Depression and Severity Detection Based on Body Kinematic Features: Using Kinect Recorded Skeleton Data of Simple Action

Relative limb movement is an important feature in assessing depression. In this study, we looked into whether a skeleton-mimetic task using natural stimuli may help people recognize depression. We innovatively used Kinect V2 to collect participant data. Sequential skeletal data was directly extracte...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neurology Vol. 13; p. 905917
Main Authors Yu, Yanhong, Li, Wentao, Zhao, Yue, Ye, Jiayu, Zheng, Yunshao, Liu, Xinxin, Wang, Qingxiang
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 30.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Relative limb movement is an important feature in assessing depression. In this study, we looked into whether a skeleton-mimetic task using natural stimuli may help people recognize depression. We innovatively used Kinect V2 to collect participant data. Sequential skeletal data was directly extracted from the original Kinect-3D and tetrad coordinates of the participant's 25 body joints. Two constructed skeletal datasets of whole-body joints (including binary classification and multi classification) were input into the proposed model for depression recognition after data preparation. We improved the temporal convolution network (TCN), creating novel spatial attention dilated TCN (SATCN) network that included a hierarchy of temporal convolution groups with different dilated convolution scales to capture important skeletal features and a spatial attention block for final result prediction. The depression and non-depression groups can be classified automatically with a maximum accuracy of 75.8% in the binary classification task, and 64.3% accuracy in the multi classification dataset to recognize more fine-grained identification of depression severity, according to experimental results. Our experiments and methods based on Kinect V2 can not only identify and screen depression patients but also effectively observe the recovery level of depression patients during the recovery process. For example, in the change from severe depression to moderate or mild depression multi classification dataset.
AbstractList Relative limb movement is an important feature in assessing depression. In this study, we looked into whether a skeleton-mimetic task using natural stimuli may help people recognize depression. We innovatively used Kinect V2 to collect participant data. Sequential skeletal data was directly extracted from the original Kinect-3D and tetrad coordinates of the participant's 25 body joints. Two constructed skeletal datasets of whole-body joints (including binary classification and multi classification) were input into the proposed model for depression recognition after data preparation. We improved the temporal convolution network (TCN), creating novel spatial attention dilated TCN (SATCN) network that included a hierarchy of temporal convolution groups with different dilated convolution scales to capture important skeletal features and a spatial attention block for final result prediction. The depression and non-depression groups can be classified automatically with a maximum accuracy of 75.8% in the binary classification task, and 64.3% accuracy in the multi classification dataset to recognize more fine-grained identification of depression severity, according to experimental results. Our experiments and methods based on Kinect V2 can not only identify and screen depression patients but also effectively observe the recovery level of depression patients during the recovery process. For example, in the change from severe depression to moderate or mild depression multi classification dataset.
Relative limb movement is an important feature in assessing depression. In this study, we looked into whether a skeleton-mimetic task using natural stimuli may help people recognize depression. We innovatively used Kinect V2 to collect participant data. Sequential skeletal data was directly extracted from the original Kinect-3D and tetrad coordinates of the participant's 25 body joints. Two constructed skeletal datasets of whole-body joints (including binary classification and multi classification) were input into the proposed model for depression recognition after data preparation. We improved the temporal convolution network (TCN), creating novel spatial attention dilated TCN (SATCN) network that included a hierarchy of temporal convolution groups with different dilated convolution scales to capture important skeletal features and a spatial attention block for final result prediction. The depression and non-depression groups can be classified automatically with a maximum accuracy of 75.8% in the binary classification task, and 64.3% accuracy in the multi classification dataset to recognize more fine-grained identification of depression severity, according to experimental results. Our experiments and methods based on Kinect V2 can not only identify and screen depression patients but also effectively observe the recovery level of depression patients during the recovery process. For example, in the change from severe depression to moderate or mild depression multi classification dataset.Relative limb movement is an important feature in assessing depression. In this study, we looked into whether a skeleton-mimetic task using natural stimuli may help people recognize depression. We innovatively used Kinect V2 to collect participant data. Sequential skeletal data was directly extracted from the original Kinect-3D and tetrad coordinates of the participant's 25 body joints. Two constructed skeletal datasets of whole-body joints (including binary classification and multi classification) were input into the proposed model for depression recognition after data preparation. We improved the temporal convolution network (TCN), creating novel spatial attention dilated TCN (SATCN) network that included a hierarchy of temporal convolution groups with different dilated convolution scales to capture important skeletal features and a spatial attention block for final result prediction. The depression and non-depression groups can be classified automatically with a maximum accuracy of 75.8% in the binary classification task, and 64.3% accuracy in the multi classification dataset to recognize more fine-grained identification of depression severity, according to experimental results. Our experiments and methods based on Kinect V2 can not only identify and screen depression patients but also effectively observe the recovery level of depression patients during the recovery process. For example, in the change from severe depression to moderate or mild depression multi classification dataset.
Author Liu, Xinxin
Li, Wentao
Zhao, Yue
Zheng, Yunshao
Ye, Jiayu
Wang, Qingxiang
Yu, Yanhong
AuthorAffiliation 4 Shandong Mental Health Center, Shandong University , Jinan , China
1 College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine , Jinan , China
3 The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital , Jinan , China
2 School of Computer Science and Technology, Qilu University of Technology , Jinan , China
AuthorAffiliation_xml – name: 3 The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital , Jinan , China
– name: 2 School of Computer Science and Technology, Qilu University of Technology , Jinan , China
– name: 1 College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine , Jinan , China
– name: 4 Shandong Mental Health Center, Shandong University , Jinan , China
Author_xml – sequence: 1
  givenname: Yanhong
  surname: Yu
  fullname: Yu, Yanhong
– sequence: 2
  givenname: Wentao
  surname: Li
  fullname: Li, Wentao
– sequence: 3
  givenname: Yue
  surname: Zhao
  fullname: Zhao, Yue
– sequence: 4
  givenname: Jiayu
  surname: Ye
  fullname: Ye, Jiayu
– sequence: 5
  givenname: Yunshao
  surname: Zheng
  fullname: Zheng, Yunshao
– sequence: 6
  givenname: Xinxin
  surname: Liu
  fullname: Liu, Xinxin
– sequence: 7
  givenname: Qingxiang
  surname: Wang
  fullname: Wang, Qingxiang
BookMark eNp9kk1vEzEQhleoiH7QH8DNRy5Jba_Xu-aAVBoKFZWQCD1bE3scXDbrYHur5t_jTSpEOeCLRzPzPuOP97Q6GsKAVfWG0Xldd-rCDTjGOaeczxVtFGtfVCdMSjHjXDVHf8XH1XlK97SsWqla1q-q47rpRMspO6keF7iNmJIPA4HBkiU-YPR5RxaY0eQp_QESWjIFwe7IFz_gBrI35Bohj0X7jtwlP6z3FZPJNzQh2qJY_sQec9EtIAMJjiz9ZtsjudxjX1cvHfQJz5_2s-ru-uP3q8-z26-fbq4ub2dGCJ5njVCyc3KlrHCgnEXZiBZr2kqjlDEUeCeVbFrWlAbOLAcFrVS1EyshmRX1WXVz4NoA93ob_QbiTgfwep8Ica0hluv0qC1lrVONA-GkQAogzKpGU0Z1HQc3sd4fWNtxtUFrcMgR-mfQ55XB_9Dr8KAVb5VUbQG8fQLE8GvElPXGJ4N9DwOGMWkuFRNNV36mtLJDq4khpYjuzxhG9WQAvTeAngygDwYomvYfjfEZptcup_H9f5S_AQ0huP8
CitedBy_id crossref_primary_10_1038_s41398_023_02481_8
crossref_primary_10_1111_jocn_17694
crossref_primary_10_5498_wjp_v14_i2_225
Cites_doi 10.1109/FG.2013.6553796
10.1109/ICASSP.2019.8682916
10.1109/ACII.2013.87
10.1007/BF00993583
10.1016/j.jad.2019.08.009
10.1371/journal.pone.0216591
10.1016/j.cviu.2018.04.007
10.1037/a0025737
10.1589/jpts.27.2057
10.1016/j.jad.2018.08.073
10.1109/ComManTel.2013.6482417
10.1145/3266302.3268997
10.1097/PSY.0b013e3181a2515c
10.3969/j.issn.1673-5374.2013.31.00310.3969/j.issn.1673-5374.2013.31.003
10.1109/TAFFC.2016.2573832
10.1016/S0140-6736(18)32279-7
10.1016/j.ridd.2011.07.002
10.1109/MMUL.2012.24
10.1007/s10919-010-0094-x
10.1016/j.jad.2021.08.090
10.1145/2382336.2382355
10.1145/3347320.3357696
10.1109/ISGS51981.2020.9375290
10.4324/9780429473678
10.1109/ACII.2013.31
10.1109/ACCESS.2019.2957179
10.1109/T-AFFC.2012.16
10.1007/978-3-642-70486-4_14
10.1109/TAFFC.2017.2724035
10.1016/S0262-4079(13)60796-4
10.1109/JBHI.2017.2676878
10.1016/j.jvcir.2018.11.003
10.1007/978-3-030-34869-4_3
10.1080/08990220.2018.1444599
10.1145/3347320.3357697
10.3390/jpm12040619
ContentType Journal Article
Copyright Copyright © 2022 Yu, Li, Zhao, Ye, Zheng, Liu and Wang.
Copyright © 2022 Yu, Li, Zhao, Ye, Zheng, Liu and Wang. 2022 Yu, Li, Zhao, Ye, Zheng, Liu and Wang
Copyright_xml – notice: Copyright © 2022 Yu, Li, Zhao, Ye, Zheng, Liu and Wang.
– notice: Copyright © 2022 Yu, Li, Zhao, Ye, Zheng, Liu and Wang. 2022 Yu, Li, Zhao, Ye, Zheng, Liu and Wang
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fneur.2022.905917
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2295
ExternalDocumentID oai_doaj_org_article_d017f95fa4f64e0aa4cb3ec76c882af4
PMC9279697
10_3389_fneur_2022_905917
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: ZR2021MF079; ZR2020MF039
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
E3Z
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c442t-54968f6b9d4fa9fde6547e3076c99cc0a286965715d4f21d2a9a7693f4b461d43
IEDL.DBID M48
ISSN 1664-2295
IngestDate Wed Aug 27 01:26:38 EDT 2025
Thu Aug 21 18:36:57 EDT 2025
Fri Jul 11 16:50:27 EDT 2025
Tue Jul 01 04:28:01 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-54968f6b9d4fa9fde6547e3076c99cc0a286965715d4f21d2a9a7693f4b461d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Mariella Pazzaglia, Sapienza University of Rome, Italy
Reviewed by: Benyue Su, Tongling University, China; Na Jin Seo, Medical University of South Carolina, United States
This article was submitted to Neurology, a section of the journal Frontiers in Neurology
These authors have contributed equally to this work and share first authorship
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fneur.2022.905917
PMID 35847201
PQID 2691458201
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d017f95fa4f64e0aa4cb3ec76c882af4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9279697
proquest_miscellaneous_2691458201
crossref_primary_10_3389_fneur_2022_905917
crossref_citationtrail_10_3389_fneur_2022_905917
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-30
PublicationDateYYYYMMDD 2022-06-30
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-30
  day: 30
PublicationDecade 2020
PublicationTitle Frontiers in neurology
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References James (B1) 2018; 392
Zhao (B26) 2019; 14
Song (B38) 2015; 27
Wang (B16) 2018; 57
Fang (B27) 2019; 7
Shen (B31) 2012
Firth (B29) 2013
Ellgring (B28) 2007
Yin (B34) 2019
Dael (B9) 2012; 12
Du (B20) 2018
Ye (B32) 2021; 295
Wang (B41) 2018; 171
Lea (B40) 2017
Gross (B7) 2010; 34
Almasi (B36) 2020
Haque (B22) 2018
(B2) 2017
Joshi (B25) 2013
Dibeklioğlu (B23) 2017; 22
Davison (B15) 2016; 9
Joshi (B6) 2013
Du (B17) 2019
Natale (B30) 1980; 4
Pampouchidou (B12) 2017; 10
(B37) 2018; 35
Maggio (B11) 2022; 12
Zhang (B13) 2012; 19
Michalak (B8) 2009; 71
Rourke (B42) 1989
Lee (B24) 2018; 241
He (B45) 2016
Huang (B21) 2019
Pigoni (B3) 2019; 259
Stratou (B14) 2013
Ray (B33) 2019
Simonyan (B46) 2014
Bao (B35) 2013; 8
Cooper (B4) 2018
Kleinsmith (B5) 2012; 4
Hou (B44) 2018
Huang (B19) 2019
Hamilton (B43) 1986
Rathi (B18) 2019
Chang (B10) 2011; 32
Le (B39) 2013
References_xml – start-page: 1
  volume-title: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)
  year: 2013
  ident: B6
  article-title: Can body expressions contribute to automatic depression analysis?
  doi: 10.1109/FG.2013.6553796
– start-page: 5856
  volume-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2019
  ident: B19
  article-title: Speech landmark bigrams for depression detection from naturalistic smartphone speech
  doi: 10.1109/ICASSP.2019.8682916
– start-page: 492
  volume-title: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction
  year: 2013
  ident: B25
  article-title: Relative body parts movement for automatic depression analysis
  doi: 10.1109/ACII.2013.87
– volume: 4
  start-page: 323
  year: 1980
  ident: B30
  article-title: The effect of Velten's mood-induction procedure for depression on hand movement and head-down posture
  publication-title: Motivat Emot
  doi: 10.1007/BF00993583
– volume: 259
  start-page: 21
  year: 2019
  ident: B3
  article-title: Can Machine Learning help us in dealing with treatment resistant depression? A review
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2019.08.009
– volume: 14
  start-page: e0216591
  year: 2019
  ident: B26
  article-title: See your mental state from your walk: Recognizing anxiety and depression through Kinect-recorded gait data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0216591
– volume: 171
  start-page: 118
  year: 2018
  ident: B41
  article-title: RGB-D-based human motion recognition with deep learning: a survey
  publication-title: Comput Vision Image Understand
  doi: 10.1016/j.cviu.2018.04.007
– volume: 12
  start-page: 1085
  year: 2012
  ident: B9
  article-title: Emotion expression in body action and posture
  publication-title: Emotion
  doi: 10.1037/a0025737
– volume-title: arXiv [Preprint] arXiv:
  year: 2018
  ident: B22
  article-title: Measuring depression symptom severity from spoken language and 3D facial expressions
– volume: 27
  start-page: 2057
  year: 2015
  ident: B38
  article-title: Effect of virtual reality games on stroke patients' balance, gait, depression, and interpersonal relationships
  publication-title: J Phys Therapy Sci
  doi: 10.1589/jpts.27.2057
– volume: 241
  start-page: 519
  year: 2018
  ident: B24
  article-title: Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2018.08.073
– volume-title: J Clin Psychiatry
  year: 1989
  ident: B42
  article-title: Treatment of seasonal depression with d-fenfluramine
– start-page: 340
  volume-title: 2013 International Conference on Computing, Management and Telecommunications (ComManTel)
  year: 2013
  ident: B39
  article-title: Human posture recognition using human skeleton provided by Kinect
  doi: 10.1109/ComManTel.2013.6482417
– start-page: 23
  volume-title: Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop
  year: 2018
  ident: B20
  article-title: Bipolar disorder recognition via multi-scale discriminative audio temporal representation
  doi: 10.1145/3266302.3268997
– start-page: 770
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: B45
  article-title: Deep residual learning for image recognition
– volume: 71
  start-page: 580
  year: 2009
  ident: B8
  article-title: Embodiment of sadness and depression-gait patterns associated with dysphoric mood
  publication-title: Psychosom. Med
  doi: 10.1097/PSY.0b013e3181a2515c
– volume: 8
  start-page: 2904
  year: 2013
  ident: B35
  article-title: Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke
  publication-title: Neural Regen Res
  doi: 10.3969/j.issn.1673-5374.2013.31.00310.3969/j.issn.1673-5374.2013.31.003
– volume: 9
  start-page: 116
  year: 2016
  ident: B15
  article-title: SAMM: a spontaneous micro-facial movement dataset
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2016.2573832
– volume: 392
  start-page: 1789
  year: 2018
  ident: B1
  article-title: Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32279-7
– volume: 32
  start-page: 2566
  year: 2011
  ident: B10
  article-title: A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities
  publication-title: Res Dev Disabil
  doi: 10.1016/j.ridd.2011.07.002
– volume: 19
  start-page: 4
  year: 2012
  ident: B13
  article-title: Microsoft kinect sensor and its effect
  publication-title: IEEE Multimedia
  doi: 10.1109/MMUL.2012.24
– volume-title: Made in Viet Nam Vaccines: Efforts to Develop Sustainable In-Country Manufacturing for Seasonal and Pandemic Influenza Vaccines: Consultation Held in Viet Nam
  year: 2017
  ident: B2
– volume: 34
  start-page: 223
  year: 2010
  ident: B7
  article-title: Methodology for assessing bodily expression of emotion
  publication-title: J Nonverb Behav
  doi: 10.1007/s10919-010-0094-x
– volume: 295
  start-page: 904
  year: 2021
  ident: B32
  article-title: Multi-modal depression detection based on emotional audio and evaluation text
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2021.08.090
– volume-title: arXiv [Preprint] arXiv:
  year: 2014
  ident: B46
  article-title: Very deep convolutional networks for large-scale image recognition
– start-page: 66
  volume-title: Proceedings of the 4th International Conference on Internet Multimedia Computing and Service
  year: 2012
  ident: B31
  article-title: Unsupervised human skeleton extraction from Kinect depth images
  doi: 10.1145/2382336.2382355
– start-page: 65
  volume-title: Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop
  year: 2019
  ident: B34
  article-title: A multi-modal hierarchical recurrent neural network for depression detection
  doi: 10.1145/3347320.3357696
– start-page: 51
  volume-title: 2020 International Serious Games Symposium (ISGS)
  year: 2020
  ident: B36
  article-title: Kinect-based virtual rehabilitation for upper extremity motor recovery in chronic stroke
  doi: 10.1109/ISGS51981.2020.9375290
– volume-title: Diagnosing the Diagnostic and Statistical Manual of Mental Disorders
  year: 2018
  ident: B4
  doi: 10.4324/9780429473678
– start-page: 1
  volume-title: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019)
  year: 2019
  ident: B17
  article-title: Encoding visual behaviors with attentive temporal convolution for depression prediction
– start-page: 147
  volume-title: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction
  year: 2013
  ident: B14
  article-title: Automatic nonverbal behavior indicators of depression and PTSD: exploring gender differences
  doi: 10.1109/ACII.2013.31
– volume: 7
  start-page: 174425
  year: 2019
  ident: B27
  article-title: Depression prevalence in postgraduate students and its association with gait abnormality
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957179
– volume-title: IEEE Trans Affect Comput
  year: 2019
  ident: B21
  article-title: Investigation of speech landmark patterns for depression detection
– start-page: 156
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017
  ident: B40
  article-title: Temporal convolutional networks for action segmentation and detection
– volume: 4
  start-page: 15
  year: 2012
  ident: B5
  article-title: Affective body expression perception and recognition: a survey
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2012.16
– start-page: 143
  volume-title: Assessment of Depression
  year: 1986
  ident: B43
  article-title: The Hamilton rating scale for depression
  doi: 10.1007/978-3-642-70486-4_14
– volume: 10
  start-page: 445
  year: 2017
  ident: B12
  article-title: Automatic assessment of depression based on visual cues: a systematic review
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2017.2724035
– volume-title: Computers Diagnose Depression From our Body Language
  year: 2013
  ident: B29
  doi: 10.1016/S0262-4079(13)60796-4
– volume-title: Proceedings of the European Conference on Computer Vision (ECCV)
  year: 2018
  ident: B44
  article-title: Spatial-temporal attention res-TCN for skeleton-based dynamic hand gesture recognition
– volume: 22
  start-page: 525
  year: 2017
  ident: B23
  article-title: Dynamic multimodal measurement of depression severity using deep autoencoding
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2676878
– volume: 57
  start-page: 228
  year: 2018
  ident: B16
  article-title: Facial expression video analysis for depression detection in Chinese patients
  publication-title: J Visual Commun Image Represent
  doi: 10.1016/j.jvcir.2018.11.003
– start-page: 22
  volume-title: International Conference on Pattern Recognition and Machine Intelligence
  year: 2019
  ident: B18
  article-title: Enhanced depression detection from facial cues using univariate feature selection techniques
  doi: 10.1007/978-3-030-34869-4_3
– volume: 35
  start-page: 25
  year: 2018
  ident: B37
  article-title: Effects of Kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke
  publication-title: Somatosens Motor Res
  doi: 10.1080/08990220.2018.1444599
– start-page: 81
  volume-title: Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop
  year: 2019
  ident: B33
  article-title: Multi-level attention network using text, audio and video for depression prediction
  doi: 10.1145/3347320.3357697
– volume: 12
  start-page: 619
  year: 2022
  ident: B11
  article-title: Body representation in patients with severe spinal cord injury: a pilot study on the promising role of powered exoskeleton for gait training
  publication-title: J Pers Med
  doi: 10.3390/jpm12040619
– volume-title: Non-Verbal Communication in Depression
  year: 2007
  ident: B28
SSID ssj0000399363
Score 2.3074353
Snippet Relative limb movement is an important feature in assessing depression. In this study, we looked into whether a skeleton-mimetic task using natural stimuli may...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 905917
SubjectTerms deep learning
depression recognition
human skeleton
kinect sensor
Neurology
temporal convolution network
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqDqgXBLSI5SVX6qlSIPE6TsxtYYtQK3pZkLhZ45dArbIIshL8e2acLGwu7aU3K_Y4jmecmdGMv2Hsa_QyShkhE6WDTEZs2VrqrHCgbG6ldemi8NUvdXkjf9yWtyulvignrIMH7jbuxKPIRF1GkFHJkANIZ8fBVcqhbQgxIYGizltxptI_mPSuGndhTPTC9EkkfEj0B4U41mhSpAJl74oo4fUPjMxhiuSKzrnYZBu9scgn3SK32IfQbLP1qz4c_ok9T5d5rA2HxvNZQMFEs5pPQ5tSrBp-hlrKc2rM_Qv_iWQJo5WT6bdA2lOekgZSj2t5540ixew36iO0C_kUWuDzyGf3hCPMJ2naz-zm4vv1-WXWl1LInJSizdALVHVUViNrQEcfqOZwwPOtnNbO5SBqpVVZFSUOEIUXoIGqJEZppSq8HO-wtWbehF3GVaQbhnosocapvaohV0EXLrdexFJUI5Yv99W4Hmecyl38MehvECtMYoUhVpiOFSP27Y3koQPZ-NvgM2LW20DCx04PUGpMLzXmX1IzYl-WrDZ4nihIAk2YL56MULqgWGJejFg1kIHBG4c9zf1dQubWotJKV3v_Y4n77CN9dZebeMDW2sdFOEQDqLVHSdZfAV1PCBA
  priority: 102
  providerName: Directory of Open Access Journals
Title Depression and Severity Detection Based on Body Kinematic Features: Using Kinect Recorded Skeleton Data of Simple Action
URI https://www.proquest.com/docview/2691458201
https://pubmed.ncbi.nlm.nih.gov/PMC9279697
https://doaj.org/article/d017f95fa4f64e0aa4cb3ec76c882af4
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1da9wwzHQdjL2MfbJbt-LBngbpEp_ixIMx2t1K2bi93A76Zvy5lZakveag_feTnFxZoJS-mdhSYsuypEiWGPsQPUSAaDJROpNBxJatQWWFM9LmFqxLF4Xnv-TREn4cl8dbbFPealjAy1tNO6ontVyd7V1dXH9Fhv9CFifK20-RUj-iqSfEnkJtoagesIcomCri0_mg7aeDmYRxqq1WSAkZFbLu_Zy3YxlJqpTQf6SFjmMo_xNKh0_Zk0Gb5Ps9-Z-xrdA8Z4_mg7_8BbuabQJdG24azxcBdy7q3XwWuhSD1fADFGOeU6P11_wngqUkrpx0wzXCfuYpqiD1uI735ipCLE5RYKHiyGemM7yNfHFCiYb5fkL7ki0Pv__-dpQNtRYyByC6DM1EWUdpFdLOqOgDFSUOeABIp5RzuRG1VLKsihIHiMILowyVUYxgQRYepq_YdtM24TXjMtIVRDUFUyNqL2uTy6AKl1svYimqCcs366rdkIic6mGcaTRIiBQ6kUITKXRPign7eANy3mfhuGvwARHrZiAl0E4P2tUfPfCj9ngS4XdGA1FCyI0BZ6fB4XTR5DARJuz9htQaGY68KKYJ7fpSC6kKcjbmxYRVoz0weuO4pzn5m1J3K1Epqao398C-wx7TpPrYxLdsu1utwztUgDq7m34c7KbN_Q-dZwcb
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depression+and+Severity+Detection+Based+on+Body+Kinematic+Features%3A+Using+Kinect+Recorded+Skeleton+Data+of+Simple+Action&rft.jtitle=Frontiers+in+neurology&rft.au=Yu%2C+Yanhong&rft.au=Li%2C+Wentao&rft.au=Zhao%2C+Yue&rft.au=Ye%2C+Jiayu&rft.date=2022-06-30&rft.issn=1664-2295&rft.eissn=1664-2295&rft.volume=13&rft.spage=905917&rft_id=info:doi/10.3389%2Ffneur.2022.905917&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2295&client=summon