Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification

Effective fault diagnosis has long been a research topic in the prognosis and health management of rotary machinery engineered systems due to the benefits such as safety guarantees, reliability improvements, and economical efficiency. This paper investigates an effective and reliable deep learning m...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 130; pp. 377 - 388
Main Authors Lu, Chen, Wang, Zhen-Ya, Qin, Wei-Li, Ma, Jian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Effective fault diagnosis has long been a research topic in the prognosis and health management of rotary machinery engineered systems due to the benefits such as safety guarantees, reliability improvements, and economical efficiency. This paper investigates an effective and reliable deep learning method known as stacked denoising autoencoder (SDA), which is shown to be suitable for certain health state identifications for signals containing ambient noise and working condition fluctuations. SDA has become a popular approach to achieve the promised advantages of deep architecture-based robust feature representations. In this paper, the SDA-based fault diagnosis method contains three successive steps: health states are first divided into training and testing groups for the SDA model, a deep hierarchical structure is then established with a transmitting rule of greedy training, layer by layer, where sparsity representation and data destruction are applied to obtain high-order characteristics with better robustness in the iteration learning. Validation data are finally employed to confirm the fault diagnosis results of the SDA, where existing health state identification methods are used for comparison. Rotating machinery datasets are employed to demonstrate the effectiveness of the proposed method. •Deep neural network is developed for fault diagnosis of typical dynamic systems.•Better robustness is achieved under various working conditions and ambient noise.•The method helps salient fault characteristic mining and intelligent diagnosis.•Validity of the SDA is verified via comparative experiments.
AbstractList Effective fault diagnosis has long been a research topic in the prognosis and health management of rotary machinery engineered systems due to the benefits such as safety guarantees, reliability improvements, and economical efficiency. This paper investigates an effective and reliable deep learning method known as stacked denoising autoencoder (SDA), which is shown to be suitable for certain health state identifications for signals containing ambient noise and working condition fluctuations. SDA has become a popular approach to achieve the promised advantages of deep architecture-based robust feature representations. In this paper, the SDA-based fault diagnosis method contains three successive steps: health states are first divided into training and testing groups for the SDA model, a deep hierarchical structure is then established with a transmitting rule of greedy training, layer by layer, where sparsity representation and data destruction are applied to obtain high-order characteristics with better robustness in the iteration learning. Validation data are finally employed to confirm the fault diagnosis results of the SDA, where existing health state identification methods are used for comparison. Rotating machinery datasets are employed to demonstrate the effectiveness of the proposed method. •Deep neural network is developed for fault diagnosis of typical dynamic systems.•Better robustness is achieved under various working conditions and ambient noise.•The method helps salient fault characteristic mining and intelligent diagnosis.•Validity of the SDA is verified via comparative experiments.
Author Lu, Chen
Wang, Zhen-Ya
Qin, Wei-Li
Ma, Jian
Author_xml – sequence: 1
  givenname: Chen
  surname: Lu
  fullname: Lu, Chen
  organization: School of Reliability and Systems Engineering, Beihang University, Xueyuan Road, Haidian District, Beijing China
– sequence: 2
  givenname: Zhen-Ya
  surname: Wang
  fullname: Wang, Zhen-Ya
  organization: School of Reliability and Systems Engineering, Beihang University, Xueyuan Road, Haidian District, Beijing China
– sequence: 3
  givenname: Wei-Li
  surname: Qin
  fullname: Qin, Wei-Li
  organization: School of Reliability and Systems Engineering, Beihang University, Xueyuan Road, Haidian District, Beijing China
– sequence: 4
  givenname: Jian
  surname: Ma
  fullname: Ma, Jian
  email: majian3129@126.com
  organization: School of Reliability and Systems Engineering, Beihang University, Xueyuan Road, Haidian District, Beijing China
BookMark eNqFkM9OAyEQxompia36Bh54gV2H_Us9mJjGqkkTL3omLLDt1C00QJv49lLXkwc9zQwz3wzfb0Ym1llDyA2DnAFrbrd5wPXeu7xIVQ5tDgU_I1PG2yJr67qdkGlq1BlreHVBZiFsAYCVDUzJcSkPQ6Qa5dq6gIG6nnoXpf-kO6k2aE3KlNvt00UbAz0EtGsqaYhSfRhNtbEOx7dDdMYqp43POhlSb2PkEDen0WgopsmIPSoZ0dkrct7LIZjrn3hJ3pePb4vnbPX69LJ4WGWqqoqY1bzoOIN6XiefmoEGrcqub3SvGt5XZcdL1nbAAVLN55WWVanmTc-g1A0rZHlJqnGv8i4Eb3qx97hL7gQDcWIntmJkJ07sBLQisUuyu18yhfH749FLHP4T349ik4wd0XgRFCYyRqM3Kgrt8O8FX2dLklY
CitedBy_id crossref_primary_10_1016_j_neunet_2020_06_014
crossref_primary_10_1109_JIOT_2023_3246048
crossref_primary_10_1155_2021_9927151
crossref_primary_10_1016_j_jmsy_2021_05_003
crossref_primary_10_1155_2020_8843759
crossref_primary_10_1007_s40430_020_02776_7
crossref_primary_10_1016_j_measurement_2019_107232
crossref_primary_10_1016_j_eswa_2023_121956
crossref_primary_10_1007_s00170_023_12060_2
crossref_primary_10_1088_1361_6501_ab8df9
crossref_primary_10_1109_OJIES_2023_3334429
crossref_primary_10_1016_j_measurement_2020_107929
crossref_primary_10_1109_TNNLS_2022_3232147
crossref_primary_10_1088_1361_6501_ad2da8
crossref_primary_10_1109_TIM_2021_3085940
crossref_primary_10_1016_j_ymssp_2019_106587
crossref_primary_10_7736_JKSPE_021_117
crossref_primary_10_1155_2021_5714240
crossref_primary_10_1016_j_conengprac_2020_104330
crossref_primary_10_1088_1361_6501_ad69b0
crossref_primary_10_1186_s10033_021_00569_0
crossref_primary_10_1088_1361_6501_aadfb3
crossref_primary_10_1007_s10845_018_1456_1
crossref_primary_10_1016_j_ymssp_2020_106923
crossref_primary_10_1177_1748006X211001979
crossref_primary_10_1016_j_eswa_2022_117390
crossref_primary_10_1016_j_neucom_2020_10_039
crossref_primary_10_1109_TITS_2024_3482106
crossref_primary_10_3390_app9163374
crossref_primary_10_1109_TIM_2025_3533631
crossref_primary_10_1016_j_knosys_2020_105764
crossref_primary_10_1109_TII_2021_3064377
crossref_primary_10_1186_s13677_020_00205_7
crossref_primary_10_1088_1742_6596_1820_1_012034
crossref_primary_10_1016_j_isatra_2022_04_043
crossref_primary_10_1016_j_measurement_2022_111899
crossref_primary_10_1177_1687814018824812
crossref_primary_10_1016_j_aei_2022_101564
crossref_primary_10_1016_j_jmsy_2018_05_011
crossref_primary_10_1088_1361_6501_ad0939
crossref_primary_10_1177_1475921719893594
crossref_primary_10_1016_j_neucom_2020_02_042
crossref_primary_10_1109_TRPMS_2021_3055727
crossref_primary_10_1177_00368504221135457
crossref_primary_10_3390_machines11100932
crossref_primary_10_1109_JSYST_2022_3183134
crossref_primary_10_1016_j_jmsy_2023_10_010
crossref_primary_10_1177_0142331217708242
crossref_primary_10_1016_j_ymssp_2018_07_034
crossref_primary_10_1002_qre_3288
crossref_primary_10_1109_TIM_2020_3011734
crossref_primary_10_1016_j_petrol_2018_04_004
crossref_primary_10_3390_machines12020121
crossref_primary_10_1109_ACCESS_2019_2919535
crossref_primary_10_3233_JIFS_190101
crossref_primary_10_1109_TMECH_2020_2996939
crossref_primary_10_1155_2022_5767642
crossref_primary_10_1016_j_compind_2019_05_005
crossref_primary_10_1109_TII_2019_2927590
crossref_primary_10_1016_j_measurement_2018_06_026
crossref_primary_10_1109_ACCESS_2022_3205352
crossref_primary_10_3390_e24121822
crossref_primary_10_1016_j_measurement_2021_110146
crossref_primary_10_1016_j_neucom_2018_03_014
crossref_primary_10_3390_app112411663
crossref_primary_10_1155_2021_9790053
crossref_primary_10_1109_TPWRS_2020_3001919
crossref_primary_10_1109_ACCESS_2020_2990528
crossref_primary_10_1109_TSTE_2020_2985217
crossref_primary_10_1016_j_conengprac_2023_105475
crossref_primary_10_1109_TIM_2019_2933342
crossref_primary_10_1016_j_measurement_2023_112806
crossref_primary_10_1088_1742_6596_1881_2_022019
crossref_primary_10_1016_j_neucom_2018_12_088
crossref_primary_10_1016_j_psep_2025_106942
crossref_primary_10_3390_app11073289
crossref_primary_10_1016_j_asoc_2019_01_021
crossref_primary_10_1016_j_ymssp_2019_02_006
crossref_primary_10_1109_TTE_2021_3110318
crossref_primary_10_1016_j_asoc_2022_109772
crossref_primary_10_1007_s10462_019_09719_2
crossref_primary_10_1016_j_aei_2023_101979
crossref_primary_10_1587_elex_18_20210174
crossref_primary_10_1016_j_measurement_2022_111304
crossref_primary_10_1016_j_ymssp_2019_106266
crossref_primary_10_1109_ACCESS_2017_2720965
crossref_primary_10_1177_01423312231157118
crossref_primary_10_1016_j_measurement_2021_109186
crossref_primary_10_3390_en14165150
crossref_primary_10_1016_j_renene_2019_09_041
crossref_primary_10_1038_s41598_024_59785_y
crossref_primary_10_1016_j_eswa_2023_121645
crossref_primary_10_3390_pr11051527
crossref_primary_10_1109_TIM_2020_3043510
crossref_primary_10_1007_s13042_023_01830_9
crossref_primary_10_1155_2022_3696091
crossref_primary_10_1002_tee_23452
crossref_primary_10_1155_2017_3583610
crossref_primary_10_1016_j_dibe_2023_100128
crossref_primary_10_1016_j_neunet_2019_11_007
crossref_primary_10_1088_1361_6501_acb0ea
crossref_primary_10_1109_TII_2021_3134251
crossref_primary_10_1016_j_eswa_2021_115728
crossref_primary_10_1080_15325008_2020_1854384
crossref_primary_10_1016_j_neucom_2017_10_063
crossref_primary_10_1016_j_jmsy_2020_04_017
crossref_primary_10_1109_ACCESS_2020_2989510
crossref_primary_10_3390_math8112008
crossref_primary_10_32604_cmes_2023_031360
crossref_primary_10_1155_2020_8819313
crossref_primary_10_1088_1361_6501_acb609
crossref_primary_10_3390_app8081346
crossref_primary_10_1155_2021_3083190
crossref_primary_10_1016_j_asoc_2022_109314
crossref_primary_10_1016_j_compind_2019_04_013
crossref_primary_10_3390_app12094411
crossref_primary_10_1007_s40747_022_00733_6
crossref_primary_10_1016_j_eswa_2025_126420
crossref_primary_10_3390_e20050387
crossref_primary_10_1109_ACCESS_2023_3267089
crossref_primary_10_1109_ACCESS_2021_3059761
crossref_primary_10_1155_2018_5105709
crossref_primary_10_3390_s24102978
crossref_primary_10_1016_j_nucengdes_2024_113587
crossref_primary_10_1088_1742_6596_1820_1_012105
crossref_primary_10_1016_j_measurement_2022_111203
crossref_primary_10_1016_j_measurement_2021_109088
crossref_primary_10_1109_ACCESS_2023_3347345
crossref_primary_10_1016_j_neucom_2018_06_078
crossref_primary_10_3390_app9091823
crossref_primary_10_1155_2021_9915084
crossref_primary_10_3390_math10213953
crossref_primary_10_1088_1361_6501_ac4598
crossref_primary_10_1016_j_ymssp_2024_111189
crossref_primary_10_1016_j_sigpro_2019_107385
crossref_primary_10_1016_j_compind_2020_103380
crossref_primary_10_3103_S8756699020060023
crossref_primary_10_3390_e25020242
crossref_primary_10_1109_TIE_2018_2844805
crossref_primary_10_1007_s12206_024_0802_9
crossref_primary_10_1016_j_ymssp_2019_106610
crossref_primary_10_1109_TII_2020_3021406
crossref_primary_10_3390_info15050259
crossref_primary_10_3390_electronics9040600
crossref_primary_10_1109_ACCESS_2020_3008208
crossref_primary_10_1016_j_ymssp_2019_106611
crossref_primary_10_1093_ijlct_ctab082
crossref_primary_10_1016_j_eswa_2021_114570
crossref_primary_10_1109_TIM_2025_3550233
crossref_primary_10_1016_j_neucom_2020_04_074
crossref_primary_10_1109_TPEL_2022_3153797
crossref_primary_10_1016_j_ymssp_2019_106608
crossref_primary_10_1109_ACCESS_2019_2924272
crossref_primary_10_1109_ACCESS_2021_3056944
crossref_primary_10_1177_1550147719888169
crossref_primary_10_1109_ACCESS_2018_2880990
crossref_primary_10_1016_j_measurement_2023_113387
crossref_primary_10_3233_JIFS_17938
crossref_primary_10_1016_j_knosys_2021_107932
crossref_primary_10_1016_j_flowmeasinst_2024_102609
crossref_primary_10_1016_j_compind_2020_103378
crossref_primary_10_1108_IJSI_11_2022_0134
crossref_primary_10_1007_s00170_024_13713_6
crossref_primary_10_1016_j_aei_2019_100977
crossref_primary_10_1177_09544062231222806
crossref_primary_10_1109_TASE_2020_3048056
crossref_primary_10_1177_14750902221143827
crossref_primary_10_1016_j_neucom_2018_05_021
crossref_primary_10_1088_1361_6501_ac7a07
crossref_primary_10_5050_KSNVE_2021_31_1_047
crossref_primary_10_1016_j_isatra_2019_05_021
crossref_primary_10_1109_TMECH_2021_3065522
crossref_primary_10_1016_j_neucom_2018_09_050
crossref_primary_10_1016_j_isatra_2018_12_025
crossref_primary_10_1016_j_buildenv_2020_107397
crossref_primary_10_1016_j_ifacol_2019_12_420
crossref_primary_10_1016_j_ymssp_2022_109440
crossref_primary_10_1177_1687814018810935
crossref_primary_10_3390_s19112504
crossref_primary_10_1109_ACCESS_2018_2890693
crossref_primary_10_1109_ACCESS_2020_2993010
crossref_primary_10_1063_5_0095530
crossref_primary_10_1016_j_neunet_2020_05_031
crossref_primary_10_1088_1361_6501_ad42c1
crossref_primary_10_17531_ein_2019_3_6
crossref_primary_10_3390_s18072110
crossref_primary_10_1109_TIE_2020_2984968
crossref_primary_10_1155_2020_5804509
crossref_primary_10_3390_electronics11234046
crossref_primary_10_1109_ACCESS_2020_3007027
crossref_primary_10_1109_TIM_2022_3210978
crossref_primary_10_1109_JIOT_2024_3421326
crossref_primary_10_1016_j_measurement_2021_109563
crossref_primary_10_1016_j_jmbbm_2023_106077
crossref_primary_10_3390_app10051680
crossref_primary_10_1108_ILT_11_2019_0496
crossref_primary_10_1016_j_isatra_2024_05_040
crossref_primary_10_1155_2020_8869648
crossref_primary_10_1109_ACCESS_2019_2924042
crossref_primary_10_1109_JSEN_2021_3099823
crossref_primary_10_3390_app10103659
crossref_primary_10_1016_j_engappai_2021_104381
crossref_primary_10_1088_1361_6501_ac78c5
crossref_primary_10_2139_ssrn_4019497
crossref_primary_10_3390_s20061774
crossref_primary_10_1109_OJVT_2020_3024755
crossref_primary_10_1016_j_isatra_2018_04_005
crossref_primary_10_1177_09544062241281096
crossref_primary_10_1007_s10033_017_0188_z
crossref_primary_10_1016_j_ymssp_2020_106825
crossref_primary_10_1177_0959651820933380
crossref_primary_10_31796_ogummf_873963
crossref_primary_10_1016_j_buildenv_2020_107135
crossref_primary_10_1109_ACCESS_2019_2947194
crossref_primary_10_1109_TII_2020_3021688
crossref_primary_10_1088_1361_6501_ac0741
crossref_primary_10_1109_TIE_2019_2905830
crossref_primary_10_3390_app9245404
crossref_primary_10_1007_s42417_019_00089_1
crossref_primary_10_1016_j_measurement_2019_106857
crossref_primary_10_1016_j_ymssp_2018_05_050
crossref_primary_10_1088_1361_6501_ac6d48
crossref_primary_10_1007_s10845_019_01485_w
crossref_primary_10_1016_j_engappai_2021_104279
crossref_primary_10_3390_s21186116
crossref_primary_10_3390_vibration6010014
crossref_primary_10_1088_1361_6501_ad6020
crossref_primary_10_1109_ACCESS_2023_3291674
crossref_primary_10_1007_s42417_022_00566_0
crossref_primary_10_1016_j_ymssp_2019_05_049
crossref_primary_10_3390_machines11111029
crossref_primary_10_1016_j_sigpro_2019_03_019
crossref_primary_10_1016_j_ymssp_2023_110535
crossref_primary_10_1016_j_asoc_2019_105564
crossref_primary_10_1016_j_pnucene_2022_104344
crossref_primary_10_1007_s10489_021_03004_y
crossref_primary_10_1177_0020294019830435
crossref_primary_10_1002_ente_202201510
crossref_primary_10_1088_1742_6596_2369_1_012001
crossref_primary_10_1109_ACCESS_2023_3276297
crossref_primary_10_1016_j_procir_2018_12_008
crossref_primary_10_1109_ACCESS_2021_3055427
crossref_primary_10_1115_1_4053562
crossref_primary_10_1007_s00170_019_03557_w
crossref_primary_10_1177_1475921720942836
crossref_primary_10_1177_14759217211056574
crossref_primary_10_1016_j_ymssp_2020_106840
crossref_primary_10_1088_1361_6501_ac68d1
crossref_primary_10_1784_insi_2023_65_4_217
crossref_primary_10_1109_ACCESS_2021_3088237
crossref_primary_10_1109_ACCESS_2020_3022840
crossref_primary_10_1016_j_dsp_2022_103775
crossref_primary_10_3390_pr9101751
crossref_primary_10_1007_s12598_024_02766_x
crossref_primary_10_1109_JSEN_2024_3471178
crossref_primary_10_3390_machines11080846
crossref_primary_10_1016_j_cja_2020_07_019
crossref_primary_10_1109_ACCESS_2021_3056767
crossref_primary_10_1109_TIM_2024_3352702
crossref_primary_10_3390_s19040972
crossref_primary_10_1016_j_engappai_2023_106834
crossref_primary_10_1016_j_neucom_2018_07_034
crossref_primary_10_1016_j_engappai_2021_104295
crossref_primary_10_1007_s41066_022_00328_z
crossref_primary_10_1109_TII_2020_2967822
crossref_primary_10_1111_exsy_13128
crossref_primary_10_1063_5_0174359
crossref_primary_10_1109_JSEN_2019_2898634
crossref_primary_10_1016_j_tust_2023_105386
crossref_primary_10_1109_TIM_2021_3129198
crossref_primary_10_1109_TMECH_2022_3169143
crossref_primary_10_1177_1477153520926200
crossref_primary_10_1088_1361_6501_aa6e22
crossref_primary_10_1109_TIM_2017_2698738
crossref_primary_10_3390_s20102945
crossref_primary_10_1016_j_knosys_2022_109272
crossref_primary_10_1016_j_knosys_2022_109393
crossref_primary_10_1016_j_jprocont_2021_01_005
crossref_primary_10_1016_j_jmapro_2022_03_018
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_1016_j_measurement_2021_110460
crossref_primary_10_1109_ACCESS_2021_3124025
crossref_primary_10_1155_2022_9453879
crossref_primary_10_1080_26889277_2022_2053302
crossref_primary_10_3390_app11209401
crossref_primary_10_1016_j_future_2020_03_008
crossref_primary_10_1109_ACCESS_2020_2972859
crossref_primary_10_1007_s00521_023_08949_4
crossref_primary_10_1177_0954405419840556
crossref_primary_10_32604_cmc_2023_039164
crossref_primary_10_1080_21642583_2021_1992684
crossref_primary_10_1155_2020_8826507
crossref_primary_10_1177_1748006X18822447
crossref_primary_10_24017_science_2025_1_2
crossref_primary_10_1016_j_net_2023_06_037
crossref_primary_10_3390_machines10040237
crossref_primary_10_3390_s21134394
crossref_primary_10_1088_1361_6501_ad903f
crossref_primary_10_1051_matecconf_201925506005
crossref_primary_10_1109_LSP_2019_2936310
crossref_primary_10_1088_1361_6501_ad2420
crossref_primary_10_1002_qre_2651
crossref_primary_10_1016_j_isatra_2019_08_053
crossref_primary_10_1016_j_asoc_2021_107836
crossref_primary_10_1109_JSEN_2023_3233957
crossref_primary_10_1007_s00170_022_09909_3
crossref_primary_10_1051_matecconf_201925506002
crossref_primary_10_1088_1361_6501_ac41a5
crossref_primary_10_5687_iscie_34_145
crossref_primary_10_1016_j_knosys_2018_09_005
crossref_primary_10_1016_j_energy_2023_127942
crossref_primary_10_21595_vp_2018_20146
crossref_primary_10_3390_s17020414
crossref_primary_10_3390_app10082932
crossref_primary_10_1088_1361_6501_ac7eb0
crossref_primary_10_3390_s20226612
crossref_primary_10_1109_TAI_2021_3134186
crossref_primary_10_1088_1361_6501_ac8a64
crossref_primary_10_1016_j_engappai_2024_109020
crossref_primary_10_1093_nar_gkaa191
crossref_primary_10_3390_app8122416
crossref_primary_10_1080_00207543_2020_1808261
crossref_primary_10_1109_ACCESS_2020_2992201
crossref_primary_10_1016_j_engappai_2024_108051
crossref_primary_10_1149_1945_7111_ab67a8
crossref_primary_10_1007_s00500_022_07343_x
crossref_primary_10_1109_TIM_2019_2903699
crossref_primary_10_3390_e23121704
crossref_primary_10_1177_14759217211029201
crossref_primary_10_3390_s21103550
crossref_primary_10_1155_2021_5587756
crossref_primary_10_1016_j_ssci_2023_106363
crossref_primary_10_1016_j_egyr_2022_01_226
crossref_primary_10_1016_j_engappai_2018_08_013
crossref_primary_10_3390_en16020575
crossref_primary_10_1016_j_aei_2024_102862
crossref_primary_10_1016_j_measurement_2021_109951
crossref_primary_10_1109_TIM_2023_3291736
crossref_primary_10_1088_1361_6501_ac2ac0
crossref_primary_10_3390_s20154300
crossref_primary_10_1177_0954406220941037
crossref_primary_10_1177_09544070241249507
crossref_primary_10_12677_MOS_2024_131018
crossref_primary_10_1007_s11760_021_01939_w
crossref_primary_10_1109_TCBB_2021_3102584
crossref_primary_10_1016_j_compind_2018_07_002
crossref_primary_10_1109_TEC_2020_3046642
crossref_primary_10_1016_j_engappai_2018_09_010
crossref_primary_10_1021_acsomega_4c03757
crossref_primary_10_1109_JSEN_2022_3149892
crossref_primary_10_1016_j_asoc_2021_107755
crossref_primary_10_1109_ACCESS_2020_3026918
crossref_primary_10_1109_TIM_2022_3203440
crossref_primary_10_1016_j_compind_2020_103331
crossref_primary_10_1038_s41598_025_89558_0
crossref_primary_10_1016_j_isatra_2019_08_012
crossref_primary_10_1007_s11042_022_12020_0
crossref_primary_10_3390_s19143109
crossref_primary_10_1016_j_measurement_2020_108029
crossref_primary_10_1109_TIM_2020_3047433
crossref_primary_10_1155_2018_2919637
crossref_primary_10_3390_pr12102127
crossref_primary_10_1007_s42417_021_00286_x
crossref_primary_10_1016_j_eswa_2022_117408
crossref_primary_10_1109_TIE_2019_2935987
crossref_primary_10_1016_j_asoc_2020_106119
crossref_primary_10_1016_j_ymssp_2017_08_002
crossref_primary_10_1016_j_renene_2018_10_047
crossref_primary_10_1109_ACCESS_2022_3140287
crossref_primary_10_1088_1361_6501_ab7280
crossref_primary_10_1016_j_matpr_2020_12_050
crossref_primary_10_1109_TIM_2017_2759418
crossref_primary_10_1016_j_bspc_2020_102395
crossref_primary_10_1109_ACCESS_2018_2878813
crossref_primary_10_1109_TIE_2019_2931255
crossref_primary_10_3934_mbe_2023242
crossref_primary_10_21595_jve_2021_21928
crossref_primary_10_1109_TII_2020_3048990
crossref_primary_10_3390_s23249688
crossref_primary_10_3390_machines11010018
crossref_primary_10_1177_1475921720934051
crossref_primary_10_1088_1361_6501_ac7b6c
crossref_primary_10_1155_2021_6687195
crossref_primary_10_1016_j_ymssp_2021_107821
crossref_primary_10_1109_TII_2019_2950667
crossref_primary_10_26102_2310_6018_2019_27_4_011
crossref_primary_10_1016_j_ress_2020_107396
crossref_primary_10_1155_2020_8846589
crossref_primary_10_3390_s24041095
crossref_primary_10_1007_s42452_020_2741_0
crossref_primary_10_1109_ACCESS_2020_2974942
crossref_primary_10_1186_s10033_021_00564_5
crossref_primary_10_1109_TIM_2024_3470060
crossref_primary_10_1109_TIM_2024_3502723
crossref_primary_10_1016_j_jmsy_2018_01_003
crossref_primary_10_1007_s10462_022_10293_3
crossref_primary_10_1088_1361_6501_abf866
crossref_primary_10_1088_1361_6501_ac73da
crossref_primary_10_1016_j_aei_2022_101708
crossref_primary_10_1109_JIOT_2019_2940131
crossref_primary_10_1016_j_ymssp_2021_108765
crossref_primary_10_1016_j_neucom_2018_10_049
crossref_primary_10_1088_1361_6501_ab9037
crossref_primary_10_3390_app12105240
crossref_primary_10_1016_j_neucom_2024_127574
crossref_primary_10_3390_s19051041
crossref_primary_10_1016_j_measurement_2021_110099
crossref_primary_10_1109_TII_2024_3476547
crossref_primary_10_3390_s19081826
crossref_primary_10_1016_j_scs_2019_101847
crossref_primary_10_1109_ACCESS_2019_2947714
crossref_primary_10_3390_e23020191
crossref_primary_10_3390_app9235139
crossref_primary_10_1088_1361_6501_ace7eb
crossref_primary_10_3390_electronics12132826
crossref_primary_10_1016_j_rcim_2019_101920
crossref_primary_10_1016_j_asoc_2022_108900
crossref_primary_10_1007_s42417_022_00584_y
crossref_primary_10_1016_j_compind_2018_04_002
crossref_primary_10_1080_00207543_2022_2079012
crossref_primary_10_1109_JSEN_2020_2965988
crossref_primary_10_3390_inventions3030041
crossref_primary_10_1016_j_eswa_2021_116094
crossref_primary_10_1109_ACCESS_2022_3216573
crossref_primary_10_1177_0954407020907818
crossref_primary_10_1016_j_joes_2023_12_004
crossref_primary_10_1007_s40997_024_00783_w
crossref_primary_10_1088_1361_6501_abfb1f
crossref_primary_10_3389_fevo_2023_1157981
crossref_primary_10_3390_s24020353
crossref_primary_10_1016_j_ymssp_2024_111526
crossref_primary_10_1109_TIE_2017_2774777
crossref_primary_10_1016_j_measurement_2020_108500
crossref_primary_10_1016_j_measurement_2020_107539
crossref_primary_10_1109_ACCESS_2019_2890979
crossref_primary_10_1007_s42417_024_01694_5
crossref_primary_10_1155_2019_8239198
crossref_primary_10_3390_s20143949
crossref_primary_10_1016_j_ymssp_2017_11_024
crossref_primary_10_1109_TII_2021_3054651
crossref_primary_10_1016_j_knosys_2017_10_024
crossref_primary_10_1016_j_chemosphere_2021_132647
crossref_primary_10_3390_s21020433
crossref_primary_10_1177_1687814019897212
crossref_primary_10_1016_j_neucom_2019_12_033
crossref_primary_10_1016_j_asoc_2019_106060
crossref_primary_10_3389_frai_2020_578613
crossref_primary_10_1016_j_measurement_2020_107864
crossref_primary_10_1088_1361_6501_abe163
crossref_primary_10_2139_ssrn_4141247
crossref_primary_10_1007_s00521_020_05345_0
crossref_primary_10_1088_1361_6501_acd4d8
crossref_primary_10_1016_j_jprocont_2020_05_015
crossref_primary_10_1177_0954406219875756
crossref_primary_10_1007_s00500_022_06755_z
crossref_primary_10_1155_2020_1971945
crossref_primary_10_1007_s10845_023_02103_6
crossref_primary_10_3390_s23125487
crossref_primary_10_1109_TNNLS_2020_3027160
crossref_primary_10_1063_5_0158412
crossref_primary_10_1016_j_measurement_2018_08_010
crossref_primary_10_1109_ACCESS_2017_2717492
crossref_primary_10_1016_j_ymssp_2020_107175
crossref_primary_10_1109_ACCESS_2024_3390234
crossref_primary_10_3390_sym13020163
crossref_primary_10_3390_s22010123
crossref_primary_10_1109_JSEN_2020_2976523
crossref_primary_10_1109_JSYST_2019_2905565
crossref_primary_10_1007_s42791_019_0016_y
crossref_primary_10_1109_ACCESS_2023_3336953
crossref_primary_10_1109_LSP_2018_2878356
crossref_primary_10_1016_j_ymssp_2020_107233
crossref_primary_10_1016_j_measurement_2020_107570
crossref_primary_10_3390_s18103521
crossref_primary_10_1007_s10033_017_0190_5
crossref_primary_10_1016_j_compind_2019_07_005
crossref_primary_10_1016_j_ymssp_2017_06_022
crossref_primary_10_1109_TII_2019_2956220
crossref_primary_10_1155_2022_1809482
crossref_primary_10_3390_en14217017
crossref_primary_10_3390_s24020443
crossref_primary_10_1109_JSAC_2019_2951932
crossref_primary_10_1016_j_measurement_2022_112350
crossref_primary_10_1109_TMECH_2021_3110988
crossref_primary_10_1109_ACCESS_2021_3064819
crossref_primary_10_1016_j_asoc_2017_05_031
crossref_primary_10_1007_s13042_022_01632_5
crossref_primary_10_1016_j_knosys_2018_07_017
crossref_primary_10_1186_s10033_021_00570_7
crossref_primary_10_1016_j_neucom_2022_01_067
crossref_primary_10_1155_2022_5478274
crossref_primary_10_1109_ACCESS_2019_2895394
crossref_primary_10_1016_j_measurement_2020_108668
crossref_primary_10_1088_1361_6501_ac6ccb
crossref_primary_10_3389_fenrg_2022_1037539
crossref_primary_10_1007_s11071_025_10914_w
crossref_primary_10_1177_1475921718788299
crossref_primary_10_1093_jcde_qwad076
crossref_primary_10_1016_j_measurement_2019_107377
crossref_primary_10_1109_JSEN_2023_3281428
crossref_primary_10_21595_jve_2019_20735
crossref_primary_10_3390_machines10100851
crossref_primary_10_1016_j_neucom_2020_05_014
crossref_primary_10_1016_j_measurement_2017_07_017
crossref_primary_10_1016_j_neucom_2020_06_052
crossref_primary_10_1088_1361_6501_aaaca6
crossref_primary_10_3390_machines9120360
crossref_primary_10_1016_j_sigpro_2018_12_005
crossref_primary_10_1016_j_measurement_2020_108513
crossref_primary_10_1016_j_measurement_2020_108634
crossref_primary_10_1515_mt_2023_0334
crossref_primary_10_1109_TSMC_2017_2754287
crossref_primary_10_1109_TIE_2020_2982085
crossref_primary_10_1007_s44163_023_00089_x
crossref_primary_10_1016_j_ymssp_2023_111035
crossref_primary_10_1016_j_egyr_2021_09_179
crossref_primary_10_1088_1361_6501_ac9078
crossref_primary_10_1007_s00521_021_06732_x
crossref_primary_10_1016_j_neucom_2020_05_021
crossref_primary_10_1109_TIM_2021_3126019
crossref_primary_10_1016_j_compbiomed_2019_04_034
crossref_primary_10_1177_16878132241258904
crossref_primary_10_1007_s11771_022_5206_3
crossref_primary_10_1142_S2424922X20500011
crossref_primary_10_1109_TCST_2020_3015514
crossref_primary_10_1088_1361_6501_ac8dad
crossref_primary_10_1109_TSMC_2020_3005433
crossref_primary_10_3390_s21124024
crossref_primary_10_3390_app10175765
crossref_primary_10_1007_s11465_022_0713_3
crossref_primary_10_1007_s10845_021_01904_x
crossref_primary_10_1021_acs_iecr_0c05739
crossref_primary_10_1080_00207543_2019_1636325
Cites_doi 10.1016/j.ress.2008.06.002
10.1016/j.neucom.2015.04.069
10.1109/PEOCO.2014.6814505
10.1126/science.1127647
10.1016/j.ymssp.2015.10.025
10.1088/1741-2560/8/3/036015
10.1016/j.surg.2010.03.023
10.1016/j.eswa.2015.07.064
10.3233/BME-151454
10.1016/j.sigpro.2014.06.023
10.1016/j.sigpro.2011.11.002
10.3233/ICA-2010-0349
10.1109/72.279181
10.1016/j.patrec.2005.08.011
10.1016/j.ress.2010.02.016
10.1016/j.eswa.2015.06.013
10.1016/j.ymssp.2013.06.004
10.1007/s12206-008-0603-6
10.1016/j.ymssp.2015.02.008
10.1016/j.ymssp.2013.09.015
10.1016/j.knosys.2015.06.017
10.1016/j.jsv.2005.11.002
10.1016/j.ymssp.2014.08.007
10.1016/j.cam.2015.07.003
10.1016/j.jprocont.2012.06.009
10.1016/S0893-6080(03)00169-2
10.1109/MCI.2010.938364
10.1016/j.sigpro.2015.09.032
10.1016/j.jsv.2008.10.012
10.1016/j.eswa.2015.08.027
10.1162/neco.2006.18.7.1527
10.1038/nature14539
10.1016/j.ymssp.2015.04.021
10.1016/j.sigpro.2015.09.008
10.1016/j.ins.2015.07.016
10.1016/j.sigpro.2013.04.015
10.1186/s13636-015-0056-7
10.1016/j.ress.2013.02.022
10.1109/TPAMI.2007.250609
10.1155/2013/610235
10.1016/j.neunet.2014.12.006
10.1109/ICASSP.2013.6637769
10.1109/CESA.2006.4281698
10.1109/MICAI.2013.20
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2016.07.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
EndPage 388
ExternalDocumentID 10_1016_j_sigpro_2016_07_028
S0165168416301797
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c442t-582b810595101d10d0dc3bf6dfc68f43b8317b0800c68894da43c96f103d612a3
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Tue Jul 01 02:07:21 EDT 2025
Thu Apr 24 22:58:45 EDT 2025
Fri Feb 23 02:33:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Deep learning
Health state identification
Stacked denoising autoencoder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-582b810595101d10d0dc3bf6dfc68f43b8317b0800c68894da43c96f103d612a3
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_sigpro_2016_07_028
crossref_citationtrail_10_1016_j_sigpro_2016_07_028
elsevier_sciencedirect_doi_10_1016_j_sigpro_2016_07_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationTitle Signal processing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bengio, Lee (bib34) 2015; 64
F. Zakaria, D. Johari, I. Musirin, Optimized artificial neural network for the detection of incipient faults in power transformer, in: Proceedings of the 2014 IEEE 8th International Power Engineering And Optimization Conference (PEOCO), 2014, pp. 635–640.
Jia, Lei, Lin, Zhou, Lu (bib28) 2016; 72–73
Rasmusbergpalm, Deep Learning Toolbox
X. Zhang, J. Wu, Denoising deep neural networks based voice activity detection, in: Proceedings of the International Conference on Acoustics Speech and Signal Processing ICASSP,2013, pp. 853–857.
Yang, Tavner (bib8) 2009; 321
Hinton, Salakhutdinov (bib29) 2006; 313
Du, Li, Ye, Liu (bib10) 2013; 20
Wulsin, Gupta, Mani, Blanco, Litt (bib42) 2011; 8
Zhang, Wang, Chen (bib9) 2015; 89
Yang, Di, Han (bib23) 2008; 22
Ding, Ma, Tian (bib11) 2015; 17
Teh, Welling, Osindero, Hinton (bib43) 2004; 4
Yang, Bai, Li, Liu, Liu (bib45) 2015; 261
Bengio, Simard, Frasconi (bib41) 1994; 5
Harmouche, Delpha, Diallo (bib18) 2015; 109
Phuong, Kang, Kim, Ahn, Ha, Choi (bib6) 2015; 42
Lee, Hirose, Hou, Kil, Song, Lee (bib36) 2013
Sun, He, Zi, Yuan, Wang, Chen, He (bib2) 2014; 43
Yu, YuDejie, Cheng (bib15) 2006; 294
Niu, Yang, Pecht (bib5) 2010; 95
Santofimia, Del Toro, Roncero-Sanchez, Moya, Martinez, Lopez (bib14) 2010; 17
A. Ciates, H. Lee, A.Y. Ng. An Analysis of Single-Layer Networks in Unsupervised Feature Learning, in: Editor edito. International Conference on Artificial Intelligence and Statistics. Pub Place; 2011.
Banfield, Hall, Bowyer, Kegelmeyer (bib52) 2007; 29
El-Thalji, Jantunen (bib7) 2015; 60–61
Varol, Salah (bib35) 2015; 42
Tamilselvan, Wang (bib38) 2013; 115
Zhang, Wang, Kai, Yamada, Li, Iwahashi (bib39) 2015
Jegadeeshwaran, Sugumaran (bib20) 2015; 52–53
Cherkassky, Ma (bib51) 2004; 17
2015 (accessed 16.07.22).
Qin, Tang, Mao (bib4) 2016; 120
T. Amaral, L.M. Silva, L.A. Alexandre, C. Kandaswamy, J.M. Santos, J.M. de Sa, Using Different Cost Functions to Train Stacked Auto-encoders, in: F. Castro, A. Gelbukh ,M.G. Mendoza (Eds.) Mexican International Conference on Artificial Intelligence-MICAI,2013, pp. 114-120.
Li, Fang, Huang (bib26) 2015; 42
Dong, Wang, Gao (bib24) 2012; 92
Gautam, Ravi (bib25) 2015; 325
Arel, Rose, Karnowski (bib37) 2010; 5
Andrei (bib46) 2016; 292
B. Yoshua, L. Pascal, P. Dan, L. Hugo. Greedy Layer-Wise Training of Deep Networks, in: Editor edito. Advances in Neural Information Processing Systems 19 (NIPS’06). Pub Place; 2007.
Lee, Wu, Zhao, Ghaffari, Liao, Siegel (bib19) 2014; 42
Wang, Lu, Ma, Yuan, Chen (bib27) 2015; 22
Zhang, Chen, Wang, Chen (bib21) 2015; 167
Lu, Yuan, Tao, Liu (bib13) 2013; 15
Youssef, Delpha, Diallo (bib17) 2016; 120
Hsieh, Lu, Lee, Chiu, Hsu, Li (bib50) 2011; 149
LeCun, Bengio, Hinton (bib32) 2015; 521
Zio (bib1) 2009; 94
Yan, Gao, Chen (bib16) 2014; 96
W. Yan, Application of random forest to aircraft engine fault diagnosis, in: F. Sun ,H.P. Liu (Eds.),2006, pp. 468–475.
Gislason, Benediktsson, Sveinsson (bib53) 2006; 27
Smith, Randall (bib47) 2015; 64–65
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib40) 2010; 11
Yin, Ding, Haghani, Hao, Zhang (bib3) 2012; 22
Hinton, Osindero, Teh (bib31) 2006; 18
Dong (10.1016/j.sigpro.2016.07.028_bib24) 2012; 92
Jegadeeshwaran (10.1016/j.sigpro.2016.07.028_bib20) 2015; 52–53
Lee (10.1016/j.sigpro.2016.07.028_bib36) 2013
Gautam (10.1016/j.sigpro.2016.07.028_bib25) 2015; 325
Varol (10.1016/j.sigpro.2016.07.028_bib35) 2015; 42
Bengio (10.1016/j.sigpro.2016.07.028_bib41) 1994; 5
Du (10.1016/j.sigpro.2016.07.028_bib10) 2013; 20
Niu (10.1016/j.sigpro.2016.07.028_bib5) 2010; 95
Wulsin (10.1016/j.sigpro.2016.07.028_bib42) 2011; 8
Hinton (10.1016/j.sigpro.2016.07.028_bib31) 2006; 18
LeCun (10.1016/j.sigpro.2016.07.028_bib32) 2015; 521
Hsieh (10.1016/j.sigpro.2016.07.028_bib50) 2011; 149
10.1016/j.sigpro.2016.07.028_bib12
Li (10.1016/j.sigpro.2016.07.028_bib26) 2015; 42
Arel (10.1016/j.sigpro.2016.07.028_bib37) 2010; 5
Zhang (10.1016/j.sigpro.2016.07.028_bib39) 2015
Banfield (10.1016/j.sigpro.2016.07.028_bib52) 2007; 29
Bengio (10.1016/j.sigpro.2016.07.028_bib34) 2015; 64
Vincent (10.1016/j.sigpro.2016.07.028_bib40) 2010; 11
Lee (10.1016/j.sigpro.2016.07.028_bib19) 2014; 42
Teh (10.1016/j.sigpro.2016.07.028_bib43) 2004; 4
Yang (10.1016/j.sigpro.2016.07.028_bib23) 2008; 22
Yang (10.1016/j.sigpro.2016.07.028_bib8) 2009; 321
Harmouche (10.1016/j.sigpro.2016.07.028_bib18) 2015; 109
Ding (10.1016/j.sigpro.2016.07.028_bib11) 2015; 17
10.1016/j.sigpro.2016.07.028_bib22
Wang (10.1016/j.sigpro.2016.07.028_bib27) 2015; 22
Smith (10.1016/j.sigpro.2016.07.028_bib47) 2015; 64–65
Yang (10.1016/j.sigpro.2016.07.028_bib45) 2015; 261
Cherkassky (10.1016/j.sigpro.2016.07.028_bib51) 2004; 17
Gislason (10.1016/j.sigpro.2016.07.028_bib53) 2006; 27
Andrei (10.1016/j.sigpro.2016.07.028_bib46) 2016; 292
Youssef (10.1016/j.sigpro.2016.07.028_bib17) 2016; 120
Tamilselvan (10.1016/j.sigpro.2016.07.028_bib38) 2013; 115
Phuong (10.1016/j.sigpro.2016.07.028_bib6) 2015; 42
10.1016/j.sigpro.2016.07.028_bib30
Zio (10.1016/j.sigpro.2016.07.028_bib1) 2009; 94
Jia (10.1016/j.sigpro.2016.07.028_bib28) 2016; 72–73
10.1016/j.sigpro.2016.07.028_bib33
10.1016/j.sigpro.2016.07.028_bib48
10.1016/j.sigpro.2016.07.028_bib49
Yan (10.1016/j.sigpro.2016.07.028_bib16) 2014; 96
Zhang (10.1016/j.sigpro.2016.07.028_bib21) 2015; 167
El-Thalji (10.1016/j.sigpro.2016.07.028_bib7) 2015; 60–61
Yu (10.1016/j.sigpro.2016.07.028_bib15) 2006; 294
Hinton (10.1016/j.sigpro.2016.07.028_bib29) 2006; 313
Yin (10.1016/j.sigpro.2016.07.028_bib3) 2012; 22
Zhang (10.1016/j.sigpro.2016.07.028_bib9) 2015; 89
Lu (10.1016/j.sigpro.2016.07.028_bib13) 2013; 15
Santofimia (10.1016/j.sigpro.2016.07.028_bib14) 2010; 17
10.1016/j.sigpro.2016.07.028_bib44
Sun (10.1016/j.sigpro.2016.07.028_bib2) 2014; 43
Qin (10.1016/j.sigpro.2016.07.028_bib4) 2016; 120
References_xml – volume: 42
  start-page: 8274
  year: 2015
  end-page: 8282
  ident: bib35
  article-title: Efficient large-scale action recognition in videos using extreme learning machines
  publication-title: Expert Syst. Appl.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib32
  article-title: Deep learning
  publication-title: Nature
– volume: 294
  start-page: 269
  year: 2006
  end-page: 277
  ident: bib15
  article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN
  publication-title: J. Sound Vib.
– volume: 42
  start-page: 314
  year: 2014
  end-page: 334
  ident: bib19
  article-title: Prognostics and health management design for rotary machinery systems-reviews, methodology and applications
  publication-title: Mech. Syst. Signal Process.
– volume: 64
  start-page: 1
  year: 2015
  end-page: 3
  ident: bib34
  article-title: Editorial introduction to the Neural Networks special issue on Deep Learning of Representations
  publication-title: Neural Netw.
– volume: 321
  start-page: 1144
  year: 2009
  end-page: 1170
  ident: bib8
  article-title: Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery
  publication-title: J. Sound Vib.
– start-page: 466
  year: 2013
  end-page: 473
  ident: bib36
  publication-title: Hierarchical Representation Using NMF
– volume: 60–61
  start-page: 252
  year: 2015
  end-page: 272
  ident: bib7
  article-title: A summary of fault modelling and predictive health monitoring of rolling element bearings
  publication-title: Mech. Syst. Signal Process.
– reference: A. Ciates, H. Lee, A.Y. Ng. An Analysis of Single-Layer Networks in Unsupervised Feature Learning, in: Editor edito. International Conference on Artificial Intelligence and Statistics. Pub Place; 2011.
– volume: 96
  start-page: 1
  year: 2014
  end-page: 15
  ident: bib16
  article-title: Wavelets for fault diagnosis of rotary machines: a review with applications
  publication-title: Signal Process.
– reference: W. Yan, Application of random forest to aircraft engine fault diagnosis, in: F. Sun ,H.P. Liu (Eds.),2006, pp. 468–475.
– volume: 72–73
  start-page: 303
  year: 2016
  end-page: 315
  ident: bib28
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Sig. Process.
– volume: 89
  start-page: 56
  year: 2015
  end-page: 85
  ident: bib9
  article-title: Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
  publication-title: Knowl.-Based Syst.
– reference: F. Zakaria, D. Johari, I. Musirin, Optimized artificial neural network for the detection of incipient faults in power transformer, in: Proceedings of the 2014 IEEE 8th International Power Engineering And Optimization Conference (PEOCO), 2014, pp. 635–640.
– volume: 325
  start-page: 288
  year: 2015
  end-page: 299
  ident: bib25
  article-title: Counter propagation auto-associative neural network based data imputation
  publication-title: Inform. Sci.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib31
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 22
  start-page: 1604
  year: 2015
  end-page: 1615
  ident: bib27
  article-title: Novel method for performance degradation assessment and prediction of hydraulic servo system
  publication-title: Sci. Iran
– volume: 27
  start-page: 294
  year: 2006
  end-page: 300
  ident: bib53
  article-title: Random Forests for land cover classification
  publication-title: Pattern. Recogn. Lett.
– volume: 94
  start-page: 125
  year: 2009
  end-page: 141
  ident: bib1
  article-title: Reliability engineering: old problems and new challenges
  publication-title: Reliab. Eng. Syst. Safe.
– reference: , 2015 (accessed 16.07.22).
– reference: T. Amaral, L.M. Silva, L.A. Alexandre, C. Kandaswamy, J.M. Santos, J.M. de Sa, Using Different Cost Functions to Train Stacked Auto-encoders, in: F. Castro, A. Gelbukh ,M.G. Mendoza (Eds.) Mexican International Conference on Artificial Intelligence-MICAI,2013, pp. 114-120.
– volume: 17
  start-page: 305
  year: 2010
  end-page: 319
  ident: bib14
  article-title: A qualitative agent-based approach to power quality monitoring and diagnosis
  publication-title: Integr. Comput.-Aid E
– volume: 92
  start-page: 1117
  year: 2012
  end-page: 1125
  ident: bib24
  article-title: On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays
  publication-title: Signal Process.
– volume: 149
  start-page: 87
  year: 2011
  end-page: 93
  ident: bib50
  article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks
  publication-title: Surgery
– year: 2015
  ident: bib39
  article-title: Deep neural network-based bottleneck feature and denoising autoencoder-based dereverberation for distant-talking speaker identification
  publication-title: Eurasip. J. Audio Speech
– reference: X. Zhang, J. Wu, Denoising deep neural networks based voice activity detection, in: Proceedings of the International Conference on Acoustics Speech and Signal Processing ICASSP,2013, pp. 853–857.
– volume: 5
  start-page: 13
  year: 2010
  end-page: 18
  ident: bib37
  article-title: Deep machine learning-a new frontier in artificial intelligence research
  publication-title: IEEE Comput. Intell. Mag.
– volume: 95
  start-page: 786
  year: 2010
  end-page: 796
  ident: bib5
  article-title: Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance
  publication-title: Reliab. Eng. Syst. Safe.
– volume: 17
  start-page: 113
  year: 2004
  end-page: 126
  ident: bib51
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw.
– volume: 167
  start-page: 260
  year: 2015
  end-page: 279
  ident: bib21
  article-title: Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization
  publication-title: Neurocomputing
– volume: 42
  start-page: 9024
  year: 2015
  end-page: 9032
  ident: bib6
  article-title: Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques
  publication-title: Expert Syst. Appl.
– volume: 261
  start-page: S1549
  year: 2015
  end-page: S1558
  ident: bib45
  article-title: A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression
  publication-title: Bio-Med. Mater. Eng.
– volume: 17
  start-page: 1805
  year: 2015
  end-page: 1816
  ident: bib11
  article-title: Health assessment and fault classification for hydraulic pump based on LR and softmax regression
  publication-title: J. Vibroeng.
– volume: 109
  start-page: 334
  year: 2015
  end-page: 344
  ident: bib18
  article-title: Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: part II
  publication-title: Signal Process
– volume: 20
  start-page: 781
  year: 2013
  end-page: 792
  ident: bib10
  article-title: Fault diagnosis of plunger pump in truck crane based on relevance vector machine with particle swarm optimization algorithm
  publication-title: Shock Vib.
– volume: 43
  start-page: 1
  year: 2014
  end-page: 24
  ident: bib2
  article-title: Multiwavelet transform and its applications in mechanical fault diagnosis - a review
  publication-title: Mech. Syst. Signal Process.
– volume: 42
  start-page: 9165
  year: 2015
  end-page: 9173
  ident: bib26
  article-title: Diversified learning for continuous hidden Markov models with application to fault diagnosis
  publication-title: Expert Syst. Appl.
– volume: 120
  start-page: 480
  year: 2016
  end-page: 494
  ident: bib4
  article-title: Adaptive signal decomposition based on wavelet ridge and its application
  publication-title: Signal Process.
– volume: 115
  start-page: 124
  year: 2013
  end-page: 135
  ident: bib38
  article-title: Failure diagnosis using deep belief learning based health state classification
  publication-title: Reliab. Eng. Syst. Safe.
– volume: 120
  start-page: 266
  year: 2016
  end-page: 279
  ident: bib17
  article-title: An optimal fault detection threshold for early detection using Kullback–Leibler Divergence for unknown distribution data
  publication-title: Signal Process.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib40
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 292
  start-page: 83
  year: 2016
  end-page: 91
  ident: bib46
  article-title: An adaptive conjugate gradient algorithm for large-scale unconstrained optimization
  publication-title: J. Comput. Appl. Math.
– volume: 52–53
  start-page: 436
  year: 2015
  end-page: 446
  ident: bib20
  article-title: Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines
  publication-title: Mech. Syst. Signal Process.
– volume: 4
  start-page: 1235
  year: 2004
  end-page: 1260
  ident: bib43
  article-title: Energy-based models for sparse overcomplete representations
  publication-title: J. Mach. Learn. Res.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib29
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 22
  start-page: 1716
  year: 2008
  end-page: 1725
  ident: bib23
  article-title: Random forests classifier for machine fault diagnosis
  publication-title: J. Mech. Sci. Technol.
– reference: B. Yoshua, L. Pascal, P. Dan, L. Hugo. Greedy Layer-Wise Training of Deep Networks, in: Editor edito. Advances in Neural Information Processing Systems 19 (NIPS’06). Pub Place; 2007.
– volume: 29
  start-page: 173
  year: 2007
  end-page: 180
  ident: bib52
  article-title: A comparison of decision tree ensemble creation techniques
  publication-title: IEEE Trans. Pattern Anal.
– volume: 22
  start-page: 1567
  year: 2012
  end-page: 1581
  ident: bib3
  article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
  publication-title: J. Process. Contr.
– volume: 15
  start-page: 1546
  year: 2013
  end-page: 1559
  ident: bib13
  article-title: Performance assessment of hydraulic servo system based on bi-step neural network and autoregressive model
  publication-title: J. Vibroeng.
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: bib41
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw./Publ. IEEE Neural Netw. Counc.
– volume: 64–65
  start-page: 100
  year: 2015
  end-page: 131
  ident: bib47
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
  publication-title: Mech. Syst. Signal Process.
– volume: 8
  year: 2011
  ident: bib42
  article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement
  publication-title: J. Neural Eng.
– reference: Rasmusbergpalm, Deep Learning Toolbox,
– volume: 94
  start-page: 125
  year: 2009
  ident: 10.1016/j.sigpro.2016.07.028_bib1
  article-title: Reliability engineering: old problems and new challenges
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2008.06.002
– volume: 167
  start-page: 260
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib21
  article-title: Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.069
– ident: 10.1016/j.sigpro.2016.07.028_bib12
  doi: 10.1109/PEOCO.2014.6814505
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.sigpro.2016.07.028_bib29
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 72–73
  start-page: 303
  year: 2016
  ident: 10.1016/j.sigpro.2016.07.028_bib28
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2015.10.025
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.sigpro.2016.07.028_bib40
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– start-page: 466
  year: 2013
  ident: 10.1016/j.sigpro.2016.07.028_bib36
– volume: 8
  year: 2011
  ident: 10.1016/j.sigpro.2016.07.028_bib42
  article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036015
– volume: 149
  start-page: 87
  year: 2011
  ident: 10.1016/j.sigpro.2016.07.028_bib50
  article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks
  publication-title: Surgery
  doi: 10.1016/j.surg.2010.03.023
– volume: 42
  start-page: 9024
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib6
  article-title: Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.07.064
– volume: 261
  start-page: S1549
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib45
  article-title: A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression
  publication-title: Bio-Med. Mater. Eng.
  doi: 10.3233/BME-151454
– volume: 109
  start-page: 334
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib18
  article-title: Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: part II
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2014.06.023
– volume: 92
  start-page: 1117
  year: 2012
  ident: 10.1016/j.sigpro.2016.07.028_bib24
  article-title: On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2011.11.002
– volume: 17
  start-page: 305
  year: 2010
  ident: 10.1016/j.sigpro.2016.07.028_bib14
  article-title: A qualitative agent-based approach to power quality monitoring and diagnosis
  publication-title: Integr. Comput.-Aid E
  doi: 10.3233/ICA-2010-0349
– volume: 5
  start-page: 157
  year: 1994
  ident: 10.1016/j.sigpro.2016.07.028_bib41
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw./Publ. IEEE Neural Netw. Counc.
  doi: 10.1109/72.279181
– ident: 10.1016/j.sigpro.2016.07.028_bib49
– volume: 27
  start-page: 294
  year: 2006
  ident: 10.1016/j.sigpro.2016.07.028_bib53
  article-title: Random Forests for land cover classification
  publication-title: Pattern. Recogn. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– volume: 95
  start-page: 786
  year: 2010
  ident: 10.1016/j.sigpro.2016.07.028_bib5
  article-title: Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2010.02.016
– volume: 42
  start-page: 8274
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib35
  article-title: Efficient large-scale action recognition in videos using extreme learning machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.06.013
– volume: 42
  start-page: 314
  year: 2014
  ident: 10.1016/j.sigpro.2016.07.028_bib19
  article-title: Prognostics and health management design for rotary machinery systems-reviews, methodology and applications
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.06.004
– volume: 22
  start-page: 1716
  year: 2008
  ident: 10.1016/j.sigpro.2016.07.028_bib23
  article-title: Random forests classifier for machine fault diagnosis
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-008-0603-6
– volume: 60–61
  start-page: 252
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib7
  article-title: A summary of fault modelling and predictive health monitoring of rolling element bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.02.008
– volume: 43
  start-page: 1
  year: 2014
  ident: 10.1016/j.sigpro.2016.07.028_bib2
  article-title: Multiwavelet transform and its applications in mechanical fault diagnosis - a review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.09.015
– volume: 89
  start-page: 56
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib9
  article-title: Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.06.017
– ident: 10.1016/j.sigpro.2016.07.028_bib30
– volume: 22
  start-page: 1604
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib27
  article-title: Novel method for performance degradation assessment and prediction of hydraulic servo system
  publication-title: Sci. Iran
– volume: 294
  start-page: 269
  year: 2006
  ident: 10.1016/j.sigpro.2016.07.028_bib15
  article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.11.002
– volume: 52–53
  start-page: 436
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib20
  article-title: Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2014.08.007
– volume: 292
  start-page: 83
  year: 2016
  ident: 10.1016/j.sigpro.2016.07.028_bib46
  article-title: An adaptive conjugate gradient algorithm for large-scale unconstrained optimization
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.07.003
– volume: 22
  start-page: 1567
  year: 2012
  ident: 10.1016/j.sigpro.2016.07.028_bib3
  article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
  publication-title: J. Process. Contr.
  doi: 10.1016/j.jprocont.2012.06.009
– volume: 4
  start-page: 1235
  year: 2004
  ident: 10.1016/j.sigpro.2016.07.028_bib43
  article-title: Energy-based models for sparse overcomplete representations
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 113
  year: 2004
  ident: 10.1016/j.sigpro.2016.07.028_bib51
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(03)00169-2
– volume: 5
  start-page: 13
  year: 2010
  ident: 10.1016/j.sigpro.2016.07.028_bib37
  article-title: Deep machine learning-a new frontier in artificial intelligence research
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2010.938364
– ident: 10.1016/j.sigpro.2016.07.028_bib48
– volume: 120
  start-page: 480
  year: 2016
  ident: 10.1016/j.sigpro.2016.07.028_bib4
  article-title: Adaptive signal decomposition based on wavelet ridge and its application
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.09.032
– volume: 321
  start-page: 1144
  year: 2009
  ident: 10.1016/j.sigpro.2016.07.028_bib8
  article-title: Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.10.012
– volume: 42
  start-page: 9165
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib26
  article-title: Diversified learning for continuous hidden Markov models with application to fault diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.08.027
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.sigpro.2016.07.028_bib31
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib32
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 17
  start-page: 1805
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib11
  article-title: Health assessment and fault classification for hydraulic pump based on LR and softmax regression
  publication-title: J. Vibroeng.
– volume: 64–65
  start-page: 100
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib47
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.04.021
– volume: 120
  start-page: 266
  year: 2016
  ident: 10.1016/j.sigpro.2016.07.028_bib17
  article-title: An optimal fault detection threshold for early detection using Kullback–Leibler Divergence for unknown distribution data
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.09.008
– volume: 325
  start-page: 288
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib25
  article-title: Counter propagation auto-associative neural network based data imputation
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.07.016
– volume: 96
  start-page: 1
  year: 2014
  ident: 10.1016/j.sigpro.2016.07.028_bib16
  article-title: Wavelets for fault diagnosis of rotary machines: a review with applications
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.04.015
– year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib39
  article-title: Deep neural network-based bottleneck feature and denoising autoencoder-based dereverberation for distant-talking speaker identification
  publication-title: Eurasip. J. Audio Speech
  doi: 10.1186/s13636-015-0056-7
– volume: 115
  start-page: 124
  year: 2013
  ident: 10.1016/j.sigpro.2016.07.028_bib38
  article-title: Failure diagnosis using deep belief learning based health state classification
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2013.02.022
– volume: 29
  start-page: 173
  year: 2007
  ident: 10.1016/j.sigpro.2016.07.028_bib52
  article-title: A comparison of decision tree ensemble creation techniques
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/TPAMI.2007.250609
– volume: 20
  start-page: 781
  year: 2013
  ident: 10.1016/j.sigpro.2016.07.028_bib10
  article-title: Fault diagnosis of plunger pump in truck crane based on relevance vector machine with particle swarm optimization algorithm
  publication-title: Shock Vib.
  doi: 10.1155/2013/610235
– volume: 64
  start-page: 1
  year: 2015
  ident: 10.1016/j.sigpro.2016.07.028_bib34
  article-title: Editorial introduction to the Neural Networks special issue on Deep Learning of Representations
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.12.006
– ident: 10.1016/j.sigpro.2016.07.028_bib33
  doi: 10.1109/ICASSP.2013.6637769
– ident: 10.1016/j.sigpro.2016.07.028_bib22
  doi: 10.1109/CESA.2006.4281698
– ident: 10.1016/j.sigpro.2016.07.028_bib44
  doi: 10.1109/MICAI.2013.20
– volume: 15
  start-page: 1546
  year: 2013
  ident: 10.1016/j.sigpro.2016.07.028_bib13
  article-title: Performance assessment of hydraulic servo system based on bi-step neural network and autoregressive model
  publication-title: J. Vibroeng.
SSID ssj0001360
Score 2.648307
Snippet Effective fault diagnosis has long been a research topic in the prognosis and health management of rotary machinery engineered systems due to the benefits such...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 377
SubjectTerms Deep learning
Fault diagnosis
Health state identification
Stacked denoising autoencoder
Title Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
URI https://dx.doi.org/10.1016/j.sigpro.2016.07.028
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL3oQf-L8MXLwGtc2aZsdx3BMxV10sFtJmmZU5jq6TvDi325e0uoEUfDWhhcILy_vfbTf94LQFeVSUMUYET1GCfO1IDLMOFGKyZhrU5QiECc_jKPRhN1Nw2kLDRotDNAq69zvcrrN1vVIt_Zmd5nn3UcQ4vgR_DajEFagKGcshii_fv-iefjUKoXBmIB1I5-zHK9VPjN5CgheroUn3Mn-U3naKDnDfbRXY0Xcd8s5QK1scYh2NzoIHqHXoVjPK6wcYS5f4ULjsqhE-YZfLE0yM09AGy8WwJjAQHOfYYENJjTHV2GTdYrcja2rAppaqqwkUNoUdhJJbCVHOFc1rcju5DGaDG-eBiNSX6VAUsaCioQ8kBygFBxB5XvKUymVOlI6jbhmVHKDIySgR_POe0wJRtNepH2PKoOBBD1BWwuz0lOEAypDJSgVXPumskkORBqD82Qcx16YBW1EGw8mad1nHK67mCcNoew5cX5PwO-JFyfG721EPmctXZ-NP-zjZnOSb_GSmFLw68yzf888RzsBFHX7AeYCbVXlOrs0kKSSHRtzHbTdv70fjT8AGHzi6A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zHtSD-BPnzxy8xrVN2mZHGY6p2y5usFtImnZU5jq2TvDi325e2uoEUfDWhhcIL8l7H-33vYfQNeVKUs0YkS1GCXMTSZQfc6I1UyFPTFIKQJzcHwTdEXsY--MaaldaGKBVlrG_iOk2WpcjzdKbzXmaNp9AiOMG8NuMwrEKN9AmM9cX2hjcvH_xPFxqpcJgTcC80s9ZktcynZhABQyvooYnNGX_KT-t5ZzOHtotwSK-Ldazj2rx7ADtrJUQPESvHbma5lgXjLl0ibMEL7JcLt7wi-VJxuYJeOPZDCgTGHjuEyyxAYXm_mpswk6WFmOrPIOqljpeEMhtGhcaSWw1RzjVJa_IbuURGnXuhu0uKXspkIgxLyc-9xQHLAV3ULuOdnREVRLoJAp4wqjiBkgogI_mnbeYloxGrSBxHaoNCJL0GNVnZqUnCHtU-VpSKnnimtSmODBpDNBTYRg6fuw1EK08KKKy0Dj0u5iKilH2LAq_C_C7cEJh_N5A5HPWvCi08Yd9WG2O-HZghMkFv848_ffMK7TVHfZ7onc_eDxD2x5kePs15hzV88UqvjD4JFeX9vx9AFx_5HY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+diagnosis+of+rotary+machinery+components+using+a+stacked+denoising+autoencoder-based+health+state+identification&rft.jtitle=Signal+processing&rft.au=Lu%2C+Chen&rft.au=Wang%2C+Zhen-Ya&rft.au=Qin%2C+Wei-Li&rft.au=Ma%2C+Jian&rft.date=2017-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=130&rft.spage=377&rft.epage=388&rft_id=info:doi/10.1016%2Fj.sigpro.2016.07.028&rft.externalDocID=S0165168416301797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon