Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
Effective fault diagnosis has long been a research topic in the prognosis and health management of rotary machinery engineered systems due to the benefits such as safety guarantees, reliability improvements, and economical efficiency. This paper investigates an effective and reliable deep learning m...
Saved in:
Published in | Signal processing Vol. 130; pp. 377 - 388 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Effective fault diagnosis has long been a research topic in the prognosis and health management of rotary machinery engineered systems due to the benefits such as safety guarantees, reliability improvements, and economical efficiency. This paper investigates an effective and reliable deep learning method known as stacked denoising autoencoder (SDA), which is shown to be suitable for certain health state identifications for signals containing ambient noise and working condition fluctuations. SDA has become a popular approach to achieve the promised advantages of deep architecture-based robust feature representations. In this paper, the SDA-based fault diagnosis method contains three successive steps: health states are first divided into training and testing groups for the SDA model, a deep hierarchical structure is then established with a transmitting rule of greedy training, layer by layer, where sparsity representation and data destruction are applied to obtain high-order characteristics with better robustness in the iteration learning. Validation data are finally employed to confirm the fault diagnosis results of the SDA, where existing health state identification methods are used for comparison. Rotating machinery datasets are employed to demonstrate the effectiveness of the proposed method.
•Deep neural network is developed for fault diagnosis of typical dynamic systems.•Better robustness is achieved under various working conditions and ambient noise.•The method helps salient fault characteristic mining and intelligent diagnosis.•Validity of the SDA is verified via comparative experiments. |
---|---|
AbstractList | Effective fault diagnosis has long been a research topic in the prognosis and health management of rotary machinery engineered systems due to the benefits such as safety guarantees, reliability improvements, and economical efficiency. This paper investigates an effective and reliable deep learning method known as stacked denoising autoencoder (SDA), which is shown to be suitable for certain health state identifications for signals containing ambient noise and working condition fluctuations. SDA has become a popular approach to achieve the promised advantages of deep architecture-based robust feature representations. In this paper, the SDA-based fault diagnosis method contains three successive steps: health states are first divided into training and testing groups for the SDA model, a deep hierarchical structure is then established with a transmitting rule of greedy training, layer by layer, where sparsity representation and data destruction are applied to obtain high-order characteristics with better robustness in the iteration learning. Validation data are finally employed to confirm the fault diagnosis results of the SDA, where existing health state identification methods are used for comparison. Rotating machinery datasets are employed to demonstrate the effectiveness of the proposed method.
•Deep neural network is developed for fault diagnosis of typical dynamic systems.•Better robustness is achieved under various working conditions and ambient noise.•The method helps salient fault characteristic mining and intelligent diagnosis.•Validity of the SDA is verified via comparative experiments. |
Author | Lu, Chen Wang, Zhen-Ya Qin, Wei-Li Ma, Jian |
Author_xml | – sequence: 1 givenname: Chen surname: Lu fullname: Lu, Chen organization: School of Reliability and Systems Engineering, Beihang University, Xueyuan Road, Haidian District, Beijing China – sequence: 2 givenname: Zhen-Ya surname: Wang fullname: Wang, Zhen-Ya organization: School of Reliability and Systems Engineering, Beihang University, Xueyuan Road, Haidian District, Beijing China – sequence: 3 givenname: Wei-Li surname: Qin fullname: Qin, Wei-Li organization: School of Reliability and Systems Engineering, Beihang University, Xueyuan Road, Haidian District, Beijing China – sequence: 4 givenname: Jian surname: Ma fullname: Ma, Jian email: majian3129@126.com organization: School of Reliability and Systems Engineering, Beihang University, Xueyuan Road, Haidian District, Beijing China |
BookMark | eNqFkM9OAyEQxompia36Bh54gV2H_Us9mJjGqkkTL3omLLDt1C00QJv49lLXkwc9zQwz3wzfb0Ym1llDyA2DnAFrbrd5wPXeu7xIVQ5tDgU_I1PG2yJr67qdkGlq1BlreHVBZiFsAYCVDUzJcSkPQ6Qa5dq6gIG6nnoXpf-kO6k2aE3KlNvt00UbAz0EtGsqaYhSfRhNtbEOx7dDdMYqp43POhlSb2PkEDen0WgopsmIPSoZ0dkrct7LIZjrn3hJ3pePb4vnbPX69LJ4WGWqqoqY1bzoOIN6XiefmoEGrcqub3SvGt5XZcdL1nbAAVLN55WWVanmTc-g1A0rZHlJqnGv8i4Eb3qx97hL7gQDcWIntmJkJ07sBLQisUuyu18yhfH749FLHP4T349ik4wd0XgRFCYyRqM3Kgrt8O8FX2dLklY |
CitedBy_id | crossref_primary_10_1016_j_neunet_2020_06_014 crossref_primary_10_1109_JIOT_2023_3246048 crossref_primary_10_1155_2021_9927151 crossref_primary_10_1016_j_jmsy_2021_05_003 crossref_primary_10_1155_2020_8843759 crossref_primary_10_1007_s40430_020_02776_7 crossref_primary_10_1016_j_measurement_2019_107232 crossref_primary_10_1016_j_eswa_2023_121956 crossref_primary_10_1007_s00170_023_12060_2 crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_1109_OJIES_2023_3334429 crossref_primary_10_1016_j_measurement_2020_107929 crossref_primary_10_1109_TNNLS_2022_3232147 crossref_primary_10_1088_1361_6501_ad2da8 crossref_primary_10_1109_TIM_2021_3085940 crossref_primary_10_1016_j_ymssp_2019_106587 crossref_primary_10_7736_JKSPE_021_117 crossref_primary_10_1155_2021_5714240 crossref_primary_10_1016_j_conengprac_2020_104330 crossref_primary_10_1088_1361_6501_ad69b0 crossref_primary_10_1186_s10033_021_00569_0 crossref_primary_10_1088_1361_6501_aadfb3 crossref_primary_10_1007_s10845_018_1456_1 crossref_primary_10_1016_j_ymssp_2020_106923 crossref_primary_10_1177_1748006X211001979 crossref_primary_10_1016_j_eswa_2022_117390 crossref_primary_10_1016_j_neucom_2020_10_039 crossref_primary_10_1109_TITS_2024_3482106 crossref_primary_10_3390_app9163374 crossref_primary_10_1109_TIM_2025_3533631 crossref_primary_10_1016_j_knosys_2020_105764 crossref_primary_10_1109_TII_2021_3064377 crossref_primary_10_1186_s13677_020_00205_7 crossref_primary_10_1088_1742_6596_1820_1_012034 crossref_primary_10_1016_j_isatra_2022_04_043 crossref_primary_10_1016_j_measurement_2022_111899 crossref_primary_10_1177_1687814018824812 crossref_primary_10_1016_j_aei_2022_101564 crossref_primary_10_1016_j_jmsy_2018_05_011 crossref_primary_10_1088_1361_6501_ad0939 crossref_primary_10_1177_1475921719893594 crossref_primary_10_1016_j_neucom_2020_02_042 crossref_primary_10_1109_TRPMS_2021_3055727 crossref_primary_10_1177_00368504221135457 crossref_primary_10_3390_machines11100932 crossref_primary_10_1109_JSYST_2022_3183134 crossref_primary_10_1016_j_jmsy_2023_10_010 crossref_primary_10_1177_0142331217708242 crossref_primary_10_1016_j_ymssp_2018_07_034 crossref_primary_10_1002_qre_3288 crossref_primary_10_1109_TIM_2020_3011734 crossref_primary_10_1016_j_petrol_2018_04_004 crossref_primary_10_3390_machines12020121 crossref_primary_10_1109_ACCESS_2019_2919535 crossref_primary_10_3233_JIFS_190101 crossref_primary_10_1109_TMECH_2020_2996939 crossref_primary_10_1155_2022_5767642 crossref_primary_10_1016_j_compind_2019_05_005 crossref_primary_10_1109_TII_2019_2927590 crossref_primary_10_1016_j_measurement_2018_06_026 crossref_primary_10_1109_ACCESS_2022_3205352 crossref_primary_10_3390_e24121822 crossref_primary_10_1016_j_measurement_2021_110146 crossref_primary_10_1016_j_neucom_2018_03_014 crossref_primary_10_3390_app112411663 crossref_primary_10_1155_2021_9790053 crossref_primary_10_1109_TPWRS_2020_3001919 crossref_primary_10_1109_ACCESS_2020_2990528 crossref_primary_10_1109_TSTE_2020_2985217 crossref_primary_10_1016_j_conengprac_2023_105475 crossref_primary_10_1109_TIM_2019_2933342 crossref_primary_10_1016_j_measurement_2023_112806 crossref_primary_10_1088_1742_6596_1881_2_022019 crossref_primary_10_1016_j_neucom_2018_12_088 crossref_primary_10_1016_j_psep_2025_106942 crossref_primary_10_3390_app11073289 crossref_primary_10_1016_j_asoc_2019_01_021 crossref_primary_10_1016_j_ymssp_2019_02_006 crossref_primary_10_1109_TTE_2021_3110318 crossref_primary_10_1016_j_asoc_2022_109772 crossref_primary_10_1007_s10462_019_09719_2 crossref_primary_10_1016_j_aei_2023_101979 crossref_primary_10_1587_elex_18_20210174 crossref_primary_10_1016_j_measurement_2022_111304 crossref_primary_10_1016_j_ymssp_2019_106266 crossref_primary_10_1109_ACCESS_2017_2720965 crossref_primary_10_1177_01423312231157118 crossref_primary_10_1016_j_measurement_2021_109186 crossref_primary_10_3390_en14165150 crossref_primary_10_1016_j_renene_2019_09_041 crossref_primary_10_1038_s41598_024_59785_y crossref_primary_10_1016_j_eswa_2023_121645 crossref_primary_10_3390_pr11051527 crossref_primary_10_1109_TIM_2020_3043510 crossref_primary_10_1007_s13042_023_01830_9 crossref_primary_10_1155_2022_3696091 crossref_primary_10_1002_tee_23452 crossref_primary_10_1155_2017_3583610 crossref_primary_10_1016_j_dibe_2023_100128 crossref_primary_10_1016_j_neunet_2019_11_007 crossref_primary_10_1088_1361_6501_acb0ea crossref_primary_10_1109_TII_2021_3134251 crossref_primary_10_1016_j_eswa_2021_115728 crossref_primary_10_1080_15325008_2020_1854384 crossref_primary_10_1016_j_neucom_2017_10_063 crossref_primary_10_1016_j_jmsy_2020_04_017 crossref_primary_10_1109_ACCESS_2020_2989510 crossref_primary_10_3390_math8112008 crossref_primary_10_32604_cmes_2023_031360 crossref_primary_10_1155_2020_8819313 crossref_primary_10_1088_1361_6501_acb609 crossref_primary_10_3390_app8081346 crossref_primary_10_1155_2021_3083190 crossref_primary_10_1016_j_asoc_2022_109314 crossref_primary_10_1016_j_compind_2019_04_013 crossref_primary_10_3390_app12094411 crossref_primary_10_1007_s40747_022_00733_6 crossref_primary_10_1016_j_eswa_2025_126420 crossref_primary_10_3390_e20050387 crossref_primary_10_1109_ACCESS_2023_3267089 crossref_primary_10_1109_ACCESS_2021_3059761 crossref_primary_10_1155_2018_5105709 crossref_primary_10_3390_s24102978 crossref_primary_10_1016_j_nucengdes_2024_113587 crossref_primary_10_1088_1742_6596_1820_1_012105 crossref_primary_10_1016_j_measurement_2022_111203 crossref_primary_10_1016_j_measurement_2021_109088 crossref_primary_10_1109_ACCESS_2023_3347345 crossref_primary_10_1016_j_neucom_2018_06_078 crossref_primary_10_3390_app9091823 crossref_primary_10_1155_2021_9915084 crossref_primary_10_3390_math10213953 crossref_primary_10_1088_1361_6501_ac4598 crossref_primary_10_1016_j_ymssp_2024_111189 crossref_primary_10_1016_j_sigpro_2019_107385 crossref_primary_10_1016_j_compind_2020_103380 crossref_primary_10_3103_S8756699020060023 crossref_primary_10_3390_e25020242 crossref_primary_10_1109_TIE_2018_2844805 crossref_primary_10_1007_s12206_024_0802_9 crossref_primary_10_1016_j_ymssp_2019_106610 crossref_primary_10_1109_TII_2020_3021406 crossref_primary_10_3390_info15050259 crossref_primary_10_3390_electronics9040600 crossref_primary_10_1109_ACCESS_2020_3008208 crossref_primary_10_1016_j_ymssp_2019_106611 crossref_primary_10_1093_ijlct_ctab082 crossref_primary_10_1016_j_eswa_2021_114570 crossref_primary_10_1109_TIM_2025_3550233 crossref_primary_10_1016_j_neucom_2020_04_074 crossref_primary_10_1109_TPEL_2022_3153797 crossref_primary_10_1016_j_ymssp_2019_106608 crossref_primary_10_1109_ACCESS_2019_2924272 crossref_primary_10_1109_ACCESS_2021_3056944 crossref_primary_10_1177_1550147719888169 crossref_primary_10_1109_ACCESS_2018_2880990 crossref_primary_10_1016_j_measurement_2023_113387 crossref_primary_10_3233_JIFS_17938 crossref_primary_10_1016_j_knosys_2021_107932 crossref_primary_10_1016_j_flowmeasinst_2024_102609 crossref_primary_10_1016_j_compind_2020_103378 crossref_primary_10_1108_IJSI_11_2022_0134 crossref_primary_10_1007_s00170_024_13713_6 crossref_primary_10_1016_j_aei_2019_100977 crossref_primary_10_1177_09544062231222806 crossref_primary_10_1109_TASE_2020_3048056 crossref_primary_10_1177_14750902221143827 crossref_primary_10_1016_j_neucom_2018_05_021 crossref_primary_10_1088_1361_6501_ac7a07 crossref_primary_10_5050_KSNVE_2021_31_1_047 crossref_primary_10_1016_j_isatra_2019_05_021 crossref_primary_10_1109_TMECH_2021_3065522 crossref_primary_10_1016_j_neucom_2018_09_050 crossref_primary_10_1016_j_isatra_2018_12_025 crossref_primary_10_1016_j_buildenv_2020_107397 crossref_primary_10_1016_j_ifacol_2019_12_420 crossref_primary_10_1016_j_ymssp_2022_109440 crossref_primary_10_1177_1687814018810935 crossref_primary_10_3390_s19112504 crossref_primary_10_1109_ACCESS_2018_2890693 crossref_primary_10_1109_ACCESS_2020_2993010 crossref_primary_10_1063_5_0095530 crossref_primary_10_1016_j_neunet_2020_05_031 crossref_primary_10_1088_1361_6501_ad42c1 crossref_primary_10_17531_ein_2019_3_6 crossref_primary_10_3390_s18072110 crossref_primary_10_1109_TIE_2020_2984968 crossref_primary_10_1155_2020_5804509 crossref_primary_10_3390_electronics11234046 crossref_primary_10_1109_ACCESS_2020_3007027 crossref_primary_10_1109_TIM_2022_3210978 crossref_primary_10_1109_JIOT_2024_3421326 crossref_primary_10_1016_j_measurement_2021_109563 crossref_primary_10_1016_j_jmbbm_2023_106077 crossref_primary_10_3390_app10051680 crossref_primary_10_1108_ILT_11_2019_0496 crossref_primary_10_1016_j_isatra_2024_05_040 crossref_primary_10_1155_2020_8869648 crossref_primary_10_1109_ACCESS_2019_2924042 crossref_primary_10_1109_JSEN_2021_3099823 crossref_primary_10_3390_app10103659 crossref_primary_10_1016_j_engappai_2021_104381 crossref_primary_10_1088_1361_6501_ac78c5 crossref_primary_10_2139_ssrn_4019497 crossref_primary_10_3390_s20061774 crossref_primary_10_1109_OJVT_2020_3024755 crossref_primary_10_1016_j_isatra_2018_04_005 crossref_primary_10_1177_09544062241281096 crossref_primary_10_1007_s10033_017_0188_z crossref_primary_10_1016_j_ymssp_2020_106825 crossref_primary_10_1177_0959651820933380 crossref_primary_10_31796_ogummf_873963 crossref_primary_10_1016_j_buildenv_2020_107135 crossref_primary_10_1109_ACCESS_2019_2947194 crossref_primary_10_1109_TII_2020_3021688 crossref_primary_10_1088_1361_6501_ac0741 crossref_primary_10_1109_TIE_2019_2905830 crossref_primary_10_3390_app9245404 