Interaural Place-of-Stimulation Mismatch Estimates Using CT Scans and Binaural Perception, But Not Pitch, Are Consistent in Cochlear-Implant Users

Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing abilities, including sound localization and speech understanding in noise. For these populations, however, interaural place-of-stimulation mism...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 41; no. 49; pp. 10161 - 10178
Main Authors Bernstein, Joshua G.W., Jensen, Kenneth K., Stakhovskaya, Olga A., Noble, Jack H., Hoa, Michael, Kim, H. Jeffery, Shih, Robert, Kolberg, Elizabeth, Cleary, Miranda, Goupell, Matthew J.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 08.12.2021
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.0359-21.2021

Cover

Loading…
Abstract Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing abilities, including sound localization and speech understanding in noise. For these populations, however, interaural place-of-stimulation mismatch can occur and thus diminish binaural sensitivity that relies on interaurally frequency-matched neurons. This study examined whether plasticity—reorganization of central neural pathways over time—can compensate for peripheral interaural place mismatch. We hypothesized differential plasticity across two systems: none for binaural processing but adaptation for pitch perception toward frequencies delivered by the specific electrodes. Interaural place mismatch was evaluated in 19 BI-CI and 23 SSD-CI human subjects (both sexes) using binaural processing (interaural-time-difference discrimination with simultaneous bilateral stimulation), pitch perception (pitch ranking for single electrodes or acoustic tones with sequential bilateral stimulation), and physical electrode-location estimates from computed-tomography (CT) scans. On average, CT scans revealed relatively little BI-CI interaural place mismatch (26° insertion-angle mismatch) but a relatively large SSD-CI mismatch, particularly at low frequencies (166° for an electrode tuned to 300 Hz, decreasing to 14° at 7000 Hz). For BI-CI subjects, the three metrics were in agreement because there was little mismatch. For SSD-CI subjects, binaural and CT measurements were in agreement, suggesting little binaural-system plasticity induced by mismatch. The pitch measurements disagreed with binaural and CT measurements, suggesting place-pitch plasticity or a procedural bias. These results suggest that reducing interaural place mismatch and potentially improving binaural processing by reprogramming the CI frequency allocation would be better done using CT-scan than pitch information. SIGNIFICANCE STATEMENT Electrode-array placement for cochlear implants (bionic prostheses that partially restore hearing) does not explicitly align neural representations of frequency information. The resulting interaural place-of-stimulation mismatch can diminish spatial-hearing abilities. In this study, adults with two cochlear implants showed reasonable interaural alignment, whereas those with one cochlear implant but normal hearing in the other ear often showed mismatch. In cases of mismatch, binaural sensitivity was best when the same cochlear locations were stimulated in both ears, suggesting that binaural brainstem pathways do not experience plasticity to compensate for mismatch. In contrast, interaurally pitch-matched electrodes deviated from cochlear-location estimates and did not optimize binaural sensitivity. Clinical correction of interaural place mismatch using binaural or computed-tomography (but not pitch) information may improve spatial-hearing benefits.
AbstractList Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing abilities, including sound localization and speech understanding in noise. For these populations, however, interaural place-of-stimulation mismatch can occur and thus diminish binaural sensitivity that relies on interaurally frequency-matched neurons. This study examined whether plasticity—reorganization of central neural pathways over time—can compensate for peripheral interaural place mismatch. We hypothesized differential plasticity across two systems: none for binaural processing but adaptation for pitch perception toward frequencies delivered by the specific electrodes. Interaural place mismatch was evaluated in 19 BI-CI and 23 SSD-CI human subjects (both sexes) using binaural processing (interaural-time-difference discrimination with simultaneous bilateral stimulation), pitch perception (pitch ranking for single electrodes or acoustic tones with sequential bilateral stimulation), and physical electrode-location estimates from computed-tomography (CT) scans. On average, CT scans revealed relatively little BI-CI interaural place mismatch (26° insertion-angle mismatch) but a relatively large SSD-CI mismatch, particularly at low frequencies (166° for an electrode tuned to 300 Hz, decreasing to 14° at 7000 Hz). For BI-CI subjects, the three metrics were in agreement because there was little mismatch. For SSD-CI subjects, binaural and CT measurements were in agreement, suggesting little binaural-system plasticity induced by mismatch. The pitch measurements disagreed with binaural and CT measurements, suggesting place-pitch plasticity or a procedural bias. These results suggest that reducing interaural place mismatch and potentially improving binaural processing by reprogramming the CI frequency allocation would be better done using CT-scan than pitch information. SIGNIFICANCE STATEMENT Electrode-array placement for cochlear implants (bionic prostheses that partially restore hearing) does not explicitly align neural representations of frequency information. The resulting interaural place-of-stimulation mismatch can diminish spatial-hearing abilities. In this study, adults with two cochlear implants showed reasonable interaural alignment, whereas those with one cochlear implant but normal hearing in the other ear often showed mismatch. In cases of mismatch, binaural sensitivity was best when the same cochlear locations were stimulated in both ears, suggesting that binaural brainstem pathways do not experience plasticity to compensate for mismatch. In contrast, interaurally pitch-matched electrodes deviated from cochlear-location estimates and did not optimize binaural sensitivity. Clinical correction of interaural place mismatch using binaural or computed-tomography (but not pitch) information may improve spatial-hearing benefits.
Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing abilities, including sound localization and speech understanding in noise. For these populations, however, interaural place-of-stimulation mismatch can occur and thus diminish binaural sensitivity that relies on interaurally frequency-matched neurons. This study examined whether plasticity-reorganization of central neural pathways over time-can compensate for peripheral interaural place mismatch. We hypothesized differential plasticity across two systems: none for binaural processing but adaptation for pitch perception toward frequencies delivered by the specific electrodes. Interaural place mismatch was evaluated in 19 BI-CI and 23 SSD-CI human subjects (both sexes) using binaural processing (interaural-time-difference discrimination with simultaneous bilateral stimulation), pitch perception (pitch ranking for single electrodes or acoustic tones with sequential bilateral stimulation), and physical electrode-location estimates from computed-tomography (CT) scans. On average, CT scans revealed relatively little BI-CI interaural place mismatch (26° insertion-angle mismatch) but a relatively large SSD-CI mismatch, particularly at low frequencies (166° for an electrode tuned to 300 Hz, decreasing to 14° at 7000 Hz). For BI-CI subjects, the three metrics were in agreement because there was little mismatch. For SSD-CI subjects, binaural and CT measurements were in agreement, suggesting little binaural-system plasticity induced by mismatch. The pitch measurements disagreed with binaural and CT measurements, suggesting place-pitch plasticity or a procedural bias. These results suggest that reducing interaural place mismatch and potentially improving binaural processing by reprogramming the CI frequency allocation would be better done using CT-scan than pitch information.
Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing abilities, including sound localization and speech understanding in noise. For these populations, however, interaural place-of-stimulation mismatch can occur and thus diminish binaural sensitivity that relies on interaurally frequency-matched neurons. This study examined whether plasticity-reorganization of central neural pathways over time-can compensate for peripheral interaural place mismatch. We hypothesized differential plasticity across two systems: none for binaural processing but adaptation for pitch perception toward frequencies delivered by the specific electrodes. Interaural place mismatch was evaluated in 19 BI-CI and 23 SSD-CI human subjects (both sexes) using binaural processing (interaural-time-difference discrimination with simultaneous bilateral stimulation), pitch perception (pitch ranking for single electrodes or acoustic tones with sequential bilateral stimulation), and physical electrode-location estimates from computed-tomography (CT) scans. On average, CT scans revealed relatively little BI-CI interaural place mismatch (26° insertion-angle mismatch) but a relatively large SSD-CI mismatch, particularly at low frequencies (166° for an electrode tuned to 300 Hz, decreasing to 14° at 7000 Hz). For BI-CI subjects, the three metrics were in agreement because there was little mismatch. For SSD-CI subjects, binaural and CT measurements were in agreement, suggesting little binaural-system plasticity induced by mismatch. The pitch measurements disagreed with binaural and CT measurements, suggesting place-pitch plasticity or a procedural bias. These results suggest that reducing interaural place mismatch and potentially improving binaural processing by reprogramming the CI frequency allocation would be better done using CT-scan than pitch information. Electrode-array placement for cochlear implants (bionic prostheses that partially restore hearing) does not explicitly align neural representations of frequency information. The resulting interaural place-of-stimulation mismatch can diminish spatial-hearing abilities. In this study, adults with two cochlear implants showed reasonable interaural alignment, whereas those with one cochlear implant but normal hearing in the other ear often showed mismatch. In cases of mismatch, binaural sensitivity was best when the same cochlear locations were stimulated in both ears, suggesting that binaural brainstem pathways do not experience plasticity to compensate for mismatch. In contrast, interaurally pitch-matched electrodes deviated from cochlear-location estimates and did not optimize binaural sensitivity. Clinical correction of interaural place mismatch using binaural or computed-tomography (but not pitch) information may improve spatial-hearing benefits.
Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing abilities, including sound localization and speech understanding in noise. For these populations, however, interaural place-of-stimulation mismatch can occur and thus diminish binaural sensitivity that relies on interaurally frequency-matched neurons. This study examined whether plasticity-reorganization of central neural pathways over time-can compensate for peripheral interaural place mismatch. We hypothesized differential plasticity across two systems: none for binaural processing but adaptation for pitch perception toward frequencies delivered by the specific electrodes. Interaural place mismatch was evaluated in 19 BI-CI and 23 SSD-CI human subjects (both sexes) using binaural processing (interaural-time-difference discrimination with simultaneous bilateral stimulation), pitch perception (pitch ranking for single electrodes or acoustic tones with sequential bilateral stimulation), and physical electrode-location estimates from computed-tomography (CT) scans. On average, CT scans revealed relatively little BI-CI interaural place mismatch (26° insertion-angle mismatch) but a relatively large SSD-CI mismatch, particularly at low frequencies (166° for an electrode tuned to 300 Hz, decreasing to 14° at 7000 Hz). For BI-CI subjects, the three metrics were in agreement because there was little mismatch. For SSD-CI subjects, binaural and CT measurements were in agreement, suggesting little binaural-system plasticity induced by mismatch. The pitch measurements disagreed with binaural and CT measurements, suggesting place-pitch plasticity or a procedural bias. These results suggest that reducing interaural place mismatch and potentially improving binaural processing by reprogramming the CI frequency allocation would be better done using CT-scan than pitch information.SIGNIFICANCE STATEMENT Electrode-array placement for cochlear implants (bionic prostheses that partially restore hearing) does not explicitly align neural representations of frequency information. The resulting interaural place-of-stimulation mismatch can diminish spatial-hearing abilities. In this study, adults with two cochlear implants showed reasonable interaural alignment, whereas those with one cochlear implant but normal hearing in the other ear often showed mismatch. In cases of mismatch, binaural sensitivity was best when the same cochlear locations were stimulated in both ears, suggesting that binaural brainstem pathways do not experience plasticity to compensate for mismatch. In contrast, interaurally pitch-matched electrodes deviated from cochlear-location estimates and did not optimize binaural sensitivity. Clinical correction of interaural place mismatch using binaural or computed-tomography (but not pitch) information may improve spatial-hearing benefits.Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing abilities, including sound localization and speech understanding in noise. For these populations, however, interaural place-of-stimulation mismatch can occur and thus diminish binaural sensitivity that relies on interaurally frequency-matched neurons. This study examined whether plasticity-reorganization of central neural pathways over time-can compensate for peripheral interaural place mismatch. We hypothesized differential plasticity across two systems: none for binaural processing but adaptation for pitch perception toward frequencies delivered by the specific electrodes. Interaural place mismatch was evaluated in 19 BI-CI and 23 SSD-CI human subjects (both sexes) using binaural processing (interaural-time-difference discrimination with simultaneous bilateral stimulation), pitch perception (pitch ranking for single electrodes or acoustic tones with sequential bilateral stimulation), and physical electrode-location estimates from computed-tomography (CT) scans. On average, CT scans revealed relatively little BI-CI interaural place mismatch (26° insertion-angle mismatch) but a relatively large SSD-CI mismatch, particularly at low frequencies (166° for an electrode tuned to 300 Hz, decreasing to 14° at 7000 Hz). For BI-CI subjects, the three metrics were in agreement because there was little mismatch. For SSD-CI subjects, binaural and CT measurements were in agreement, suggesting little binaural-system plasticity induced by mismatch. The pitch measurements disagreed with binaural and CT measurements, suggesting place-pitch plasticity or a procedural bias. These results suggest that reducing interaural place mismatch and potentially improving binaural processing by reprogramming the CI frequency allocation would be better done using CT-scan than pitch information.SIGNIFICANCE STATEMENT Electrode-array placement for cochlear implants (bionic prostheses that partially restore hearing) does not explicitly align neural representations of frequency information. The resulting interaural place-of-stimulation mismatch can diminish spatial-hearing abilities. In this study, adults with two cochlear implants showed reasonable interaural alignment, whereas those with one cochlear implant but normal hearing in the other ear often showed mismatch. In cases of mismatch, binaural sensitivity was best when the same cochlear locations were stimulated in both ears, suggesting that binaural brainstem pathways do not experience plasticity to compensate for mismatch. In contrast, interaurally pitch-matched electrodes deviated from cochlear-location estimates and did not optimize binaural sensitivity. Clinical correction of interaural place mismatch using binaural or computed-tomography (but not pitch) information may improve spatial-hearing benefits.
Author Noble, Jack H.
Hoa, Michael
Bernstein, Joshua G.W.
Stakhovskaya, Olga A.
Cleary, Miranda
Jensen, Kenneth K.
Shih, Robert
Kolberg, Elizabeth
Kim, H. Jeffery
Goupell, Matthew J.
Author_xml – sequence: 1
  givenname: Joshua G.W.
  surname: Bernstein
  fullname: Bernstein, Joshua G.W.
– sequence: 2
  givenname: Kenneth K.
  surname: Jensen
  fullname: Jensen, Kenneth K.
– sequence: 3
  givenname: Olga A.
  surname: Stakhovskaya
  fullname: Stakhovskaya, Olga A.
