Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods

•Comprehensive comparison between two methods available in deriving CD.•A unique revisiting procedure reveals the traits of these two methods.•A generic CD-KC relation for both wave-only and wave-current flows is proposed. Coastal vegetation is efficient in damping incident waves even in storm event...

Full description

Saved in:
Bibliographic Details
Published inAdvances in water resources Vol. 122; pp. 217 - 227
Main Authors Chen, Hui, Ni, Yan, Li, Yulong, Liu, Feng, Ou, Suying, Su, Min, Peng, Yisheng, Hu, Zhan, Uijttewaal, Wim, Suzuki, Tomohiro
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0309-1708
1872-9657
DOI10.1016/j.advwatres.2018.10.008

Cover

Loading…
Abstract •Comprehensive comparison between two methods available in deriving CD.•A unique revisiting procedure reveals the traits of these two methods.•A generic CD-KC relation for both wave-only and wave-current flows is proposed. Coastal vegetation is efficient in damping incident waves even in storm events, thus providing valuable protections to coastal communities. However, large uncertainties lie in determining vegetation drag coefficients (CD), which are directly related to the wave damping capacity of a certain vegetated area. One major uncertainty is related to the different methods used in deriving CD. Currently, two methods are available, i.e. the conventional calibration approach and the new direct measurement approach. Comparative studies of these two methods are lacking to reveal their respective strengths and reduce the uncertainty. Additional uncertainty stems from the dependence of CD on flow conditions (i.e. wave-only or wave-current) and indicative parameters, i.e. Reynolds number (Re) and Keulegan-Carpenter number (KC). Recent studies have obtained CD-Re relations for combined wave-current flows, whereas CD-KC relations in such flow condition remain unexplored. Thus, this study conducts a thorough comparison between two existing methods and explores the CD-KC relations in combined wave-current flows. By a unique revisiting procedure, we show that CD derived by the direct measurement approach have a better overall performance in reproducing both acting force and the resulting wave dissipation. Therefore, a generic CD-KC relation for both wave-only and wave-current flows is proposed using direct measurement approach. Finally, a detailed comparison of these two approaches are given. The comprehensive method comparison and the obtained new CD-KC relation may lead to improved understanding and modelling of wave-vegetation interaction.
AbstractList Coastal vegetation is efficient in damping incident waves even in storm events, thus providing valuable protections to coastal communities. However, large uncertainties lie in determining vegetation drag coefficients (CD), which are directly related to the wave damping capacity of a certain vegetated area. One major uncertainty is related to the different methods used in deriving CD. Currently, two methods are available, i.e. the conventional calibration approach and the new direct measurement approach. Comparative studies of these two methods are lacking to reveal their respective strengths and reduce the uncertainty. Additional uncertainty stems from the dependence of CD on flow conditions (i.e. wave-only or wave-current) and indicative parameters, i.e. Reynolds number (Re) and Keulegan-Carpenter number (KC). Recent studies have obtained CD-Re relations for combined wave-current flows, whereas CD-KC relations in such flow condition remain unexplored. Thus, this study conducts a thorough comparison between two existing methods and explores the CD-KC relations in combined wave-current flows. By a unique revisiting procedure, we show that CD derived by the direct measurement approach have a better overall performance in reproducing both acting force and the resulting wave dissipation. Therefore, a generic CD-KC relation for both wave-only and wave-current flows is proposed using direct measurement approach. Finally, a detailed comparison of these two approaches are given. The comprehensive method comparison and the obtained new CD-KC relation may lead to improved understanding and modelling of wave-vegetation interaction.
•Comprehensive comparison between two methods available in deriving CD.•A unique revisiting procedure reveals the traits of these two methods.•A generic CD-KC relation for both wave-only and wave-current flows is proposed. Coastal vegetation is efficient in damping incident waves even in storm events, thus providing valuable protections to coastal communities. However, large uncertainties lie in determining vegetation drag coefficients (CD), which are directly related to the wave damping capacity of a certain vegetated area. One major uncertainty is related to the different methods used in deriving CD. Currently, two methods are available, i.e. the conventional calibration approach and the new direct measurement approach. Comparative studies of these two methods are lacking to reveal their respective strengths and reduce the uncertainty. Additional uncertainty stems from the dependence of CD on flow conditions (i.e. wave-only or wave-current) and indicative parameters, i.e. Reynolds number (Re) and Keulegan-Carpenter number (KC). Recent studies have obtained CD-Re relations for combined wave-current flows, whereas CD-KC relations in such flow condition remain unexplored. Thus, this study conducts a thorough comparison between two existing methods and explores the CD-KC relations in combined wave-current flows. By a unique revisiting procedure, we show that CD derived by the direct measurement approach have a better overall performance in reproducing both acting force and the resulting wave dissipation. Therefore, a generic CD-KC relation for both wave-only and wave-current flows is proposed using direct measurement approach. Finally, a detailed comparison of these two approaches are given. The comprehensive method comparison and the obtained new CD-KC relation may lead to improved understanding and modelling of wave-vegetation interaction.
Author Ou, Suying
Uijttewaal, Wim
Chen, Hui
Li, Yulong
Peng, Yisheng
Ni, Yan
Liu, Feng
Su, Min
Hu, Zhan
Suzuki, Tomohiro
Author_xml – sequence: 1
  givenname: Hui
  surname: Chen
  fullname: Chen, Hui
  organization: Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 2
  givenname: Yan
  surname: Ni
  fullname: Ni, Yan
  organization: Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China
– sequence: 3
  givenname: Yulong
  surname: Li
  fullname: Li, Yulong
  organization: Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 4
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
  organization: Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 5
  givenname: Suying
  surname: Ou
  fullname: Ou, Suying
  organization: Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 6
  givenname: Min
  surname: Su
  fullname: Su, Min
  organization: Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 7
  givenname: Yisheng
  surname: Peng
  fullname: Peng, Yisheng
  organization: School of Environmental Science and Engineering/Research Center of Wetland Science, Sun Yat-Sen University, Guangzhou 501275, China
– sequence: 8
  givenname: Zhan
  surname: Hu
  fullname: Hu, Zhan
  email: huzh9@mail.sysu.edu.cn
  organization: Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 9
  givenname: Wim
  surname: Uijttewaal
  fullname: Uijttewaal, Wim
  organization: Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft 2628 CN, the Netherlands
– sequence: 10
  givenname: Tomohiro
  surname: Suzuki
  fullname: Suzuki, Tomohiro
  organization: Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft 2628 CN, the Netherlands
BookMark eNqNkUFv3CAUhFGVSN0k_Q1F6qUXbwBjsA89RGnaRIrUS3tGGJ63rGxIAXuVf19cVznk0p4QvG_moZkLdOaDB4TeU7KnhIrr417b5aRzhLRnhLbldU9I-wbtaCtZ1YlGnqEdqUlXUUnat-gipSMpBJdsh-JniG5x_oAXOEDW2QWPbdQHbAIMgzMOfE7Y-XKfeufB4pNeoDJzjGWChzGcEu6fsdGj6-Om195i6yKYjCfQaY4wrewE-Wew6QqdD3pM8O7veYl-fLn7fntfPX77-nB781gZzlmuBNNS9n0_EBCCmIaClJw2jeSGkc7wZqj7oRG2E7JtmDSMS2itZEYSxoG39SX6uPk-xfBrhpTV5JKBcdQewpwUo23XcFGTFf3wCj2GOfryu0KVjYLXRBRKbpSJIaUIg3qKbtLxWVGi1i7UUb10odYu1gH54__pldK4LesctRv_Q3-z6aHktTiIKq3FGNhSVja4f3r8BvuzrvQ
CitedBy_id crossref_primary_10_1016_j_coastaleng_2020_103820
crossref_primary_10_1016_j_oceaneng_2021_110255
crossref_primary_10_1016_j_wse_2022_10_004
crossref_primary_10_1016_j_apor_2020_102116
crossref_primary_10_1016_j_oceaneng_2024_117002
crossref_primary_10_1016_j_ocemod_2024_102422
crossref_primary_10_1016_j_ecoleng_2022_106619
crossref_primary_10_1016_j_oceaneng_2023_115382
crossref_primary_10_1007_s13344_024_0047_5
crossref_primary_10_1038_s41598_023_46612_z
crossref_primary_10_3390_computation9060066
crossref_primary_10_1016_j_oceaneng_2024_120026
crossref_primary_10_2112_JCOASTRES_D_21_00089_1
crossref_primary_10_1029_2021WR031121
crossref_primary_10_1016_j_oceaneng_2021_108694
crossref_primary_10_1007_s13131_021_1726_1
crossref_primary_10_1080_21664250_2021_1929742
crossref_primary_10_1016_j_ecss_2020_106645
crossref_primary_10_1017_jfm_2021_985
crossref_primary_10_1080_03091929_2021_1946803
crossref_primary_10_1016_j_coastaleng_2024_104688
crossref_primary_10_1016_j_oceaneng_2023_116440
crossref_primary_10_1002_lno_11875
crossref_primary_10_1016_j_oceaneng_2024_118001
crossref_primary_10_1016_j_jfluidstructs_2022_103539
crossref_primary_10_3390_jmse12081326
crossref_primary_10_1016_j_advwatres_2020_103755
crossref_primary_10_1016_j_oceaneng_2024_118873
crossref_primary_10_5194_hess_25_4825_2021
crossref_primary_10_1016_j_oceaneng_2022_111646
crossref_primary_10_3390_jmse10040554
crossref_primary_10_1016_j_jhydrol_2021_126775
crossref_primary_10_1016_j_oceaneng_2021_109357
crossref_primary_10_1016_j_oceaneng_2022_111522
crossref_primary_10_1016_j_apor_2025_104443
crossref_primary_10_3934_math_2020138
crossref_primary_10_1016_j_coastaleng_2024_104575
crossref_primary_10_1016_j_coastaleng_2019_03_011
crossref_primary_10_1016_j_coastaleng_2019_103510
crossref_primary_10_1146_annurev_marine_040422_092951
crossref_primary_10_1063_5_0259148
crossref_primary_10_1063_5_0236982
crossref_primary_10_1016_j_oceaneng_2021_110103
crossref_primary_10_5194_essd_13_4987_2021
crossref_primary_10_1016_j_oceaneng_2019_106395
crossref_primary_10_1016_j_ecoleng_2021_106231
crossref_primary_10_1029_2019JC015935
crossref_primary_10_1016_j_advwatres_2022_104148
crossref_primary_10_1142_S179343112140008X
crossref_primary_10_1103_PhysRevFluids_6_100502
crossref_primary_10_1029_2022JC018653
crossref_primary_10_3390_w13040398
crossref_primary_10_1016_j_oceaneng_2024_120014
crossref_primary_10_1007_s13131_023_2199_1
crossref_primary_10_1016_j_coastaleng_2020_103648
crossref_primary_10_1016_j_coastaleng_2021_103947
crossref_primary_10_1016_j_oceaneng_2021_109574
crossref_primary_10_1016_j_oceaneng_2024_118218
crossref_primary_10_1073_pnas_2410883122
Cites_doi 10.1038/nclimate1944
10.1061/(ASCE)0733-950X(1984)110:1(67)
10.2118/950149-G
10.1016/j.coastaleng.2013.10.004
10.1016/j.coastaleng.2016.06.001
10.1016/j.coastaleng.2014.02.009
10.1061/(ASCE)0733-950X(1993)119:1(30)
10.1016/j.coastaleng.2003.11.003
10.1061/(ASCE)0733-9429(2007)133:7(794)
10.1016/j.coastaleng.2013.02.013
10.1016/j.coastaleng.2015.09.012
10.1016/j.ecss.2015.08.021
10.1016/j.coastaleng.2016.07.004
10.1061/(ASCE)WW.1943-5460.0000251
10.1016/j.coastaleng.2008.09.004
10.1038/ngeo2251
10.1126/science.1197219
10.3354/meps09489
10.1016/j.coastaleng.2015.01.002
10.1016/j.coastaleng.2018.05.002
10.1007/s12237-011-9424-4
10.21236/AD1003881
10.1029/1998WR900069
10.1016/j.advwatres.2012.02.002
10.1016/S0272-7714(05)80039-3
10.1029/1999JC900119
10.1007/s13157-011-0240-1
10.1016/j.coastaleng.2015.09.011
10.1002/2017JC012731
10.1016/j.jfluidstructs.2015.11.007
10.1016/j.advwatres.2015.09.004
10.1016/j.advwatres.2016.05.019
10.1016/j.coastaleng.2013.04.009
10.1890/04-1588
10.1016/j.oceaneng.2015.09.057
10.1016/j.coastaleng.2015.09.010
10.1029/2003GL018933
10.1016/j.coastaleng.2011.07.006
10.1126/science.aac8312
10.4319/lo.2011.56.6.2223
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier Science Ltd. Dec 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Dec 2018
DBID AAYXX
CITATION
7QF
7QH
7QO
7QQ
7SE
7SR
7ST
7T7
7TA
7TG
7UA
8BQ
8FD
C1K
F1W
F28
FR3
H8G
H97
JG9
KL.
KR7
L.G
P64
SOI
7S9
L.6
DOI 10.1016/j.advwatres.2018.10.008
DatabaseName CrossRef
Aluminium Industry Abstracts
Aqualine
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Copper Technical Reference Library
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Materials Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aluminium Industry Abstracts
Technology Research Database
Ceramic Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Materials Business File
METADEX
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Corrosion Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ANTE: Abstracts in New Technology & Engineering
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9657
EndPage 227
ExternalDocumentID 10_1016_j_advwatres_2018_10_008
S030917081830112X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QF
7QH
7QO
7QQ
7SE
7SR
7ST
7T7
7TA
7TG
7UA
8BQ
8FD
C1K
EFKBS
F1W
F28
FR3
H8G
H97
JG9
KL.
KR7
L.G
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c442t-62a77bbbf0e660c51e77415574c209c45f3bf56d9678527c247e8d72c7024e483
IEDL.DBID .~1
ISSN 0309-1708
IngestDate Fri Jul 11 03:52:05 EDT 2025
Wed Aug 13 06:11:01 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 01:23:10 EDT 2025
Fri Feb 23 02:24:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wave-current interaction
Wave dissipation
Keulegan-Carpenter number
Flume experiment
Drag coefficient
Vegetation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-62a77bbbf0e660c51e77415574c209c45f3bf56d9678527c247e8d72c7024e483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2157464306
PQPubID 2047482
PageCount 11
ParticipantIDs proquest_miscellaneous_2189546308
proquest_journals_2157464306
crossref_primary_10_1016_j_advwatres_2018_10_008
crossref_citationtrail_10_1016_j_advwatres_2018_10_008
elsevier_sciencedirect_doi_10_1016_j_advwatres_2018_10_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Advances in water resources
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Maza, Lara, Losada, Ondiviela, Trinogga, Bouma (bib0030) 2015; 106
Vuik, van Vuren, Borsje, van Wesenbeeck, Jonkman (bib0047) 2018; 139
Bradley, Houser (bib0006) 2009; 114
Luhar, Infantes, Nepf (bib0026) 2017; 122
Méndez, Losada (bib0031) 2004; 51
Lara, Maza, Ondiviela, Trinogga, Losada, Bouma, Gordejuela (bib0022) 2016; 107
Kobayashi, Raichle Andrew, Toshiyuki (bib0021) 1993; 119
Anderson, M.E., Smith, J.M., McKay, S.K., 2011. Wave dissipation by vegetation. ERDC CHETN–82.
Donnelly, Cleary, Newby, Ettinger (bib0014) 2004; 31
Li, Yan (bib0023) 2007; 133
Mendez, Losada (bib0032) 2004; 51
Paul, Rupprecht, Möller, Bouma, Spencer, Kudella, Wolters, van, Jensen, Miranda-Lange, Schimmels (bib0042) 2016; 117
Suzuki, Zijlema, Burger, Meijer, Narayan (bib0043) 2012; 59
Anderson, Smith (bib0001) 2014; 83
Cao, Feng, Hu, Suzuki, Stive (bib0009) 2015; 110
Vuik, Jonkman, Borsje, Suzuki (bib0046) 2016; 116
Young, Zieger, Babanin (bib0049) 2011; 332
Luhar, Nepf (bib0027aa) 2016; 61
Augustin, Irish, Lynett (bib0004) 2009; 56
Yang, Shi, Bouma, Ysebaert, Luo (bib0048) 2012; 35
Infantes, Orfila, Bouma, Simarro, Terrados (bib0018) 2011; 56
Hu, Suzuki, Zitman, Uittewaal, Stive (bib0017) 2014; 88
Ozeren, Wren, Wu (bib0040) 2014; 140
Maza, Lara, Losada (bib0029) 2013; 80
Losada, Maza, Lara (bib0025) 2016; 107
Möller, Kudella, Rupprecht, Spencer, Paul, van Wesenbeeck, Wolters, Jensen, Bouma, Miranda-Lange, Schimmels (bib0035) 2014; 7
D'Alpaos, Toffolon, Camporeale (bib0011) 2016; 93
Dalrymple, Kirby, Hwang (bib0012) 1984; 110
Bouma, De Vries, Low, Peralta, Tánczos, Van De Koppel, Herman (bib0005) 2005; 86
Temmerman, Kirwan (bib0045) 2015; 349
D'Alpaos, Marani (bib0010) 2016; 93
Morison, Johnson, Schaaf (bib0036) 1950; 2
Nepf (bib0037) 2012
Losada, Maza, Lara (bib0024) 2016; 107
Nepf (bib0039) 1999; 35
Jadhav, Chen, Smith (bib0019) 2013; 77
Méndez, Losada, Losada (bib0034) 1999; 104
Arkema, Guannel, Verutes, Wood, Guerry, Ruckelshaus, Kareiva, Lacayo, Silver (bib0003) 2013; 3
Ysebaert, Yang, Zhang, He, Bouma, Herman (bib0050) 2011; 31
Dean, Dalrymple (bib0013) 1991
Nepf (bib0038) 2004
Paul, Bouma, Amos (bib0041) 2012; 444
Mendez, Losada, Losada (bib0033) 1999; 104
Fonseca, Cahalan (bib0015) 1992; 35
Henry, Myrhaug, Aberle (bib0016) 2015; 165
Luhar, Nepf (bib0027) 2013; 51
Maza, Lara, Losada (bib0028) 2015; 98
Möller (10.1016/j.advwatres.2018.10.008_bib0035) 2014; 7
Suzuki (10.1016/j.advwatres.2018.10.008_bib0043) 2012; 59
Mendez (10.1016/j.advwatres.2018.10.008_bib0032) 2004; 51
Maza (10.1016/j.advwatres.2018.10.008_bib0029) 2013; 80
Losada (10.1016/j.advwatres.2018.10.008_bib0024) 2016; 107
Ozeren (10.1016/j.advwatres.2018.10.008_bib0040) 2014; 140
D'Alpaos (10.1016/j.advwatres.2018.10.008_bib0011) 2016; 93
Vuik (10.1016/j.advwatres.2018.10.008_bib0046) 2016; 116
Lara (10.1016/j.advwatres.2018.10.008_bib0022) 2016; 107
Bradley (10.1016/j.advwatres.2018.10.008_bib0006) 2009; 114
Cao (10.1016/j.advwatres.2018.10.008_bib0009) 2015; 110
Donnelly (10.1016/j.advwatres.2018.10.008_bib0014) 2004; 31
Dalrymple (10.1016/j.advwatres.2018.10.008_bib0012) 1984; 110
Losada (10.1016/j.advwatres.2018.10.008_bib0025) 2016; 107
Kobayashi (10.1016/j.advwatres.2018.10.008_bib0021) 1993; 119
Hu (10.1016/j.advwatres.2018.10.008_bib0017) 2014; 88
Maza (10.1016/j.advwatres.2018.10.008_bib0030) 2015; 106
Morison (10.1016/j.advwatres.2018.10.008_bib0036) 1950; 2
Nepf (10.1016/j.advwatres.2018.10.008_bib0037) 2012
Nepf (10.1016/j.advwatres.2018.10.008_bib0039) 1999; 35
10.1016/j.advwatres.2018.10.008_bib0002
Augustin (10.1016/j.advwatres.2018.10.008_bib0004) 2009; 56
Méndez (10.1016/j.advwatres.2018.10.008_bib0031) 2004; 51
Paul (10.1016/j.advwatres.2018.10.008_bib0041) 2012; 444
Dean (10.1016/j.advwatres.2018.10.008_bib0013) 1991
Paul (10.1016/j.advwatres.2018.10.008_bib0042) 2016; 117
Yang (10.1016/j.advwatres.2018.10.008_bib0048) 2012; 35
Luhar (10.1016/j.advwatres.2018.10.008_bib0027aa) 2016; 61
Nepf (10.1016/j.advwatres.2018.10.008_bib0038) 2004
Arkema (10.1016/j.advwatres.2018.10.008_bib0003) 2013; 3
Mendez (10.1016/j.advwatres.2018.10.008_bib0033) 1999; 104
Maza (10.1016/j.advwatres.2018.10.008_bib0028) 2015; 98
Luhar (10.1016/j.advwatres.2018.10.008_bib0026) 2017; 122
Vuik (10.1016/j.advwatres.2018.10.008_bib0047) 2018; 139
Jadhav (10.1016/j.advwatres.2018.10.008_bib0019) 2013; 77
Temmerman (10.1016/j.advwatres.2018.10.008_bib0045) 2015; 349
Fonseca (10.1016/j.advwatres.2018.10.008_bib0015) 1992; 35
Li (10.1016/j.advwatres.2018.10.008_bib0023) 2007; 133
Ysebaert (10.1016/j.advwatres.2018.10.008_bib0050) 2011; 31
Henry (10.1016/j.advwatres.2018.10.008_bib0016) 2015; 165
Luhar (10.1016/j.advwatres.2018.10.008_bib0027) 2013; 51
D'Alpaos (10.1016/j.advwatres.2018.10.008_bib0010) 2016; 93
Méndez (10.1016/j.advwatres.2018.10.008_bib0034) 1999; 104
Anderson (10.1016/j.advwatres.2018.10.008_bib0001) 2014; 83
Bouma (10.1016/j.advwatres.2018.10.008_bib0005) 2005; 86
Infantes (10.1016/j.advwatres.2018.10.008_bib0018) 2011; 56
Young (10.1016/j.advwatres.2018.10.008_bib0049) 2011; 332
References_xml – volume: 88
  start-page: 131
  year: 2014
  end-page: 142
  ident: bib0017
  article-title: Laboratory study on wave dissipation by vegetation in combined current-wave flow
  publication-title: Coast. Eng.
– volume: 140
  year: 2014
  ident: bib0040
  article-title: Experimental investigation of wave attenuation through model and live vegetation
  publication-title: J. Waterw. Port Coast. Ocean Eng.
– volume: 107
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0025
  article-title: A new formulation for vegetation-induced damping under combined waves and currents
  publication-title: Coast. Eng.
– volume: 98
  start-page: 33
  year: 2015
  end-page: 54
  ident: bib0028
  article-title: Tsunami wave interaction with mangrove forests: a 3-D numerical approach
  publication-title: Coast. Eng.
– reference: Anderson, M.E., Smith, J.M., McKay, S.K., 2011. Wave dissipation by vegetation. ERDC CHETN–82.
– volume: 77
  start-page: 99
  year: 2013
  end-page: 107
  ident: bib0019
  article-title: Spectral distribution of wave energy dissipation by salt marsh vegetation
  publication-title: Coast. Eng.
– volume: 116
  start-page: 42
  year: 2016
  end-page: 56
  ident: bib0046
  article-title: Nature-based flood protection: the efficiency of vegetated foreshores for reducing wave loads on coastal dikes
  publication-title: Coast. Eng.
– volume: 139
  start-page: 47
  year: 2018
  end-page: 64
  ident: bib0047
  article-title: Assessing safety of nature-based flood defenses: dealing with extremes and uncertainties
  publication-title: Coast. Eng.
– volume: 35
  start-page: 169
  year: 2012
  end-page: 182
  ident: bib0048
  article-title: Wave attenuation at a salt marsh margin: a case study of an exposed coast on the Yangtze Estuary
  publication-title: Estuaries Coasts
– start-page: 267
  year: 2012
  end-page: 287
  ident: bib0037
  article-title: Flow Over and Through Biota
– volume: 31
  year: 2004
  ident: bib0014
  article-title: Coupling instrumental and geological records of sea-level change: evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century
  publication-title: Geophys. Res. Lett.
– volume: 51
  start-page: 103
  year: 2004
  end-page: 118
  ident: bib0031
  article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields
  publication-title: Coast. Eng.
– volume: 2
  start-page: 149
  year: 1950
  end-page: 154
  ident: bib0036
  article-title: The force exerted by surface waves on piles
  publication-title: J. Pet. Technol.
– volume: 93
  start-page: 265
  year: 2016
  end-page: 275
  ident: bib0010
  article-title: Reading the signatures of biologic–geomorphic feedbacks in salt-marsh landscapes
  publication-title: Adv. Water Resour.
– volume: 35
  start-page: 565
  year: 1992
  end-page: 576
  ident: bib0015
  article-title: A preliminary evaluation of wave attenuation by four species of seagrass
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 83
  start-page: 82
  year: 2014
  end-page: 92
  ident: bib0001
  article-title: Wave attenuation by flexible, idealized salt marsh vegetation
  publication-title: Coast. Eng.
– volume: 133
  start-page: 794
  year: 2007
  end-page: 803
  ident: bib0023
  article-title: Numerical investigation of wave-current-vegetation interaction
  publication-title: J. Hydraul. Eng.
– volume: 86
  start-page: 2187
  year: 2005
  end-page: 2199
  ident: bib0005
  article-title: Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes
  publication-title: Ecology
– volume: 119
  start-page: 30
  year: 1993
  end-page: 48
  ident: bib0021
  article-title: Wave attenuation by vegetation
  publication-title: J. Waterw. Port Coast. Ocean Eng.
– volume: 107
  start-page: 70
  year: 2016
  end-page: 83
  ident: bib0022
  article-title: Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 1: guidelines for physical modeling
  publication-title: Coast. Eng
– volume: 80
  start-page: 16
  year: 2013
  end-page: 34
  ident: bib0029
  article-title: A coupled model of submerged vegetation under oscillatory flow using Navier-Stokes equations
  publication-title: Coast. Eng.
– volume: 7
  start-page: 727
  year: 2014
  end-page: 731
  ident: bib0035
  article-title: Wave attenuation over coastal salt marshes under storm surge conditions
  publication-title: Nat. Geosci.
– volume: 3
  start-page: 913
  year: 2013
  end-page: 918
  ident: bib0003
  article-title: Coastal habitats shield people and property from sea-level rise and storms
  publication-title: Nat. Clim. Change
– volume: 165
  start-page: 10
  year: 2015
  end-page: 24
  ident: bib0016
  article-title: Drag forces on aquatic plants in nonlinear random waves plus current
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 59
  start-page: 64
  year: 2012
  end-page: 71
  ident: bib0043
  article-title: Wave dissipation by vegetation with layer schematization in SWAN
  publication-title: Coast. Eng.
– volume: 35
  start-page: 479
  year: 1999
  end-page: 489
  ident: bib0039
  article-title: Drag, turbulence, and diffusion in flow through emergent vegetation
  publication-title: Water Resour. Res.
– volume: 51
  start-page: 305
  year: 2013
  end-page: 316
  ident: bib0027
  article-title: From the blade scale to the reach scale: a characterization of aquatic vegetative drag
  publication-title: Adv. Water Resour.
– volume: 117
  start-page: 70
  year: 2016
  end-page: 78
  ident: bib0042
  article-title: Plant stiffness and biomass as drivers for drag forces under extreme wave loading: a flume study on mimics
  publication-title: Coast. Eng.
– volume: 56
  start-page: 332
  year: 2009
  end-page: 340
  ident: bib0004
  article-title: Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation
  publication-title: Coast. Eng.
– volume: 107
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0024
  article-title: A new formulation for vegetation-induced damping under combined waves and currents
  publication-title: Coast. Eng.
– volume: 51
  start-page: 103
  year: 2004
  end-page: 118
  ident: bib0032
  article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields
  publication-title: Coast. Eng.
– volume: 122
  start-page: 3736
  year: 2017
  end-page: 3752
  ident: bib0026
  article-title: Seagrass blade motion under waves and its impact on wave decay
  publication-title: J. Geophys. Res.-Oceans
– volume: 444
  start-page: 31
  year: 2012
  end-page: 41
  ident: bib0041
  article-title: Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current
  publication-title: Mar. Ecol. Prog. Ser.
– start-page: 137
  year: 2004
  end-page: 163
  ident: bib0038
  article-title: Vegetated flow dynamics
  publication-title: Coastal and Estuarine Studies
– volume: 31
  start-page: 1043
  year: 2011
  end-page: 1054
  ident: bib0050
  article-title: Wave attenuation by two contrasting ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone
  publication-title: Wetlands
– volume: 110
  start-page: 258
  year: 2015
  end-page: 269
  ident: bib0009
  article-title: Numerical modeling of vegetation-induced dissipation using an extended mild-slope equation
  publication-title: Ocean Eng
– volume: 104
  start-page: 18383
  year: 1999
  end-page: 18396
  ident: bib0034
  article-title: Hydrodynamics induced by wind waves in a vegetation field
  publication-title: J. Geophys. Res. C Oceans
– volume: 56
  start-page: 2223
  year: 2011
  end-page: 2232
  ident: bib0018
  article-title: Posidonia oceanica and Cymodocea nodosa seedling tolerance to wave exposure
  publication-title: Limnol. Oceanogr
– volume: 349
  start-page: 588
  year: 2015
  end-page: 589
  ident: bib0045
  article-title: Building land with a rising sea
  publication-title: Science
– volume: 114
  year: 2009
  ident: bib0006
  article-title: Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments
  publication-title: J. Geophys. Res. F Earth Surf
– volume: 332
  start-page: 451
  year: 2011
  end-page: 455
  ident: bib0049
  article-title: Global trends in wind speed and wave height
  publication-title: Science
– volume: 61
  start-page: 20
  year: 2016
  end-page: 41
  ident: bib0027aa
  article-title: Wave-induced dynamics of flexible blades
  publication-title: J. Fluids Struct.
– year: 1991
  ident: bib0013
  article-title: Water Wave Mechanics for Engineers and Scientists, Advanced Series on Ocean Engineering
– volume: 93
  start-page: 151
  year: 2016
  end-page: 155
  ident: bib0011
  article-title: Ecogeomorphological feedbacks of water fluxes, sediment transport and vegetation dynamics in rivers and estuaries
  publication-title: Adv. Water Resour.
– volume: 110
  start-page: 67
  year: 1984
  end-page: 79
  ident: bib0012
  article-title: Wave diffraction due to areas of energy dissipation
  publication-title: J. Waterw. Port Coast. Ocean Eng. ASCE
– volume: 106
  start-page: 73
  year: 2015
  end-page: 86
  ident: bib0030
  article-title: Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2: experimental analysis
  publication-title: Coast. Eng.
– volume: 104
  start-page: 18383
  year: 1999
  end-page: 18396
  ident: bib0033
  article-title: Hydrodynamics induced by wind waves in a vegetation field
  publication-title: J. Geophys. Res.-Oceans
– volume: 3
  start-page: 913
  year: 2013
  ident: 10.1016/j.advwatres.2018.10.008_bib0003
  article-title: Coastal habitats shield people and property from sea-level rise and storms
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1944
– volume: 110
  start-page: 67
  year: 1984
  ident: 10.1016/j.advwatres.2018.10.008_bib0012
  article-title: Wave diffraction due to areas of energy dissipation
  publication-title: J. Waterw. Port Coast. Ocean Eng. ASCE
  doi: 10.1061/(ASCE)0733-950X(1984)110:1(67)
– volume: 2
  start-page: 149
  year: 1950
  ident: 10.1016/j.advwatres.2018.10.008_bib0036
  article-title: The force exerted by surface waves on piles
  publication-title: J. Pet. Technol.
  doi: 10.2118/950149-G
– volume: 83
  start-page: 82
  year: 2014
  ident: 10.1016/j.advwatres.2018.10.008_bib0001
  article-title: Wave attenuation by flexible, idealized salt marsh vegetation
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2013.10.004
– volume: 116
  start-page: 42
  year: 2016
  ident: 10.1016/j.advwatres.2018.10.008_bib0046
  article-title: Nature-based flood protection: the efficiency of vegetated foreshores for reducing wave loads on coastal dikes
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2016.06.001
– start-page: 267
  year: 2012
  ident: 10.1016/j.advwatres.2018.10.008_bib0037
– volume: 88
  start-page: 131
  year: 2014
  ident: 10.1016/j.advwatres.2018.10.008_bib0017
  article-title: Laboratory study on wave dissipation by vegetation in combined current-wave flow
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2014.02.009
– volume: 119
  start-page: 30
  year: 1993
  ident: 10.1016/j.advwatres.2018.10.008_bib0021
  article-title: Wave attenuation by vegetation
  publication-title: J. Waterw. Port Coast. Ocean Eng.
  doi: 10.1061/(ASCE)0733-950X(1993)119:1(30)
– volume: 51
  start-page: 103
  year: 2004
  ident: 10.1016/j.advwatres.2018.10.008_bib0031
  article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2003.11.003
– year: 1991
  ident: 10.1016/j.advwatres.2018.10.008_bib0013
– volume: 133
  start-page: 794
  year: 2007
  ident: 10.1016/j.advwatres.2018.10.008_bib0023
  article-title: Numerical investigation of wave-current-vegetation interaction
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(2007)133:7(794)
– volume: 51
  start-page: 103
  year: 2004
  ident: 10.1016/j.advwatres.2018.10.008_bib0032
  article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2003.11.003
– volume: 77
  start-page: 99
  year: 2013
  ident: 10.1016/j.advwatres.2018.10.008_bib0019
  article-title: Spectral distribution of wave energy dissipation by salt marsh vegetation
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2013.02.013
– volume: 107
  start-page: 70
  year: 2016
  ident: 10.1016/j.advwatres.2018.10.008_bib0022
  article-title: Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 1: guidelines for physical modeling
  publication-title: Coast. Eng
  doi: 10.1016/j.coastaleng.2015.09.012
– volume: 165
  start-page: 10
  year: 2015
  ident: 10.1016/j.advwatres.2018.10.008_bib0016
  article-title: Drag forces on aquatic plants in nonlinear random waves plus current
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2015.08.021
– volume: 117
  start-page: 70
  year: 2016
  ident: 10.1016/j.advwatres.2018.10.008_bib0042
  article-title: Plant stiffness and biomass as drivers for drag forces under extreme wave loading: a flume study on mimics
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2016.07.004
– volume: 140
  year: 2014
  ident: 10.1016/j.advwatres.2018.10.008_bib0040
  article-title: Experimental investigation of wave attenuation through model and live vegetation
  publication-title: J. Waterw. Port Coast. Ocean Eng.
  doi: 10.1061/(ASCE)WW.1943-5460.0000251
– volume: 56
  start-page: 332
  year: 2009
  ident: 10.1016/j.advwatres.2018.10.008_bib0004
  article-title: Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2008.09.004
– volume: 7
  start-page: 727
  year: 2014
  ident: 10.1016/j.advwatres.2018.10.008_bib0035
  article-title: Wave attenuation over coastal salt marshes under storm surge conditions
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2251
– volume: 332
  start-page: 451
  year: 2011
  ident: 10.1016/j.advwatres.2018.10.008_bib0049
  article-title: Global trends in wind speed and wave height
  publication-title: Science
  doi: 10.1126/science.1197219
– volume: 444
  start-page: 31
  year: 2012
  ident: 10.1016/j.advwatres.2018.10.008_bib0041
  article-title: Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps09489
– volume: 98
  start-page: 33
  year: 2015
  ident: 10.1016/j.advwatres.2018.10.008_bib0028
  article-title: Tsunami wave interaction with mangrove forests: a 3-D numerical approach
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2015.01.002
– volume: 139
  start-page: 47
  year: 2018
  ident: 10.1016/j.advwatres.2018.10.008_bib0047
  article-title: Assessing safety of nature-based flood defenses: dealing with extremes and uncertainties
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2018.05.002
– volume: 35
  start-page: 169
  year: 2012
  ident: 10.1016/j.advwatres.2018.10.008_bib0048
  article-title: Wave attenuation at a salt marsh margin: a case study of an exposed coast on the Yangtze Estuary
  publication-title: Estuaries Coasts
  doi: 10.1007/s12237-011-9424-4
– ident: 10.1016/j.advwatres.2018.10.008_bib0002
  doi: 10.21236/AD1003881
– volume: 35
  start-page: 479
  year: 1999
  ident: 10.1016/j.advwatres.2018.10.008_bib0039
  article-title: Drag, turbulence, and diffusion in flow through emergent vegetation
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900069
– volume: 51
  start-page: 305
  year: 2013
  ident: 10.1016/j.advwatres.2018.10.008_bib0027
  article-title: From the blade scale to the reach scale: a characterization of aquatic vegetative drag
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.02.002
– volume: 35
  start-page: 565
  year: 1992
  ident: 10.1016/j.advwatres.2018.10.008_bib0015
  article-title: A preliminary evaluation of wave attenuation by four species of seagrass
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/S0272-7714(05)80039-3
– volume: 104
  start-page: 18383
  year: 1999
  ident: 10.1016/j.advwatres.2018.10.008_bib0034
  article-title: Hydrodynamics induced by wind waves in a vegetation field
  publication-title: J. Geophys. Res. C Oceans
  doi: 10.1029/1999JC900119
– volume: 31
  start-page: 1043
  year: 2011
  ident: 10.1016/j.advwatres.2018.10.008_bib0050
  article-title: Wave attenuation by two contrasting ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone
  publication-title: Wetlands
  doi: 10.1007/s13157-011-0240-1
– volume: 107
  start-page: 1
  year: 2016
  ident: 10.1016/j.advwatres.2018.10.008_bib0025
  article-title: A new formulation for vegetation-induced damping under combined waves and currents
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2015.09.011
– volume: 114
  year: 2009
  ident: 10.1016/j.advwatres.2018.10.008_bib0006
  article-title: Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments
  publication-title: J. Geophys. Res. F Earth Surf
– volume: 122
  start-page: 3736
  year: 2017
  ident: 10.1016/j.advwatres.2018.10.008_bib0026
  article-title: Seagrass blade motion under waves and its impact on wave decay
  publication-title: J. Geophys. Res.-Oceans
  doi: 10.1002/2017JC012731
– volume: 61
  start-page: 20
  year: 2016
  ident: 10.1016/j.advwatres.2018.10.008_bib0027aa
  article-title: Wave-induced dynamics of flexible blades
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2015.11.007
– start-page: 137
  year: 2004
  ident: 10.1016/j.advwatres.2018.10.008_bib0038
  article-title: Vegetated flow dynamics
– volume: 107
  start-page: 1
  year: 2016
  ident: 10.1016/j.advwatres.2018.10.008_bib0024
  article-title: A new formulation for vegetation-induced damping under combined waves and currents
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2015.09.011
– volume: 93
  start-page: 265
  issue: Part B
  year: 2016
  ident: 10.1016/j.advwatres.2018.10.008_bib0010
  article-title: Reading the signatures of biologic–geomorphic feedbacks in salt-marsh landscapes
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2015.09.004
– volume: 93
  start-page: 151
  issue: Part B
  year: 2016
  ident: 10.1016/j.advwatres.2018.10.008_bib0011
  article-title: Ecogeomorphological feedbacks of water fluxes, sediment transport and vegetation dynamics in rivers and estuaries
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.05.019
– volume: 80
  start-page: 16
  year: 2013
  ident: 10.1016/j.advwatres.2018.10.008_bib0029
  article-title: A coupled model of submerged vegetation under oscillatory flow using Navier-Stokes equations
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2013.04.009
– volume: 86
  start-page: 2187
  year: 2005
  ident: 10.1016/j.advwatres.2018.10.008_bib0005
  article-title: Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes
  publication-title: Ecology
  doi: 10.1890/04-1588
– volume: 110
  start-page: 258
  year: 2015
  ident: 10.1016/j.advwatres.2018.10.008_bib0009
  article-title: Numerical modeling of vegetation-induced dissipation using an extended mild-slope equation
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2015.09.057
– volume: 104
  start-page: 18383
  year: 1999
  ident: 10.1016/j.advwatres.2018.10.008_bib0033
  article-title: Hydrodynamics induced by wind waves in a vegetation field
  publication-title: J. Geophys. Res.-Oceans
  doi: 10.1029/1999JC900119
– volume: 106
  start-page: 73
  year: 2015
  ident: 10.1016/j.advwatres.2018.10.008_bib0030
  article-title: Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2: experimental analysis
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2015.09.010
– volume: 31
  year: 2004
  ident: 10.1016/j.advwatres.2018.10.008_bib0014
  article-title: Coupling instrumental and geological records of sea-level change: evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2003GL018933
– volume: 59
  start-page: 64
  year: 2012
  ident: 10.1016/j.advwatres.2018.10.008_bib0043
  article-title: Wave dissipation by vegetation with layer schematization in SWAN
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2011.07.006
– volume: 349
  start-page: 588
  year: 2015
  ident: 10.1016/j.advwatres.2018.10.008_bib0045
  article-title: Building land with a rising sea
  publication-title: Science
  doi: 10.1126/science.aac8312
– volume: 56
  start-page: 2223
  year: 2011
  ident: 10.1016/j.advwatres.2018.10.008_bib0018
  article-title: Posidonia oceanica and Cymodocea nodosa seedling tolerance to wave exposure
  publication-title: Limnol. Oceanogr
  doi: 10.4319/lo.2011.56.6.2223
SSID ssj0008472
Score 2.4836562
Snippet •Comprehensive comparison between two methods available in deriving CD.•A unique revisiting procedure reveals the traits of these two methods.•A generic CD-KC...
Coastal vegetation is efficient in damping incident waves even in storm events, thus providing valuable protections to coastal communities. However, large...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms Calibration
Coastal environments
Coastal protection
Comparative analysis
Comparative studies
Computational fluid dynamics
Damping
Damping capacity
Dependence
Drag
Drag coefficient
Drag coefficients
Energy dissipation
Fluid dynamics
Fluid flow
Flume experiment
Incident waves
Keulegan-Carpenter number
Measurement
Measurement methods
Modelling
Reynolds number
Storms
Surface waves
Uncertainty
Vegetation
Vegetation mapping
water resources
Wave damping
Wave dissipation
Wave-current interaction
Title Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods
URI https://dx.doi.org/10.1016/j.advwatres.2018.10.008
https://www.proquest.com/docview/2157464306
https://www.proquest.com/docview/2189546308
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIrxUpC4lqVdHi03xEMDBBdA2q3KEw1Bh8bYxIXfjt3HeEiIA7emidvKTm0n-WwTsu-dyGQcdGQ7LI14YDbKTCyjGAgynQmtGQYnX13L7h2_6IneDDluYmEQVlnr_kqnl9q6vtOuudl-7vfbN3g4ECtMyYaTNOlhBDtXCOs7eP-EeYD2nZ4k4OhvGC_txhONMRmI8UoPSphX-puF-qGrSwN0tkQWa8-RHlUft0xmfLFCFr7kE1wlwxO4wB0COvb3NY6QuqG-p3bgy1wRCJug_QLaT7Ak9o5O9NhHtkrSRMPjYPJCzRsFweEyuqTXhaMVk-jT54YirUpPv6yRu7PT2-NuVBdViCznySiSiVbKGBOYl5JZEXtVOhWK24RllovQMUFIl4EVE4myCVc-dSqxCqy552lnncwWg8JvEBoHxSXohABP4cGJ1DBlMOGXEs6Ao9YismFkbuuM41j44jFvoGUP-VQCOUoAO0ACLcKmhM9V0o2_SQ4bSeXf5k8OpuFv4u1Gtnn9C0N_DDwBf43JFtmbdsPPhycquvCDVxyTZlhPgKWb_3n_FpnHVoWS2Sazo-Gr3wFfZ2R2y8m8S-aOzi-71x9P2AGC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAcEE8RWmCRuJqsnX3Y3KpCldI2F1opN2tfrlK1TpWmifj3nbHXhiKhHrjZHo9tzaxnZne__Rbgc_CyUGllEjfmeSIq7pLCpipJUaEwhTSG0-Lkk6manIkfMznbgv1uLQzBKmPsb2N6E63jlVG05uh6Ph_9pMmBVBMlGzXSbPYItomdSgxge-_waDLtAzIG4H4ygRTuwbyMX28MLcsgmFf-pUF65f9KUn-F6yYHHTyHZ7F4ZHvt972ArVC_hKd_UAq-guU3PKBBArYO5xFKyPzSnDO3CA1dBCEn2LzG8yvsFQfPNmYdEtfyNLHqcrG5YfYXQ99RT7rRN7VnrZ3Y1e8xRdbuPn3zGs4Ovp_uT5K4r0LihMhWicqM1tbaigeluJNp0E1doYXLeOGErMa2ksoXmMhkpl0mdMi9zpzGhB5EPn4Dg3pRh7fA0koLhWGhwqeIysvccm2J80tLb7FWG4LqDFm6SDpOe19clh267KLsPVCSB0iAHhgC7xWvW96Nh1W-dp4q7zWhErPDw8q7nW_L-BejPEWbYMnG1RA-9WL8_2hSxdRhcUv35AVtKcDzd__z_o_weHJ6clweH06PduAJSVrQzC4MVsvb8B5Ln5X9EJv2HRbPBDM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deriving+vegetation+drag+coefficients+in+combined+wave-current+flows+by+calibration+and+direct+measurement+methods&rft.jtitle=Advances+in+water+resources&rft.au=Chen%2C+Hui&rft.au=Ni%2C+Yan&rft.au=Li%2C+Yulong&rft.au=Liu%2C+Feng&rft.date=2018-12-01&rft.pub=Elsevier+Ltd&rft.issn=0309-1708&rft.eissn=1872-9657&rft.volume=122&rft.spage=217&rft.epage=227&rft_id=info:doi/10.1016%2Fj.advwatres.2018.10.008&rft.externalDocID=S030917081830112X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-1708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-1708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-1708&client=summon