crossref_primary_10_1007_s42417_019_00089_1 crossref_primary_10_1016_j_measurement_2019_106857 crossref_primary_10_1016_j_ymssp_2018_05_050 crossref_primary_10_1088_1361_6501_ac6d48 crossref_primary_10_1007_s10845_019_01485_w crossref_primary_10_1016_j_engappai_2021_104279 crossref_primary_10_3390_s21186116 crossref_primary_10_3390_vibration6010014 crossref_primary_10_1088_1361_6501_ad6020 crossref_primary_10_1109_ACCESS_2023_3291674 crossref_primary_10_1007_s42417_022_00566_0 crossref_primary_10_1016_j_ymssp_2019_05_049 crossref_primary_10_3390_machines11111029 crossref_primary_10_1016_j_sigpro_2019_03_019 crossref_primary_10_1016_j_ymssp_2023_110535 crossref_primary_10_1016_j_asoc_2019_105564 crossref_primary_10_1016_j_pnucene_2022_104344 crossref_primary_10_1007_s10489_021_03004_y crossref_primary_10_1177_0020294019830435 crossref_primary_10_1002_ente_202201510 crossref_primary_10_1088_1742_6596_2369_1_012001 crossref_primary_10_1109_ACCESS_2023_3276297 crossref_primary_10_1016_j_procir_2018_12_008 crossref_primary_10_1109_ACCESS_2021_3055427 crossref_primary_10_1115_1_4053562 crossref_primary_10_1007_s00170_019_03557_w crossref_primary_10_1177_1475921720942836 crossref_primary_10_1177_14759217211056574 crossref_primary_10_1016_j_ymssp_2020_106840 crossref_primary_10_1088_1361_6501_ac68d1 crossref_primary_10_1784_insi_2023_65_4_217 crossref_primary_10_1109_ACCESS_2021_3088237 crossref_primary_10_1109_ACCESS_2020_3022840 crossref_primary_10_1016_j_dsp_2022_103775 crossref_primary_10_3390_pr9101751 crossref_primary_10_1007_s12598_024_02766_x crossref_primary_10_1109_JSEN_2024_3471178 crossref_primary_10_3390_machines11080846 crossref_primary_10_1016_j_cja_2020_07_019 crossref_primary_10_1109_ACCESS_2021_3056767 crossref_primary_10_1109_TIM_2024_3352702 crossref_primary_10_3390_s19040972 crossref_primary_10_1016_j_engappai_2023_106834 crossref_primary_10_1016_j_neucom_2018_07_034 crossref_primary_10_1016_j_engappai_2021_104295 crossref_primary_10_1007_s41066_022_00328_z crossref_primary_10_1109_TII_2020_2967822 crossref_primary_10_1111_exsy_13128 crossref_primary_10_1063_5_0174359 crossref_primary_10_1109_JSEN_2019_2898634 crossref_primary_10_1016_j_tust_2023_105386 crossref_primary_10_1109_TIM_2021_3129198 crossref_primary_10_1109_TMECH_2022_3169143 crossref_primary_10_1177_1477153520926200 crossref_primary_10_1088_1361_6501_aa6e22 crossref_primary_10_1109_TIM_2017_2698738 crossref_primary_10_3390_s20102945 crossref_primary_10_1016_j_knosys_2022_109272 crossref_primary_10_1016_j_knosys_2022_109393 crossref_primary_10_1016_j_jprocont_2021_01_005 crossref_primary_10_1016_j_jmapro_2022_03_018 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1016_j_measurement_2021_110460 crossref_primary_10_1109_ACCESS_2021_3124025 crossref_primary_10_1155_2022_9453879 crossref_primary_10_1080_26889277_2022_2053302 crossref_primary_10_3390_app11209401 crossref_primary_10_1016_j_future_2020_03_008 crossref_primary_10_1109_ACCESS_2020_2972859 crossref_primary_10_1007_s00521_023_08949_4 crossref_primary_10_1177_0954405419840556 crossref_primary_10_32604_cmc_2023_039164 crossref_primary_10_1080_21642583_2021_1992684 crossref_primary_10_1155_2020_8826507 crossref_primary_10_1177_1748006X18822447 crossref_primary_10_24017_science_2025_1_2 crossref_primary_10_1016_j_net_2023_06_037 crossref_primary_10_3390_machines10040237 crossref_primary_10_3390_s21134394 crossref_primary_10_1088_1361_6501_ad903f crossref_primary_10_1051_matecconf_201925506005 crossref_primary_10_1109_LSP_2019_2936310 crossref_primary_10_1088_1361_6501_ad2420 crossref_primary_10_1002_qre_2651 crossref_primary_10_1016_j_isatra_2019_08_053 crossref_primary_10_1016_j_asoc_2021_107836 crossref_primary_10_1109_JSEN_2023_3233957 crossref_primary_10_1007_s00170_022_09909_3 crossref_primary_10_1051_matecconf_201925506002 crossref_primary_10_1088_1361_6501_ac41a5 crossref_primary_10_5687_iscie_34_145 crossref_primary_10_1016_j_knosys_2018_09_005 crossref_primary_10_1016_j_energy_2023_127942 crossref_primary_10_21595_vp_2018_20146 crossref_primary_10_3390_s17020414 crossref_primary_10_3390_app10082932 crossref_primary_10_1088_1361_6501_ac7eb0 crossref_primary_10_3390_s20226612 crossref_primary_10_1109_TAI_2021_3134186 crossref_primary_10_1088_1361_6501_ac8a64 crossref_primary_10_1016_j_engappai_2024_109020 crossref_primary_10_1093_nar_gkaa191 crossref_primary_10_3390_app8122416 crossref_primary_10_1080_00207543_2020_1808261 crossref_primary_10_1109_ACCESS_2020_2992201 crossref_primary_10_1016_j_engappai_2024_108051 crossref_primary_10_1149_1945_7111_ab67a8 crossref_primary_10_1007_s00500_022_07343_x crossref_primary_10_1109_TIM_2019_2903699 crossref_primary_10_3390_e23121704 crossref_primary_10_1177_14759217211029201 crossref_primary_10_3390_s21103550 crossref_primary_10_1155_2021_5587756 crossref_primary_10_1016_j_ssci_2023_106363 crossref_primary_10_1016_j_egyr_2022_01_226 crossref_primary_10_1016_j_engappai_2018_08_013 crossref_primary_10_3390_en16020575 crossref_primary_10_1016_j_aei_2024_102862 crossref_primary_10_1016_j_measurement_2021_109951 crossref_primary_10_1109_TIM_2023_3291736 crossref_primary_10_1088_1361_6501_ac2ac0 crossref_primary_10_3390_s20154300 crossref_primary_10_1177_0954406220941037 crossref_primary_10_1177_09544070241249507 crossref_primary_10_12677_MOS_2024_131018 crossref_primary_10_1007_s11760_021_01939_w crossref_primary_10_1109_TCBB_2021_3102584 crossref_primary_10_1016_j_compind_2018_07_002 crossref_primary_10_1109_TEC_2020_3046642 crossref_primary_10_1016_j_engappai_2018_09_010 crossref_primary_10_1021_acsomega_4c03757 crossref_primary_10_1109_JSEN_2022_3149892 crossref_primary_10_1016_j_asoc_2021_107755 crossref_primary_10_1109_ACCESS_2020_3026918 crossref_primary_10_1109_TIM_2022_3203440 crossref_primary_10_1016_j_compind_2020_103331 crossref_primary_10_1038_s41598_025_89558_0 crossref_primary_10_1016_j_isatra_2019_08_012 crossref_primary_10_1007_s11042_022_12020_0 crossref_primary_10_3390_s19143109 crossref_primary_10_1016_j_measurement_2020_108029 crossref_primary_10_1109_TIM_2020_3047433 crossref_primary_10_1155_2018_2919637 crossref_primary_10_3390_pr12102127 crossref_primary_10_1007_s42417_021_00286_x crossref_primary_10_1016_j_eswa_2022_117408 crossref_primary_10_1109_TIE_2019_2935987 crossref_primary_10_1016_j_asoc_2020_106119 crossref_primary_10_1016_j_ymssp_2017_08_002 crossref_primary_10_1016_j_renene_2018_10_047 crossref_primary_10_1109_ACCESS_2022_3140287 crossref_primary_10_1088_1361_6501_ab7280 crossref_primary_10_1016_j_matpr_2020_12_050 crossref_primary_10_1109_TIM_2017_2759418 crossref_primary_10_1016_j_bspc_2020_102395 crossref_primary_10_1109_ACCESS_2018_2878813 crossref_primary_10_1109_TIE_2019_2931255 crossref_primary_10_3934_mbe_2023242 crossref_primary_10_21595_jve_2021_21928 crossref_primary_10_1109_TII_2020_3048990 crossref_primary_10_3390_s23249688 crossref_primary_10_3390_machines11010018 crossref_primary_10_1177_1475921720934051 crossref_primary_10_1088_1361_6501_ac7b6c crossref_primary_10_1155_2021_6687195 crossref_primary_10_1016_j_ymssp_2021_107821 crossref_primary_10_1109_TII_2019_2950667 crossref_primary_10_26102_2310_6018_2019_27_4_011 crossref_primary_10_1016_j_ress_2020_107396 crossref_primary_10_1155_2020_8846589 crossref_primary_10_3390_s24041095 crossref_primary_10_1007_s42452_020_2741_0 crossref_primary_10_1109_ACCESS_2020_2974942 crossref_primary_10_1186_s10033_021_00564_5 crossref_primary_10_1109_TIM_2024_3470060 crossref_primary_10_1109_TIM_2024_3502723 crossref_primary_10_1016_j_jmsy_2018_01_003 crossref_primary_10_1007_s10462_022_10293_3 crossref_primary_10_1088_1361_6501_abf866 crossref_primary_10_1088_1361_6501_ac73da crossref_primary_10_1016_j_aei_2022_101708 crossref_primary_10_1109_JIOT_2019_2940131 crossref_primary_10_1016_j_ymssp_2021_108765 crossref_primary_10_1016_j_neucom_2018_10_049 crossref_primary_10_1088_1361_6501_ab9037 crossref_primary_10_3390_app12105240 crossref_primary_10_1016_j_neucom_2024_127574 crossref_primary_10_3390_s19051041 crossref_primary_10_1016_j_measurement_2021_110099 crossref_primary_10_1109_TII_2024_3476547 crossref_primary_10_3390_s19081826 crossref_primary_10_1016_j_scs_2019_101847 crossref_primary_10_1109_ACCESS_2019_2947714 crossref_primary_10_3390_e23020191 crossref_primary_10_3390_app9235139 crossref_primary_10_1088_1361_6501_ace7eb crossref_primary_10_3390_electronics12132826 crossref_primary_10_1016_j_rcim_2019_101920 crossref_primary_10_1016_j_asoc_2022_108900 crossref_primary_10_1007_s42417_022_00584_y crossref_primary_10_1016_j_compind_2018_04_002 crossref_primary_10_1080_00207543_2022_2079012 crossref_primary_10_1109_JSEN_2020_2965988 crossref_primary_10_3390_inventions3030041 crossref_primary_10_1016_j_eswa_2021_116094 crossref_primary_10_1109_ACCESS_2022_3216573 crossref_primary_10_1177_0954407020907818 crossref_primary_10_1016_j_joes_2023_12_004 crossref_primary_10_1007_s40997_024_00783_w crossref_primary_10_1088_1361_6501_abfb1f crossref_primary_10_3389_fevo_2023_1157981 crossref_primary_10_3390_s24020353 crossref_primary_10_1016_j_ymssp_2024_111526 crossref_primary_10_1109_TIE_2017_2774777 crossref_primary_10_1016_j_measurement_2020_108500 crossref_primary_10_1016_j_measurement_2020_107539 crossref_primary_10_1109_ACCESS_2019_2890979 crossref_primary_10_1007_s42417_024_01694_5 crossref_primary_10_1155_2019_8239198 crossref_primary_10_3390_s20143949 crossref_primary_10_1016_j_ymssp_2017_11_024 crossref_primary_10_1109_TII_2021_3054651 crossref_primary_10_1016_j_knosys_2017_10_024 crossref_primary_10_1016_j_chemosphere_2021_132647 crossref_primary_10_3390_s21020433 crossref_primary_10_1177_1687814019897212 crossref_primary_10_1016_j_neucom_2019_12_033 crossref_primary_10_1016_j_asoc_2019_106060 crossref_primary_10_3389_frai_2020_578613 crossref_primary_10_1016_j_measurement_2020_107864 crossref_primary_10_1088_1361_6501_abe163 crossref_primary_10_2139_ssrn_4141247 crossref_primary_10_1007_s00521_020_05345_0 crossref_primary_10_1088_1361_6501_acd4d8 crossref_primary_10_1016_j_jprocont_2020_05_015 crossref_primary_10_1177_0954406219875756 crossref_primary_10_1007_s00500_022_06755_z crossref_primary_10_1155_2020_1971945 crossref_primary_10_1007_s10845_023_02103_6 crossref_primary_10_3390_s23125487 crossref_primary_10_1109_TNNLS_2020_3027160 crossref_primary_10_1063_5_0158412 crossref_primary_10_1016_j_measurement_2018_08_010 crossref_primary_10_1109_ACCESS_2017_2717492 crossref_primary_10_1016_j_ymssp_2020_107175 crossref_primary_10_1109_ACCESS_2024_3390234 crossref_primary_10_3390_sym13020163 crossref_primary_10_3390_s22010123 crossref_primary_10_1109_JSEN_2020_2976523 crossref_primary_10_1109_JSYST_2019_2905565 crossref_primary_10_1007_s42791_019_0016_y crossref_primary_10_1109_ACCESS_2023_3336953 crossref_primary_10_1109_LSP_2018_2878356 crossref_primary_10_1016_j_ymssp_2020_107233 crossref_primary_10_1016_j_measurement_2020_107570 crossref_primary_10_3390_s18103521 crossref_primary_10_1007_s10033_017_0190_5 crossref_primary_10_1016_j_compind_2019_07_005 crossref_primary_10_1016_j_ymssp_2017_06_022 crossref_primary_10_1109_TII_2019_2956220 crossref_primary_10_1155_2022_1809482 crossref_primary_10_3390_en14217017 crossref_primary_10_3390_s24020443 crossref_primary_10_1109_JSAC_2019_2951932 crossref_primary_10_1016_j_measurement_2022_112350 crossref_primary_10_1109_TMECH_2021_3110988 crossref_primary_10_1109_ACCESS_2021_3064819 crossref_primary_10_1016_j_asoc_2017_05_031 crossref_primary_10_1007_s13042_022_01632_5 crossref_primary_10_1016_j_knosys_2018_07_017 crossref_primary_10_1186_s10033_021_00570_7 crossref_primary_10_1016_j_neucom_2022_01_067 crossref_primary_10_1155_2022_5478274 crossref_primary_10_1109_ACCESS_2019_2895394 crossref_primary_10_1016_j_measurement_2020_108668 crossref_primary_10_1088_1361_6501_ac6ccb crossref_primary_10_3389_fenrg_2022_1037539 crossref_primary_10_1007_s11071_025_10914_w crossref_primary_10_1177_1475921718788299 crossref_primary_10_1093_jcde_qwad076 crossref_primary_10_1016_j_measurement_2019_107377 crossref_primary_10_1109_JSEN_2023_3281428 crossref_primary_10_21595_jve_2019_20735 crossref_primary_10_3390_machines10100851 crossref_primary_10_1016_j_neucom_2020_05_014 crossref_primary_10_1016_j_measurement_2017_07_017 crossref_primary_10_1016_j_neucom_2020_06_052 crossref_primary_10_1088_1361_6501_aaaca6 crossref_primary_10_3390_machines9120360 crossref_primary_10_1016_j_sigpro_2018_12_005 crossref_primary_10_1016_j_measurement_2020_108513 crossref_primary_10_1016_j_measurement_2020_108634 crossref_primary_10_1515_mt_2023_0334 crossref_primary_10_1109_TSMC_2017_2754287 crossref_primary_10_1109_TIE_2020_2982085 crossref_primary_10_1007_s44163_023_00089_x crossref_primary_10_1016_j_ymssp_2023_111035 crossref_primary_10_1016_j_egyr_2021_09_179 crossref_primary_10_1088_1361_6501_ac9078 crossref_primary_10_1007_s00521_021_06732_x crossref_primary_10_1016_j_neucom_2020_05_021 crossref_primary_10_1109_TIM_2021_3126019 crossref_primary_10_1016_j_compbiomed_2019_04_034 crossref_primary_10_1177_16878132241258904 crossref_primary_10_1007_s11771_022_5206_3 crossref_primary_10_1142_S2424922X20500011 crossref_primary_10_1109_TCST_2020_3015514 crossref_primary_10_1088_1361_6501_ac8dad crossref_primary_10_1109_TSMC_2020_3005433 crossref_primary_10_3390_s21124024 crossref_primary_10_3390_app10175765 crossref_primary_10_1007_s11465_022_0713_3 crossref_primary_10_1007_s10845_021_01904_x crossref_primary_10_1021_acs_iecr_0c05739 crossref_primary_10_1080_00207543_2019_1636325 |
Cites_doi | 10.1016/j.ress.2008.06.002 10.1016/j.neucom.2015.04.069 10.1109/PEOCO.2014.6814505 10.1126/science.1127647 10.1016/j.ymssp.2015.10.025 10.1088/1741-2560/8/3/036015 10.1016/j.surg.2010.03.023 10.1016/j.eswa.2015.07.064 10.3233/BME-151454 10.1016/j.sigpro.2014.06.023 10.1016/j.sigpro.2011.11.002 10.3233/ICA-2010-0349 10.1109/72.279181 10.1016/j.patrec.2005.08.011 10.1016/j.ress.2010.02.016 10.1016/j.eswa.2015.06.013 10.1016/j.ymssp.2013.06.004 10.1007/s12206-008-0603-6 10.1016/j.ymssp.2015.02.008 10.1016/j.ymssp.2013.09.015 10.1016/j.knosys.2015.06.017 10.1016/j.jsv.2005.11.002 10.1016/j.ymssp.2014.08.007 10.1016/j.cam.2015.07.003 10.1016/j.jprocont.2012.06.009 10.1016/S0893-6080(03)00169-2 10.1109/MCI.2010.938364 10.1016/j.sigpro.2015.09.032 10.1016/j.jsv.2008.10.012 10.1016/j.eswa.2015.08.027 10.1162/neco.2006.18.7.1527 10.1038/nature14539 10.1016/j.ymssp.2015.04.021 10.1016/j.sigpro.2015.09.008 10.1016/j.ins.2015.07.016 10.1016/j.sigpro.2013.04.015 10.1186/s13636-015-0056-7 10.1016/j.ress.2013.02.022 10.1109/TPAMI.2007.250609 10.1155/2013/610235 10.1016/j.neunet.2014.12.006 10.1109/ICASSP.2013.6637769 10.1109/CESA.2006.4281698 10.1109/MICAI.2013.20 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sigpro.2016.07.028 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7557 |
EndPage | 388 |
ExternalDocumentID | 10_1016_j_sigpro_2016_07_028 S0165168416301797 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c442t-582b810595101d10d0dc3bf6dfc68f43b8317b0800c68894da43c96f103d612a3 |
IEDL.DBID | .~1 |
ISSN | 0165-1684 |
IngestDate | Tue Jul 01 02:07:21 EDT 2025 Thu Apr 24 22:58:45 EDT 2025 Fri Feb 23 02:33:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fault diagnosis Deep learning Health state identification Stacked denoising autoencoder |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-582b810595101d10d0dc3bf6dfc68f43b8317b0800c68894da43c96f103d612a3 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_sigpro_2016_07_028 crossref_citationtrail_10_1016_j_sigpro_2016_07_028 elsevier_sciencedirect_doi_10_1016_j_sigpro_2016_07_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationTitle | Signal processing |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bengio, Lee (bib34) 2015; 64 F. Zakaria, D. Johari, I. Musirin, Optimized artificial neural network for the detection of incipient faults in power transformer, in: Proceedings of the 2014 IEEE 8th International Power Engineering And Optimization Conference (PEOCO), 2014, pp. 635–640. Jia, Lei, Lin, Zhou, Lu (bib28) 2016; 72–73 Rasmusbergpalm, Deep Learning Toolbox X. Zhang, J. Wu, Denoising deep neural networks based voice activity detection, in: Proceedings of the International Conference on Acoustics Speech and Signal Processing ICASSP,2013, pp. 853–857. Yang, Tavner (bib8) 2009; 321 Hinton, Salakhutdinov (bib29) 2006; 313 Du, Li, Ye, Liu (bib10) 2013; 20 Wulsin, Gupta, Mani, Blanco, Litt (bib42) 2011; 8 Zhang, Wang, Chen (bib9) 2015; 89 Yang, Di, Han (bib23) 2008; 22 Ding, Ma, Tian (bib11) 2015; 17 Teh, Welling, Osindero, Hinton (bib43) 2004; 4 Yang, Bai, Li, Liu, Liu (bib45) 2015; 261 Bengio, Simard, Frasconi (bib41) 1994; 5 Harmouche, Delpha, Diallo (bib18) 2015; 109 Phuong, Kang, Kim, Ahn, Ha, Choi (bib6) 2015; 42 Lee, Hirose, Hou, Kil, Song, Lee (bib36) 2013 Sun, He, Zi, Yuan, Wang, Chen, He (bib2) 2014; 43 Yu, YuDejie, Cheng (bib15) 2006; 294 Niu, Yang, Pecht (bib5) 2010; 95 Santofimia, Del Toro, Roncero-Sanchez, Moya, Martinez, Lopez (bib14) 2010; 17 A. Ciates, H. Lee, A.Y. Ng. An Analysis of Single-Layer Networks in Unsupervised Feature Learning, in: Editor edito. International Conference on Artificial Intelligence and Statistics. Pub Place; 2011. Banfield, Hall, Bowyer, Kegelmeyer (bib52) 2007; 29 El-Thalji, Jantunen (bib7) 2015; 60–61 Varol, Salah (bib35) 2015; 42 Tamilselvan, Wang (bib38) 2013; 115 Zhang, Wang, Kai, Yamada, Li, Iwahashi (bib39) 2015 Jegadeeshwaran, Sugumaran (bib20) 2015; 52–53 Cherkassky, Ma (bib51) 2004; 17 2015 (accessed 16.07.22). Qin, Tang, Mao (bib4) 2016; 120 T. Amaral, L.M. Silva, L.A. Alexandre, C. Kandaswamy, J.M. Santos, J.M. de Sa, Using Different Cost Functions to Train Stacked Auto-encoders, in: F. Castro, A. Gelbukh ,M.G. Mendoza (Eds.) Mexican International Conference on Artificial Intelligence-MICAI,2013, pp. 114-120. Li, Fang, Huang (bib26) 2015; 42 Dong, Wang, Gao (bib24) 2012; 92 Gautam, Ravi (bib25) 2015; 325 Arel, Rose, Karnowski (bib37) 2010; 5 Andrei (bib46) 2016; 292 B. Yoshua, L. Pascal, P. Dan, L. Hugo. Greedy Layer-Wise Training of Deep Networks, in: Editor edito. Advances in Neural Information Processing Systems 19 (NIPS’06). Pub Place; 2007. Lee, Wu, Zhao, Ghaffari, Liao, Siegel (bib19) 2014; 42 Wang, Lu, Ma, Yuan, Chen (bib27) 2015; 22 Zhang, Chen, Wang, Chen (bib21) 2015; 167 Lu, Yuan, Tao, Liu (bib13) 2013; 15 Youssef, Delpha, Diallo (bib17) 2016; 120 Hsieh, Lu, Lee, Chiu, Hsu, Li (bib50) 2011; 149 LeCun, Bengio, Hinton (bib32) 2015; 521 Zio (bib1) 2009; 94 Yan, Gao, Chen (bib16) 2014; 96 W. Yan, Application of random forest to aircraft engine fault diagnosis, in: F. Sun ,H.P. Liu (Eds.),2006, pp. 468–475. Gislason, Benediktsson, Sveinsson (bib53) 2006; 27 Smith, Randall (bib47) 2015; 64–65 Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib40) 2010; 11 Yin, Ding, Haghani, Hao, Zhang (bib3) 2012; 22 Hinton, Osindero, Teh (bib31) 2006; 18 Dong (10.1016/j.sigpro.2016.07.028_bib24) 2012; 92 Jegadeeshwaran (10.1016/j.sigpro.2016.07.028_bib20) 2015; 52–53 Lee (10.1016/j.sigpro.2016.07.028_bib36) 2013 Gautam (10.1016/j.sigpro.2016.07.028_bib25) 2015; 325 Varol (10.1016/j.sigpro.2016.07.028_bib35) 2015; 42 Bengio (10.1016/j.sigpro.2016.07.028_bib41) 1994; 5 Du (10.1016/j.sigpro.2016.07.028_bib10) 2013; 20 Niu (10.1016/j.sigpro.2016.07.028_bib5) 2010; 95 Wulsin (10.1016/j.sigpro.2016.07.028_bib42) 2011; 8 Hinton (10.1016/j.sigpro.2016.07.028_bib31) 2006; 18 LeCun (10.1016/j.sigpro.2016.07.028_bib32) 2015; 521 Hsieh (10.1016/j.sigpro.2016.07.028_bib50) 2011; 149 10.1016/j.sigpro.2016.07.028_bib12 Li (10.1016/j.sigpro.2016.07.028_bib26) 2015; 42 Arel (10.1016/j.sigpro.2016.07.028_bib37) 2010; 5 Zhang (10.1016/j.sigpro.2016.07.028_bib39) 2015 Banfield (10.1016/j.sigpro.2016.07.028_bib52) 2007; 29 Bengio (10.1016/j.sigpro.2016.07.028_bib34) 2015; 64 Vincent (10.1016/j.sigpro.2016.07.028_bib40) 2010; 11 Lee (10.1016/j.sigpro.2016.07.028_bib19) 2014; 42 Teh (10.1016/j.sigpro.2016.07.028_bib43) 2004; 4 Yang (10.1016/j.sigpro.2016.07.028_bib23) 2008; 22 Yang (10.1016/j.sigpro.2016.07.028_bib8) 2009; 321 Harmouche (10.1016/j.sigpro.2016.07.028_bib18) 2015; 109 Ding (10.1016/j.sigpro.2016.07.028_bib11) 2015; 17 10.1016/j.sigpro.2016.07.028_bib22 Wang (10.1016/j.sigpro.2016.07.028_bib27) 2015; 22 Smith (10.1016/j.sigpro.2016.07.028_bib47) 2015; 64–65 Yang (10.1016/j.sigpro.2016.07.028_bib45) 2015; 261 Cherkassky (10.1016/j.sigpro.2016.07.028_bib51) 2004; 17 Gislason (10.1016/j.sigpro.2016.07.028_bib53) 2006; 27 Andrei (10.1016/j.sigpro.2016.07.028_bib46) 2016; 292 Youssef (10.1016/j.sigpro.2016.07.028_bib17) 2016; 120 Tamilselvan (10.1016/j.sigpro.2016.07.028_bib38) 2013; 115 Phuong (10.1016/j.sigpro.2016.07.028_bib6) 2015; 42 10.1016/j.sigpro.2016.07.028_bib30 Zio (10.1016/j.sigpro.2016.07.028_bib1) 2009; 94 Jia (10.1016/j.sigpro.2016.07.028_bib28) 2016; 72–73 10.1016/j.sigpro.2016.07.028_bib33 10.1016/j.sigpro.2016.07.028_bib48 10.1016/j.sigpro.2016.07.028_bib49 Yan (10.1016/j.sigpro.2016.07.028_bib16) 2014; 96 Zhang (10.1016/j.sigpro.2016.07.028_bib21) 2015; 167 El-Thalji (10.1016/j.sigpro.2016.07.028_bib7) 2015; 60–61 Yu (10.1016/j.sigpro.2016.07.028_bib15) 2006; 294 Hinton (10.1016/j.sigpro.2016.07.028_bib29) 2006; 313 Yin (10.1016/j.sigpro.2016.07.028_bib3) 2012; 22 Zhang (10.1016/j.sigpro.2016.07.028_bib9) 2015; 89 Lu (10.1016/j.sigpro.2016.07.028_bib13) 2013; 15 Santofimia (10.1016/j.sigpro.2016.07.028_bib14) 2010; 17 10.1016/j.sigpro.2016.07.028_bib44 Sun (10.1016/j.sigpro.2016.07.028_bib2) 2014; 43 Qin (10.1016/j.sigpro.2016.07.028_bib4) 2016; 120 |
References_xml | – volume: 42 start-page: 8274 year: 2015 end-page: 8282 ident: bib35 article-title: Efficient large-scale action recognition in videos using extreme learning machines publication-title: Expert Syst. Appl. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib32 article-title: Deep learning publication-title: Nature – volume: 294 start-page: 269 year: 2006 end-page: 277 ident: bib15 article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN publication-title: J. Sound Vib. – volume: 42 start-page: 314 year: 2014 end-page: 334 ident: bib19 article-title: Prognostics and health management design for rotary machinery systems-reviews, methodology and applications publication-title: Mech. Syst. Signal Process. – volume: 64 start-page: 1 year: 2015 end-page: 3 ident: bib34 article-title: Editorial introduction to the Neural Networks special issue on Deep Learning of Representations publication-title: Neural Netw. – volume: 321 start-page: 1144 year: 2009 end-page: 1170 ident: bib8 article-title: Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery publication-title: J. Sound Vib. – start-page: 466 year: 2013 end-page: 473 ident: bib36 publication-title: Hierarchical Representation Using NMF – volume: 60–61 start-page: 252 year: 2015 end-page: 272 ident: bib7 article-title: A summary of fault modelling and predictive health monitoring of rolling element bearings publication-title: Mech. Syst. Signal Process. – reference: A. Ciates, H. Lee, A.Y. Ng. An Analysis of Single-Layer Networks in Unsupervised Feature Learning, in: Editor edito. International Conference on Artificial Intelligence and Statistics. Pub Place; 2011. – volume: 96 start-page: 1 year: 2014 end-page: 15 ident: bib16 article-title: Wavelets for fault diagnosis of rotary machines: a review with applications publication-title: Signal Process. – reference: W. Yan, Application of random forest to aircraft engine fault diagnosis, in: F. Sun ,H.P. Liu (Eds.),2006, pp. 468–475. – volume: 72–73 start-page: 303 year: 2016 end-page: 315 ident: bib28 article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data publication-title: Mech. Syst. Sig. Process. – volume: 89 start-page: 56 year: 2015 end-page: 85 ident: bib9 article-title: Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine publication-title: Knowl.-Based Syst. – reference: F. Zakaria, D. Johari, I. Musirin, Optimized artificial neural network for the detection of incipient faults in power transformer, in: Proceedings of the 2014 IEEE 8th International Power Engineering And Optimization Conference (PEOCO), 2014, pp. 635–640. – volume: 325 start-page: 288 year: 2015 end-page: 299 ident: bib25 article-title: Counter propagation auto-associative neural network based data imputation publication-title: Inform. Sci. – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib31 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 22 start-page: 1604 year: 2015 end-page: 1615 ident: bib27 article-title: Novel method for performance degradation assessment and prediction of hydraulic servo system publication-title: Sci. Iran – volume: 27 start-page: 294 year: 2006 end-page: 300 ident: bib53 article-title: Random Forests for land cover classification publication-title: Pattern. Recogn. Lett. – volume: 94 start-page: 125 year: 2009 end-page: 141 ident: bib1 article-title: Reliability engineering: old problems and new challenges publication-title: Reliab. Eng. Syst. Safe. – reference: , 2015 (accessed 16.07.22). – reference: T. Amaral, L.M. Silva, L.A. Alexandre, C. Kandaswamy, J.M. Santos, J.M. de Sa, Using Different Cost Functions to Train Stacked Auto-encoders, in: F. Castro, A. Gelbukh ,M.G. Mendoza (Eds.) Mexican International Conference on Artificial Intelligence-MICAI,2013, pp. 114-120. – volume: 17 start-page: 305 year: 2010 end-page: 319 ident: bib14 article-title: A qualitative agent-based approach to power quality monitoring and diagnosis publication-title: Integr. Comput.-Aid E – volume: 92 start-page: 1117 year: 2012 end-page: 1125 ident: bib24 article-title: On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays publication-title: Signal Process. – volume: 149 start-page: 87 year: 2011 end-page: 93 ident: bib50 article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks publication-title: Surgery – year: 2015 ident: bib39 article-title: Deep neural network-based bottleneck feature and denoising autoencoder-based dereverberation for distant-talking speaker identification publication-title: Eurasip. J. Audio Speech – reference: X. Zhang, J. Wu, Denoising deep neural networks based voice activity detection, in: Proceedings of the International Conference on Acoustics Speech and Signal Processing ICASSP,2013, pp. 853–857. – volume: 5 start-page: 13 year: 2010 end-page: 18 ident: bib37 article-title: Deep machine learning-a new frontier in artificial intelligence research publication-title: IEEE Comput. Intell. Mag. – volume: 95 start-page: 786 year: 2010 end-page: 796 ident: bib5 article-title: Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance publication-title: Reliab. Eng. Syst. Safe. – volume: 17 start-page: 113 year: 2004 end-page: 126 ident: bib51 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Netw. – volume: 167 start-page: 260 year: 2015 end-page: 279 ident: bib21 article-title: Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization publication-title: Neurocomputing – volume: 42 start-page: 9024 year: 2015 end-page: 9032 ident: bib6 article-title: Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques publication-title: Expert Syst. Appl. – volume: 261 start-page: S1549 year: 2015 end-page: S1558 ident: bib45 article-title: A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression publication-title: Bio-Med. Mater. Eng. – volume: 17 start-page: 1805 year: 2015 end-page: 1816 ident: bib11 article-title: Health assessment and fault classification for hydraulic pump based on LR and softmax regression publication-title: J. Vibroeng. – volume: 109 start-page: 334 year: 2015 end-page: 344 ident: bib18 article-title: Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: part II publication-title: Signal Process – volume: 20 start-page: 781 year: 2013 end-page: 792 ident: bib10 article-title: Fault diagnosis of plunger pump in truck crane based on relevance vector machine with particle swarm optimization algorithm publication-title: Shock Vib. – volume: 43 start-page: 1 year: 2014 end-page: 24 ident: bib2 article-title: Multiwavelet transform and its applications in mechanical fault diagnosis - a review publication-title: Mech. Syst. Signal Process. – volume: 42 start-page: 9165 year: 2015 end-page: 9173 ident: bib26 article-title: Diversified learning for continuous hidden Markov models with application to fault diagnosis publication-title: Expert Syst. Appl. – volume: 120 start-page: 480 year: 2016 end-page: 494 ident: bib4 article-title: Adaptive signal decomposition based on wavelet ridge and its application publication-title: Signal Process. – volume: 115 start-page: 124 year: 2013 end-page: 135 ident: bib38 article-title: Failure diagnosis using deep belief learning based health state classification publication-title: Reliab. Eng. Syst. Safe. – volume: 120 start-page: 266 year: 2016 end-page: 279 ident: bib17 article-title: An optimal fault detection threshold for early detection using Kullback–Leibler Divergence for unknown distribution data publication-title: Signal Process. – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: bib40 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 292 start-page: 83 year: 2016 end-page: 91 ident: bib46 article-title: An adaptive conjugate gradient algorithm for large-scale unconstrained optimization publication-title: J. Comput. Appl. Math. – volume: 52–53 start-page: 436 year: 2015 end-page: 446 ident: bib20 article-title: Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines publication-title: Mech. Syst. Signal Process. – volume: 4 start-page: 1235 year: 2004 end-page: 1260 ident: bib43 article-title: Energy-based models for sparse overcomplete representations publication-title: J. Mach. Learn. Res. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib29 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 22 start-page: 1716 year: 2008 end-page: 1725 ident: bib23 article-title: Random forests classifier for machine fault diagnosis publication-title: J. Mech. Sci. Technol. – reference: B. Yoshua, L. Pascal, P. Dan, L. Hugo. Greedy Layer-Wise Training of Deep Networks, in: Editor edito. Advances in Neural Information Processing Systems 19 (NIPS’06). Pub Place; 2007. – volume: 29 start-page: 173 year: 2007 end-page: 180 ident: bib52 article-title: A comparison of decision tree ensemble creation techniques publication-title: IEEE Trans. Pattern Anal. – volume: 22 start-page: 1567 year: 2012 end-page: 1581 ident: bib3 article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process publication-title: J. Process. Contr. – volume: 15 start-page: 1546 year: 2013 end-page: 1559 ident: bib13 article-title: Performance assessment of hydraulic servo system based on bi-step neural network and autoregressive model publication-title: J. Vibroeng. – volume: 5 start-page: 157 year: 1994 end-page: 166 ident: bib41 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw./Publ. IEEE Neural Netw. Counc. – volume: 64–65 start-page: 100 year: 2015 end-page: 131 ident: bib47 article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study publication-title: Mech. Syst. Signal Process. – volume: 8 year: 2011 ident: bib42 article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement publication-title: J. Neural Eng. – reference: Rasmusbergpalm, Deep Learning Toolbox, – volume: 94 start-page: 125 year: 2009 ident: 10.1016/j.sigpro.2016.07.028_bib1 article-title: Reliability engineering: old problems and new challenges publication-title: Reliab. Eng. Syst. Safe. doi: 10.1016/j.ress.2008.06.002 – volume: 167 start-page: 260 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib21 article-title: Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.069 – ident: 10.1016/j.sigpro.2016.07.028_bib12 doi: 10.1109/PEOCO.2014.6814505 – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.sigpro.2016.07.028_bib29 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 72–73 start-page: 303 year: 2016 ident: 10.1016/j.sigpro.2016.07.028_bib28 article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2015.10.025 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.sigpro.2016.07.028_bib40 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – start-page: 466 year: 2013 ident: 10.1016/j.sigpro.2016.07.028_bib36 – volume: 8 year: 2011 ident: 10.1016/j.sigpro.2016.07.028_bib42 article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036015 – volume: 149 start-page: 87 year: 2011 ident: 10.1016/j.sigpro.2016.07.028_bib50 article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks publication-title: Surgery doi: 10.1016/j.surg.2010.03.023 – volume: 42 start-page: 9024 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib6 article-title: Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.07.064 – volume: 261 start-page: S1549 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib45 article-title: A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression publication-title: Bio-Med. Mater. Eng. doi: 10.3233/BME-151454 – volume: 109 start-page: 334 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib18 article-title: Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: part II publication-title: Signal Process doi: 10.1016/j.sigpro.2014.06.023 – volume: 92 start-page: 1117 year: 2012 ident: 10.1016/j.sigpro.2016.07.028_bib24 article-title: On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays publication-title: Signal Process. doi: 10.1016/j.sigpro.2011.11.002 – volume: 17 start-page: 305 year: 2010 ident: 10.1016/j.sigpro.2016.07.028_bib14 article-title: A qualitative agent-based approach to power quality monitoring and diagnosis publication-title: Integr. Comput.-Aid E doi: 10.3233/ICA-2010-0349 – volume: 5 start-page: 157 year: 1994 ident: 10.1016/j.sigpro.2016.07.028_bib41 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw./Publ. IEEE Neural Netw. Counc. doi: 10.1109/72.279181 – ident: 10.1016/j.sigpro.2016.07.028_bib49 – volume: 27 start-page: 294 year: 2006 ident: 10.1016/j.sigpro.2016.07.028_bib53 article-title: Random Forests for land cover classification publication-title: Pattern. Recogn. Lett. doi: 10.1016/j.patrec.2005.08.011 – volume: 95 start-page: 786 year: 2010 ident: 10.1016/j.sigpro.2016.07.028_bib5 article-title: Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance publication-title: Reliab. Eng. Syst. Safe. doi: 10.1016/j.ress.2010.02.016 – volume: 42 start-page: 8274 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib35 article-title: Efficient large-scale action recognition in videos using extreme learning machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.06.013 – volume: 42 start-page: 314 year: 2014 ident: 10.1016/j.sigpro.2016.07.028_bib19 article-title: Prognostics and health management design for rotary machinery systems-reviews, methodology and applications publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.06.004 – volume: 22 start-page: 1716 year: 2008 ident: 10.1016/j.sigpro.2016.07.028_bib23 article-title: Random forests classifier for machine fault diagnosis publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-008-0603-6 – volume: 60–61 start-page: 252 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib7 article-title: A summary of fault modelling and predictive health monitoring of rolling element bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.02.008 – volume: 43 start-page: 1 year: 2014 ident: 10.1016/j.sigpro.2016.07.028_bib2 article-title: Multiwavelet transform and its applications in mechanical fault diagnosis - a review publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.09.015 – volume: 89 start-page: 56 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib9 article-title: Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.06.017 – ident: 10.1016/j.sigpro.2016.07.028_bib30 – volume: 22 start-page: 1604 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib27 article-title: Novel method for performance degradation assessment and prediction of hydraulic servo system publication-title: Sci. Iran – volume: 294 start-page: 269 year: 2006 ident: 10.1016/j.sigpro.2016.07.028_bib15 article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.11.002 – volume: 52–53 start-page: 436 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib20 article-title: Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2014.08.007 – volume: 292 start-page: 83 year: 2016 ident: 10.1016/j.sigpro.2016.07.028_bib46 article-title: An adaptive conjugate gradient algorithm for large-scale unconstrained optimization publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.07.003 – volume: 22 start-page: 1567 year: 2012 ident: 10.1016/j.sigpro.2016.07.028_bib3 article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process publication-title: J. Process. Contr. doi: 10.1016/j.jprocont.2012.06.009 – volume: 4 start-page: 1235 year: 2004 ident: 10.1016/j.sigpro.2016.07.028_bib43 article-title: Energy-based models for sparse overcomplete representations publication-title: J. Mach. Learn. Res. – volume: 17 start-page: 113 year: 2004 ident: 10.1016/j.sigpro.2016.07.028_bib51 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Netw. doi: 10.1016/S0893-6080(03)00169-2 – volume: 5 start-page: 13 year: 2010 ident: 10.1016/j.sigpro.2016.07.028_bib37 article-title: Deep machine learning-a new frontier in artificial intelligence research publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2010.938364 – ident: 10.1016/j.sigpro.2016.07.028_bib48 – volume: 120 start-page: 480 year: 2016 ident: 10.1016/j.sigpro.2016.07.028_bib4 article-title: Adaptive signal decomposition based on wavelet ridge and its application publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.09.032 – volume: 321 start-page: 1144 year: 2009 ident: 10.1016/j.sigpro.2016.07.028_bib8 article-title: Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.10.012 – volume: 42 start-page: 9165 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib26 article-title: Diversified learning for continuous hidden Markov models with application to fault diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.08.027 – volume: 18 start-page: 1527 year: 2006 ident: 10.1016/j.sigpro.2016.07.028_bib31 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib32 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 17 start-page: 1805 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib11 article-title: Health assessment and fault classification for hydraulic pump based on LR and softmax regression publication-title: J. Vibroeng. – volume: 64–65 start-page: 100 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib47 article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.04.021 – volume: 120 start-page: 266 year: 2016 ident: 10.1016/j.sigpro.2016.07.028_bib17 article-title: An optimal fault detection threshold for early detection using Kullback–Leibler Divergence for unknown distribution data publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.09.008 – volume: 325 start-page: 288 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib25 article-title: Counter propagation auto-associative neural network based data imputation publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.07.016 – volume: 96 start-page: 1 year: 2014 ident: 10.1016/j.sigpro.2016.07.028_bib16 article-title: Wavelets for fault diagnosis of rotary machines: a review with applications publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.04.015 – year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib39 article-title: Deep neural network-based bottleneck feature and denoising autoencoder-based dereverberation for distant-talking speaker identification publication-title: Eurasip. J. Audio Speech doi: 10.1186/s13636-015-0056-7 – volume: 115 start-page: 124 year: 2013 ident: 10.1016/j.sigpro.2016.07.028_bib38 article-title: Failure diagnosis using deep belief learning based health state classification publication-title: Reliab. Eng. Syst. Safe. doi: 10.1016/j.ress.2013.02.022 – volume: 29 start-page: 173 year: 2007 ident: 10.1016/j.sigpro.2016.07.028_bib52 article-title: A comparison of decision tree ensemble creation techniques publication-title: IEEE Trans. Pattern Anal. doi: 10.1109/TPAMI.2007.250609 – volume: 20 start-page: 781 year: 2013 ident: 10.1016/j.sigpro.2016.07.028_bib10 article-title: Fault diagnosis of plunger pump in truck crane based on relevance vector machine with particle swarm optimization algorithm publication-title: Shock Vib. doi: 10.1155/2013/610235 – volume: 64 start-page: 1 year: 2015 ident: 10.1016/j.sigpro.2016.07.028_bib34 article-title: Editorial introduction to the Neural Networks special issue on Deep Learning of Representations publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.12.006 – ident: 10.1016/j.sigpro.2016.07.028_bib33 doi: 10.1109/ICASSP.2013.6637769 – ident: 10.1016/j.sigpro.2016.07.028_bib22 doi: 10.1109/CESA.2006.4281698 – ident: 10.1016/j.sigpro.2016.07.028_bib44 doi: 10.1109/MICAI.2013.20 – volume: 15 start-page: 1546 year: 2013 ident: 10.1016/j.sigpro.2016.07.028_bib13 article-title: Performance assessment of hydraulic servo system based on bi-step neural network and autoregressive model publication-title: J. Vibroeng. |
SSID | ssj0001360 |
Score | 2.648307 |
Snippet | Effective fault diagnosis has long been a research topic in the prognosis and health management of rotary machinery engineered systems due to the benefits such... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 377 |
SubjectTerms | Deep learning Fault diagnosis Health state identification Stacked denoising autoencoder |
Title | Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification |
URI | https://dx.doi.org/10.1016/j.sigpro.2016.07.028 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL3oQf-L8MXLwGtc2aZsdx3BMxV10sFtJmmZU5jq6TvDi325e0uoEUfDWhhcILy_vfbTf94LQFeVSUMUYET1GCfO1IDLMOFGKyZhrU5QiECc_jKPRhN1Nw2kLDRotDNAq69zvcrrN1vVIt_Zmd5nn3UcQ4vgR_DajEFagKGcshii_fv-iefjUKoXBmIB1I5-zHK9VPjN5CgheroUn3Mn-U3naKDnDfbRXY0Xcd8s5QK1scYh2NzoIHqHXoVjPK6wcYS5f4ULjsqhE-YZfLE0yM09AGy8WwJjAQHOfYYENJjTHV2GTdYrcja2rAppaqqwkUNoUdhJJbCVHOFc1rcju5DGaDG-eBiNSX6VAUsaCioQ8kBygFBxB5XvKUymVOlI6jbhmVHKDIySgR_POe0wJRtNepH2PKoOBBD1BWwuz0lOEAypDJSgVXPumskkORBqD82Qcx16YBW1EGw8mad1nHK67mCcNoew5cX5PwO-JFyfG721EPmctXZ-NP-zjZnOSb_GSmFLw68yzf888RzsBFHX7AeYCbVXlOrs0kKSSHRtzHbTdv70fjT8AGHzi6A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zHtSD-BPnzxy8xrVN2mZHGY6p2y5usFtImnZU5jq2TvDi325e2uoEUfDWhhcIL8l7H-33vYfQNeVKUs0YkS1GCXMTSZQfc6I1UyFPTFIKQJzcHwTdEXsY--MaaldaGKBVlrG_iOk2WpcjzdKbzXmaNp9AiOMG8NuMwrEKN9AmM9cX2hjcvH_xPFxqpcJgTcC80s9ZktcynZhABQyvooYnNGX_KT-t5ZzOHtotwSK-Ldazj2rx7ADtrJUQPESvHbma5lgXjLl0ibMEL7JcLt7wi-VJxuYJeOPZDCgTGHjuEyyxAYXm_mpswk6WFmOrPIOqljpeEMhtGhcaSWw1RzjVJa_IbuURGnXuhu0uKXspkIgxLyc-9xQHLAV3ULuOdnREVRLoJAp4wqjiBkgogI_mnbeYloxGrSBxHaoNCJL0GNVnZqUnCHtU-VpSKnnimtSmODBpDNBTYRg6fuw1EK08KKKy0Dj0u5iKilH2LAq_C_C7cEJh_N5A5HPWvCi08Yd9WG2O-HZghMkFv848_ffMK7TVHfZ7onc_eDxD2x5kePs15hzV88UqvjD4JFeX9vx9AFx_5HY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+diagnosis+of+rotary+machinery+components+using+a+stacked+denoising+autoencoder-based+health+state+identification&rft.jtitle=Signal+processing&rft.au=Lu%2C+Chen&rft.au=Wang%2C+Zhen-Ya&rft.au=Qin%2C+Wei-Li&rft.au=Ma%2C+Jian&rft.date=2017-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=130&rft.spage=377&rft.epage=388&rft_id=info:doi/10.1016%2Fj.sigpro.2016.07.028&rft.externalDocID=S0165168416301797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |