Novel Allosteric Activation Site in Escherichia coli Fructose-1,6-bisphosphatase
Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the...
Saved in:
Published in | The Journal of biological chemistry Vol. 281; no. 27; pp. 18386 - 18393 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.07.2006
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45Å) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe15 and residues at the C-terminal side of the first α-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding. |
---|---|
AbstractList | Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45A) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe(15) and residues at the C-terminal side of the first alpha-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding.Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45A) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe(15) and residues at the C-terminal side of the first alpha-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding. Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45A) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe(15) and residues at the C-terminal side of the first alpha-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding. Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45Aa) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe super(15) and residues at the C-terminal side of the first alpha -helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding. Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45à ) of recombinant FBPase from Escherichia coli , the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe 15 and residues at the C-terminal side of the first α-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding. Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45Å) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe15 and residues at the C-terminal side of the first α-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding. |
Author | Hines, Justin K. Fromm, Herbert J. Honzatko, Richard B. |
Author_xml | – sequence: 1 givenname: Justin K. surname: Hines fullname: Hines, Justin K. – sequence: 2 givenname: Herbert J. surname: Fromm fullname: Fromm, Herbert J. – sequence: 3 givenname: Richard B. surname: Honzatko fullname: Honzatko, Richard B. email: honzatko@iastate.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16670087$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc2LFDEQxYOsuLOrV4_SB9mTPearO5njsOyqsH6ACt5CurrarqWnMyaZEf97M86qICwGihzq9yqp987YyRxmZOyp4EvBjX5528Hybctl0yjJ-QO2ENyqWjXiywlbcC5FvZKNPWVnKd3ycvRKPGKnom0N59Ys2Id3YY9TtZ6mkDJGgmoNmfY-U5irj5Sxorm6SjAeeiP5CsJE1XXcQQ4Ja_GirTtK2zGU8tknfMweDn5K-OTuPmefr68-Xb6ub96_enO5vqlBa5lrjRrtqkW0A6IWMGgxSDBd38OgemV6NGpQXdM1fgW9LhB4KHsaaZU1TafO2cVx7jaGbztM2W0oAU6TnzHskmttW9YVzX9BYYpB0rQFfHYH7roN9m4baePjD_fbrALoIwAxpBRxcED5l1M5epqc4O6QiSuZuL-ZFNnyH9mfyfcJnh8FI30dv1NE11EoCWyctMJJ40Tx4PBfe8Sw2LwnjC4B4QzYFwlk1we674WfF7is6w |
CitedBy_id | crossref_primary_10_1016_j_biotechadv_2019_107441 crossref_primary_10_1371_journal_pone_0138436 crossref_primary_10_1074_jbc_M611104200 crossref_primary_10_1128_JB_01301_09 crossref_primary_10_1074_jbc_M703580200 crossref_primary_10_15252_msb_202110704 crossref_primary_10_1016_j_mec_2019_e00113 crossref_primary_10_1016_j_jmgm_2017_01_007 crossref_primary_10_1128_EC_00169_08 crossref_primary_10_1128_JB_00672_13 crossref_primary_10_1038_ncomms8912 crossref_primary_10_15252_msb_20135022 crossref_primary_10_1371_journal_pcbi_1007727 crossref_primary_10_1007_s12010_011_9219_x crossref_primary_10_1038_nbt_2489 crossref_primary_10_1111_1751_7915_13938 crossref_primary_10_1074_jbc_M114_548586 crossref_primary_10_1073_pnas_1802191115 crossref_primary_10_1371_journal_pone_0071242 crossref_primary_10_1074_jbc_M707302200 crossref_primary_10_1186_1472_6807_7_55 crossref_primary_10_1007_s12275_010_0377_2 crossref_primary_10_1139_bcb_2020_0021 crossref_primary_10_1016_j_chom_2015_07_008 crossref_primary_10_1128_ecosalplus_10_2_1 crossref_primary_10_1186_s12934_014_0096_1 crossref_primary_10_1074_jbc_M110_118315 crossref_primary_10_1007_s00253_019_09909_6 crossref_primary_10_1016_j_chemphys_2025_112704 crossref_primary_10_1074_jbc_M604429200 crossref_primary_10_1038_s42003_023_05318_8 crossref_primary_10_1007_s12010_017_2512_6 crossref_primary_10_1107_S1744309111014722 crossref_primary_10_1111_j_1365_2958_2007_05838_x crossref_primary_10_1128_aem_02016_22 |
Cites_doi | 10.1074/jbc.M009485200 10.1107/S0567739478001114 10.1021/bi00013a019 10.1002/biof.5520100101 10.1021/bi000574g 10.1016/0003-9861(83)90109-1 10.1107/S0108767391001071 10.1016/S0021-9258(19)41589-5 10.1074/jbc.M112304200 10.1128/jb.153.1.390-394.1983 10.1016/0006-291X(84)90888-X 10.1093/oxfordjournals.jbchem.a130346 10.1107/S0567739476001873 10.1021/bi981112u 10.1016/0003-2697(76)90527-3 10.1016/S0014-5793(01)02262-1 10.1016/S0167-4838(01)00261-8 10.1073/pnas.86.21.8247 10.1093/nar/22.22.4673 10.1016/S0021-9258(17)33298-2 10.1146/annurev.bi.57.070188.003543 10.1074/jbc.M501011200 10.1021/jm010496a 10.1073/pnas.0502983102 10.1016/S0021-9258(19)85820-9 10.1016/S0021-9258(18)64395-9 10.1074/jbc.271.52.33301 10.1016/S0021-9258(19)34144-4 10.1128/jb.90.4.837-842.1965 10.1016/0076-6879(90)83007-V 10.1016/S0021-9258(19)69494-9 10.1128/JB.182.19.5624-5627.2000 10.1016/0022-2836(68)90051-X 10.1074/jbc.M308396200 10.1107/S0907444994003112 10.1107/S0021889891004399 10.1107/S0108767393007597 10.1002/prot.1090 10.1016/0003-9861(66)90298-0 10.1006/jmbi.1994.1755 10.1107/S0907444998003254 10.1073/pnas.87.14.5243 10.1016/S0021-9258(18)50601-3 10.1016/0263-7855(92)80022-6 10.1038/227680a0 10.1107/S090744499900935X 10.1093/nar/16.17.8707 10.1016/j.str.2004.03.026 10.1016/0003-9861(70)90385-1 |
ContentType | Journal Article |
Copyright | 2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. |
Copyright_xml | – notice: 2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 8FD C1K FR3 P64 RC3 7X8 |
DOI | 10.1074/jbc.M602553200 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Bacteriology Abstracts (Microbiology B) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
EndPage | 18393 |
ExternalDocumentID | 16670087 10_1074_jbc_M602553200 281_27_18386 S0021925820575996 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: NS10456 |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0SF 186 18M 2WC 34G 39C 3O- 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFFNX AFMIJ AFOSN AFPKN AI. ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B MVM N9A OHT OK1 P-O P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XSW Y6R YQT YSK YWH YZZ ZA5 ZE2 ~02 ~KM - 02 55 AAWZA ABFLS ABPTK ABUFD ABZEH ADACO ADCOW AEILP AIZTS DL DZ ET FH7 GJ H13 KM LI MYA O0- X XHC .7T 0R~ 29J 41~ 6TJ AALRI AAYJJ AAYOK AAYWO AAYXX ABFSI ACSFO ACVFH ACYGS ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP BAWUL CITATION E.L J5H NHB QZG XJT YYP ZGI ZY4 CGR CUY CVF ECM EIF NPM PKN Z5M 7QL 8FD C1K FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c442t-4e4e896ee8fee41cf41f2c7bddcf3d37de73f3b5b5a9cd4feecac6027283875b3 |
ISSN | 0021-9258 |
IngestDate | Thu Jul 10 23:21:56 EDT 2025 Thu Jul 10 18:36:15 EDT 2025 Wed Feb 19 02:29:08 EST 2025 Tue Jul 01 04:25:08 EDT 2025 Thu Apr 24 22:52:48 EDT 2025 Tue Jan 05 14:52:05 EST 2021 Fri Feb 23 02:45:01 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c442t-4e4e896ee8fee41cf41f2c7bddcf3d37de73f3b5b5a9cd4feecac6027283875b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.M602553200 |
PMID | 16670087 |
PQID | 17258276 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68600015 proquest_miscellaneous_17258276 pubmed_primary_16670087 crossref_citationtrail_10_1074_jbc_M602553200 crossref_primary_10_1074_jbc_M602553200 highwire_biochem_281_27_18386 elsevier_sciencedirect_doi_10_1074_jbc_M602553200 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-07-07 |
PublicationDateYYYYMMDD | 2006-07-07 |
PublicationDate_xml | – month: 07 year: 2006 text: 2006-07-07 day: 07 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2006 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Pilkis, El-Maghrabi, McGrane, Pilkis, Claus (bib8) 1981; 256 Collaborative Computational Project Number 4 (1994) Acta Crystallogr. Sect. D 50, 760–763 Kelly-Loughnane. N., Gibson, Lu, Hehir, Phelan, P., Kantrowitz (bib16) 2002; 1594 Kelly-Loughnane. N., Kantrowitz (bib52) 2001; 44 Hamilton, Harrison, Dyer (bib27) 1988; 16 French, Wilson (bib33) 1978; 34 Nakashima, Tuboi (bib51) 1976; 251 Weeks, Roszak, Erman, Kaiser, Jornvall, Ghosh (bib46) 1999; 55 Hubert, Villanueva, González, Marcus (bib50) 1970; 138 Kraulis (bib28) 1991; 24 Pearson (bib42) 1990; 183 Thompson, Higgins, Gibson (bib41) 1994; 22 Pflugrath (bib31) 1999; 55 Pilkis, El-Maghrabi, Claus (bib5) 1988; 57 Hirel, Schmitter, Dessen, Fayat, Blanquet (bib44) 1989; 86 Choe, Poland, Fromm, Honzatko (bib49) 1998; 37 Navaza (bib34) 1994; 50 Nishimasu, Fushinobu, Shoun, Wakagi (bib19) 2004; 12 Tejwani (bib2) 1983; 54 Erion, Van Poelje, Dang, Kasibhatla, Potter, Reddy, Reddy, Jiang, Lipscomb (bib22) 2005; 102 Iancu, Mukund, Fromm, Honzatko (bib40) 2005; 280 Fraenkel, Pontremoli, Horecker (bib4) 1966; 114 Kabsch (bib39) 1976; 32 Chambost, Fraenkel (bib6) 1980; 255 Benkovic, de Maine (bib1) 1982; 53 Choe, Honzatko (bib48) 2000; 39 Van Shaftingen (bib10) 1987; 59 Wright, Carlo, Carty, Danley, Hageman, Karam, Levy, Mansour, Mathiowetz, McClure, Nestor, McPherson, Pandit, Pustilnik, Schulte, Soeller, Treadway, Wang, Bauer (bib20) 2002; 45 Yoshida, Oshima, Imahori (bib24) 1973; 74 Daldal, Fraenkel (bib7) 1983; 153 Fujita, Freese (bib26) 1978; 254 Choe, Nelson, Arienti, Axe, Collins, Jones, Kimmich, Newman, Norvell, Ripka, Romano, Short, Slee, Fromm, Honzatko (bib21) 2003; 278 Donahue, Bownas, Niehaus, Larson (bib18) 2000; 182 Engh, Huber (bib37) 1991; 47 Marcus, Edelstein, Rittenhouse (bib15) 1984; 119 Villeret, Huang, Zhang, Xue, Lipscomb (bib47) 1995; 34 Fraenkel, Horecker (bib3) 1965; 90 Nelson, Honzatko, Fromm (bib45) 2001; 492 Zhang, Liang, Huang, Lipscomb (bib11) 1994; 244 Laemmli (bib30) 1970; 227 Shyur, Aleshin, Honzatko, Fromm (bib13) 1996; 271 Bradford (bib29) 1976; 72 Franzen, Binkley (bib17) 1960; 236 Opheim, Bernlohr (bib25) 1974; 250 Evans, P., (1992) MRC LMB, Cambridge Nelson, Kurbanov, Honzatko, Fromm (bib43) 2001; 276 Ke, Zhang, Lipscomb (bib12) 1990; 87 McRee (bib35) 1992; 10 Brünger, Adams, Clore, DeLano, Gros, Grosse-Kunstleve, Jiang, Kuszewski, Nilges, Pannu, Read, Rice, Simonson, Warren (bib36) 1998; 54 Okar, Lange (bib9) 1999; 10 Babul, Guixe (bib14) 1983; 225 Blangy, Buc, Monod (bib23) 1968; 31 Nelson, Honzatko, Fromm (bib53) 2002; 277 Lowry, Carter, Ward, Glaser (bib54) 1971; 246 Babul (10.1074/jbc.M602553200_bib14) 1983; 225 Chambost (10.1074/jbc.M602553200_bib6) 1980; 255 Van Shaftingen (10.1074/jbc.M602553200_bib10) 1987; 59 Choe (10.1074/jbc.M602553200_bib48) 2000; 39 Kraulis (10.1074/jbc.M602553200_bib28) 1991; 24 Daldal (10.1074/jbc.M602553200_bib7) 1983; 153 Erion (10.1074/jbc.M602553200_bib22) 2005; 102 Ke (10.1074/jbc.M602553200_bib12) 1990; 87 Nakashima (10.1074/jbc.M602553200_bib51) 1976; 251 Tejwani (10.1074/jbc.M602553200_bib2) 1983; 54 Pflugrath (10.1074/jbc.M602553200_bib31) 1999; 55 Pilkis (10.1074/jbc.M602553200_bib8) 1981; 256 Nishimasu (10.1074/jbc.M602553200_bib19) 2004; 12 Bradford (10.1074/jbc.M602553200_bib29) 1976; 72 Hirel (10.1074/jbc.M602553200_bib44) 1989; 86 Shyur (10.1074/jbc.M602553200_bib13) 1996; 271 Kabsch (10.1074/jbc.M602553200_bib39) 1976; 32 Opheim (10.1074/jbc.M602553200_bib25) 1974; 250 10.1074/jbc.M602553200_bib32 Pearson (10.1074/jbc.M602553200_bib42) 1990; 183 Kelly-Loughnane. N. (10.1074/jbc.M602553200_bib16) 2002; 1594 Zhang (10.1074/jbc.M602553200_bib11) 1994; 244 Weeks (10.1074/jbc.M602553200_bib46) 1999; 55 Nelson (10.1074/jbc.M602553200_bib43) 2001; 276 Nelson (10.1074/jbc.M602553200_bib45) 2001; 492 Fraenkel (10.1074/jbc.M602553200_bib3) 1965; 90 Choe (10.1074/jbc.M602553200_bib21) 2003; 278 Engh (10.1074/jbc.M602553200_bib37) 1991; 47 10.1074/jbc.M602553200_bib38 Iancu (10.1074/jbc.M602553200_bib40) 2005; 280 Lowry (10.1074/jbc.M602553200_bib54) 1971; 246 Choe (10.1074/jbc.M602553200_bib49) 1998; 37 Pilkis (10.1074/jbc.M602553200_bib5) 1988; 57 Wright (10.1074/jbc.M602553200_bib20) 2002; 45 Yoshida (10.1074/jbc.M602553200_bib24) 1973; 74 Benkovic (10.1074/jbc.M602553200_bib1) 1982; 53 Nelson (10.1074/jbc.M602553200_bib53) 2002; 277 Okar (10.1074/jbc.M602553200_bib9) 1999; 10 Donahue (10.1074/jbc.M602553200_bib18) 2000; 182 Navaza (10.1074/jbc.M602553200_bib34) 1994; 50 Hubert (10.1074/jbc.M602553200_bib50) 1970; 138 Fraenkel (10.1074/jbc.M602553200_bib4) 1966; 114 Thompson (10.1074/jbc.M602553200_bib41) 1994; 22 Brünger (10.1074/jbc.M602553200_bib36) 1998; 54 Franzen (10.1074/jbc.M602553200_bib17) 1960; 236 Fujita (10.1074/jbc.M602553200_bib26) 1978; 254 Hamilton (10.1074/jbc.M602553200_bib27) 1988; 16 McRee (10.1074/jbc.M602553200_bib35) 1992; 10 French (10.1074/jbc.M602553200_bib33) 1978; 34 Villeret (10.1074/jbc.M602553200_bib47) 1995; 34 Laemmli (10.1074/jbc.M602553200_bib30) 1970; 227 Kelly-Loughnane. N. (10.1074/jbc.M602553200_bib52) 2001; 44 Marcus (10.1074/jbc.M602553200_bib15) 1984; 119 Blangy (10.1074/jbc.M602553200_bib23) 1968; 31 |
References_xml | – volume: 55 start-page: 1718 year: 1999 end-page: 1725 ident: bib31 publication-title: Acta Crystallogr. Sect. D – volume: 54 start-page: 121 year: 1983 end-page: 194 ident: bib2 publication-title: Adv. Enzymol. Relat. Areas Mol. Biol. – volume: 72 start-page: 248 year: 1976 end-page: 252 ident: bib29 publication-title: Anal. Biochem. – volume: 31 start-page: 13 year: 1968 end-page: 35 ident: bib23 publication-title: J. Mol. Biol. – volume: 114 start-page: 4 year: 1966 end-page: 12 ident: bib4 publication-title: Arch Biochem. Biophys. – volume: 86 start-page: 8247 year: 1989 end-page: 8251 ident: bib44 publication-title: Proc. Natl. Acad. Sci. U. S. A. – reference: Collaborative Computational Project Number 4 (1994) Acta Crystallogr. Sect. D 50, 760–763 – volume: 24 start-page: 946 year: 1991 end-page: 950 ident: bib28 publication-title: J. Appl. Crystallogr. – volume: 138 start-page: 590 year: 1970 end-page: 597 ident: bib50 publication-title: Arch. Biochem. Biophys. – volume: 102 start-page: 7970 year: 2005 end-page: 7975 ident: bib22 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 90 start-page: 837 year: 1965 end-page: 842 ident: bib3 publication-title: J. Bacteriol. – volume: 278 start-page: 51176 year: 2003 end-page: 51183 ident: bib21 publication-title: J. Biol. Chem. – volume: 277 start-page: 15539 year: 2002 end-page: 15545 ident: bib53 publication-title: J. Biol. Chem. – volume: 34 start-page: 517 year: 1978 ident: bib33 publication-title: Acta Crystallogr. Sect. A – reference: Evans, P., (1992) MRC LMB, Cambridge – volume: 492 start-page: 254 year: 2001 end-page: 258 ident: bib45 publication-title: FEBS Lett. – volume: 37 start-page: 11441 year: 1998 end-page: 11450 ident: bib49 publication-title: Biochemistry – volume: 225 start-page: 944 year: 1983 end-page: 949 ident: bib14 publication-title: Arch. Biochem. Biophys. – volume: 54 start-page: 905 year: 1998 end-page: 921 ident: bib36 publication-title: Acta Crystallogr. Sect. D. – volume: 53 start-page: 45 year: 1982 end-page: 82 ident: bib1 publication-title: Adv. Enzymol. Relat. Areas Mol. Biol. – volume: 22 start-page: 4673 year: 1994 end-page: 4680 ident: bib41 publication-title: Nucleic Acids Res. – volume: 119 start-page: 1103 year: 1984 end-page: 1108 ident: bib15 publication-title: Biochem. Biophys. Res. Commun. – volume: 280 start-page: 19737 year: 2005 end-page: 19745 ident: bib40 publication-title: J. Biol. Chem. – volume: 74 start-page: 1183 year: 1973 end-page: 1191 ident: bib24 publication-title: J. Biochem. – volume: 244 start-page: 609 year: 1994 end-page: 624 ident: bib11 publication-title: J. Mol. Biol. – volume: 1594 start-page: 6 year: 2002 end-page: 16 ident: bib16 publication-title: Biochim. Biophys. Acta – volume: 250 start-page: 3024 year: 1974 end-page: 3033 ident: bib25 publication-title: J. Biol. Chem. – volume: 254 start-page: 5340 year: 1978 end-page: 5349 ident: bib26 publication-title: J. Biol. Chem. – volume: 44 start-page: 255 year: 2001 end-page: 261 ident: bib52 publication-title: Proteins – volume: 57 start-page: 755 year: 1988 end-page: 783 ident: bib5 publication-title: Annu. Rev. Biochem. – volume: 255 start-page: 2867 year: 1980 end-page: 2869 ident: bib6 publication-title: J. Biol. Chem. – volume: 59 start-page: 45 year: 1987 end-page: 82 ident: bib10 publication-title: Adv. Enzymol. Relat. Areas Mol. Biol. – volume: 271 start-page: 33301 year: 1996 end-page: 33307 ident: bib13 publication-title: J. Biol. Chem. – volume: 32 start-page: 922 year: 1976 end-page: 923 ident: bib39 publication-title: Acta Crystallogr. Sect. A – volume: 276 start-page: 6119 year: 2001 end-page: 6124 ident: bib43 publication-title: J. Biol. Chem. – volume: 45 start-page: 3865 year: 2002 end-page: 3877 ident: bib20 publication-title: J. Med. Chem. – volume: 251 start-page: 4315 year: 1976 end-page: 4321 ident: bib51 publication-title: J. Biol. Chem. – volume: 34 start-page: 4299 year: 1995 end-page: 4306 ident: bib47 publication-title: Biochemistry – volume: 12 start-page: 949 year: 2004 end-page: 959 ident: bib19 publication-title: Structure – volume: 55 start-page: 93 year: 1999 end-page: 102 ident: bib46 publication-title: Acta Crystallogr. – volume: 256 start-page: 3619 year: 1981 end-page: 3622 ident: bib8 publication-title: J. Biol. Chem. – volume: 10 start-page: 1 year: 1999 end-page: 14 ident: bib9 publication-title: Biofactors – volume: 87 start-page: 5243 year: 1990 end-page: 5247 ident: bib12 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 50 start-page: 157 year: 1994 end-page: 163 ident: bib34 publication-title: Acta Crystallogr. Sect. A – volume: 39 start-page: 8565 year: 2000 end-page: 8574 ident: bib48 publication-title: Biochemistry – volume: 10 start-page: 44 year: 1992 end-page: 46 ident: bib35 publication-title: J. Mol. Graph. – volume: 183 start-page: 63 year: 1990 end-page: 98 ident: bib42 publication-title: Methods Enzymol. – volume: 227 start-page: 680 year: 1970 end-page: 685 ident: bib30 publication-title: Nature – volume: 47 start-page: 392 year: 1991 end-page: 400 ident: bib37 publication-title: Acta Crystallogr. Sect. A – volume: 246 start-page: 6511 year: 1971 end-page: 6521 ident: bib54 publication-title: J. Biol. Chem. – volume: 153 start-page: 390 year: 1983 end-page: 394 ident: bib7 publication-title: J. Bacteriol. – volume: 236 start-page: 515 year: 1960 end-page: 519 ident: bib17 publication-title: J. Biol. Chem. – volume: 182 start-page: 5624 year: 2000 end-page: 5627 ident: bib18 publication-title: J. Bacteriol. – volume: 16 start-page: 8707 year: 1988 ident: bib27 publication-title: Nucleic Acids Res. – volume: 276 start-page: 6119 year: 2001 ident: 10.1074/jbc.M602553200_bib43 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M009485200 – volume: 34 start-page: 517 year: 1978 ident: 10.1074/jbc.M602553200_bib33 publication-title: Acta Crystallogr. Sect. A doi: 10.1107/S0567739478001114 – volume: 34 start-page: 4299 year: 1995 ident: 10.1074/jbc.M602553200_bib47 publication-title: Biochemistry doi: 10.1021/bi00013a019 – volume: 10 start-page: 1 year: 1999 ident: 10.1074/jbc.M602553200_bib9 publication-title: Biofactors doi: 10.1002/biof.5520100101 – volume: 39 start-page: 8565 year: 2000 ident: 10.1074/jbc.M602553200_bib48 publication-title: Biochemistry doi: 10.1021/bi000574g – volume: 54 start-page: 121 year: 1983 ident: 10.1074/jbc.M602553200_bib2 publication-title: Adv. Enzymol. Relat. Areas Mol. Biol. – volume: 225 start-page: 944 year: 1983 ident: 10.1074/jbc.M602553200_bib14 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(83)90109-1 – volume: 47 start-page: 392 year: 1991 ident: 10.1074/jbc.M602553200_bib37 publication-title: Acta Crystallogr. Sect. A doi: 10.1107/S0108767391001071 – volume: 250 start-page: 3024 year: 1974 ident: 10.1074/jbc.M602553200_bib25 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)41589-5 – volume: 277 start-page: 15539 year: 2002 ident: 10.1074/jbc.M602553200_bib53 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112304200 – volume: 153 start-page: 390 year: 1983 ident: 10.1074/jbc.M602553200_bib7 publication-title: J. Bacteriol. doi: 10.1128/jb.153.1.390-394.1983 – volume: 119 start-page: 1103 year: 1984 ident: 10.1074/jbc.M602553200_bib15 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(84)90888-X – volume: 74 start-page: 1183 year: 1973 ident: 10.1074/jbc.M602553200_bib24 publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a130346 – volume: 32 start-page: 922 year: 1976 ident: 10.1074/jbc.M602553200_bib39 publication-title: Acta Crystallogr. Sect. A doi: 10.1107/S0567739476001873 – volume: 37 start-page: 11441 year: 1998 ident: 10.1074/jbc.M602553200_bib49 publication-title: Biochemistry doi: 10.1021/bi981112u – volume: 72 start-page: 248 year: 1976 ident: 10.1074/jbc.M602553200_bib29 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 – volume: 492 start-page: 254 year: 2001 ident: 10.1074/jbc.M602553200_bib45 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02262-1 – volume: 1594 start-page: 6 year: 2002 ident: 10.1074/jbc.M602553200_bib16 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4838(01)00261-8 – volume: 86 start-page: 8247 year: 1989 ident: 10.1074/jbc.M602553200_bib44 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.86.21.8247 – volume: 22 start-page: 4673 year: 1994 ident: 10.1074/jbc.M602553200_bib41 publication-title: Nucleic Acids Res. doi: 10.1093/nar/22.22.4673 – volume: 251 start-page: 4315 year: 1976 ident: 10.1074/jbc.M602553200_bib51 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)33298-2 – volume: 57 start-page: 755 year: 1988 ident: 10.1074/jbc.M602553200_bib5 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.57.070188.003543 – volume: 280 start-page: 19737 year: 2005 ident: 10.1074/jbc.M602553200_bib40 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M501011200 – volume: 45 start-page: 3865 year: 2002 ident: 10.1074/jbc.M602553200_bib20 publication-title: J. Med. Chem. doi: 10.1021/jm010496a – volume: 102 start-page: 7970 year: 2005 ident: 10.1074/jbc.M602553200_bib22 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0502983102 – volume: 255 start-page: 2867 year: 1980 ident: 10.1074/jbc.M602553200_bib6 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)85820-9 – volume: 236 start-page: 515 year: 1960 ident: 10.1074/jbc.M602553200_bib17 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)64395-9 – ident: 10.1074/jbc.M602553200_bib38 – volume: 271 start-page: 33301 year: 1996 ident: 10.1074/jbc.M602553200_bib13 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.52.33301 – volume: 246 start-page: 6511 year: 1971 ident: 10.1074/jbc.M602553200_bib54 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)34144-4 – volume: 90 start-page: 837 year: 1965 ident: 10.1074/jbc.M602553200_bib3 publication-title: J. Bacteriol. doi: 10.1128/jb.90.4.837-842.1965 – volume: 183 start-page: 63 year: 1990 ident: 10.1074/jbc.M602553200_bib42 publication-title: Methods Enzymol. doi: 10.1016/0076-6879(90)83007-V – volume: 256 start-page: 3619 year: 1981 ident: 10.1074/jbc.M602553200_bib8 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)69494-9 – volume: 182 start-page: 5624 year: 2000 ident: 10.1074/jbc.M602553200_bib18 publication-title: J. Bacteriol. doi: 10.1128/JB.182.19.5624-5627.2000 – volume: 31 start-page: 13 year: 1968 ident: 10.1074/jbc.M602553200_bib23 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(68)90051-X – volume: 55 start-page: 93 year: 1999 ident: 10.1074/jbc.M602553200_bib46 publication-title: Acta Crystallogr. – volume: 278 start-page: 51176 year: 2003 ident: 10.1074/jbc.M602553200_bib21 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M308396200 – ident: 10.1074/jbc.M602553200_bib32 doi: 10.1107/S0907444994003112 – volume: 59 start-page: 45 year: 1987 ident: 10.1074/jbc.M602553200_bib10 publication-title: Adv. Enzymol. Relat. Areas Mol. Biol. – volume: 24 start-page: 946 year: 1991 ident: 10.1074/jbc.M602553200_bib28 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889891004399 – volume: 50 start-page: 157 year: 1994 ident: 10.1074/jbc.M602553200_bib34 publication-title: Acta Crystallogr. Sect. A doi: 10.1107/S0108767393007597 – volume: 44 start-page: 255 year: 2001 ident: 10.1074/jbc.M602553200_bib52 publication-title: Proteins doi: 10.1002/prot.1090 – volume: 114 start-page: 4 year: 1966 ident: 10.1074/jbc.M602553200_bib4 publication-title: Arch Biochem. Biophys. doi: 10.1016/0003-9861(66)90298-0 – volume: 244 start-page: 609 year: 1994 ident: 10.1074/jbc.M602553200_bib11 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.1755 – volume: 54 start-page: 905 year: 1998 ident: 10.1074/jbc.M602553200_bib36 publication-title: Acta Crystallogr. Sect. D. doi: 10.1107/S0907444998003254 – volume: 87 start-page: 5243 year: 1990 ident: 10.1074/jbc.M602553200_bib12 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.87.14.5243 – volume: 254 start-page: 5340 year: 1978 ident: 10.1074/jbc.M602553200_bib26 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)50601-3 – volume: 10 start-page: 44 year: 1992 ident: 10.1074/jbc.M602553200_bib35 publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(92)80022-6 – volume: 227 start-page: 680 year: 1970 ident: 10.1074/jbc.M602553200_bib30 publication-title: Nature doi: 10.1038/227680a0 – volume: 55 start-page: 1718 year: 1999 ident: 10.1074/jbc.M602553200_bib31 publication-title: Acta Crystallogr. Sect. D doi: 10.1107/S090744499900935X – volume: 53 start-page: 45 year: 1982 ident: 10.1074/jbc.M602553200_bib1 publication-title: Adv. Enzymol. Relat. Areas Mol. Biol. – volume: 16 start-page: 8707 year: 1988 ident: 10.1074/jbc.M602553200_bib27 publication-title: Nucleic Acids Res. doi: 10.1093/nar/16.17.8707 – volume: 12 start-page: 949 year: 2004 ident: 10.1074/jbc.M602553200_bib19 publication-title: Structure doi: 10.1016/j.str.2004.03.026 – volume: 138 start-page: 590 year: 1970 ident: 10.1074/jbc.M602553200_bib50 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(70)90385-1 |
SSID | ssj0000491 |
Score | 2.0234494 |
Snippet | Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals,... Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals,... |
SourceID | proquest pubmed crossref highwire elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18386 |
SubjectTerms | Adenosine Monophosphate - metabolism Allosteric Regulation Allosteric Site Crystallography, X-Ray Escherichia coli Escherichia coli Proteins - chemistry Fructose-Bisphosphatase - chemistry Fructose-Bisphosphatase - genetics Kinetics Models, Molecular Mutagenesis, Site-Directed Protein Conformation Recombinant Proteins - chemistry Recombinant Proteins - genetics |
Title | Novel Allosteric Activation Site in Escherichia coli Fructose-1,6-bisphosphatase |
URI | https://dx.doi.org/10.1074/jbc.M602553200 http://www.jbc.org/content/281/27/18386.abstract https://www.ncbi.nlm.nih.gov/pubmed/16670087 https://www.proquest.com/docview/17258276 https://www.proquest.com/docview/68600015 |
Volume | 281 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BOcAFQcsjhcIeEByCgx9rr3MMUVHUqhWIVuptZa93RSCxq8SpRH89M16vN4QGFQ6x8lgnsb_P45ndmW8IeTNUOg01RqpShR4L8thDmD0tQ-VnRVbEHGuHT06TyTk7uogvXOpQU11S5wN5fWNdyf-gCu8Brlgl-w_Idl8Kb8BzwBe2gDBsb4XxaXWl4AzPZlipgSnxI2m7lfW_gi-JkxmHS4RliinNfQB9Cq7qStbVUnlgw8YJRMbLy28VPLLaLtR8dwxa81eNXJMRFLFd4tzEdav43zQHK_vHg44Xi2o-N_e3BeZw94-6jyZVeZ3VP6q1-v7-x8HmNAROca6bVsz1CI0OuzWtoWnH0nLIiAC0lhJMidXAtq9Nq8Q_bDo4OWjTczk4STACioy26YZ49sZNrUs1bBbZOROwv3D73yX3QogrsOXF8RcnLw_hkmmx2B6LVfnk7MPvv7_Ni-lEprcHLI3jcvaIPGwRpCNDn8fkjip3yd6ozOpq_pO-pU0OcLO4skvujy2ye-Rzwy7q2EUduyiyi05LusYuiuyijl3vN7n1hJx_OjwbT7y2_4YnGQtrjymm0mGiVKqVYoHULNCh5HlRSB0VES8Uj3SUx3mcDWXBYJDMJJwiDi4rhMF59JTslFWpnhPqR0OsyM78uAhY6Ks8zZJI6yj1VRxoP-0Rz55PIVtxeuyRMhM349cj77rxl0aWZevIwMIjWqfSOIsC-LV1nwOLo4CLCy8qAVQWIRcNbXvktQVXACi4xJaVqlotBYQDcJz8LyOSNGn0C3rkmWGF-_8JlsylfP_Wx_aCPHCX4kuyUy9W6gB85Dp_1fD6FwjsuXM |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Allosteric+Activation+Site+in+Escherichia+coli+Fructose-1%2C6-bisphosphatase&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Hines%2C+Justin+K.&rft.au=Fromm%2C+Herbert+J.&rft.au=Honzatko%2C+Richard+B.&rft.date=2006-07-07&rft.issn=0021-9258&rft.volume=281&rft.issue=27&rft.spage=18386&rft.epage=18393&rft_id=info:doi/10.1074%2Fjbc.M602553200&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_jbc_M602553200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |