A Random Pattern-Mixture Model for Longitudinal Data With Dropouts
Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of the dropout mechanism. These models stratify the data according to time to dropout and formulate a model for each stratum. This usually results in underindent...
Saved in:
Published in | Journal of the American Statistical Association Vol. 99; no. 468; pp. 929 - 937 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
Taylor & Francis
01.12.2004
American Statistical Association Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0162-1459 1537-274X |
DOI | 10.1198/016214504000000674 |
Cover
Loading…
Abstract | Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of the dropout mechanism. These models stratify the data according to time to dropout and formulate a model for each stratum. This usually results in underindentifiability, because we need to estimate many pattern-specific parameters even though the eventual interest is usually on the marginal parameters. In this article we extend this framework to a random pattern-mixture model, where the pattern-specific parameters are treated as nuisance parameters and modeled as random instead of fixed. The pattern is defined according to a surrogate for the dropout process. A constraint is then put on the pattern by linking it to the time to dropout using a random-effects survival model. We assume, conditional on the latent pattern effects, that the longitudinal outcome and the dropout process are independent. This model retains the robustness of the traditional pattern-mixture models, while avoiding the overparameterization problem. When we define each subject as a separate stratum, this model reduces to the shared parameter model. Maximum likelihood estimates are obtained using an EM Newton- Raphson algorithm. We apply the method to the depression data from the Prevention of Suicide in Primary Care Elderly Collaborative Trial (PROSPECT). We show when the dropout information is adjusted for under the proposed model, the treatment seems to reduce depression in the elderly. |
---|---|
AbstractList | Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of the dropout mechanism. These models stratify the data according to time to dropout and formulate a model for each stratum. This usually results in underindentifiability, because we need to estimate many pattern-specific parameters even though the eventual interest is usually on the marginal parameters. In this article we extend this framework to a random pattern-mixture model, where the pattern-specific parameters are treated as nuisance parameters and modeled as random instead of fixed. The pattern is defined according to a surrogate for the dropout process. A constraint is then put on the pattern by linking it to the time to dropout using a random-effects survival model. We assume, conditional on the latent pattern effects, that the longitudinal outcome and the dropout process are independent. This model retains the robustness of the traditional pattern-mixture models, while avoiding the overparameterization problem. When we define each subject as a separate stratum, this model reduces to the shared parameter model. Maximum likelihood estimates are obtained using an EM Newton- Raphson algorithm. We apply the method to the depression data from the Prevention of Suicide in Primary Care Elderly Collaborative Trial (PROSPECT). We show when the dropout information is adjusted for under the proposed model, the treatment seems to reduce depression in the elderly. [PUBLICATION ABSTRACT] Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of the dropout mechanism. These models stratify the data according to time to dropout and formulate a model for each stratum. This usually results in underindentifiability, because we need to estimate many pattern-specific parameters even though the eventual interest is usually on the marginal parameters. In this article we extend this framework to a random pattern-mixture model, where the pattern-specific parameters are treated as nuisance parameters and modeled as random instead of fixed. The pattern is defined according to a surrogate for the dropout process. A constraint is then put on the pattern by linking it the time to dropout using a random-effects survival model. We assume, conditional on the latent pattern effects, that the longitudinal outcome and the dropout process are independent. This model retains the robustness of the traditional pattern-mixture models, while avoiding the overparameterization problem. When we define each subject as a separate stratum, this model reduces to the shared parameter model. Maximum likelihood estimates are obtained using an EM Newton—Raphson algorithm. We apply the method to the depression data from the Prevention of Suicide in Primary Care Elderly Collaborative Trial (PROSPECT). We show when the dropout information is adjusted for under the proposed model, the treatment seems to reduce depression in the elderly. Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of the dropout mechanism. These models stratify the data according to time to dropout and formulate a model for each stratum. This usually results in underindentifiability, because we need to estimate many pattern-specific parameters even though the eventual interest is usually on the marginal parameters. In this article we extend this framework to a random pattern-mixture model, where the pattern-specific parameters are treated as nuisance parameters and modeled as random instead of fixed. The pattern is defined according to a surrogate for the dropout process. A constraint is then put on the pattern by linking it to the time to dropout using a random-effects survival model. We assume, conditional on the latent pattern effects, that the longitudinal outcome and the dropout process are independent. This model retains the robustness of the traditional pattern-mixture models, while avoiding the overparameterization problem. When we define each subject as a separate stratum, this model reduces to the shared parameter model. Maximum likelihood estimates are obtained using an EM Newton- Raphson algorithm. We apply the method to the depression data from the Prevention of Suicide in Primary Care Elderly Collaborative Trial (PROSPECT). We show when the dropout information is adjusted for under the proposed model, the treatment seems to reduce depression in the elderly. |
Author | Have, Thomas Ten T Ratcliffe, Sarah J Guo, Wensheng |
Author_xml | – sequence: 1 givenname: Wensheng surname: Guo fullname: Guo, Wensheng – sequence: 2 givenname: Sarah J surname: Ratcliffe fullname: Ratcliffe, Sarah J – sequence: 3 givenname: Thomas Ten T surname: Have fullname: Have, Thomas Ten T |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16304651$$DView record in Pascal Francis |
BookMark | eNp9kU9r3DAQxUVIIJtNv0CgYArNzYkky7J86CF_2rSwoSWkNDczluVWiyxtJJl2v320dZLCFnYuYni_NyM9HaF966xC6ITgM0JqcY4Jp4SVmOG_xSu2h2akLKqcVuxhH802QJ6I-hAdhbDcQJUQM3R5kd2B7dyQfYMYlbf5rf4TR6-yW9cpk_XOZwtnf-o4dtqCya4hQvZDx1_ZtXcrN8ZwjA56MEG9eT7n6Punj_dXn_PF15svVxeLXDJGY84FVIopRou2BcwL6EtKOg4cOiwFU7JtSwVdkTpWCtxSmvCyrymDmiqpijk6neauvHscVYjNoINUxoBVbgxNIXCKgooEvtsCl2706fKhSWkIRqsaJ-j9MwRBguk9WKlDs_J6AL9uCC8w4yVJHJ046V0IXvX_ENxssm_-zz6ZxJZJ6ghROxs9aLPb-nayLkN0_nUZrcoas4on_cOka5v-ZoDfzpuuibA2zr88otgx_wnDAaSI |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_1186_s12874_017_0355_z crossref_primary_10_1007_s12561_019_09254_2 crossref_primary_10_1080_10503300902849475 crossref_primary_10_1080_19466315_2011_646912 crossref_primary_10_3758_s13428_023_02128_y crossref_primary_10_1186_s12913_021_06521_1 crossref_primary_10_1513_AnnalsATS_202002_088SD crossref_primary_10_1016_j_jclinepi_2017_05_016 crossref_primary_10_1093_biostatistics_kxr048 crossref_primary_10_1016_j_addr_2013_03_003 crossref_primary_10_1111_j_1467_9876_2008_00628_x crossref_primary_10_1186_1742_5573_5_1 crossref_primary_10_1002_bimj_200900093 crossref_primary_10_1080_03610918_2014_889154 crossref_primary_10_1016_j_jspi_2007_04_005 crossref_primary_10_1513_AnnalsATS_201604_308OT crossref_primary_10_1111_j_1467_9876_2008_00641_x crossref_primary_10_1002_sim_9083 crossref_primary_10_1002_sim_3131 crossref_primary_10_1002_sim_3494 crossref_primary_10_1016_j_artmed_2024_103056 |
Cites_doi | 10.1111/j.1532-5415.2000.tb04690.x |
ContentType | Journal Article |
Copyright | American Statistical Association 2004 Copyright 2004 American Statistical Association 2005 INIST-CNRS Copyright American Statistical Association Dec 2004 |
Copyright_xml | – notice: American Statistical Association 2004 – notice: Copyright 2004 American Statistical Association – notice: 2005 INIST-CNRS – notice: Copyright American Statistical Association Dec 2004 |
DBID | AAYXX CITATION IQODW 3V. 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AF 8BJ 8C1 8FE 8FG 8FI 8FJ 8FK 8FL 8G5 ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FQK FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JBE K60 K6~ K9- K9. L.- L6V M0C M0R M0S M0T M1P M2O M2P M7S MBDVC PADUT PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U S0X |
DOI | 10.1198/016214504000000674 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database International Bibliography of the Social Sciences (IBSS) Public Health Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea International Bibliography of the Social Sciences Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection International Bibliography of the Social Sciences ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Consumer Health Database (Alumni Edition) ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Consumer Health Database Health & Medical Collection (Alumni) Healthcare Administration Database Medical Database Research Library Science Database Engineering Database Research Library (Corporate) Research Library China ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic SIRS Editorial |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep ProQuest Central Student ProQuest Central Essentials ProQuest AP Science SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Family Health (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection International Bibliography of the Social Sciences (IBSS) Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Health Management ABI/INFORM China ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-274X |
EndPage | 937 |
ExternalDocumentID | 759029901 16304651 10_1198_016214504000000674 27590476 10709659 |
Genre | Article Feature |
GroupedDBID | -DZ -~X ..I .7F .GJ .QJ 0BK 0R~ 29L 2AX 30N 3R3 3V. 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJCF ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABTAI ABUWG ABXSQ ABXUL ABXYU ABYAD ABYWD ACAGQ ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADBBV ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AELPN AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFKRA AFSUE AFVYC AFXHP AGDLA AGMYJ AGROQ AHDZW AHMOU AI. AIJEM AKBVH AKOOK ALCKM ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMEWO AQRUH AQUVI AVBZW AWYRJ AZQEC BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BVXVI CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWQXO EBS ECEWR EJD E~A E~B F5P FEDTE FJW FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH H13 HCIFZ HF~ HMCUK HQ6 HVGLF HZ~ H~9 H~P IAO IEA IGG IOF IPO IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ K9- KYCEM L6V LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 N95 NA5 NY~ O9- OFU OK1 P-O P2P PADUT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UKHRP UPT UT5 UU3 VH1 VOH WH7 WHG WZA YQT YYM YYP ZGOLN ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADYSH AFRVT AGLNM AIHAF AIYEW AMPGV PHGZM PHGZT .-4 07G 1OL AAAVZ AAFWJ AAIKQ AAKBW AAYXX ABEFU ABRLO ACGEE ADXHL AEUMN AFQQW AGCQS AGLEN AMATQ AMVHM AMXXU BCCOT BPLKW C06 CITATION DWIFK E.L HGD IPNFZ IVXBP KQ8 LJTGL NHB NUSFT TAQ TFMCV UB9 UQL YXB ZCG ZGI ZUP ZXP IQODW PJZUB PPXIY PQGLB TASJS 7XB 8BJ 8FK FQK JBE K9. L.- MBDVC PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c442t-68a7e4e423bba063af521d6a6ad0c84ecbb5ead3d0c4580b227e45f924a92ece3 |
IEDL.DBID | 7X7 |
ISSN | 0162-1459 |
IngestDate | Fri Jul 11 03:55:06 EDT 2025 Wed Aug 13 06:38:32 EDT 2025 Mon Jul 21 09:14:08 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 Tue Jul 01 01:32:55 EDT 2025 Thu Jun 19 14:56:23 EDT 2025 Wed Dec 25 09:06:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 468 |
Keywords | Mixed distribution Data analysis Conditional distribution Nuisance parameter Estimator robustness Suicide Survival Care Statistical method Prevention Survival function Marginal distribution Random effect Maximum likelihood Survival model EM algorithm Application |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-68a7e4e423bba063af521d6a6ad0c84ecbb5ead3d0c4580b227e45f924a92ece3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 274842790 |
PQPubID | 41715 |
PageCount | 9 |
ParticipantIDs | pascalfrancis_primary_16304651 proquest_miscellaneous_38019828 crossref_primary_10_1198_016214504000000674 proquest_journals_274842790 crossref_citationtrail_10_1198_016214504000000674 informaworld_taylorfrancis_310_1198_016214504000000674 jstor_primary_27590476 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-12-01 |
PublicationDateYYYYMMDD | 2004-12-01 |
PublicationDate_xml | – month: 12 year: 2004 text: 2004-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2004 |
Publisher | Taylor & Francis American Statistical Association Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: American Statistical Association – name: Taylor & Francis Ltd |
References | Journal (p_19); 88 Progressive Renal Disease Trial (p_34); 20 Measures Repeated (p_13); 16 (p_11); 39 (p_17); 8 Society (p_5); 148 Informative Right Presence (p_37); 44 (p_31); 48 |
References_xml | – volume: 44 start-page: 175 ident: p_37 publication-title: Biometrics – volume: 148 start-page: 82 ident: p_5 publication-title: Ser. A – volume: 8 start-page: 51 ident: p_17 publication-title: Research – volume: 39 start-page: 1 ident: p_11 publication-title: Ser. B – volume: 16 start-page: 239 ident: p_13 publication-title: Medicine – volume: 48 start-page: 357 ident: p_31 publication-title: American Geriatrics Society doi: 10.1111/j.1532-5415.2000.tb04690.x – volume: 88 start-page: 125 ident: p_19 publication-title: American Statistical Association – volume: 20 start-page: 1197 ident: p_34 publication-title: Medicine |
SSID | ssj0000788 |
Score | 1.8964617 |
Snippet | Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of the dropout... |
SourceID | proquest pascalfrancis crossref jstor informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 929 |
SubjectTerms | Algorithms Applications Applications and Case Studies Censorship Data analysis Data models Depressive disorders Dropout Dropouts EM algorithm Exact sciences and technology General topics Longitudinal data Longitudinal data analysis Mathematics Medical sciences Medical treatment Mental depression Mixed-effects model Modeling Multilevel models Multivariate analysis Nonparametric inference Older adults Parametric models Pattern-mixture mode Primary health care Probability and statistics School dropouts Sciences and techniques of general use Statistical analysis Statistical methods Statistics |
Title | A Random Pattern-Mixture Model for Longitudinal Data With Dropouts |
URI | https://www.tandfonline.com/doi/abs/10.1198/016214504000000674 https://www.jstor.org/stable/27590476 https://www.proquest.com/docview/274842790 https://www.proquest.com/docview/38019828 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7a5JJL6SvUTbvVobciYsmyLZ1KXttQmhBCQ_dm9DINpHba9UJ_fmf82HQJ7EVgWUJCI82MpNH3AXysjU-tEI4b52uugs240bnmaBusqV2mfUZvhy8ui_Mb9XWRL8bYnOUYVjnpxF5Rh9bTGfmhJNBLWZr08_1vTqRRdLk6Mmg8hV1CLqOIrnJRPijisqedRKdGcqFyM72ZMfqQ8jCLZvCgsdWGXdpALZ0iFSls0i5x5OqB8uKR9u5N0vw5PBt9SXY0CP8FPInNS9gj93FAX34Fx0fs2jah_cWuehzNhl_c_qU7A0YcaHcMm2ffWqIsWgWix2KntrPsx233k50SfcKqW76Gm_nZ95NzPrImcK-U7HihbRlVRDfJOYsOiK3RQofCFjakXqvonctx-mT4pXKdOimxeF7jPswaGX3M9mGnaZv4BlgIQgZXC29srWoRnSNsnzI48jJVTBMQ05hVfoQUJ2aLu6rfWhhdPR7nBD6t69wPgBpbSxf_i6Lq-mOMUQBVtq3ifi-0dRuyzE2qyiKB2YYUHzpR0CVxLhI4mMRajet5Wa1nXwIf1n9xIdLtim1iu8LOoK03uH99u7X-AexNUJGpeAc73Z9VfI9uTedm_eTFVJ8ISudfZrB7fHZ5df0PN1TzuQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcqAXxKsiFFof4ISsJo7z8AGhtku1pbsVQq3YW_ArolJJCpsV8KP4j8zksWVVaW89xrETax6eGY89H8DrUtlQR5HhytiSS6djrvIk52gbtCpNnNuY7g5Pz9Lxhfw4S2Yb8He4C0PHKoc1sV2oXW1pj3xfUNFLkanw_fUPTqBRlFwdEDQ6qTj1f35hxDZ_dzJC9r4R4vjD-dGY96AC3EopGp7mOvPSoxdhjEb7rEs0YC7VqXahzaW3xiRI3RifZJKHRgjsnpQYpmglvPUxfvce3Ee7G5JCZbPsZuHPWphLdKIEj2Sihjs6Kt-nNmwijekshFyxgytVUoeTkXRMU8-RU2UHsXHLWrQm8PgRPOx9V3bQCdtj2PDVE9gid7Wr9vwUDg_YZ125-jv71NbtrPj08jflKBhhrl0x_D2b1ASRtHAEx8VGutHsy2XzjY0IrmHRzJ_BxZ0QdBs2q7ryz4E5FwlnysgqXcoy8sZQLaHMGfJqpQ8DiAaaFbYvYU5IGldFG8qovLhN5wDeLsdcdwU81vZO_2dF0bTbJj0DinjdwO2Wact_iCxRoczSAHZXuHgziZSS0kkUwM7A1qJfP-bFUtoD2Fu-RcWnbI6ufL3AyaBvoTBefrF2_B48GJ9PJ8Xk5Ox0B7aGMpVh9BI2m58L_wpdqsbstoLM4Otda84_pnAuyA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61VKq4AH2gbqHgQ2-VaR5OYh-hy4q2sEJVUblFfgpUyKJuIlX99czksXRLxYFjFDvx2DPjb_z4BuB9UDbScWy4MjZw4XTKlcwkx7lBq2BSaVO6O3wyzY_OxJfz7LxfcJv3xyophg4dUUTrq8m4b1zoDFzJj4hSiF-b1K9zt-IpPMuJOZyucETTO09ctHknqTzHCmq4NPPfbyxNTEu0pcNRRTo3qefYdaHLeXHPfbdz0mQdykGa7ijKz72mNnv2zz9Ej48XdwPWerjK9jv9egFPfPUSVgmhdgTPr-Bgn33DT8-u2WlL1Vnxk8vftC3BKM3aFUMB2fGMsiI1jjJwsbGuNftxWV-wMWVoaOr5azibHH7_dMT7xAzcCpHUPJe68MIjEjNGI8bRAUGAy3WuXWSl8NaYDDU0xSeRycgkCRbPAoZ6WiXe-nQTVqpZ5d8Acy5OnAmxVTqIEHtjiD6ocIaArPDRCOJhVErbs5ZT8oyrso1elCzvd88IPizq3HScHQ-Wzv8e7LJuV0r6IS7Thyputmqx-EdSZCoSRT6CnSU9uWtETvvQWTyCrUFxyt5lzLG2kCIpFIq8u3iLtk4bOLryswYbg3BCYYj89rFN3oXnp-NJefx5-nULVgfOyijehpX6V-PfIb6qzU5rRLcRaRYF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+random+pattern-mixture+model+for+longitudinal+data+with+dropouts&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=WENSHENG+GUO&rft.au=RATCLIFFE%2C+Sarah+J&rft.au=TEN+HAVE%2C+Thomas+T&rft.date=2004-12-01&rft.pub=American+Statistical+Association&rft.issn=0162-1459&rft.volume=99&rft.issue=468&rft.spage=929&rft.epage=937&rft_id=info:doi/10.1198%2F016214504000000674&rft.externalDBID=n%2Fa&rft.externalDocID=16304651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |