.02.003
– volume: 178
  start-page: 55
  year: 2012
  ident: B166
  article-title: Differentiation of adipose-derived stem cells promotes regeneration of smooth muscle for ureteral tissue engineering.
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2012.01.047
– volume: 2016
  year: 2016
  ident: B54
  article-title: Fluid structural analysis of urine flow in a stented ureter.
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2016/5710798
– volume: 28
  start-page: 421
  year: 2012
  ident: B29
  article-title: Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients.
  publication-title: Pediatr. Surg. Int.
  doi: 10.1007/s00383-012-3063-0
– volume: 100
  start-page: 1725
  year: 2012
  ident: B50
  article-title: New ureteral scaffold constructed with composite poly (L−lactic acid)–collagen and urothelial cells by new centrifugal seeding system.
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.34134
– year: 2018
  ident: B101
  publication-title: Histology: a Text and Atlas: with Correlated Cell and Molecular Biology.
– volume: 86
  start-page: 1541
  year: 2004
  ident: B90
  article-title: Engineering principles of clinical cell-based tissue engineering.
  publication-title: JBJS
  doi: 10.2106/00004623-200407000-00029
– volume: 187
  start-page: 559
  year: 2012
  ident: B94
  article-title: Presenting symptoms of anterior urethral stricture disease: a disease specific, patient reported questionnaire to measure outcomes.
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2011.10.043
– volume: 33
  start-page: 161
  year: 2010
  ident: B121
  article-title: Construction of ureteral grafts by seeding urothelial cells and bone marrow mesenchymal stem cells into polycaprolactone-lecithin electrospun fibers.
  publication-title: Int. J. Artif. Organs
  doi: 10.1177/039139881003300305
– volume: 9
  start-page: 410
  year: 2012
  ident: B117
  article-title: Bladder tissue engineering using biocompatible nanofibrous electrospun constructs: feasibility and safety investigation.
  publication-title: Urol. J.
– volume: 15
  start-page: 9899
  ident: B144
  article-title: A nanostructured degradable ureteral stent fabricated by electrospinning for upper urinary tract reconstruction.
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2015.10747
– volume: 100
  start-page: 2612
  year: 2012
  ident: B122
  article-title: Tissue engineering of ureteral grafts by seeding urothelial differentiated hADSCs onto biodegradable ureteral scaffolds.
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.34182
– volume: 195
  start-page: 112
  year: 2016
  ident: B84
  article-title: Buccal versus lingual mucosa graft in anterior urethroplasty: a prospective comparison of surgical outcome and donor site morbidity.
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2015.07.098
– volume: 107
  start-page: 296
  year: 2011
  ident: B115
  article-title: Developing biodegradable scaffolds for tissue engineering of the urethra.
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410x.2010.09310.x
– volume: 8
  year: 2017
  ident: B78
  article-title: Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model.
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-017-0500-y
– volume: 8
  year: 2019
  ident: B56
  article-title: The biomedical use of silk: past, present, future.
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201800465
– volume: 104
  start-page: 94
  year: 2016
  ident: B137
  article-title: Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications.
  publication-title: J. Biomed. Mater. Res. A.
  doi: 10.1002/jbm.a.35544
– volume: 8
  start-page: 10252
  year: 2016
  ident: B158
  article-title: Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth.
  publication-title: Nanoscale
  doi: 10.1039/c6nr01169a
– volume: 19
  start-page: 413
  year: 2013
  ident: B125
  article-title: Ureteral tissue engineering: where are we and how to proceed?
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2012.0737
– volume: 75
  start-page: 877
  year: 2017
  ident: B119
  article-title: Bladder smooth muscle cells on electrospun poly (ε-caprolactone)/poly (l-lactic acid) scaffold promote bladder regeneration in a canine model.
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.02.064
– volume: 104
  start-page: 9
  year: 2016
  ident: B60
  article-title: Tissue performance of bladder following stretched electrospun silk fibroin matrix and bladder acellular matrix implantation in a rabbit model.
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.35535
– volume: 10
  start-page: 30
  year: 2000
  ident: B20
  article-title: Enterocystoplasty complications in children. A study of 30 cases.
  publication-title: Eur. J. Pediatr. Surg.
  doi: 10.1055/s-2008-1072319
– volume: 10
  year: 2015
  ident: B34
  article-title: Tissue engineering for human urethral reconstruction: systematic review of recent literature.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118653
– volume: 24
  start-page: 2915
  ident: B132
  article-title: Nano-structured polymers enhance bladder smooth muscle cell function.
  publication-title: Biomaterials
  doi: 10.1016/s0142-9612(03)00123-6
– volume: 24
  start-page: 863
  year: 2018
  ident: B33
  article-title: Ureteral reconstruction in goats using tissue-engineered templates and subcutaneous preimplantation.
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2017.0347
– volume: 24
  year: 2013
  ident: B111
  article-title: Is amniotic membrane a suitable biomaterial for reconstruction of long ureteral defects.
  publication-title: Saudi J. Kidney Dis. Transpl.
  doi: 10.4103/1319-2442.106311
– volume: 104
  start-page: 263
  year: 2009
  ident: B51
  article-title: Biodegradable urethral stents seeded with autologous urethral epithelial cells in the treatment of post−traumatic urethral stricture: a feasibility study in a rabbit model.
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410x.2009.08366.x
– volume: 168
  start-page: 2600
  year: 2002
  ident: B14
  article-title: Alterations in the molecular determinants of bladder compliance at hydrostatic pressures less than 40 cm. H2O.
  publication-title: J. Urol.
  doi: 10.1097/00005392-200212000-00084
– volume: 4
  start-page: 1
  year: 2005
  ident: B55
  article-title: Impurities: guideline for residual solvents Q3C (R5).
  publication-title: Curr. Step
– volume: 16
  start-page: 201
  year: 2019
  ident: B124
  article-title: Stem cells seeded on multilayered scaffolds implanted into an injured bladder rat model improves bladder function.
  publication-title: Tissue Eng. Regen. Med.
  doi: 10.1007/s13770-019-00187-x
– volume: 27
  start-page: 3136
  year: 2006
  ident: B15
  article-title: Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies.
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.026
– volume: 98
  start-page: 1100
  year: 2006
  ident: B163
  article-title: Challenges in a larger bladder replacement with cell−seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model.
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410x.2006.06447.x
– volume: 182
  start-page: 983
  year: 2009
  ident: B82
  article-title: Etiology of urethral stricture disease in the 21st century.
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2009.05.023
– volume: 11
  year: 2015
  ident: B92
  article-title: Supportive features of a new hybrid scaffold for urothelium engineering.
  publication-title: Arch. Med. Sci. AMS
  doi: 10.5114/aoms.2015.50977
– volume: 172
  start-page: 1151
  year: 2004
  ident: B97
  article-title: Canine ureteral replacement with long acellular matrix tube: is it clinically applicable?
  publication-title: J. Urol.
  doi: 10.1097/01.ju.0000134886.44065.00
– volume: 16
  start-page: 27659
  year: 2015
  ident: B162
  article-title: Application of Wnt pathway inhibitor delivering scaffold for inhibiting fibrosis in urethra strictures: in vitro and in vivo study.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms161126050
– volume: 20
  start-page: 73
  year: 2013
  ident: B75
  article-title: Understanding roles of porcine small intestinal submucosa in urinary bladder regeneration: identification of variable regenerative characteristics of small intestinal submucosa.
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2013.0126
SSID ssj0001257582
Score 2.2516525
SecondaryResourceType review_article
Snippet Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 579925
SubjectTerms Bioengineering and Biotechnology
biopolymers
regeneration
scaffold
ureter
urethra
urinary tract
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZCeoFDBZSqKQ8ZqadKmzp-4F0khGgVhCKBOBCJm7XrHbeR0AaSIMG_Z8a7SbMS6qnXtb2PmbXn-_z4hrFvwShrrYCkpEVCDUoleaZNklE2aw8iV4Em9K9vTq7GenRv7jtsmd6qMeD8XWpH-aTGs4f-y9PrOXb4M2KcGG9_hGIyJcVLKfrGZpk0G-wDBiZLmRyuG7RfT7kgNkllvbb5fstWdIoi_i3k2d43uRaILrfZxwZB8ova5TusA9Uu21rTFfzERsM6uc38cRIzEp3yi7_r1DyvSn5LhbSRgyNo5eNZPQTyu-gGvnazPTa-HN79ukqapAmJ11ouEiuVUgCeZHKkOilMMBZhUvA5ZHRyCemEgoAxSduI5_LcKokOSQsBqrSgPrNuNa3gC-OZTstSFkGAB-R9RSptDj6kgzAQwou0x8TSWM43iuKU2OLBIbMg-7poX0f2dbV9e-z7qsljLafxr8o_yQOriqSEHS9MZ79d07FcKbVXUhSgQGtSOtADJA2qKA0O417hSx4v_eew59BySF7B9HnupDZ05AwpXY_ZlmNbT2yXVJM_UYPbIk_DOP_1f7ziPtukr45bBO0B6y5mz3CIUGdRHMUf-A1SkP3K
  priority: 102
  providerName: Scholars Portal
Title Electrospinning: Application and Prospects for Urologic Tissue Engineering
URI https://www.proquest.com/docview/2455833862
https://pubmed.ncbi.nlm.nih.gov/PMC7576678
https://doaj.org/article/d24c320be3e445cd8418823bd5911c38
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygvGYkJKeDaTp2wFdSqQgIxtBKblThnUQmlqI__z51dIFlgYcmQOIlzPue-8_m-Y-zKp8oYIyCpKEioQamkyHWa5FTN2oEolKcF_afn3miiH1_T10apL9oTFumBo-BuK6mdkqIEBVpTJrvuIihUZZXiNHUqpPmizWs4U3F1BWFIJmMYE72w_NaX0xnRYkpxk5o8p9LYDUMU-PpbILO9RbJhc4a7bGcNFnk_dnKPbUC9z7YbFIIH7HEQ69gsPqah-NAd7_-EpHlRV_yFLtKeDY74lE_m8W_Hx0HivPGwQzYZDsYPo2RdHyFxWstlYqRSCsARI45UvTL1qUFE5F0BOSUpoeegwKP50SZAt6IwSqLss1KAqgyoI7ZZz2o4ZjzXWVXJ0gtwgC5emUlTgPNZ13eFcCLrMPElLOvW5OFUw-LdohNB8rVBvpbka6N8O-z6-5aPyJzxW-N7GoHvhkR6HU6gKti1Kti_VKHDLr_Gz-IkochHUcNstbBSp5Rdht5bh5nWwLbe2L5ST98C3bZBlwxN-sl_dPGUbdFXh92A5oxtLucrOEdUsywvggLj8UlnnxgJ9fU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospinning%3A+Application+and+Prospects+for+Urologic+Tissue+Engineering&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Masoud+Zamani&rft.au=Nasser+Shakhssalim&rft.au=Seeram+Ramakrishna&rft.au=Mohammad+Naji&rft.date=2020-10-07&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-4185&rft.volume=8&rft_id=info:doi/10.3389%2Ffbioe.2020.579925&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d24c320be3e445cd8418823bd5911c38
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon