Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods
•Comprehensive comparison between two methods available in deriving CD.•A unique revisiting procedure reveals the traits of these two methods.•A generic CD-KC relation for both wave-only and wave-current flows is proposed. Coastal vegetation is efficient in damping incident waves even in storm event...
Saved in:
Published in | Advances in water resources Vol. 122; pp. 217 - 227 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.12.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0309-1708 1872-9657 |
DOI | 10.1016/j.advwatres.2018.10.008 |
Cover
Loading…
Abstract | •Comprehensive comparison between two methods available in deriving CD.•A unique revisiting procedure reveals the traits of these two methods.•A generic CD-KC relation for both wave-only and wave-current flows is proposed.
Coastal vegetation is efficient in damping incident waves even in storm events, thus providing valuable protections to coastal communities. However, large uncertainties lie in determining vegetation drag coefficients (CD), which are directly related to the wave damping capacity of a certain vegetated area. One major uncertainty is related to the different methods used in deriving CD. Currently, two methods are available, i.e. the conventional calibration approach and the new direct measurement approach. Comparative studies of these two methods are lacking to reveal their respective strengths and reduce the uncertainty. Additional uncertainty stems from the dependence of CD on flow conditions (i.e. wave-only or wave-current) and indicative parameters, i.e. Reynolds number (Re) and Keulegan-Carpenter number (KC). Recent studies have obtained CD-Re relations for combined wave-current flows, whereas CD-KC relations in such flow condition remain unexplored. Thus, this study conducts a thorough comparison between two existing methods and explores the CD-KC relations in combined wave-current flows. By a unique revisiting procedure, we show that CD derived by the direct measurement approach have a better overall performance in reproducing both acting force and the resulting wave dissipation. Therefore, a generic CD-KC relation for both wave-only and wave-current flows is proposed using direct measurement approach. Finally, a detailed comparison of these two approaches are given. The comprehensive method comparison and the obtained new CD-KC relation may lead to improved understanding and modelling of wave-vegetation interaction. |
---|---|
AbstractList | Coastal vegetation is efficient in damping incident waves even in storm events, thus providing valuable protections to coastal communities. However, large uncertainties lie in determining vegetation drag coefficients (CD), which are directly related to the wave damping capacity of a certain vegetated area. One major uncertainty is related to the different methods used in deriving CD. Currently, two methods are available, i.e. the conventional calibration approach and the new direct measurement approach. Comparative studies of these two methods are lacking to reveal their respective strengths and reduce the uncertainty. Additional uncertainty stems from the dependence of CD on flow conditions (i.e. wave-only or wave-current) and indicative parameters, i.e. Reynolds number (Re) and Keulegan-Carpenter number (KC). Recent studies have obtained CD-Re relations for combined wave-current flows, whereas CD-KC relations in such flow condition remain unexplored. Thus, this study conducts a thorough comparison between two existing methods and explores the CD-KC relations in combined wave-current flows. By a unique revisiting procedure, we show that CD derived by the direct measurement approach have a better overall performance in reproducing both acting force and the resulting wave dissipation. Therefore, a generic CD-KC relation for both wave-only and wave-current flows is proposed using direct measurement approach. Finally, a detailed comparison of these two approaches are given. The comprehensive method comparison and the obtained new CD-KC relation may lead to improved understanding and modelling of wave-vegetation interaction. •Comprehensive comparison between two methods available in deriving CD.•A unique revisiting procedure reveals the traits of these two methods.•A generic CD-KC relation for both wave-only and wave-current flows is proposed. Coastal vegetation is efficient in damping incident waves even in storm events, thus providing valuable protections to coastal communities. However, large uncertainties lie in determining vegetation drag coefficients (CD), which are directly related to the wave damping capacity of a certain vegetated area. One major uncertainty is related to the different methods used in deriving CD. Currently, two methods are available, i.e. the conventional calibration approach and the new direct measurement approach. Comparative studies of these two methods are lacking to reveal their respective strengths and reduce the uncertainty. Additional uncertainty stems from the dependence of CD on flow conditions (i.e. wave-only or wave-current) and indicative parameters, i.e. Reynolds number (Re) and Keulegan-Carpenter number (KC). Recent studies have obtained CD-Re relations for combined wave-current flows, whereas CD-KC relations in such flow condition remain unexplored. Thus, this study conducts a thorough comparison between two existing methods and explores the CD-KC relations in combined wave-current flows. By a unique revisiting procedure, we show that CD derived by the direct measurement approach have a better overall performance in reproducing both acting force and the resulting wave dissipation. Therefore, a generic CD-KC relation for both wave-only and wave-current flows is proposed using direct measurement approach. Finally, a detailed comparison of these two approaches are given. The comprehensive method comparison and the obtained new CD-KC relation may lead to improved understanding and modelling of wave-vegetation interaction. |
Author | Ou, Suying Uijttewaal, Wim Chen, Hui Li, Yulong Peng, Yisheng Ni, Yan Liu, Feng Su, Min Hu, Zhan Suzuki, Tomohiro |
Author_xml | – sequence: 1 givenname: Hui surname: Chen fullname: Chen, Hui organization: Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China – sequence: 2 givenname: Yan surname: Ni fullname: Ni, Yan organization: Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China – sequence: 3 givenname: Yulong surname: Li fullname: Li, Yulong organization: Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China – sequence: 4 givenname: Feng surname: Liu fullname: Liu, Feng organization: Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China – sequence: 5 givenname: Suying surname: Ou fullname: Ou, Suying organization: Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China – sequence: 6 givenname: Min surname: Su fullname: Su, Min organization: Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China – sequence: 7 givenname: Yisheng surname: Peng fullname: Peng, Yisheng organization: School of Environmental Science and Engineering/Research Center of Wetland Science, Sun Yat-Sen University, Guangzhou 501275, China – sequence: 8 givenname: Zhan surname: Hu fullname: Hu, Zhan email: huzh9@mail.sysu.edu.cn organization: Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China – sequence: 9 givenname: Wim surname: Uijttewaal fullname: Uijttewaal, Wim organization: Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft 2628 CN, the Netherlands – sequence: 10 givenname: Tomohiro surname: Suzuki fullname: Suzuki, Tomohiro organization: Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft 2628 CN, the Netherlands |
BookMark | eNqNkUFv3CAUhFGVSN0k_Q1F6qUXbwBjsA89RGnaRIrUS3tGGJ63rGxIAXuVf19cVznk0p4QvG_moZkLdOaDB4TeU7KnhIrr417b5aRzhLRnhLbldU9I-wbtaCtZ1YlGnqEdqUlXUUnat-gipSMpBJdsh-JniG5x_oAXOEDW2QWPbdQHbAIMgzMOfE7Y-XKfeufB4pNeoDJzjGWChzGcEu6fsdGj6-Om195i6yKYjCfQaY4wrewE-Wew6QqdD3pM8O7veYl-fLn7fntfPX77-nB781gZzlmuBNNS9n0_EBCCmIaClJw2jeSGkc7wZqj7oRG2E7JtmDSMS2itZEYSxoG39SX6uPk-xfBrhpTV5JKBcdQewpwUo23XcFGTFf3wCj2GOfryu0KVjYLXRBRKbpSJIaUIg3qKbtLxWVGi1i7UUb10odYu1gH54__pldK4LesctRv_Q3-z6aHktTiIKq3FGNhSVja4f3r8BvuzrvQ |
CitedBy_id | crossref_primary_10_1016_j_coastaleng_2020_103820 crossref_primary_10_1016_j_oceaneng_2021_110255 crossref_primary_10_1016_j_wse_2022_10_004 crossref_primary_10_1016_j_apor_2020_102116 crossref_primary_10_1016_j_oceaneng_2024_117002 crossref_primary_10_1016_j_ocemod_2024_102422 crossref_primary_10_1016_j_ecoleng_2022_106619 crossref_primary_10_1016_j_oceaneng_2023_115382 crossref_primary_10_1007_s13344_024_0047_5 crossref_primary_10_1038_s41598_023_46612_z crossref_primary_10_3390_computation9060066 crossref_primary_10_1016_j_oceaneng_2024_120026 crossref_primary_10_2112_JCOASTRES_D_21_00089_1 crossref_primary_10_1029_2021WR031121 crossref_primary_10_1016_j_oceaneng_2021_108694 crossref_primary_10_1007_s13131_021_1726_1 crossref_primary_10_1080_21664250_2021_1929742 crossref_primary_10_1016_j_ecss_2020_106645 crossref_primary_10_1017_jfm_2021_985 crossref_primary_10_1080_03091929_2021_1946803 crossref_primary_10_1016_j_coastaleng_2024_104688 crossref_primary_10_1016_j_oceaneng_2023_116440 crossref_primary_10_1002_lno_11875 crossref_primary_10_1016_j_oceaneng_2024_118001 crossref_primary_10_1016_j_jfluidstructs_2022_103539 crossref_primary_10_3390_jmse12081326 crossref_primary_10_1016_j_advwatres_2020_103755 crossref_primary_10_1016_j_oceaneng_2024_118873 crossref_primary_10_5194_hess_25_4825_2021 crossref_primary_10_1016_j_oceaneng_2022_111646 crossref_primary_10_3390_jmse10040554 crossref_primary_10_1016_j_jhydrol_2021_126775 crossref_primary_10_1016_j_oceaneng_2021_109357 crossref_primary_10_1016_j_oceaneng_2022_111522 crossref_primary_10_1016_j_apor_2025_104443 crossref_primary_10_3934_math_2020138 crossref_primary_10_1016_j_coastaleng_2024_104575 crossref_primary_10_1016_j_coastaleng_2019_03_011 crossref_primary_10_1016_j_coastaleng_2019_103510 crossref_primary_10_1146_annurev_marine_040422_092951 crossref_primary_10_1063_5_0259148 crossref_primary_10_1063_5_0236982 crossref_primary_10_1016_j_oceaneng_2021_110103 crossref_primary_10_5194_essd_13_4987_2021 crossref_primary_10_1016_j_oceaneng_2019_106395 crossref_primary_10_1016_j_ecoleng_2021_106231 crossref_primary_10_1029_2019JC015935 crossref_primary_10_1016_j_advwatres_2022_104148 crossref_primary_10_1142_S179343112140008X crossref_primary_10_1103_PhysRevFluids_6_100502 crossref_primary_10_1029_2022JC018653 crossref_primary_10_3390_w13040398 crossref_primary_10_1016_j_oceaneng_2024_120014 crossref_primary_10_1007_s13131_023_2199_1 crossref_primary_10_1016_j_coastaleng_2020_103648 crossref_primary_10_1016_j_coastaleng_2021_103947 crossref_primary_10_1016_j_oceaneng_2021_109574 crossref_primary_10_1016_j_oceaneng_2024_118218 crossref_primary_10_1073_pnas_2410883122 |
Cites_doi | 10.1038/nclimate1944 10.1061/(ASCE)0733-950X(1984)110:1(67) 10.2118/950149-G 10.1016/j.coastaleng.2013.10.004 10.1016/j.coastaleng.2016.06.001 10.1016/j.coastaleng.2014.02.009 10.1061/(ASCE)0733-950X(1993)119:1(30) 10.1016/j.coastaleng.2003.11.003 10.1061/(ASCE)0733-9429(2007)133:7(794) 10.1016/j.coastaleng.2013.02.013 10.1016/j.coastaleng.2015.09.012 10.1016/j.ecss.2015.08.021 10.1016/j.coastaleng.2016.07.004 10.1061/(ASCE)WW.1943-5460.0000251 10.1016/j.coastaleng.2008.09.004 10.1038/ngeo2251 10.1126/science.1197219 10.3354/meps09489 10.1016/j.coastaleng.2015.01.002 10.1016/j.coastaleng.2018.05.002 10.1007/s12237-011-9424-4 10.21236/AD1003881 10.1029/1998WR900069 10.1016/j.advwatres.2012.02.002 10.1016/S0272-7714(05)80039-3 10.1029/1999JC900119 10.1007/s13157-011-0240-1 10.1016/j.coastaleng.2015.09.011 10.1002/2017JC012731 10.1016/j.jfluidstructs.2015.11.007 10.1016/j.advwatres.2015.09.004 10.1016/j.advwatres.2016.05.019 10.1016/j.coastaleng.2013.04.009 10.1890/04-1588 10.1016/j.oceaneng.2015.09.057 10.1016/j.coastaleng.2015.09.010 10.1029/2003GL018933 10.1016/j.coastaleng.2011.07.006 10.1126/science.aac8312 10.4319/lo.2011.56.6.2223 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier Science Ltd. Dec 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Dec 2018 |
DBID | AAYXX CITATION 7QF 7QH 7QO 7QQ 7SE 7SR 7ST 7T7 7TA 7TG 7UA 8BQ 8FD C1K F1W F28 FR3 H8G H97 JG9 KL. KR7 L.G P64 SOI 7S9 L.6 |
DOI | 10.1016/j.advwatres.2018.10.008 |
DatabaseName | CrossRef Aluminium Industry Abstracts Aqualine Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Meteorological & Geoastrophysical Abstracts Water Resources Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Copper Technical Reference Library Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Materials Research Database Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aluminium Industry Abstracts Technology Research Database Ceramic Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Materials Business File METADEX Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Corrosion Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ANTE: Abstracts in New Technology & Engineering AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9657 |
EndPage | 227 |
ExternalDocumentID | 10_1016_j_advwatres_2018_10_008 S030917081830112X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SPC SPCBC SSA SSE SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QF 7QH 7QO 7QQ 7SE 7SR 7ST 7T7 7TA 7TG 7UA 8BQ 8FD C1K EFKBS F1W F28 FR3 H8G H97 JG9 KL. KR7 L.G P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c442t-62a77bbbf0e660c51e77415574c209c45f3bf56d9678527c247e8d72c7024e483 |
IEDL.DBID | .~1 |
ISSN | 0309-1708 |
IngestDate | Fri Jul 11 03:52:05 EDT 2025 Wed Aug 13 06:11:01 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 01:23:10 EDT 2025 Fri Feb 23 02:24:58 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wave-current interaction Wave dissipation Keulegan-Carpenter number Flume experiment Drag coefficient Vegetation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-62a77bbbf0e660c51e77415574c209c45f3bf56d9678527c247e8d72c7024e483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2157464306 |
PQPubID | 2047482 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2189546308 proquest_journals_2157464306 crossref_primary_10_1016_j_advwatres_2018_10_008 crossref_citationtrail_10_1016_j_advwatres_2018_10_008 elsevier_sciencedirect_doi_10_1016_j_advwatres_2018_10_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-00 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Advances in water resources |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Maza, Lara, Losada, Ondiviela, Trinogga, Bouma (bib0030) 2015; 106 Vuik, van Vuren, Borsje, van Wesenbeeck, Jonkman (bib0047) 2018; 139 Bradley, Houser (bib0006) 2009; 114 Luhar, Infantes, Nepf (bib0026) 2017; 122 Méndez, Losada (bib0031) 2004; 51 Lara, Maza, Ondiviela, Trinogga, Losada, Bouma, Gordejuela (bib0022) 2016; 107 Kobayashi, Raichle Andrew, Toshiyuki (bib0021) 1993; 119 Anderson, M.E., Smith, J.M., McKay, S.K., 2011. Wave dissipation by vegetation. ERDC CHETN–82. Donnelly, Cleary, Newby, Ettinger (bib0014) 2004; 31 Li, Yan (bib0023) 2007; 133 Mendez, Losada (bib0032) 2004; 51 Paul, Rupprecht, Möller, Bouma, Spencer, Kudella, Wolters, van, Jensen, Miranda-Lange, Schimmels (bib0042) 2016; 117 Suzuki, Zijlema, Burger, Meijer, Narayan (bib0043) 2012; 59 Anderson, Smith (bib0001) 2014; 83 Cao, Feng, Hu, Suzuki, Stive (bib0009) 2015; 110 Vuik, Jonkman, Borsje, Suzuki (bib0046) 2016; 116 Young, Zieger, Babanin (bib0049) 2011; 332 Luhar, Nepf (bib0027aa) 2016; 61 Augustin, Irish, Lynett (bib0004) 2009; 56 Yang, Shi, Bouma, Ysebaert, Luo (bib0048) 2012; 35 Infantes, Orfila, Bouma, Simarro, Terrados (bib0018) 2011; 56 Hu, Suzuki, Zitman, Uittewaal, Stive (bib0017) 2014; 88 Ozeren, Wren, Wu (bib0040) 2014; 140 Maza, Lara, Losada (bib0029) 2013; 80 Losada, Maza, Lara (bib0025) 2016; 107 Möller, Kudella, Rupprecht, Spencer, Paul, van Wesenbeeck, Wolters, Jensen, Bouma, Miranda-Lange, Schimmels (bib0035) 2014; 7 D'Alpaos, Toffolon, Camporeale (bib0011) 2016; 93 Dalrymple, Kirby, Hwang (bib0012) 1984; 110 Bouma, De Vries, Low, Peralta, Tánczos, Van De Koppel, Herman (bib0005) 2005; 86 Temmerman, Kirwan (bib0045) 2015; 349 D'Alpaos, Marani (bib0010) 2016; 93 Morison, Johnson, Schaaf (bib0036) 1950; 2 Nepf (bib0037) 2012 Losada, Maza, Lara (bib0024) 2016; 107 Nepf (bib0039) 1999; 35 Jadhav, Chen, Smith (bib0019) 2013; 77 Méndez, Losada, Losada (bib0034) 1999; 104 Arkema, Guannel, Verutes, Wood, Guerry, Ruckelshaus, Kareiva, Lacayo, Silver (bib0003) 2013; 3 Ysebaert, Yang, Zhang, He, Bouma, Herman (bib0050) 2011; 31 Dean, Dalrymple (bib0013) 1991 Nepf (bib0038) 2004 Paul, Bouma, Amos (bib0041) 2012; 444 Mendez, Losada, Losada (bib0033) 1999; 104 Fonseca, Cahalan (bib0015) 1992; 35 Henry, Myrhaug, Aberle (bib0016) 2015; 165 Luhar, Nepf (bib0027) 2013; 51 Maza, Lara, Losada (bib0028) 2015; 98 Möller (10.1016/j.advwatres.2018.10.008_bib0035) 2014; 7 Suzuki (10.1016/j.advwatres.2018.10.008_bib0043) 2012; 59 Mendez (10.1016/j.advwatres.2018.10.008_bib0032) 2004; 51 Maza (10.1016/j.advwatres.2018.10.008_bib0029) 2013; 80 Losada (10.1016/j.advwatres.2018.10.008_bib0024) 2016; 107 Ozeren (10.1016/j.advwatres.2018.10.008_bib0040) 2014; 140 D'Alpaos (10.1016/j.advwatres.2018.10.008_bib0011) 2016; 93 Vuik (10.1016/j.advwatres.2018.10.008_bib0046) 2016; 116 Lara (10.1016/j.advwatres.2018.10.008_bib0022) 2016; 107 Bradley (10.1016/j.advwatres.2018.10.008_bib0006) 2009; 114 Cao (10.1016/j.advwatres.2018.10.008_bib0009) 2015; 110 Donnelly (10.1016/j.advwatres.2018.10.008_bib0014) 2004; 31 Dalrymple (10.1016/j.advwatres.2018.10.008_bib0012) 1984; 110 Losada (10.1016/j.advwatres.2018.10.008_bib0025) 2016; 107 Kobayashi (10.1016/j.advwatres.2018.10.008_bib0021) 1993; 119 Hu (10.1016/j.advwatres.2018.10.008_bib0017) 2014; 88 Maza (10.1016/j.advwatres.2018.10.008_bib0030) 2015; 106 Morison (10.1016/j.advwatres.2018.10.008_bib0036) 1950; 2 Nepf (10.1016/j.advwatres.2018.10.008_bib0037) 2012 Nepf (10.1016/j.advwatres.2018.10.008_bib0039) 1999; 35 10.1016/j.advwatres.2018.10.008_bib0002 Augustin (10.1016/j.advwatres.2018.10.008_bib0004) 2009; 56 Méndez (10.1016/j.advwatres.2018.10.008_bib0031) 2004; 51 Paul (10.1016/j.advwatres.2018.10.008_bib0041) 2012; 444 Dean (10.1016/j.advwatres.2018.10.008_bib0013) 1991 Paul (10.1016/j.advwatres.2018.10.008_bib0042) 2016; 117 Yang (10.1016/j.advwatres.2018.10.008_bib0048) 2012; 35 Luhar (10.1016/j.advwatres.2018.10.008_bib0027aa) 2016; 61 Nepf (10.1016/j.advwatres.2018.10.008_bib0038) 2004 Arkema (10.1016/j.advwatres.2018.10.008_bib0003) 2013; 3 Mendez (10.1016/j.advwatres.2018.10.008_bib0033) 1999; 104 Maza (10.1016/j.advwatres.2018.10.008_bib0028) 2015; 98 Luhar (10.1016/j.advwatres.2018.10.008_bib0026) 2017; 122 Vuik (10.1016/j.advwatres.2018.10.008_bib0047) 2018; 139 Jadhav (10.1016/j.advwatres.2018.10.008_bib0019) 2013; 77 Temmerman (10.1016/j.advwatres.2018.10.008_bib0045) 2015; 349 Fonseca (10.1016/j.advwatres.2018.10.008_bib0015) 1992; 35 Li (10.1016/j.advwatres.2018.10.008_bib0023) 2007; 133 Ysebaert (10.1016/j.advwatres.2018.10.008_bib0050) 2011; 31 Henry (10.1016/j.advwatres.2018.10.008_bib0016) 2015; 165 Luhar (10.1016/j.advwatres.2018.10.008_bib0027) 2013; 51 D'Alpaos (10.1016/j.advwatres.2018.10.008_bib0010) 2016; 93 Méndez (10.1016/j.advwatres.2018.10.008_bib0034) 1999; 104 Anderson (10.1016/j.advwatres.2018.10.008_bib0001) 2014; 83 Bouma (10.1016/j.advwatres.2018.10.008_bib0005) 2005; 86 Infantes (10.1016/j.advwatres.2018.10.008_bib0018) 2011; 56 Young (10.1016/j.advwatres.2018.10.008_bib0049) 2011; 332 |
References_xml | – volume: 88 start-page: 131 year: 2014 end-page: 142 ident: bib0017 article-title: Laboratory study on wave dissipation by vegetation in combined current-wave flow publication-title: Coast. Eng. – volume: 140 year: 2014 ident: bib0040 article-title: Experimental investigation of wave attenuation through model and live vegetation publication-title: J. Waterw. Port Coast. Ocean Eng. – volume: 107 start-page: 1 year: 2016 end-page: 13 ident: bib0025 article-title: A new formulation for vegetation-induced damping under combined waves and currents publication-title: Coast. Eng. – volume: 98 start-page: 33 year: 2015 end-page: 54 ident: bib0028 article-title: Tsunami wave interaction with mangrove forests: a 3-D numerical approach publication-title: Coast. Eng. – reference: Anderson, M.E., Smith, J.M., McKay, S.K., 2011. Wave dissipation by vegetation. ERDC CHETN–82. – volume: 77 start-page: 99 year: 2013 end-page: 107 ident: bib0019 article-title: Spectral distribution of wave energy dissipation by salt marsh vegetation publication-title: Coast. Eng. – volume: 116 start-page: 42 year: 2016 end-page: 56 ident: bib0046 article-title: Nature-based flood protection: the efficiency of vegetated foreshores for reducing wave loads on coastal dikes publication-title: Coast. Eng. – volume: 139 start-page: 47 year: 2018 end-page: 64 ident: bib0047 article-title: Assessing safety of nature-based flood defenses: dealing with extremes and uncertainties publication-title: Coast. Eng. – volume: 35 start-page: 169 year: 2012 end-page: 182 ident: bib0048 article-title: Wave attenuation at a salt marsh margin: a case study of an exposed coast on the Yangtze Estuary publication-title: Estuaries Coasts – start-page: 267 year: 2012 end-page: 287 ident: bib0037 article-title: Flow Over and Through Biota – volume: 31 year: 2004 ident: bib0014 article-title: Coupling instrumental and geological records of sea-level change: evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century publication-title: Geophys. Res. Lett. – volume: 51 start-page: 103 year: 2004 end-page: 118 ident: bib0031 article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields publication-title: Coast. Eng. – volume: 2 start-page: 149 year: 1950 end-page: 154 ident: bib0036 article-title: The force exerted by surface waves on piles publication-title: J. Pet. Technol. – volume: 93 start-page: 265 year: 2016 end-page: 275 ident: bib0010 article-title: Reading the signatures of biologic–geomorphic feedbacks in salt-marsh landscapes publication-title: Adv. Water Resour. – volume: 35 start-page: 565 year: 1992 end-page: 576 ident: bib0015 article-title: A preliminary evaluation of wave attenuation by four species of seagrass publication-title: Estuar. Coast. Shelf Sci. – volume: 83 start-page: 82 year: 2014 end-page: 92 ident: bib0001 article-title: Wave attenuation by flexible, idealized salt marsh vegetation publication-title: Coast. Eng. – volume: 133 start-page: 794 year: 2007 end-page: 803 ident: bib0023 article-title: Numerical investigation of wave-current-vegetation interaction publication-title: J. Hydraul. Eng. – volume: 86 start-page: 2187 year: 2005 end-page: 2199 ident: bib0005 article-title: Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes publication-title: Ecology – volume: 119 start-page: 30 year: 1993 end-page: 48 ident: bib0021 article-title: Wave attenuation by vegetation publication-title: J. Waterw. Port Coast. Ocean Eng. – volume: 107 start-page: 70 year: 2016 end-page: 83 ident: bib0022 article-title: Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 1: guidelines for physical modeling publication-title: Coast. Eng – volume: 80 start-page: 16 year: 2013 end-page: 34 ident: bib0029 article-title: A coupled model of submerged vegetation under oscillatory flow using Navier-Stokes equations publication-title: Coast. Eng. – volume: 7 start-page: 727 year: 2014 end-page: 731 ident: bib0035 article-title: Wave attenuation over coastal salt marshes under storm surge conditions publication-title: Nat. Geosci. – volume: 3 start-page: 913 year: 2013 end-page: 918 ident: bib0003 article-title: Coastal habitats shield people and property from sea-level rise and storms publication-title: Nat. Clim. Change – volume: 165 start-page: 10 year: 2015 end-page: 24 ident: bib0016 article-title: Drag forces on aquatic plants in nonlinear random waves plus current publication-title: Estuar. Coast. Shelf Sci. – volume: 59 start-page: 64 year: 2012 end-page: 71 ident: bib0043 article-title: Wave dissipation by vegetation with layer schematization in SWAN publication-title: Coast. Eng. – volume: 35 start-page: 479 year: 1999 end-page: 489 ident: bib0039 article-title: Drag, turbulence, and diffusion in flow through emergent vegetation publication-title: Water Resour. Res. – volume: 51 start-page: 305 year: 2013 end-page: 316 ident: bib0027 article-title: From the blade scale to the reach scale: a characterization of aquatic vegetative drag publication-title: Adv. Water Resour. – volume: 117 start-page: 70 year: 2016 end-page: 78 ident: bib0042 article-title: Plant stiffness and biomass as drivers for drag forces under extreme wave loading: a flume study on mimics publication-title: Coast. Eng. – volume: 56 start-page: 332 year: 2009 end-page: 340 ident: bib0004 article-title: Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation publication-title: Coast. Eng. – volume: 107 start-page: 1 year: 2016 end-page: 13 ident: bib0024 article-title: A new formulation for vegetation-induced damping under combined waves and currents publication-title: Coast. Eng. – volume: 51 start-page: 103 year: 2004 end-page: 118 ident: bib0032 article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields publication-title: Coast. Eng. – volume: 122 start-page: 3736 year: 2017 end-page: 3752 ident: bib0026 article-title: Seagrass blade motion under waves and its impact on wave decay publication-title: J. Geophys. Res.-Oceans – volume: 444 start-page: 31 year: 2012 end-page: 41 ident: bib0041 article-title: Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current publication-title: Mar. Ecol. Prog. Ser. – start-page: 137 year: 2004 end-page: 163 ident: bib0038 article-title: Vegetated flow dynamics publication-title: Coastal and Estuarine Studies – volume: 31 start-page: 1043 year: 2011 end-page: 1054 ident: bib0050 article-title: Wave attenuation by two contrasting ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone publication-title: Wetlands – volume: 110 start-page: 258 year: 2015 end-page: 269 ident: bib0009 article-title: Numerical modeling of vegetation-induced dissipation using an extended mild-slope equation publication-title: Ocean Eng – volume: 104 start-page: 18383 year: 1999 end-page: 18396 ident: bib0034 article-title: Hydrodynamics induced by wind waves in a vegetation field publication-title: J. Geophys. Res. C Oceans – volume: 56 start-page: 2223 year: 2011 end-page: 2232 ident: bib0018 article-title: Posidonia oceanica and Cymodocea nodosa seedling tolerance to wave exposure publication-title: Limnol. Oceanogr – volume: 349 start-page: 588 year: 2015 end-page: 589 ident: bib0045 article-title: Building land with a rising sea publication-title: Science – volume: 114 year: 2009 ident: bib0006 article-title: Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments publication-title: J. Geophys. Res. F Earth Surf – volume: 332 start-page: 451 year: 2011 end-page: 455 ident: bib0049 article-title: Global trends in wind speed and wave height publication-title: Science – volume: 61 start-page: 20 year: 2016 end-page: 41 ident: bib0027aa article-title: Wave-induced dynamics of flexible blades publication-title: J. Fluids Struct. – year: 1991 ident: bib0013 article-title: Water Wave Mechanics for Engineers and Scientists, Advanced Series on Ocean Engineering – volume: 93 start-page: 151 year: 2016 end-page: 155 ident: bib0011 article-title: Ecogeomorphological feedbacks of water fluxes, sediment transport and vegetation dynamics in rivers and estuaries publication-title: Adv. Water Resour. – volume: 110 start-page: 67 year: 1984 end-page: 79 ident: bib0012 article-title: Wave diffraction due to areas of energy dissipation publication-title: J. Waterw. Port Coast. Ocean Eng. ASCE – volume: 106 start-page: 73 year: 2015 end-page: 86 ident: bib0030 article-title: Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2: experimental analysis publication-title: Coast. Eng. – volume: 104 start-page: 18383 year: 1999 end-page: 18396 ident: bib0033 article-title: Hydrodynamics induced by wind waves in a vegetation field publication-title: J. Geophys. Res.-Oceans – volume: 3 start-page: 913 year: 2013 ident: 10.1016/j.advwatres.2018.10.008_bib0003 article-title: Coastal habitats shield people and property from sea-level rise and storms publication-title: Nat. Clim. Change doi: 10.1038/nclimate1944 – volume: 110 start-page: 67 year: 1984 ident: 10.1016/j.advwatres.2018.10.008_bib0012 article-title: Wave diffraction due to areas of energy dissipation publication-title: J. Waterw. Port Coast. Ocean Eng. ASCE doi: 10.1061/(ASCE)0733-950X(1984)110:1(67) – volume: 2 start-page: 149 year: 1950 ident: 10.1016/j.advwatres.2018.10.008_bib0036 article-title: The force exerted by surface waves on piles publication-title: J. Pet. Technol. doi: 10.2118/950149-G – volume: 83 start-page: 82 year: 2014 ident: 10.1016/j.advwatres.2018.10.008_bib0001 article-title: Wave attenuation by flexible, idealized salt marsh vegetation publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2013.10.004 – volume: 116 start-page: 42 year: 2016 ident: 10.1016/j.advwatres.2018.10.008_bib0046 article-title: Nature-based flood protection: the efficiency of vegetated foreshores for reducing wave loads on coastal dikes publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2016.06.001 – start-page: 267 year: 2012 ident: 10.1016/j.advwatres.2018.10.008_bib0037 – volume: 88 start-page: 131 year: 2014 ident: 10.1016/j.advwatres.2018.10.008_bib0017 article-title: Laboratory study on wave dissipation by vegetation in combined current-wave flow publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2014.02.009 – volume: 119 start-page: 30 year: 1993 ident: 10.1016/j.advwatres.2018.10.008_bib0021 article-title: Wave attenuation by vegetation publication-title: J. Waterw. Port Coast. Ocean Eng. doi: 10.1061/(ASCE)0733-950X(1993)119:1(30) – volume: 51 start-page: 103 year: 2004 ident: 10.1016/j.advwatres.2018.10.008_bib0031 article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2003.11.003 – year: 1991 ident: 10.1016/j.advwatres.2018.10.008_bib0013 – volume: 133 start-page: 794 year: 2007 ident: 10.1016/j.advwatres.2018.10.008_bib0023 article-title: Numerical investigation of wave-current-vegetation interaction publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(2007)133:7(794) – volume: 51 start-page: 103 year: 2004 ident: 10.1016/j.advwatres.2018.10.008_bib0032 article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2003.11.003 – volume: 77 start-page: 99 year: 2013 ident: 10.1016/j.advwatres.2018.10.008_bib0019 article-title: Spectral distribution of wave energy dissipation by salt marsh vegetation publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2013.02.013 – volume: 107 start-page: 70 year: 2016 ident: 10.1016/j.advwatres.2018.10.008_bib0022 article-title: Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 1: guidelines for physical modeling publication-title: Coast. Eng doi: 10.1016/j.coastaleng.2015.09.012 – volume: 165 start-page: 10 year: 2015 ident: 10.1016/j.advwatres.2018.10.008_bib0016 article-title: Drag forces on aquatic plants in nonlinear random waves plus current publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2015.08.021 – volume: 117 start-page: 70 year: 2016 ident: 10.1016/j.advwatres.2018.10.008_bib0042 article-title: Plant stiffness and biomass as drivers for drag forces under extreme wave loading: a flume study on mimics publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2016.07.004 – volume: 140 year: 2014 ident: 10.1016/j.advwatres.2018.10.008_bib0040 article-title: Experimental investigation of wave attenuation through model and live vegetation publication-title: J. Waterw. Port Coast. Ocean Eng. doi: 10.1061/(ASCE)WW.1943-5460.0000251 – volume: 56 start-page: 332 year: 2009 ident: 10.1016/j.advwatres.2018.10.008_bib0004 article-title: Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2008.09.004 – volume: 7 start-page: 727 year: 2014 ident: 10.1016/j.advwatres.2018.10.008_bib0035 article-title: Wave attenuation over coastal salt marshes under storm surge conditions publication-title: Nat. Geosci. doi: 10.1038/ngeo2251 – volume: 332 start-page: 451 year: 2011 ident: 10.1016/j.advwatres.2018.10.008_bib0049 article-title: Global trends in wind speed and wave height publication-title: Science doi: 10.1126/science.1197219 – volume: 444 start-page: 31 year: 2012 ident: 10.1016/j.advwatres.2018.10.008_bib0041 article-title: Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps09489 – volume: 98 start-page: 33 year: 2015 ident: 10.1016/j.advwatres.2018.10.008_bib0028 article-title: Tsunami wave interaction with mangrove forests: a 3-D numerical approach publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2015.01.002 – volume: 139 start-page: 47 year: 2018 ident: 10.1016/j.advwatres.2018.10.008_bib0047 article-title: Assessing safety of nature-based flood defenses: dealing with extremes and uncertainties publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2018.05.002 – volume: 35 start-page: 169 year: 2012 ident: 10.1016/j.advwatres.2018.10.008_bib0048 article-title: Wave attenuation at a salt marsh margin: a case study of an exposed coast on the Yangtze Estuary publication-title: Estuaries Coasts doi: 10.1007/s12237-011-9424-4 – ident: 10.1016/j.advwatres.2018.10.008_bib0002 doi: 10.21236/AD1003881 – volume: 35 start-page: 479 year: 1999 ident: 10.1016/j.advwatres.2018.10.008_bib0039 article-title: Drag, turbulence, and diffusion in flow through emergent vegetation publication-title: Water Resour. Res. doi: 10.1029/1998WR900069 – volume: 51 start-page: 305 year: 2013 ident: 10.1016/j.advwatres.2018.10.008_bib0027 article-title: From the blade scale to the reach scale: a characterization of aquatic vegetative drag publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.02.002 – volume: 35 start-page: 565 year: 1992 ident: 10.1016/j.advwatres.2018.10.008_bib0015 article-title: A preliminary evaluation of wave attenuation by four species of seagrass publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/S0272-7714(05)80039-3 – volume: 104 start-page: 18383 year: 1999 ident: 10.1016/j.advwatres.2018.10.008_bib0034 article-title: Hydrodynamics induced by wind waves in a vegetation field publication-title: J. Geophys. Res. C Oceans doi: 10.1029/1999JC900119 – volume: 31 start-page: 1043 year: 2011 ident: 10.1016/j.advwatres.2018.10.008_bib0050 article-title: Wave attenuation by two contrasting ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone publication-title: Wetlands doi: 10.1007/s13157-011-0240-1 – volume: 107 start-page: 1 year: 2016 ident: 10.1016/j.advwatres.2018.10.008_bib0025 article-title: A new formulation for vegetation-induced damping under combined waves and currents publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2015.09.011 – volume: 114 year: 2009 ident: 10.1016/j.advwatres.2018.10.008_bib0006 article-title: Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments publication-title: J. Geophys. Res. F Earth Surf – volume: 122 start-page: 3736 year: 2017 ident: 10.1016/j.advwatres.2018.10.008_bib0026 article-title: Seagrass blade motion under waves and its impact on wave decay publication-title: J. Geophys. Res.-Oceans doi: 10.1002/2017JC012731 – volume: 61 start-page: 20 year: 2016 ident: 10.1016/j.advwatres.2018.10.008_bib0027aa article-title: Wave-induced dynamics of flexible blades publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2015.11.007 – start-page: 137 year: 2004 ident: 10.1016/j.advwatres.2018.10.008_bib0038 article-title: Vegetated flow dynamics – volume: 107 start-page: 1 year: 2016 ident: 10.1016/j.advwatres.2018.10.008_bib0024 article-title: A new formulation for vegetation-induced damping under combined waves and currents publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2015.09.011 – volume: 93 start-page: 265 issue: Part B year: 2016 ident: 10.1016/j.advwatres.2018.10.008_bib0010 article-title: Reading the signatures of biologic–geomorphic feedbacks in salt-marsh landscapes publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2015.09.004 – volume: 93 start-page: 151 issue: Part B year: 2016 ident: 10.1016/j.advwatres.2018.10.008_bib0011 article-title: Ecogeomorphological feedbacks of water fluxes, sediment transport and vegetation dynamics in rivers and estuaries publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2016.05.019 – volume: 80 start-page: 16 year: 2013 ident: 10.1016/j.advwatres.2018.10.008_bib0029 article-title: A coupled model of submerged vegetation under oscillatory flow using Navier-Stokes equations publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2013.04.009 – volume: 86 start-page: 2187 year: 2005 ident: 10.1016/j.advwatres.2018.10.008_bib0005 article-title: Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes publication-title: Ecology doi: 10.1890/04-1588 – volume: 110 start-page: 258 year: 2015 ident: 10.1016/j.advwatres.2018.10.008_bib0009 article-title: Numerical modeling of vegetation-induced dissipation using an extended mild-slope equation publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2015.09.057 – volume: 104 start-page: 18383 year: 1999 ident: 10.1016/j.advwatres.2018.10.008_bib0033 article-title: Hydrodynamics induced by wind waves in a vegetation field publication-title: J. Geophys. Res.-Oceans doi: 10.1029/1999JC900119 – volume: 106 start-page: 73 year: 2015 ident: 10.1016/j.advwatres.2018.10.008_bib0030 article-title: Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2: experimental analysis publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2015.09.010 – volume: 31 year: 2004 ident: 10.1016/j.advwatres.2018.10.008_bib0014 article-title: Coupling instrumental and geological records of sea-level change: evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century publication-title: Geophys. Res. Lett. doi: 10.1029/2003GL018933 – volume: 59 start-page: 64 year: 2012 ident: 10.1016/j.advwatres.2018.10.008_bib0043 article-title: Wave dissipation by vegetation with layer schematization in SWAN publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2011.07.006 – volume: 349 start-page: 588 year: 2015 ident: 10.1016/j.advwatres.2018.10.008_bib0045 article-title: Building land with a rising sea publication-title: Science doi: 10.1126/science.aac8312 – volume: 56 start-page: 2223 year: 2011 ident: 10.1016/j.advwatres.2018.10.008_bib0018 article-title: Posidonia oceanica and Cymodocea nodosa seedling tolerance to wave exposure publication-title: Limnol. Oceanogr doi: 10.4319/lo.2011.56.6.2223 |
SSID | ssj0008472 |
Score | 2.4836562 |
Snippet | •Comprehensive comparison between two methods available in deriving CD.•A unique revisiting procedure reveals the traits of these two methods.•A generic CD-KC... Coastal vegetation is efficient in damping incident waves even in storm events, thus providing valuable protections to coastal communities. However, large... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 217 |
SubjectTerms | Calibration Coastal environments Coastal protection Comparative analysis Comparative studies Computational fluid dynamics Damping Damping capacity Dependence Drag Drag coefficient Drag coefficients Energy dissipation Fluid dynamics Fluid flow Flume experiment Incident waves Keulegan-Carpenter number Measurement Measurement methods Modelling Reynolds number Storms Surface waves Uncertainty Vegetation Vegetation mapping water resources Wave damping Wave dissipation Wave-current interaction |
Title | Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods |
URI | https://dx.doi.org/10.1016/j.advwatres.2018.10.008 https://www.proquest.com/docview/2157464306 https://www.proquest.com/docview/2189546308 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIrxUpC4lqVdHi03xEMDBBdA2q3KEw1Bh8bYxIXfjt3HeEiIA7emidvKTm0n-WwTsu-dyGQcdGQ7LI14YDbKTCyjGAgynQmtGQYnX13L7h2_6IneDDluYmEQVlnr_kqnl9q6vtOuudl-7vfbN3g4ECtMyYaTNOlhBDtXCOs7eP-EeYD2nZ4k4OhvGC_txhONMRmI8UoPSphX-puF-qGrSwN0tkQWa8-RHlUft0xmfLFCFr7kE1wlwxO4wB0COvb3NY6QuqG-p3bgy1wRCJug_QLaT7Ak9o5O9NhHtkrSRMPjYPJCzRsFweEyuqTXhaMVk-jT54YirUpPv6yRu7PT2-NuVBdViCznySiSiVbKGBOYl5JZEXtVOhWK24RllovQMUFIl4EVE4myCVc-dSqxCqy552lnncwWg8JvEBoHxSXohABP4cGJ1DBlMOGXEs6Ao9YismFkbuuM41j44jFvoGUP-VQCOUoAO0ACLcKmhM9V0o2_SQ4bSeXf5k8OpuFv4u1Gtnn9C0N_DDwBf43JFtmbdsPPhycquvCDVxyTZlhPgKWb_3n_FpnHVoWS2Sazo-Gr3wFfZ2R2y8m8S-aOzi-71x9P2AGC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAcEE8RWmCRuJqsnX3Y3KpCldI2F1opN2tfrlK1TpWmifj3nbHXhiKhHrjZHo9tzaxnZne__Rbgc_CyUGllEjfmeSIq7pLCpipJUaEwhTSG0-Lkk6manIkfMznbgv1uLQzBKmPsb2N6E63jlVG05uh6Ph_9pMmBVBMlGzXSbPYItomdSgxge-_waDLtAzIG4H4ygRTuwbyMX28MLcsgmFf-pUF65f9KUn-F6yYHHTyHZ7F4ZHvt972ArVC_hKd_UAq-guU3PKBBArYO5xFKyPzSnDO3CA1dBCEn2LzG8yvsFQfPNmYdEtfyNLHqcrG5YfYXQ99RT7rRN7VnrZ3Y1e8xRdbuPn3zGs4Ovp_uT5K4r0LihMhWicqM1tbaigeluJNp0E1doYXLeOGErMa2ksoXmMhkpl0mdMi9zpzGhB5EPn4Dg3pRh7fA0koLhWGhwqeIysvccm2J80tLb7FWG4LqDFm6SDpOe19clh267KLsPVCSB0iAHhgC7xWvW96Nh1W-dp4q7zWhErPDw8q7nW_L-BejPEWbYMnG1RA-9WL8_2hSxdRhcUv35AVtKcDzd__z_o_weHJ6clweH06PduAJSVrQzC4MVsvb8B5Ln5X9EJv2HRbPBDM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deriving+vegetation+drag+coefficients+in+combined+wave-current+flows+by+calibration+and+direct+measurement+methods&rft.jtitle=Advances+in+water+resources&rft.au=Chen%2C+Hui&rft.au=Ni%2C+Yan&rft.au=Li%2C+Yulong&rft.au=Liu%2C+Feng&rft.date=2018-12-01&rft.pub=Elsevier+Ltd&rft.issn=0309-1708&rft.eissn=1872-9657&rft.volume=122&rft.spage=217&rft.epage=227&rft_id=info:doi/10.1016%2Fj.advwatres.2018.10.008&rft.externalDocID=S030917081830112X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-1708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-1708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-1708&client=summon |