– sequence: 4
  givenname: Jack H.
  surname: Noble
  fullname: Noble, Jack H.
– sequence: 5
  givenname: Michael
  surname: Hoa
  fullname: Hoa, Michael
– sequence: 6
  givenname: H. Jeffery
  surname: Kim
  fullname: Kim, H. Jeffery
– sequence: 7
  givenname: Robert
  surname: Shih
  fullname: Shih, Robert
– sequence: 8
  givenname: Elizabeth
  surname: Kolberg
  fullname: Kolberg, Elizabeth
– sequence: 9
  givenname: Miranda
  surname: Cleary
  fullname: Cleary, Miranda
– sequence: 10
  givenname: Matthew J.
  surname: Goupell
  fullname: Goupell, Matthew J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34725189$$D View this record in MEDLINE/PubMed
BookMark eNqFUsFu1DAQtVAR3RZ-obLEhUOz2E7sJBJCaqMtLCptxXbP1tRxuq4Se7EdJH6DL65DlxX0wsmamffG72neETqwzmqETiiZU87y91-uFutv16tmOSc5rzNG54ww-gLN0jSVBaEHaEZYSTJRlMUhOgrhgRBSElq-Qod5UTJOq3qGfi1t1B5GDz2-6UHpzHXZKpph7CEaZ_FXEwaIaoMXIXUh6oDXwdh73NzilQIbMNgWnxu726G90tuJeYrPx4ivXMQ3JvFP8ZnXuHE2mBC1jdjYVKlNr8Fny2HbQ-qtg_bhNXrZQR_0m917jNYXi9vmc3Z5_WnZnF1mqihYzDjnTBPBFRQFVIToHDhAcsBVnpeiLbsKOKnu2jZBgNVK8JoJ6IRou5blND9GH5_2bse7QbcqiUoO5NYnm_6ndGDkvxNrNvLe_ZCVEIQUPC14t1vg3fdRhygHE5TukxXtxiBZ-jAnouJ1gr59Bn1wo7fJnmSC0ppWJZ8UnfytaC_lz7kSQDwBlHcheN3tIZTIKRdynws55UIyKqdcJOKHZ0Rl4u8DJ2em_x_9Efb3wTQ
CitedBy_id crossref_primary_10_1007_s00405_023_08002_z
crossref_primary_10_1121_10_0030476
crossref_primary_10_1177_23312165221108259
crossref_primary_10_1177_23312165221129165
crossref_primary_10_1121_10_0013746
crossref_primary_10_1007_s00106_023_01308_8
crossref_primary_10_3390_brainsci12020253
crossref_primary_10_1177_23312165241271340
crossref_primary_10_1016_j_heares_2024_109088
crossref_primary_10_1097_AUD_0000000000001390
crossref_primary_10_1121_10_0016365
crossref_primary_10_3389_fpsyg_2022_918914
crossref_primary_10_1007_s00405_024_08984_4
crossref_primary_10_1121_10_0017705
crossref_primary_10_1121_10_0017603
crossref_primary_10_1007_s00405_023_07845_w
crossref_primary_10_1097_MAO_0000000000003538
crossref_primary_10_1002_lary_32026
crossref_primary_10_1097_MAO_0000000000003653
crossref_primary_10_1177_23312165241229880
Cites_doi 10.3766/jaaa.15063
10.1121/1.399052
10.1097/AUD.0000000000000864
10.3766/jaaa.23.6.9
10.1007/s10162-019-00733-3
10.1523/JNEUROSCI.12-09-03473.1992
10.7554/eLife.12264
10.1121/10.0001305
10.1177/2331216516668302
10.1097/AUD.0000000000000470
10.1044/2014_JSLHR-H-13-0087
10.1007/s10162-010-0222-7
10.1002/lary.21104
10.1007/s10162-007-0077-8
10.1109/42.563664
10.1177/1084713810375249
10.1006/cviu.1995.1004
10.1371/journal.pone.0235504
10.1177/2331216521997324
10.1016/j.media.2019.101553
10.1007/s00247-018-4281-y
10.1523/JNEUROSCI.3795-15.2016
10.1097/AUD.0000000000000135
10.1016/j.neuroscience.2013.10.024
10.1121/1.5001903
10.1109/TBME.2011.2160262
10.1007/s10162-007-0076-9
10.1097/AUD.0000000000000163
10.1016/j.heares.2014.08.005
10.1121/1.4892764
10.1002/cne.902820311
10.1159/000313329
10.1007/s10162-018-00707-x
10.1097/AUD.0000000000000174
10.1097/MAO.0b013e3181d279e0
10.1016/j.heares.2015.08.010
10.1121/1.4820889
10.1177/2331216515617143
10.1007/s10162-018-00697-w
10.1002/lary.20859
10.1097/AUD.0000000000000784
10.1007/s10162-013-0437-5
10.3389/fnins.2019.01119
10.1121/1.3283014
10.1121/1.3158821
10.1016/j.heares.2013.11.003
10.1080/00016480310000593
10.1007/s10162-016-0557-9
10.1002/cphy.c180036
10.1088/1741-2560/6/6/065008
10.1121/1.4792936
10.1523/JNEUROSCI.0850-05.2005
10.1016/j.media.2014.02.001
10.1016/j.media.2018.11.005
10.1007/s10162-016-0569-5
10.1097/AUD.0000000000000374
10.1177/2331216518771173
10.1007/s10162-007-0088-5
10.1073/pnas.081082598
10.1097/00003446-200506000-00002
10.1121/1.1572146
10.1101/2021.02.26.21252533
10.1121/1.423088
10.1177/2331216518765514
10.1038/nature01002
10.1097/AUD.0000000000000114
10.1097/mao.0b013e3181925025
10.1097/MAO.0000000000001469
10.1007/s10162-014-0457-9
10.1016/j.cub.2013.05.045
10.1121/1.423107
10.1148/radiol.2020192256
10.1038/159591a0
10.1007/s10162-013-0380-5
10.1097/AUD.0000000000000284
10.1093/rpd/ncp162
ContentType Journal Article
Copyright Copyright © 2021 the authors.
Copyright Society for Neuroscience Dec 8, 2021
Copyright © 2021 the authors 2021
Copyright_xml – notice: Copyright © 2021 the authors.
– notice: Copyright Society for Neuroscience Dec 8, 2021
– notice: Copyright © 2021 the authors 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
DOI 10.1523/JNEUROSCI.0359-21.2021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
Animal Behavior Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef

Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 10178
ExternalDocumentID PMC8660045
34725189
10_1523_JNEUROSCI_0359_21_2021
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R01 DC014037
– fundername: NIDCD NIH HHS
  grantid: R01 DC015798
– fundername: ;
  grantid: R01 DC015798; R01 DC014037
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
ID FETCH-LOGICAL-c442t-5552e065ca44a800e3a5aaace5c3376d7f8a508bdd5caa29c65926af66dfd2313
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:12:03 EDT 2025
Sun Aug 24 04:11:17 EDT 2025
Mon Jun 30 13:41:01 EDT 2025
Thu Apr 03 07:00:55 EDT 2025
Tue Jul 01 04:16:00 EDT 2025
Thu Apr 24 22:53:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords interaural time difference
plasticity
brainstem
superior olivary complex
binaural
mismatch
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2021 the authors.
SfN exclusive license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-5552e065ca44a800e3a5aaace5c3376d7f8a508bdd5caa29c65926af66dfd2313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: J.G.W.B., K.K.J., O.A.S., J.H.N., M.H., H.J.K., and M.J.G. designed research; J.G.W.B., K.K.J., O.A.S., J.H.N., M.H., H.J.K., R.S., E.K., M.C., and M.J.G. performed research; J.G.W.B., K.K.J., O.A.S., J.H.N., M.C., and M.J.G. analyzed data; and J.G.W.B. and M.J.G. wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/41/49/10161.full.pdf
PMID 34725189
PQID 2611918751
PQPubID 2049535
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8660045
proquest_miscellaneous_2592306859
proquest_journals_2611918751
pubmed_primary_34725189
crossref_primary_10_1523_JNEUROSCI_0359_21_2021
crossref_citationtrail_10_1523_JNEUROSCI_0359_21_2021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-08
20211208
PublicationDateYYYYMMDD 2021-12-08
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2021
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041803494222000_41.49.10161.19
2023041803494222000_41.49.10161.21
2023041803494222000_41.49.10161.65
2023041803494222000_41.49.10161.20
2023041803494222000_41.49.10161.64
2023041803494222000_41.49.10161.9
2023041803494222000_41.49.10161.63
2023041803494222000_41.49.10161.8
2023041803494222000_41.49.10161.62
2023041803494222000_41.49.10161.61
2023041803494222000_41.49.10161.60
2023041803494222000_41.49.10161.29
2023041803494222000_41.49.10161.28
2023041803494222000_41.49.10161.27
2023041803494222000_41.49.10161.26
2023041803494222000_41.49.10161.25
2023041803494222000_41.49.10161.69
2023041803494222000_41.49.10161.24
2023041803494222000_41.49.10161.68
2023041803494222000_41.49.10161.23
2023041803494222000_41.49.10161.67
2023041803494222000_41.49.10161.22
2023041803494222000_41.49.10161.66
2023041803494222000_41.49.10161.3
2023041803494222000_41.49.10161.2
2023041803494222000_41.49.10161.7
2023041803494222000_41.49.10161.6
2023041803494222000_41.49.10161.5
2023041803494222000_41.49.10161.4
2023041803494222000_41.49.10161.32
2023041803494222000_41.49.10161.76
2023041803494222000_41.49.10161.31
2023041803494222000_41.49.10161.75
2023041803494222000_41.49.10161.30
2023041803494222000_41.49.10161.74
2023041803494222000_41.49.10161.72
2023041803494222000_41.49.10161.71
2023041803494222000_41.49.10161.70
2023041803494222000_41.49.10161.39
2023041803494222000_41.49.10161.38
2023041803494222000_41.49.10161.37
2023041803494222000_41.49.10161.36
2023041803494222000_41.49.10161.35
2023041803494222000_41.49.10161.34
2023041803494222000_41.49.10161.33
2023041803494222000_41.49.10161.43
2023041803494222000_41.49.10161.42
2023041803494222000_41.49.10161.40
2023041803494222000_41.49.10161.49
2023041803494222000_41.49.10161.48
2023041803494222000_41.49.10161.47
2023041803494222000_41.49.10161.46
2023041803494222000_41.49.10161.45
2023041803494222000_41.49.10161.44
Adel (2023041803494222000_41.49.10161.1) 2019; 13
2023041803494222000_41.49.10161.10
2023041803494222000_41.49.10161.54
2023041803494222000_41.49.10161.53
Yin (2023041803494222000_41.49.10161.73) 2019; 9
2023041803494222000_41.49.10161.52
2023041803494222000_41.49.10161.51
2023041803494222000_41.49.10161.50
Landsberger (2023041803494222000_41.49.10161.41) 2015; 36
2023041803494222000_41.49.10161.18
2023041803494222000_41.49.10161.17
2023041803494222000_41.49.10161.16
2023041803494222000_41.49.10161.15
2023041803494222000_41.49.10161.59
2023041803494222000_41.49.10161.14
2023041803494222000_41.49.10161.58
2023041803494222000_41.49.10161.13
2023041803494222000_41.49.10161.57
2023041803494222000_41.49.10161.12
2023041803494222000_41.49.10161.56
2023041803494222000_41.49.10161.11
2023041803494222000_41.49.10161.55
References_xml – ident: 2023041803494222000_41.49.10161.67
  doi: 10.3766/jaaa.15063
– ident: 2023041803494222000_41.49.10161.32
  doi: 10.1121/1.399052
– ident: 2023041803494222000_41.49.10161.11
  doi: 10.1097/AUD.0000000000000864
– ident: 2023041803494222000_41.49.10161.43
  doi: 10.3766/jaaa.23.6.9
– ident: 2023041803494222000_41.49.10161.3
  doi: 10.1007/s10162-019-00733-3
– ident: 2023041803494222000_41.49.10161.49
  doi: 10.1523/JNEUROSCI.12-09-03473.1992
– ident: 2023041803494222000_41.49.10161.40
  doi: 10.7554/eLife.12264
– ident: 2023041803494222000_41.49.10161.18
  doi: 10.1121/10.0001305
– ident: 2023041803494222000_41.49.10161.2
  doi: 10.1177/2331216516668302
– ident: 2023041803494222000_41.49.10161.29
  doi: 10.1097/AUD.0000000000000470
– ident: 2023041803494222000_41.49.10161.54
  doi: 10.1044/2014_JSLHR-H-13-0087
– ident: 2023041803494222000_41.49.10161.12
  doi: 10.1007/s10162-010-0222-7
– ident: 2023041803494222000_41.49.10161.60
  doi: 10.1002/lary.21104
– ident: 2023041803494222000_41.49.10161.55
  doi: 10.1007/s10162-007-0077-8
– ident: 2023041803494222000_41.49.10161.46
  doi: 10.1109/42.563664
– ident: 2023041803494222000_41.49.10161.8
  doi: 10.1177/1084713810375249
– ident: 2023041803494222000_41.49.10161.15
  doi: 10.1006/cviu.1995.1004
– ident: 2023041803494222000_41.49.10161.47
  doi: 10.1371/journal.pone.0235504
– ident: 2023041803494222000_41.49.10161.35
  doi: 10.1177/2331216521997324
– ident: 2023041803494222000_41.49.10161.71
  doi: 10.1016/j.media.2019.101553
– ident: 2023041803494222000_41.49.10161.26
  doi: 10.1007/s00247-018-4281-y
– ident: 2023041803494222000_41.49.10161.13
  doi: 10.1523/JNEUROSCI.3795-15.2016
– ident: 2023041803494222000_41.49.10161.38
  doi: 10.1097/AUD.0000000000000135
– ident: 2023041803494222000_41.49.10161.56
  doi: 10.1016/j.neuroscience.2013.10.024
– ident: 2023041803494222000_41.49.10161.65
  doi: 10.1121/1.5001903
– ident: 2023041803494222000_41.49.10161.50
  doi: 10.1109/TBME.2011.2160262
– ident: 2023041803494222000_41.49.10161.64
  doi: 10.1007/s10162-007-0076-9
– volume: 36
  start-page: 207
  year: 2015
  ident: 2023041803494222000_41.49.10161.41
  article-title: The relationship between insertion angles, default frequency allocations, and spiral ganglion place pitch in cochlear implants
  publication-title: Ear Hear
  doi: 10.1097/AUD.0000000000000163
– ident: 2023041803494222000_41.49.10161.36
  doi: 10.1016/j.heares.2014.08.005
– ident: 2023041803494222000_41.49.10161.14
  doi: 10.1121/1.4892764
– ident: 2023041803494222000_41.49.10161.58
  doi: 10.1002/cne.902820311
– ident: 2023041803494222000_41.49.10161.22
  doi: 10.1159/000313329
– ident: 2023041803494222000_41.49.10161.30
  doi: 10.1007/s10162-018-00707-x
– ident: 2023041803494222000_41.49.10161.21
  doi: 10.1097/AUD.0000000000000174
– ident: 2023041803494222000_41.49.10161.69
  doi: 10.1097/MAO.0b013e3181d279e0
– ident: 2023041803494222000_41.49.10161.75
  doi: 10.1016/j.heares.2015.08.010
– ident: 2023041803494222000_41.49.10161.37
  doi: 10.1121/1.4820889
– ident: 2023041803494222000_41.49.10161.34
  doi: 10.1177/2331216515617143
– ident: 2023041803494222000_41.49.10161.24
  doi: 10.1007/s10162-018-00697-w
– ident: 2023041803494222000_41.49.10161.51
  doi: 10.1002/lary.20859
– ident: 2023041803494222000_41.49.10161.61
  doi: 10.1097/AUD.0000000000000784
– ident: 2023041803494222000_41.49.10161.45
  doi: 10.1007/s10162-013-0437-5
– volume: 13
  start-page: 1119
  year: 2019
  ident: 2023041803494222000_41.49.10161.1
  article-title: Pitch matching in cochlear implant users with single-sided deafness: effects of electrode position and acoustic stimulus type
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.01119
– ident: 2023041803494222000_41.49.10161.27
  doi: 10.1121/1.3283014
– ident: 2023041803494222000_41.49.10161.52
  doi: 10.1121/1.3158821
– ident: 2023041803494222000_41.49.10161.59
  doi: 10.1016/j.heares.2013.11.003
– ident: 2023041803494222000_41.49.10161.66
  doi: 10.1080/00016480310000593
– ident: 2023041803494222000_41.49.10161.17
  doi: 10.1007/s10162-016-0557-9
– volume: 9
  start-page: 1503
  year: 2019
  ident: 2023041803494222000_41.49.10161.73
  article-title: Neural mechanisms of binaural processing in the auditory brainstem
  publication-title: Compr Physiol
  doi: 10.1002/cphy.c180036
– ident: 2023041803494222000_41.49.10161.20
  doi: 10.1088/1741-2560/6/6/065008
– ident: 2023041803494222000_41.49.10161.28
  doi: 10.1121/1.4792936
– ident: 2023041803494222000_41.49.10161.68
  doi: 10.1523/JNEUROSCI.0850-05.2005
– ident: 2023041803494222000_41.49.10161.53
  doi: 10.1016/j.media.2014.02.001
– ident: 2023041803494222000_41.49.10161.74
  doi: 10.1016/j.media.2018.11.005
– ident: 2023041803494222000_41.49.10161.16
  doi: 10.1007/s10162-016-0569-5
– ident: 2023041803494222000_41.49.10161.72
  doi: 10.1097/AUD.0000000000000374
– ident: 2023041803494222000_41.49.10161.10
  doi: 10.1177/2331216518771173
– ident: 2023041803494222000_41.49.10161.9
  doi: 10.1007/s10162-007-0088-5
– ident: 2023041803494222000_41.49.10161.76
  doi: 10.1073/pnas.081082598
– ident: 2023041803494222000_41.49.10161.44
  doi: 10.1097/00003446-200506000-00002
– ident: 2023041803494222000_41.49.10161.4
  doi: 10.1121/1.1572146
– ident: 2023041803494222000_41.49.10161.31
  doi: 10.1101/2021.02.26.21252533
– ident: 2023041803494222000_41.49.10161.62
  doi: 10.1121/1.423088
– ident: 2023041803494222000_41.49.10161.7
  doi: 10.1177/2331216518765514
– ident: 2023041803494222000_41.49.10161.42
  doi: 10.1038/nature01002
– ident: 2023041803494222000_41.49.10161.57
  doi: 10.1097/AUD.0000000000000114
– ident: 2023041803494222000_41.49.10161.19
  doi: 10.1097/mao.0b013e3181925025
– ident: 2023041803494222000_41.49.10161.6
  doi: 10.1097/MAO.0000000000001469
– ident: 2023041803494222000_41.49.10161.23
  doi: 10.1007/s10162-014-0457-9
– ident: 2023041803494222000_41.49.10161.39
  doi: 10.1016/j.cub.2013.05.045
– ident: 2023041803494222000_41.49.10161.63
  doi: 10.1121/1.423107
– ident: 2023041803494222000_41.49.10161.48
  doi: 10.1148/radiol.2020192256
– ident: 2023041803494222000_41.49.10161.25
  doi: 10.1038/159591a0
– ident: 2023041803494222000_41.49.10161.33
  doi: 10.1007/s10162-013-0380-5
– ident: 2023041803494222000_41.49.10161.5
  doi: 10.1097/AUD.0000000000000284
– ident: 2023041803494222000_41.49.10161.70
  doi: 10.1093/rpd/ncp162
SSID ssj0007017
Score 2.4866805
Snippet Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 10161
SubjectTerms Adaptation, Physiological - physiology
Adult
Aged
Cochlea
Cochlear Implantation
Cochlear Implants
Computed tomography
Deafness
Electrodes
Estimates
Female
Frequency
Hearing loss
Humans
Localization
Male
Medical imaging
Middle Aged
Neuronal Plasticity - physiology
Neuroplasticity
Perception
Pitch
Pitch Perception - physiology
Plastic properties
Plasticity
Sensory stimulation
Sound localization
Speech perception
Timing
Tomography, X-Ray Computed
Transplants & implants
Title Interaural Place-of-Stimulation Mismatch Estimates Using CT Scans and Binaural Perception, But Not Pitch, Are Consistent in Cochlear-Implant Users
URI https://www.ncbi.nlm.nih.gov/pubmed/34725189
https://www.proquest.com/docview/2611918751
https://www.proquest.com/docview/2592306859
https://pubmed.ncbi.nlm.nih.gov/PMC8660045
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSGMhIiJcs3erESfZYqo5RtmxoqdS3yHUcGnVNUJsijZ_BL-MncXxpkpaK20tUxUns9Ptin3N8Lgi9SSnI_DRNbZdwOIBEak_IcWJz1wk44YnjMmmHvAi9s5E7HNNxq_Wj4bW0Kicd_m1nXMn_oArnAFcZJfsPyFYPhRPwG_CFIyAMx7_CWJnzmEqccSXN4XaR2tdlNjcluayLbAkCKZ9aA_iQ51KqtLSLQD-CjxoWKbV18C7LzTMqJxeF-qq0wqK0rrJSl4vqLYSu7wnEyEsdLsinsuyELXMMA0TwdONQv5Z368gzJfM2smfWu_liASKqqbk5LJbTFbPeV5afociNjchEEDXssiWbTYuvyxm7VRLw5c1nVptmQ1koR_sB85kJwTDWDdJVniJBbd1suK6G20PUsyTxQf91damfjjCzOFHbRt3mNK_zaxk66zSpZtKWBozuzuWEqrQWw1B6VV73P3RkvkObSLOCDuvezN8dXsano_PzOBqMozvoLgHFRS4VHz_V-ev9Y1UDuhq0iVmHfo5297IpLv2iA2278jZko-gBum8Axj3N0IeoJfJHaL-Xs7KY3-K3WLkZq_2bffS9Ji3eRVq8Ji2uSIsVaXE_woq0GEiL16TFNWkPMVAWA2WxouwhjEfgmrA4y_E2YbEi7GM0Oh1E_TPbFAaBKcQlpU0pJQJkZ85cl4HGIxxGGYMRU-7Agpn4acBA8ZgkCVzCyAmXvgMeSz0vSRNQaJwnaC8vcvEMYUEdxpnTTQhN3AnIu2niT6SS4xKWiOOgjej6_4-5yZovi7fcxFJ7BtziCrdY4haTbixxa6Oj6r4vOm_MH-84WMMbmzlmGRNPJmAMfArNr6tmWAHkth7LRbGCa-DlQPEP6EkbPdVsqLp0XB8UmABa_A2eVBfI7PKbLXk2VVnmA8-T-t7z3w_rBbpXf7YHaK9crMRLENPLySvF_J9TBeuZ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaural+Place-of-Stimulation+Mismatch+Estimates+Using+CT+Scans+and+Binaural+Perception%2C+But+Not+Pitch%2C+Are+Consistent+in+Cochlear-Implant+Users&rft.jtitle=The+Journal+of+neuroscience&rft.au=Bernstein%2C+Joshua+GW&rft.au=Jensen%2C+Kenneth+K&rft.au=Stakhovskaya%2C+Olga+A&rft.au=Noble%2C+Jack+H&rft.date=2021-12-08&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=41&rft.issue=49&rft.spage=10161&rft_id=info:doi/10.1523%2FJNEUROSCI.0359-21.2021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon