A Random Pattern-Mixture Model for Longitudinal Data With Dropouts

Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of the dropout mechanism. These models stratify the data according to time to dropout and formulate a model for each stratum. This usually results in underindent...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 99; no. 468; pp. 929 - 937
Main Authors Guo, Wensheng, Ratcliffe, Sarah J, Have, Thomas Ten T
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis 01.12.2004
American Statistical Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
DOI10.1198/016214504000000674

Cover

Loading…
Abstract Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of the dropout mechanism. These models stratify the data according to time to dropout and formulate a model for each stratum. This usually results in underindentifiability, because we need to estimate many pattern-specific parameters even though the eventual interest is usually on the marginal parameters. In this article we extend this framework to a random pattern-mixture model, where the pattern-specific parameters are treated as nuisance parameters and modeled as random instead of fixed. The pattern is defined according to a surrogate for the dropout process. A constraint is then put on the pattern by linking it to the time to dropout using a random-effects survival model. We assume, conditional on the latent pattern effects, that the longitudinal outcome and the dropout process are independent. This model retains the robustness of the traditional pattern-mixture models, while avoiding the overparameterization problem. When we define each subject as a separate stratum, this model reduces to the shared parameter model. Maximum likelihood estimates are obtained using an EM Newton- Raphson algorithm. We apply the method to the depression data from the Prevention of Suicide in Primary Care Elderly Collaborative Trial (PROSPECT). We show when the dropout information is adjusted for under the proposed model, the treatment seems to reduce depression in the elderly.
AbstractList Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of the dropout mechanism. These models stratify the data according to time to dropout and formulate a model for each stratum. This usually results in underindentifiability, because we need to estimate many pattern-specific parameters even though the eventual interest is usually on the marginal parameters. In this article we extend this framework to a random pattern-mixture model, where the pattern-specific parameters are treated as nuisance parameters and modeled as random instead of fixed. The pattern is defined according to a surrogate for the dropout process. A constraint is then put on the pattern by linking it to the time to dropout using a random-effects survival model. We assume, conditional on the latent pattern effects, that the longitudinal outcome and the dropout process are independent. This model retains the robustness of the traditional pattern-mixture models, while avoiding the overparameterization problem. When we define each subject as a separate stratum, this model reduces to the shared parameter model. Maximum likelihood estimates are obtained using an EM Newton- Raphson algorithm. We apply the method to the depression data from the Prevention of Suicide in Primary Care Elderly Collaborative Trial (PROSPECT). We show when the dropout information is adjusted for under the proposed model, the treatment seems to reduce depression in the elderly. [PUBLICATION ABSTRACT]
Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of the dropout mechanism. These models stratify the data according to time to dropout and formulate a model for each stratum. This usually results in underindentifiability, because we need to estimate many pattern-specific parameters even though the eventual interest is usually on the marginal parameters. In this article we extend this framework to a random pattern-mixture model, where the pattern-specific parameters are treated as nuisance parameters and modeled as random instead of fixed. The pattern is defined according to a surrogate for the dropout process. A constraint is then put on the pattern by linking it the time to dropout using a random-effects survival model. We assume, conditional on the latent pattern effects, that the longitudinal outcome and the dropout process are independent. This model retains the robustness of the traditional pattern-mixture models, while avoiding the overparameterization problem. When we define each subject as a separate stratum, this model reduces to the shared parameter model. Maximum likelihood estimates are obtained using an EM Newton—Raphson algorithm. We apply the method to the depression data from the Prevention of Suicide in Primary Care Elderly Collaborative Trial (PROSPECT). We show when the dropout information is adjusted for under the proposed model, the treatment seems to reduce depression in the elderly.
Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of the dropout mechanism. These models stratify the data according to time to dropout and formulate a model for each stratum. This usually results in underindentifiability, because we need to estimate many pattern-specific parameters even though the eventual interest is usually on the marginal parameters. In this article we extend this framework to a random pattern-mixture model, where the pattern-specific parameters are treated as nuisance parameters and modeled as random instead of fixed. The pattern is defined according to a surrogate for the dropout process. A constraint is then put on the pattern by linking it to the time to dropout using a random-effects survival model. We assume, conditional on the latent pattern effects, that the longitudinal outcome and the dropout process are independent. This model retains the robustness of the traditional pattern-mixture models, while avoiding the overparameterization problem. When we define each subject as a separate stratum, this model reduces to the shared parameter model. Maximum likelihood estimates are obtained using an EM Newton- Raphson algorithm. We apply the method to the depression data from the Prevention of Suicide in Primary Care Elderly Collaborative Trial (PROSPECT). We show when the dropout information is adjusted for under the proposed model, the treatment seems to reduce depression in the elderly.
Author Have, Thomas Ten T
Ratcliffe, Sarah J
Guo, Wensheng
Author_xml – sequence: 1
  givenname: Wensheng
  surname: Guo
  fullname: Guo, Wensheng
– sequence: 2
  givenname: Sarah J
  surname: Ratcliffe
  fullname: Ratcliffe, Sarah J
– sequence: 3
  givenname: Thomas Ten T
  surname: Have
  fullname: Have, Thomas Ten T
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16304651$$DView record in Pascal Francis
BookMark eNp9kU9r3DAQxUVIIJtNv0CgYArNzYkky7J86CF_2rSwoSWkNDczluVWiyxtJJl2v320dZLCFnYuYni_NyM9HaF966xC6ITgM0JqcY4Jp4SVmOG_xSu2h2akLKqcVuxhH802QJ6I-hAdhbDcQJUQM3R5kd2B7dyQfYMYlbf5rf4TR6-yW9cpk_XOZwtnf-o4dtqCya4hQvZDx1_ZtXcrN8ZwjA56MEG9eT7n6Punj_dXn_PF15svVxeLXDJGY84FVIopRou2BcwL6EtKOg4cOiwFU7JtSwVdkTpWCtxSmvCyrymDmiqpijk6neauvHscVYjNoINUxoBVbgxNIXCKgooEvtsCl2706fKhSWkIRqsaJ-j9MwRBguk9WKlDs_J6AL9uCC8w4yVJHJ046V0IXvX_ENxssm_-zz6ZxJZJ6ghROxs9aLPb-nayLkN0_nUZrcoas4on_cOka5v-ZoDfzpuuibA2zr88otgx_wnDAaSI
CODEN JSTNAL
CitedBy_id crossref_primary_10_1186_s12874_017_0355_z
crossref_primary_10_1007_s12561_019_09254_2
crossref_primary_10_1080_10503300902849475
crossref_primary_10_1080_19466315_2011_646912
crossref_primary_10_3758_s13428_023_02128_y
crossref_primary_10_1186_s12913_021_06521_1
crossref_primary_10_1513_AnnalsATS_202002_088SD
crossref_primary_10_1016_j_jclinepi_2017_05_016
crossref_primary_10_1093_biostatistics_kxr048
crossref_primary_10_1016_j_addr_2013_03_003
crossref_primary_10_1111_j_1467_9876_2008_00628_x
crossref_primary_10_1186_1742_5573_5_1
crossref_primary_10_1002_bimj_200900093
crossref_primary_10_1080_03610918_2014_889154
crossref_primary_10_1016_j_jspi_2007_04_005
crossref_primary_10_1513_AnnalsATS_201604_308OT
crossref_primary_10_1111_j_1467_9876_2008_00641_x
crossref_primary_10_1002_sim_9083
crossref_primary_10_1002_sim_3131
crossref_primary_10_1002_sim_3494
crossref_primary_10_1016_j_artmed_2024_103056
Cites_doi 10.1111/j.1532-5415.2000.tb04690.x
ContentType Journal Article
Copyright American Statistical Association 2004
Copyright 2004 American Statistical Association
2005 INIST-CNRS
Copyright American Statistical Association Dec 2004
Copyright_xml – notice: American Statistical Association 2004
– notice: Copyright 2004 American Statistical Association
– notice: 2005 INIST-CNRS
– notice: Copyright American Statistical Association Dec 2004
DBID AAYXX
CITATION
IQODW
3V.
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AF
8BJ
8C1
8FE
8FG
8FI
8FJ
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FQK
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JBE
K60
K6~
K9-
K9.
L.-
L6V
M0C
M0R
M0S
M0T
M1P
M2O
M2P
M7S
MBDVC
PADUT
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
S0X
DOI 10.1198/016214504000000674
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
International Bibliography of the Social Sciences (IBSS)
Public Health Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Consumer Health Database (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Consumer Health Database
Health & Medical Collection (Alumni)
Healthcare Administration Database
Medical Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Research Library China
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Family Health (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
International Bibliography of the Social Sciences (IBSS)
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Health Management
ABI/INFORM China
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 937
ExternalDocumentID 759029901
16304651
10_1198_016214504000000674
27590476
10709659
Genre Article
Feature
GroupedDBID -DZ
-~X
..I
.7F
.GJ
.QJ
0BK
0R~
29L
2AX
30N
3R3
3V.
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABUWG
ABXSQ
ABXUL
ABXYU
ABYAD
ABYWD
ACAGQ
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFKRA
AFSUE
AFVYC
AFXHP
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIJEM
AKBVH
AKOOK
ALCKM
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMEWO
AQRUH
AQUVI
AVBZW
AWYRJ
AZQEC
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BVXVI
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWQXO
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
H13
HCIFZ
HF~
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPO
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
K9-
KYCEM
L6V
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
N95
NA5
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UKHRP
UPT
UT5
UU3
VH1
VOH
WH7
WHG
WZA
YQT
YYM
YYP
ZGOLN
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADYSH
AFRVT
AGLNM
AIHAF
AIYEW
AMPGV
PHGZM
PHGZT
.-4
07G
1OL
AAAVZ
AAFWJ
AAIKQ
AAKBW
AAYXX
ABEFU
ABRLO
ACGEE
ADXHL
AEUMN
AFQQW
AGCQS
AGLEN
AMATQ
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
E.L
HGD
IPNFZ
IVXBP
KQ8
LJTGL
NHB
NUSFT
TAQ
TFMCV
UB9
UQL
YXB
ZCG
ZGI
ZUP
ZXP
IQODW
PJZUB
PPXIY
PQGLB
TASJS
7XB
8BJ
8FK
FQK
JBE
K9.
L.-
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c442t-68a7e4e423bba063af521d6a6ad0c84ecbb5ead3d0c4580b227e45f924a92ece3
IEDL.DBID 7X7
ISSN 0162-1459
IngestDate Fri Jul 11 03:55:06 EDT 2025
Wed Aug 13 06:38:32 EDT 2025
Mon Jul 21 09:14:08 EDT 2025
Thu Apr 24 22:56:08 EDT 2025
Tue Jul 01 01:32:55 EDT 2025
Thu Jun 19 14:56:23 EDT 2025
Wed Dec 25 09:06:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 468
Keywords Mixed distribution
Data analysis
Conditional distribution
Nuisance parameter
Estimator robustness
Suicide
Survival
Care
Statistical method
Prevention
Survival function
Marginal distribution
Random effect
Maximum likelihood
Survival model
EM algorithm
Application
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-68a7e4e423bba063af521d6a6ad0c84ecbb5ead3d0c4580b227e45f924a92ece3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 274842790
PQPubID 41715
PageCount 9
ParticipantIDs pascalfrancis_primary_16304651
proquest_miscellaneous_38019828
crossref_primary_10_1198_016214504000000674
proquest_journals_274842790
crossref_citationtrail_10_1198_016214504000000674
informaworld_taylorfrancis_310_1198_016214504000000674
jstor_primary_27590476
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-12-01
PublicationDateYYYYMMDD 2004-12-01
PublicationDate_xml – month: 12
  year: 2004
  text: 2004-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2004
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References Journal (p_19); 88
Progressive Renal Disease Trial (p_34); 20
Measures Repeated (p_13); 16
(p_11); 39
(p_17); 8
Society (p_5); 148
Informative Right Presence (p_37); 44
(p_31); 48
References_xml – volume: 44
  start-page: 175
  ident: p_37
  publication-title: Biometrics
– volume: 148
  start-page: 82
  ident: p_5
  publication-title: Ser. A
– volume: 8
  start-page: 51
  ident: p_17
  publication-title: Research
– volume: 39
  start-page: 1
  ident: p_11
  publication-title: Ser. B
– volume: 16
  start-page: 239
  ident: p_13
  publication-title: Medicine
– volume: 48
  start-page: 357
  ident: p_31
  publication-title: American Geriatrics Society
  doi: 10.1111/j.1532-5415.2000.tb04690.x
– volume: 88
  start-page: 125
  ident: p_19
  publication-title: American Statistical Association
– volume: 20
  start-page: 1197
  ident: p_34
  publication-title: Medicine
SSID ssj0000788
Score 1.8964617
Snippet Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of the dropout...
SourceID proquest
pascalfrancis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 929
SubjectTerms Algorithms
Applications
Applications and Case Studies
Censorship
Data analysis
Data models
Depressive disorders
Dropout
Dropouts
EM algorithm
Exact sciences and technology
General topics
Longitudinal data
Longitudinal data analysis
Mathematics
Medical sciences
Medical treatment
Mental depression
Mixed-effects model
Modeling
Multilevel models
Multivariate analysis
Nonparametric inference
Older adults
Parametric models
Pattern-mixture mode
Primary health care
Probability and statistics
School dropouts
Sciences and techniques of general use
Statistical analysis
Statistical methods
Statistics
Title A Random Pattern-Mixture Model for Longitudinal Data With Dropouts
URI https://www.tandfonline.com/doi/abs/10.1198/016214504000000674
https://www.jstor.org/stable/27590476
https://www.proquest.com/docview/274842790
https://www.proquest.com/docview/38019828
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7a5JJL6SvUTbvVobciYsmyLZ1KXttQmhBCQ_dm9DINpHba9UJ_fmf82HQJ7EVgWUJCI82MpNH3AXysjU-tEI4b52uugs240bnmaBusqV2mfUZvhy8ui_Mb9XWRL8bYnOUYVjnpxF5Rh9bTGfmhJNBLWZr08_1vTqRRdLk6Mmg8hV1CLqOIrnJRPijisqedRKdGcqFyM72ZMfqQ8jCLZvCgsdWGXdpALZ0iFSls0i5x5OqB8uKR9u5N0vw5PBt9SXY0CP8FPInNS9gj93FAX34Fx0fs2jah_cWuehzNhl_c_qU7A0YcaHcMm2ffWqIsWgWix2KntrPsx233k50SfcKqW76Gm_nZ95NzPrImcK-U7HihbRlVRDfJOYsOiK3RQofCFjakXqvonctx-mT4pXKdOimxeF7jPswaGX3M9mGnaZv4BlgIQgZXC29srWoRnSNsnzI48jJVTBMQ05hVfoQUJ2aLu6rfWhhdPR7nBD6t69wPgBpbSxf_i6Lq-mOMUQBVtq3ifi-0dRuyzE2qyiKB2YYUHzpR0CVxLhI4mMRajet5Wa1nXwIf1n9xIdLtim1iu8LOoK03uH99u7X-AexNUJGpeAc73Z9VfI9uTedm_eTFVJ8ISudfZrB7fHZ5df0PN1TzuQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcqAXxKsiFFof4ISsJo7z8AGhtku1pbsVQq3YW_ArolJJCpsV8KP4j8zksWVVaW89xrETax6eGY89H8DrUtlQR5HhytiSS6djrvIk52gbtCpNnNuY7g5Pz9Lxhfw4S2Yb8He4C0PHKoc1sV2oXW1pj3xfUNFLkanw_fUPTqBRlFwdEDQ6qTj1f35hxDZ_dzJC9r4R4vjD-dGY96AC3EopGp7mOvPSoxdhjEb7rEs0YC7VqXahzaW3xiRI3RifZJKHRgjsnpQYpmglvPUxfvce3Ee7G5JCZbPsZuHPWphLdKIEj2Sihjs6Kt-nNmwijekshFyxgytVUoeTkXRMU8-RU2UHsXHLWrQm8PgRPOx9V3bQCdtj2PDVE9gid7Wr9vwUDg_YZ125-jv71NbtrPj08jflKBhhrl0x_D2b1ASRtHAEx8VGutHsy2XzjY0IrmHRzJ_BxZ0QdBs2q7ryz4E5FwlnysgqXcoy8sZQLaHMGfJqpQ8DiAaaFbYvYU5IGldFG8qovLhN5wDeLsdcdwU81vZO_2dF0bTbJj0DinjdwO2Wact_iCxRoczSAHZXuHgziZSS0kkUwM7A1qJfP-bFUtoD2Fu-RcWnbI6ufL3AyaBvoTBefrF2_B48GJ9PJ8Xk5Ox0B7aGMpVh9BI2m58L_wpdqsbstoLM4Otda84_pnAuyA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61VKq4AH2gbqHgQ2-VaR5OYh-hy4q2sEJVUblFfgpUyKJuIlX99czksXRLxYFjFDvx2DPjb_z4BuB9UDbScWy4MjZw4XTKlcwkx7lBq2BSaVO6O3wyzY_OxJfz7LxfcJv3xyophg4dUUTrq8m4b1zoDFzJj4hSiF-b1K9zt-IpPMuJOZyucETTO09ctHknqTzHCmq4NPPfbyxNTEu0pcNRRTo3qefYdaHLeXHPfbdz0mQdykGa7ijKz72mNnv2zz9Ej48XdwPWerjK9jv9egFPfPUSVgmhdgTPr-Bgn33DT8-u2WlL1Vnxk8vftC3BKM3aFUMB2fGMsiI1jjJwsbGuNftxWV-wMWVoaOr5azibHH7_dMT7xAzcCpHUPJe68MIjEjNGI8bRAUGAy3WuXWSl8NaYDDU0xSeRycgkCRbPAoZ6WiXe-nQTVqpZ5d8Acy5OnAmxVTqIEHtjiD6ocIaArPDRCOJhVErbs5ZT8oyrso1elCzvd88IPizq3HScHQ-Wzv8e7LJuV0r6IS7Thyputmqx-EdSZCoSRT6CnSU9uWtETvvQWTyCrUFxyt5lzLG2kCIpFIq8u3iLtk4bOLryswYbg3BCYYj89rFN3oXnp-NJefx5-nULVgfOyijehpX6V-PfIb6qzU5rRLcRaRYF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+random+pattern-mixture+model+for+longitudinal+data+with+dropouts&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=WENSHENG+GUO&rft.au=RATCLIFFE%2C+Sarah+J&rft.au=TEN+HAVE%2C+Thomas+T&rft.date=2004-12-01&rft.pub=American+Statistical+Association&rft.issn=0162-1459&rft.volume=99&rft.issue=468&rft.spage=929&rft.epage=937&rft_id=info:doi/10.1198%2F016214504000000674&rft.externalDBID=n%2Fa&rft.externalDocID=16304651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon