Novel Allosteric Activation Site in Escherichia coli Fructose-1,6-bisphosphatase

Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 281; no. 27; pp. 18386 - 18393
Main Authors Hines, Justin K., Fromm, Herbert J., Honzatko, Richard B.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.07.2006
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45Å) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe15 and residues at the C-terminal side of the first α-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding.
AbstractList Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45A) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe(15) and residues at the C-terminal side of the first alpha-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding.Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45A) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe(15) and residues at the C-terminal side of the first alpha-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding.
Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45A) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe(15) and residues at the C-terminal side of the first alpha-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding.
Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45Aa) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe super(15) and residues at the C-terminal side of the first alpha -helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding.
Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45Å) of recombinant FBPase from Escherichia coli , the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe 15 and residues at the C-terminal side of the first α-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding.
Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45Å) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe15 and residues at the C-terminal side of the first α-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding.
Author Hines, Justin K.
Fromm, Herbert J.
Honzatko, Richard B.
Author_xml – sequence: 1
  givenname: Justin K.
  surname: Hines
  fullname: Hines, Justin K.
– sequence: 2
  givenname: Herbert J.
  surname: Fromm
  fullname: Fromm, Herbert J.
– sequence: 3
  givenname: Richard B.
  surname: Honzatko
  fullname: Honzatko, Richard B.
  email: honzatko@iastate.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16670087$$D View this record in MEDLINE/PubMed
BookMark eNqFkc2LFDEQxYOsuLOrV4_SB9mTPearO5njsOyqsH6ACt5CurrarqWnMyaZEf97M86qICwGihzq9yqp987YyRxmZOyp4EvBjX5528Hybctl0yjJ-QO2ENyqWjXiywlbcC5FvZKNPWVnKd3ycvRKPGKnom0N59Ys2Id3YY9TtZ6mkDJGgmoNmfY-U5irj5Sxorm6SjAeeiP5CsJE1XXcQQ4Ja_GirTtK2zGU8tknfMweDn5K-OTuPmefr68-Xb6ub96_enO5vqlBa5lrjRrtqkW0A6IWMGgxSDBd38OgemV6NGpQXdM1fgW9LhB4KHsaaZU1TafO2cVx7jaGbztM2W0oAU6TnzHskmttW9YVzX9BYYpB0rQFfHYH7roN9m4baePjD_fbrALoIwAxpBRxcED5l1M5epqc4O6QiSuZuL-ZFNnyH9mfyfcJnh8FI30dv1NE11EoCWyctMJJ40Tx4PBfe8Sw2LwnjC4B4QzYFwlk1we674WfF7is6w
CitedBy_id crossref_primary_10_1016_j_biotechadv_2019_107441
crossref_primary_10_1371_journal_pone_0138436
crossref_primary_10_1074_jbc_M611104200
crossref_primary_10_1128_JB_01301_09
crossref_primary_10_1074_jbc_M703580200
crossref_primary_10_15252_msb_202110704
crossref_primary_10_1016_j_mec_2019_e00113
crossref_primary_10_1016_j_jmgm_2017_01_007
crossref_primary_10_1128_EC_00169_08
crossref_primary_10_1128_JB_00672_13
crossref_primary_10_1038_ncomms8912
crossref_primary_10_15252_msb_20135022
crossref_primary_10_1371_journal_pcbi_1007727
crossref_primary_10_1007_s12010_011_9219_x
crossref_primary_10_1038_nbt_2489
crossref_primary_10_1111_1751_7915_13938
crossref_primary_10_1074_jbc_M114_548586
crossref_primary_10_1073_pnas_1802191115
crossref_primary_10_1371_journal_pone_0071242
crossref_primary_10_1074_jbc_M707302200
crossref_primary_10_1186_1472_6807_7_55
crossref_primary_10_1007_s12275_010_0377_2
crossref_primary_10_1139_bcb_2020_0021
crossref_primary_10_1016_j_chom_2015_07_008
crossref_primary_10_1128_ecosalplus_10_2_1
crossref_primary_10_1186_s12934_014_0096_1
crossref_primary_10_1074_jbc_M110_118315
crossref_primary_10_1007_s00253_019_09909_6
crossref_primary_10_1016_j_chemphys_2025_112704
crossref_primary_10_1074_jbc_M604429200
crossref_primary_10_1038_s42003_023_05318_8
crossref_primary_10_1007_s12010_017_2512_6
crossref_primary_10_1107_S1744309111014722
crossref_primary_10_1111_j_1365_2958_2007_05838_x
crossref_primary_10_1128_aem_02016_22
Cites_doi 10.1074/jbc.M009485200
10.1107/S0567739478001114
10.1021/bi00013a019
10.1002/biof.5520100101
10.1021/bi000574g
10.1016/0003-9861(83)90109-1
10.1107/S0108767391001071
10.1016/S0021-9258(19)41589-5
10.1074/jbc.M112304200
10.1128/jb.153.1.390-394.1983
10.1016/0006-291X(84)90888-X
10.1093/oxfordjournals.jbchem.a130346
10.1107/S0567739476001873
10.1021/bi981112u
10.1016/0003-2697(76)90527-3
10.1016/S0014-5793(01)02262-1
10.1016/S0167-4838(01)00261-8
10.1073/pnas.86.21.8247
10.1093/nar/22.22.4673
10.1016/S0021-9258(17)33298-2
10.1146/annurev.bi.57.070188.003543
10.1074/jbc.M501011200
10.1021/jm010496a
10.1073/pnas.0502983102
10.1016/S0021-9258(19)85820-9
10.1016/S0021-9258(18)64395-9
10.1074/jbc.271.52.33301
10.1016/S0021-9258(19)34144-4
10.1128/jb.90.4.837-842.1965
10.1016/0076-6879(90)83007-V
10.1016/S0021-9258(19)69494-9
10.1128/JB.182.19.5624-5627.2000
10.1016/0022-2836(68)90051-X
10.1074/jbc.M308396200
10.1107/S0907444994003112
10.1107/S0021889891004399
10.1107/S0108767393007597
10.1002/prot.1090
10.1016/0003-9861(66)90298-0
10.1006/jmbi.1994.1755
10.1107/S0907444998003254
10.1073/pnas.87.14.5243
10.1016/S0021-9258(18)50601-3
10.1016/0263-7855(92)80022-6
10.1038/227680a0
10.1107/S090744499900935X
10.1093/nar/16.17.8707
10.1016/j.str.2004.03.026
10.1016/0003-9861(70)90385-1
ContentType Journal Article
Copyright 2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
Copyright_xml – notice: 2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
8FD
C1K
FR3
P64
RC3
7X8
DOI 10.1074/jbc.M602553200
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Genetics Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
EndPage 18393
ExternalDocumentID 16670087
10_1074_jbc_M602553200
281_27_18386
S0021925820575996
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS10456
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
2WC
34G
39C
3O-
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFFNX
AFMIJ
AFOSN
AFPKN
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BTFSW
C1A
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
MVM
N9A
OHT
OK1
P-O
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XSW
Y6R
YQT
YSK
YWH
YZZ
ZA5
ZE2
~02
~KM
-
02
55
AAWZA
ABFLS
ABPTK
ABUFD
ABZEH
ADACO
ADCOW
AEILP
AIZTS
DL
DZ
ET
FH7
GJ
H13
KM
LI
MYA
O0-
X
XHC
.7T
0R~
29J
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
BAWUL
CITATION
E.L
J5H
NHB
QZG
XJT
YYP
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QL
8FD
C1K
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c442t-4e4e896ee8fee41cf41f2c7bddcf3d37de73f3b5b5a9cd4feecac6027283875b3
ISSN 0021-9258
IngestDate Thu Jul 10 23:21:56 EDT 2025
Thu Jul 10 18:36:15 EDT 2025
Wed Feb 19 02:29:08 EST 2025
Tue Jul 01 04:25:08 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
Tue Jan 05 14:52:05 EST 2021
Fri Feb 23 02:45:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
License This is an open access article under the CC BY license.
http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-4e4e896ee8fee41cf41f2c7bddcf3d37de73f3b5b5a9cd4feecac6027283875b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1074/jbc.M602553200
PMID 16670087
PQID 17258276
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_68600015
proquest_miscellaneous_17258276
pubmed_primary_16670087
crossref_citationtrail_10_1074_jbc_M602553200
crossref_primary_10_1074_jbc_M602553200
highwire_biochem_281_27_18386
elsevier_sciencedirect_doi_10_1074_jbc_M602553200
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-07-07
PublicationDateYYYYMMDD 2006-07-07
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-07
  day: 07
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2006
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Pilkis, El-Maghrabi, McGrane, Pilkis, Claus (bib8) 1981; 256
Collaborative Computational Project Number 4 (1994) Acta Crystallogr. Sect. D 50, 760–763
Kelly-Loughnane. N., Gibson, Lu, Hehir, Phelan, P., Kantrowitz (bib16) 2002; 1594
Kelly-Loughnane. N., Kantrowitz (bib52) 2001; 44
Hamilton, Harrison, Dyer (bib27) 1988; 16
French, Wilson (bib33) 1978; 34
Nakashima, Tuboi (bib51) 1976; 251
Weeks, Roszak, Erman, Kaiser, Jornvall, Ghosh (bib46) 1999; 55
Hubert, Villanueva, González, Marcus (bib50) 1970; 138
Kraulis (bib28) 1991; 24
Pearson (bib42) 1990; 183
Thompson, Higgins, Gibson (bib41) 1994; 22
Pflugrath (bib31) 1999; 55
Pilkis, El-Maghrabi, Claus (bib5) 1988; 57
Hirel, Schmitter, Dessen, Fayat, Blanquet (bib44) 1989; 86
Choe, Poland, Fromm, Honzatko (bib49) 1998; 37
Navaza (bib34) 1994; 50
Nishimasu, Fushinobu, Shoun, Wakagi (bib19) 2004; 12
Tejwani (bib2) 1983; 54
Erion, Van Poelje, Dang, Kasibhatla, Potter, Reddy, Reddy, Jiang, Lipscomb (bib22) 2005; 102
Iancu, Mukund, Fromm, Honzatko (bib40) 2005; 280
Fraenkel, Pontremoli, Horecker (bib4) 1966; 114
Kabsch (bib39) 1976; 32
Chambost, Fraenkel (bib6) 1980; 255
Benkovic, de Maine (bib1) 1982; 53
Choe, Honzatko (bib48) 2000; 39
Van Shaftingen (bib10) 1987; 59
Wright, Carlo, Carty, Danley, Hageman, Karam, Levy, Mansour, Mathiowetz, McClure, Nestor, McPherson, Pandit, Pustilnik, Schulte, Soeller, Treadway, Wang, Bauer (bib20) 2002; 45
Yoshida, Oshima, Imahori (bib24) 1973; 74
Daldal, Fraenkel (bib7) 1983; 153
Fujita, Freese (bib26) 1978; 254
Choe, Nelson, Arienti, Axe, Collins, Jones, Kimmich, Newman, Norvell, Ripka, Romano, Short, Slee, Fromm, Honzatko (bib21) 2003; 278
Donahue, Bownas, Niehaus, Larson (bib18) 2000; 182
Engh, Huber (bib37) 1991; 47
Marcus, Edelstein, Rittenhouse (bib15) 1984; 119
Villeret, Huang, Zhang, Xue, Lipscomb (bib47) 1995; 34
Fraenkel, Horecker (bib3) 1965; 90
Nelson, Honzatko, Fromm (bib45) 2001; 492
Zhang, Liang, Huang, Lipscomb (bib11) 1994; 244
Laemmli (bib30) 1970; 227
Shyur, Aleshin, Honzatko, Fromm (bib13) 1996; 271
Bradford (bib29) 1976; 72
Franzen, Binkley (bib17) 1960; 236
Opheim, Bernlohr (bib25) 1974; 250
Evans, P., (1992) MRC LMB, Cambridge
Nelson, Kurbanov, Honzatko, Fromm (bib43) 2001; 276
Ke, Zhang, Lipscomb (bib12) 1990; 87
McRee (bib35) 1992; 10
Brünger, Adams, Clore, DeLano, Gros, Grosse-Kunstleve, Jiang, Kuszewski, Nilges, Pannu, Read, Rice, Simonson, Warren (bib36) 1998; 54
Okar, Lange (bib9) 1999; 10
Babul, Guixe (bib14) 1983; 225
Blangy, Buc, Monod (bib23) 1968; 31
Nelson, Honzatko, Fromm (bib53) 2002; 277
Lowry, Carter, Ward, Glaser (bib54) 1971; 246
Babul (10.1074/jbc.M602553200_bib14) 1983; 225
Chambost (10.1074/jbc.M602553200_bib6) 1980; 255
Van Shaftingen (10.1074/jbc.M602553200_bib10) 1987; 59
Choe (10.1074/jbc.M602553200_bib48) 2000; 39
Kraulis (10.1074/jbc.M602553200_bib28) 1991; 24
Daldal (10.1074/jbc.M602553200_bib7) 1983; 153
Erion (10.1074/jbc.M602553200_bib22) 2005; 102
Ke (10.1074/jbc.M602553200_bib12) 1990; 87
Nakashima (10.1074/jbc.M602553200_bib51) 1976; 251
Tejwani (10.1074/jbc.M602553200_bib2) 1983; 54
Pflugrath (10.1074/jbc.M602553200_bib31) 1999; 55
Pilkis (10.1074/jbc.M602553200_bib8) 1981; 256
Nishimasu (10.1074/jbc.M602553200_bib19) 2004; 12
Bradford (10.1074/jbc.M602553200_bib29) 1976; 72
Hirel (10.1074/jbc.M602553200_bib44) 1989; 86
Shyur (10.1074/jbc.M602553200_bib13) 1996; 271
Kabsch (10.1074/jbc.M602553200_bib39) 1976; 32
Opheim (10.1074/jbc.M602553200_bib25) 1974; 250
10.1074/jbc.M602553200_bib32
Pearson (10.1074/jbc.M602553200_bib42) 1990; 183
Kelly-Loughnane. N. (10.1074/jbc.M602553200_bib16) 2002; 1594
Zhang (10.1074/jbc.M602553200_bib11) 1994; 244
Weeks (10.1074/jbc.M602553200_bib46) 1999; 55
Nelson (10.1074/jbc.M602553200_bib43) 2001; 276
Nelson (10.1074/jbc.M602553200_bib45) 2001; 492
Fraenkel (10.1074/jbc.M602553200_bib3) 1965; 90
Choe (10.1074/jbc.M602553200_bib21) 2003; 278
Engh (10.1074/jbc.M602553200_bib37) 1991; 47
10.1074/jbc.M602553200_bib38
Iancu (10.1074/jbc.M602553200_bib40) 2005; 280
Lowry (10.1074/jbc.M602553200_bib54) 1971; 246
Choe (10.1074/jbc.M602553200_bib49) 1998; 37
Pilkis (10.1074/jbc.M602553200_bib5) 1988; 57
Wright (10.1074/jbc.M602553200_bib20) 2002; 45
Yoshida (10.1074/jbc.M602553200_bib24) 1973; 74
Benkovic (10.1074/jbc.M602553200_bib1) 1982; 53
Nelson (10.1074/jbc.M602553200_bib53) 2002; 277
Okar (10.1074/jbc.M602553200_bib9) 1999; 10
Donahue (10.1074/jbc.M602553200_bib18) 2000; 182
Navaza (10.1074/jbc.M602553200_bib34) 1994; 50
Hubert (10.1074/jbc.M602553200_bib50) 1970; 138
Fraenkel (10.1074/jbc.M602553200_bib4) 1966; 114
Thompson (10.1074/jbc.M602553200_bib41) 1994; 22
Brünger (10.1074/jbc.M602553200_bib36) 1998; 54
Franzen (10.1074/jbc.M602553200_bib17) 1960; 236
Fujita (10.1074/jbc.M602553200_bib26) 1978; 254
Hamilton (10.1074/jbc.M602553200_bib27) 1988; 16
McRee (10.1074/jbc.M602553200_bib35) 1992; 10
French (10.1074/jbc.M602553200_bib33) 1978; 34
Villeret (10.1074/jbc.M602553200_bib47) 1995; 34
Laemmli (10.1074/jbc.M602553200_bib30) 1970; 227
Kelly-Loughnane. N. (10.1074/jbc.M602553200_bib52) 2001; 44
Marcus (10.1074/jbc.M602553200_bib15) 1984; 119
Blangy (10.1074/jbc.M602553200_bib23) 1968; 31
References_xml – volume: 55
  start-page: 1718
  year: 1999
  end-page: 1725
  ident: bib31
  publication-title: Acta Crystallogr. Sect. D
– volume: 54
  start-page: 121
  year: 1983
  end-page: 194
  ident: bib2
  publication-title: Adv. Enzymol. Relat. Areas Mol. Biol.
– volume: 72
  start-page: 248
  year: 1976
  end-page: 252
  ident: bib29
  publication-title: Anal. Biochem.
– volume: 31
  start-page: 13
  year: 1968
  end-page: 35
  ident: bib23
  publication-title: J. Mol. Biol.
– volume: 114
  start-page: 4
  year: 1966
  end-page: 12
  ident: bib4
  publication-title: Arch Biochem. Biophys.
– volume: 86
  start-page: 8247
  year: 1989
  end-page: 8251
  ident: bib44
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– reference: Collaborative Computational Project Number 4 (1994) Acta Crystallogr. Sect. D 50, 760–763
– volume: 24
  start-page: 946
  year: 1991
  end-page: 950
  ident: bib28
  publication-title: J. Appl. Crystallogr.
– volume: 138
  start-page: 590
  year: 1970
  end-page: 597
  ident: bib50
  publication-title: Arch. Biochem. Biophys.
– volume: 102
  start-page: 7970
  year: 2005
  end-page: 7975
  ident: bib22
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 90
  start-page: 837
  year: 1965
  end-page: 842
  ident: bib3
  publication-title: J. Bacteriol.
– volume: 278
  start-page: 51176
  year: 2003
  end-page: 51183
  ident: bib21
  publication-title: J. Biol. Chem.
– volume: 277
  start-page: 15539
  year: 2002
  end-page: 15545
  ident: bib53
  publication-title: J. Biol. Chem.
– volume: 34
  start-page: 517
  year: 1978
  ident: bib33
  publication-title: Acta Crystallogr. Sect. A
– reference: Evans, P., (1992) MRC LMB, Cambridge
– volume: 492
  start-page: 254
  year: 2001
  end-page: 258
  ident: bib45
  publication-title: FEBS Lett.
– volume: 37
  start-page: 11441
  year: 1998
  end-page: 11450
  ident: bib49
  publication-title: Biochemistry
– volume: 225
  start-page: 944
  year: 1983
  end-page: 949
  ident: bib14
  publication-title: Arch. Biochem. Biophys.
– volume: 54
  start-page: 905
  year: 1998
  end-page: 921
  ident: bib36
  publication-title: Acta Crystallogr. Sect. D.
– volume: 53
  start-page: 45
  year: 1982
  end-page: 82
  ident: bib1
  publication-title: Adv. Enzymol. Relat. Areas Mol. Biol.
– volume: 22
  start-page: 4673
  year: 1994
  end-page: 4680
  ident: bib41
  publication-title: Nucleic Acids Res.
– volume: 119
  start-page: 1103
  year: 1984
  end-page: 1108
  ident: bib15
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 280
  start-page: 19737
  year: 2005
  end-page: 19745
  ident: bib40
  publication-title: J. Biol. Chem.
– volume: 74
  start-page: 1183
  year: 1973
  end-page: 1191
  ident: bib24
  publication-title: J. Biochem.
– volume: 244
  start-page: 609
  year: 1994
  end-page: 624
  ident: bib11
  publication-title: J. Mol. Biol.
– volume: 1594
  start-page: 6
  year: 2002
  end-page: 16
  ident: bib16
  publication-title: Biochim. Biophys. Acta
– volume: 250
  start-page: 3024
  year: 1974
  end-page: 3033
  ident: bib25
  publication-title: J. Biol. Chem.
– volume: 254
  start-page: 5340
  year: 1978
  end-page: 5349
  ident: bib26
  publication-title: J. Biol. Chem.
– volume: 44
  start-page: 255
  year: 2001
  end-page: 261
  ident: bib52
  publication-title: Proteins
– volume: 57
  start-page: 755
  year: 1988
  end-page: 783
  ident: bib5
  publication-title: Annu. Rev. Biochem.
– volume: 255
  start-page: 2867
  year: 1980
  end-page: 2869
  ident: bib6
  publication-title: J. Biol. Chem.
– volume: 59
  start-page: 45
  year: 1987
  end-page: 82
  ident: bib10
  publication-title: Adv. Enzymol. Relat. Areas Mol. Biol.
– volume: 271
  start-page: 33301
  year: 1996
  end-page: 33307
  ident: bib13
  publication-title: J. Biol. Chem.
– volume: 32
  start-page: 922
  year: 1976
  end-page: 923
  ident: bib39
  publication-title: Acta Crystallogr. Sect. A
– volume: 276
  start-page: 6119
  year: 2001
  end-page: 6124
  ident: bib43
  publication-title: J. Biol. Chem.
– volume: 45
  start-page: 3865
  year: 2002
  end-page: 3877
  ident: bib20
  publication-title: J. Med. Chem.
– volume: 251
  start-page: 4315
  year: 1976
  end-page: 4321
  ident: bib51
  publication-title: J. Biol. Chem.
– volume: 34
  start-page: 4299
  year: 1995
  end-page: 4306
  ident: bib47
  publication-title: Biochemistry
– volume: 12
  start-page: 949
  year: 2004
  end-page: 959
  ident: bib19
  publication-title: Structure
– volume: 55
  start-page: 93
  year: 1999
  end-page: 102
  ident: bib46
  publication-title: Acta Crystallogr.
– volume: 256
  start-page: 3619
  year: 1981
  end-page: 3622
  ident: bib8
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 1
  year: 1999
  end-page: 14
  ident: bib9
  publication-title: Biofactors
– volume: 87
  start-page: 5243
  year: 1990
  end-page: 5247
  ident: bib12
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 50
  start-page: 157
  year: 1994
  end-page: 163
  ident: bib34
  publication-title: Acta Crystallogr. Sect. A
– volume: 39
  start-page: 8565
  year: 2000
  end-page: 8574
  ident: bib48
  publication-title: Biochemistry
– volume: 10
  start-page: 44
  year: 1992
  end-page: 46
  ident: bib35
  publication-title: J. Mol. Graph.
– volume: 183
  start-page: 63
  year: 1990
  end-page: 98
  ident: bib42
  publication-title: Methods Enzymol.
– volume: 227
  start-page: 680
  year: 1970
  end-page: 685
  ident: bib30
  publication-title: Nature
– volume: 47
  start-page: 392
  year: 1991
  end-page: 400
  ident: bib37
  publication-title: Acta Crystallogr. Sect. A
– volume: 246
  start-page: 6511
  year: 1971
  end-page: 6521
  ident: bib54
  publication-title: J. Biol. Chem.
– volume: 153
  start-page: 390
  year: 1983
  end-page: 394
  ident: bib7
  publication-title: J. Bacteriol.
– volume: 236
  start-page: 515
  year: 1960
  end-page: 519
  ident: bib17
  publication-title: J. Biol. Chem.
– volume: 182
  start-page: 5624
  year: 2000
  end-page: 5627
  ident: bib18
  publication-title: J. Bacteriol.
– volume: 16
  start-page: 8707
  year: 1988
  ident: bib27
  publication-title: Nucleic Acids Res.
– volume: 276
  start-page: 6119
  year: 2001
  ident: 10.1074/jbc.M602553200_bib43
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M009485200
– volume: 34
  start-page: 517
  year: 1978
  ident: 10.1074/jbc.M602553200_bib33
  publication-title: Acta Crystallogr. Sect. A
  doi: 10.1107/S0567739478001114
– volume: 34
  start-page: 4299
  year: 1995
  ident: 10.1074/jbc.M602553200_bib47
  publication-title: Biochemistry
  doi: 10.1021/bi00013a019
– volume: 10
  start-page: 1
  year: 1999
  ident: 10.1074/jbc.M602553200_bib9
  publication-title: Biofactors
  doi: 10.1002/biof.5520100101
– volume: 39
  start-page: 8565
  year: 2000
  ident: 10.1074/jbc.M602553200_bib48
  publication-title: Biochemistry
  doi: 10.1021/bi000574g
– volume: 54
  start-page: 121
  year: 1983
  ident: 10.1074/jbc.M602553200_bib2
  publication-title: Adv. Enzymol. Relat. Areas Mol. Biol.
– volume: 225
  start-page: 944
  year: 1983
  ident: 10.1074/jbc.M602553200_bib14
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(83)90109-1
– volume: 47
  start-page: 392
  year: 1991
  ident: 10.1074/jbc.M602553200_bib37
  publication-title: Acta Crystallogr. Sect. A
  doi: 10.1107/S0108767391001071
– volume: 250
  start-page: 3024
  year: 1974
  ident: 10.1074/jbc.M602553200_bib25
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)41589-5
– volume: 277
  start-page: 15539
  year: 2002
  ident: 10.1074/jbc.M602553200_bib53
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112304200
– volume: 153
  start-page: 390
  year: 1983
  ident: 10.1074/jbc.M602553200_bib7
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.153.1.390-394.1983
– volume: 119
  start-page: 1103
  year: 1984
  ident: 10.1074/jbc.M602553200_bib15
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(84)90888-X
– volume: 74
  start-page: 1183
  year: 1973
  ident: 10.1074/jbc.M602553200_bib24
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a130346
– volume: 32
  start-page: 922
  year: 1976
  ident: 10.1074/jbc.M602553200_bib39
  publication-title: Acta Crystallogr. Sect. A
  doi: 10.1107/S0567739476001873
– volume: 37
  start-page: 11441
  year: 1998
  ident: 10.1074/jbc.M602553200_bib49
  publication-title: Biochemistry
  doi: 10.1021/bi981112u
– volume: 72
  start-page: 248
  year: 1976
  ident: 10.1074/jbc.M602553200_bib29
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
– volume: 492
  start-page: 254
  year: 2001
  ident: 10.1074/jbc.M602553200_bib45
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02262-1
– volume: 1594
  start-page: 6
  year: 2002
  ident: 10.1074/jbc.M602553200_bib16
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4838(01)00261-8
– volume: 86
  start-page: 8247
  year: 1989
  ident: 10.1074/jbc.M602553200_bib44
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.86.21.8247
– volume: 22
  start-page: 4673
  year: 1994
  ident: 10.1074/jbc.M602553200_bib41
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/22.22.4673
– volume: 251
  start-page: 4315
  year: 1976
  ident: 10.1074/jbc.M602553200_bib51
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)33298-2
– volume: 57
  start-page: 755
  year: 1988
  ident: 10.1074/jbc.M602553200_bib5
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.57.070188.003543
– volume: 280
  start-page: 19737
  year: 2005
  ident: 10.1074/jbc.M602553200_bib40
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M501011200
– volume: 45
  start-page: 3865
  year: 2002
  ident: 10.1074/jbc.M602553200_bib20
  publication-title: J. Med. Chem.
  doi: 10.1021/jm010496a
– volume: 102
  start-page: 7970
  year: 2005
  ident: 10.1074/jbc.M602553200_bib22
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0502983102
– volume: 255
  start-page: 2867
  year: 1980
  ident: 10.1074/jbc.M602553200_bib6
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)85820-9
– volume: 236
  start-page: 515
  year: 1960
  ident: 10.1074/jbc.M602553200_bib17
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)64395-9
– ident: 10.1074/jbc.M602553200_bib38
– volume: 271
  start-page: 33301
  year: 1996
  ident: 10.1074/jbc.M602553200_bib13
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.52.33301
– volume: 246
  start-page: 6511
  year: 1971
  ident: 10.1074/jbc.M602553200_bib54
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)34144-4
– volume: 90
  start-page: 837
  year: 1965
  ident: 10.1074/jbc.M602553200_bib3
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.90.4.837-842.1965
– volume: 183
  start-page: 63
  year: 1990
  ident: 10.1074/jbc.M602553200_bib42
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(90)83007-V
– volume: 256
  start-page: 3619
  year: 1981
  ident: 10.1074/jbc.M602553200_bib8
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)69494-9
– volume: 182
  start-page: 5624
  year: 2000
  ident: 10.1074/jbc.M602553200_bib18
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.19.5624-5627.2000
– volume: 31
  start-page: 13
  year: 1968
  ident: 10.1074/jbc.M602553200_bib23
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(68)90051-X
– volume: 55
  start-page: 93
  year: 1999
  ident: 10.1074/jbc.M602553200_bib46
  publication-title: Acta Crystallogr.
– volume: 278
  start-page: 51176
  year: 2003
  ident: 10.1074/jbc.M602553200_bib21
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M308396200
– ident: 10.1074/jbc.M602553200_bib32
  doi: 10.1107/S0907444994003112
– volume: 59
  start-page: 45
  year: 1987
  ident: 10.1074/jbc.M602553200_bib10
  publication-title: Adv. Enzymol. Relat. Areas Mol. Biol.
– volume: 24
  start-page: 946
  year: 1991
  ident: 10.1074/jbc.M602553200_bib28
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889891004399
– volume: 50
  start-page: 157
  year: 1994
  ident: 10.1074/jbc.M602553200_bib34
  publication-title: Acta Crystallogr. Sect. A
  doi: 10.1107/S0108767393007597
– volume: 44
  start-page: 255
  year: 2001
  ident: 10.1074/jbc.M602553200_bib52
  publication-title: Proteins
  doi: 10.1002/prot.1090
– volume: 114
  start-page: 4
  year: 1966
  ident: 10.1074/jbc.M602553200_bib4
  publication-title: Arch Biochem. Biophys.
  doi: 10.1016/0003-9861(66)90298-0
– volume: 244
  start-page: 609
  year: 1994
  ident: 10.1074/jbc.M602553200_bib11
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.1755
– volume: 54
  start-page: 905
  year: 1998
  ident: 10.1074/jbc.M602553200_bib36
  publication-title: Acta Crystallogr. Sect. D.
  doi: 10.1107/S0907444998003254
– volume: 87
  start-page: 5243
  year: 1990
  ident: 10.1074/jbc.M602553200_bib12
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.87.14.5243
– volume: 254
  start-page: 5340
  year: 1978
  ident: 10.1074/jbc.M602553200_bib26
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)50601-3
– volume: 10
  start-page: 44
  year: 1992
  ident: 10.1074/jbc.M602553200_bib35
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(92)80022-6
– volume: 227
  start-page: 680
  year: 1970
  ident: 10.1074/jbc.M602553200_bib30
  publication-title: Nature
  doi: 10.1038/227680a0
– volume: 55
  start-page: 1718
  year: 1999
  ident: 10.1074/jbc.M602553200_bib31
  publication-title: Acta Crystallogr. Sect. D
  doi: 10.1107/S090744499900935X
– volume: 53
  start-page: 45
  year: 1982
  ident: 10.1074/jbc.M602553200_bib1
  publication-title: Adv. Enzymol. Relat. Areas Mol. Biol.
– volume: 16
  start-page: 8707
  year: 1988
  ident: 10.1074/jbc.M602553200_bib27
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/16.17.8707
– volume: 12
  start-page: 949
  year: 2004
  ident: 10.1074/jbc.M602553200_bib19
  publication-title: Structure
  doi: 10.1016/j.str.2004.03.026
– volume: 138
  start-page: 590
  year: 1970
  ident: 10.1074/jbc.M602553200_bib50
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(70)90385-1
SSID ssj0000491
Score 2.0234494
Snippet Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals,...
Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals,...
SourceID proquest
pubmed
crossref
highwire
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18386
SubjectTerms Adenosine Monophosphate - metabolism
Allosteric Regulation
Allosteric Site
Crystallography, X-Ray
Escherichia coli
Escherichia coli Proteins - chemistry
Fructose-Bisphosphatase - chemistry
Fructose-Bisphosphatase - genetics
Kinetics
Models, Molecular
Mutagenesis, Site-Directed
Protein Conformation
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Title Novel Allosteric Activation Site in Escherichia coli Fructose-1,6-bisphosphatase
URI https://dx.doi.org/10.1074/jbc.M602553200
http://www.jbc.org/content/281/27/18386.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16670087
https://www.proquest.com/docview/17258276
https://www.proquest.com/docview/68600015
Volume 281
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BOcAFQcsjhcIeEByCgx9rr3MMUVHUqhWIVuptZa93RSCxq8SpRH89M16vN4QGFQ6x8lgnsb_P45ndmW8IeTNUOg01RqpShR4L8thDmD0tQ-VnRVbEHGuHT06TyTk7uogvXOpQU11S5wN5fWNdyf-gCu8Brlgl-w_Idl8Kb8BzwBe2gDBsb4XxaXWl4AzPZlipgSnxI2m7lfW_gi-JkxmHS4RliinNfQB9Cq7qStbVUnlgw8YJRMbLy28VPLLaLtR8dwxa81eNXJMRFLFd4tzEdav43zQHK_vHg44Xi2o-N_e3BeZw94-6jyZVeZ3VP6q1-v7-x8HmNAROca6bVsz1CI0OuzWtoWnH0nLIiAC0lhJMidXAtq9Nq8Q_bDo4OWjTczk4STACioy26YZ49sZNrUs1bBbZOROwv3D73yX3QogrsOXF8RcnLw_hkmmx2B6LVfnk7MPvv7_Ni-lEprcHLI3jcvaIPGwRpCNDn8fkjip3yd6ozOpq_pO-pU0OcLO4skvujy2ye-Rzwy7q2EUduyiyi05LusYuiuyijl3vN7n1hJx_OjwbT7y2_4YnGQtrjymm0mGiVKqVYoHULNCh5HlRSB0VES8Uj3SUx3mcDWXBYJDMJJwiDi4rhMF59JTslFWpnhPqR0OsyM78uAhY6Ks8zZJI6yj1VRxoP-0Rz55PIVtxeuyRMhM349cj77rxl0aWZevIwMIjWqfSOIsC-LV1nwOLo4CLCy8qAVQWIRcNbXvktQVXACi4xJaVqlotBYQDcJz8LyOSNGn0C3rkmWGF-_8JlsylfP_Wx_aCPHCX4kuyUy9W6gB85Dp_1fD6FwjsuXM
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Allosteric+Activation+Site+in+Escherichia+coli+Fructose-1%2C6-bisphosphatase&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Hines%2C+Justin+K.&rft.au=Fromm%2C+Herbert+J.&rft.au=Honzatko%2C+Richard+B.&rft.date=2006-07-07&rft.issn=0021-9258&rft.volume=281&rft.issue=27&rft.spage=18386&rft.epage=18393&rft_id=info:doi/10.1074%2Fjbc.M602553200&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_jbc_M602553200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon