Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing
Structures capable of reversible shape changes directly after 3D printing are highly desirable for myriad of applications ranging from soft robotics to implantable medical devices. Liquid crystal elastomers (LCEs) have been studied for their large, reversible mechanical actuations in response to tem...
Saved in:
Published in | Smart materials and structures Vol. 27; no. 12; pp. 125011 - 125021 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
13.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Structures capable of reversible shape changes directly after 3D printing are highly desirable for myriad of applications ranging from soft robotics to implantable medical devices. Liquid crystal elastomers (LCEs) have been studied for their large, reversible mechanical actuations in response to temperature. Recently, several efforts were carried out to direct ink write (DIW) 3D print LCE, however, these methods require high temperatures for printing and actuation. Here, we present a novel LCE ink formulation which allows LCE to be printed at room temperature with a maximum actuation temperature of 75 °C. These advantages allow the 3D printed LCEs to be integrated with other 3D printing methods and materials to create more complex shape changes. By 3D printing LCE and conductive wires, which provide Joule heating, we demonstrated an active hinge, a reversibly opening and closing box, a soft robotic gripper for pick and place, and a printed hand for sign language. |
---|---|
AbstractList | Structures capable of reversible shape changes directly after 3D printing are highly desirable for myriad of applications ranging from soft robotics to implantable medical devices. Liquid crystal elastomers (LCEs) have been studied for their large, reversible mechanical actuations in response to temperature. Recently, several efforts were carried out to direct ink write (DIW) 3D print LCE, however, these methods require high temperatures for printing and actuation. Here, we present a novel LCE ink formulation which allows LCE to be printed at room temperature with a maximum actuation temperature of 75 °C. These advantages allow the 3D printed LCEs to be integrated with other 3D printing methods and materials to create more complex shape changes. By 3D printing LCE and conductive wires, which provide Joule heating, we demonstrated an active hinge, a reversibly opening and closing box, a soft robotic gripper for pick and place, and a printed hand for sign language. |
Author | Qi, H Jerry Chen, Kaijuan Roach, Devin J Yuan, Chao Kuang, Xiao |
Author_xml | – sequence: 1 givenname: Devin J orcidid: 0000-0002-8825-0340 surname: Roach fullname: Roach, Devin J organization: Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, United States of America – sequence: 2 givenname: Xiao surname: Kuang fullname: Kuang, Xiao organization: Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, United States of America – sequence: 3 givenname: Chao surname: Yuan fullname: Yuan, Chao organization: Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, United States of America – sequence: 4 givenname: Kaijuan surname: Chen fullname: Chen, Kaijuan organization: Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, United States of America – sequence: 5 givenname: H Jerry orcidid: 0000-0002-3212-5284 surname: Qi fullname: Qi, H Jerry email: qih@me.gatech.edu organization: Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, United States of America |
BookMark | eNp9kE1LAzEQhoNUsK3ePebowbXJbjbZPUq1KhS9WPAWsvmQ1N2kJqnQf--ulR5EhYGB4X2GmWcCRs47DcA5RlcYVdUMFxRnlJYvMyF0Tc0RGB9GIzBGNSUZZjk9AZMY1whhXBV4DFaP_kO30Lo3aHyAomusdglK75RN1ju4CdYl616hN7C171uroAy7mEQLdSti8p0O8YslN4fwKTg2oo367LtPwWpx-zy_z5ZPdw_z62UmCclTRjBhSGpaG1U3VBJUVLrKSUFUI5tCloYhVlesqSlWhClFDKmVKoVmlWGmQcUUoP1eGXyMQRveX9CJsOMY8UELHxzwwQHfa-kR-gORNonh1RSEbf8DL_ag9Ru-9tvg-s947CLPGcd5X2UvlW_UEL38Jfrn5k8ktIdk |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1002_aisy_202200384 crossref_primary_10_1002_adma_202104390 crossref_primary_10_1002_aisy_202100019 crossref_primary_10_1016_j_nanoen_2022_107340 crossref_primary_10_1016_j_addma_2021_101911 crossref_primary_10_1088_1361_665X_adadcd crossref_primary_10_1016_j_compositesb_2023_110585 crossref_primary_10_1088_2399_7532_aba1d9 crossref_primary_10_1039_D0TB00754D crossref_primary_10_1126_sciadv_abg3677 crossref_primary_10_1002_adfm_202210353 crossref_primary_10_1002_chem_202301027 crossref_primary_10_1063_5_0044533 crossref_primary_10_1115_1_4049165 crossref_primary_10_1002_aisy_202300788 crossref_primary_10_1038_s41578_021_00359_z crossref_primary_10_3390_molecules25184246 crossref_primary_10_1007_s00170_020_04927_5 crossref_primary_10_3390_biomedicines9111537 crossref_primary_10_1002_advs_202308561 crossref_primary_10_1039_D2MH00232A crossref_primary_10_34133_research_0234 crossref_primary_10_1038_s41427_023_00492_x crossref_primary_10_1016_j_addma_2023_103420 crossref_primary_10_1002_admt_202400074 crossref_primary_10_1002_mame_202400445 crossref_primary_10_1002_adfm_202109805 crossref_primary_10_1016_j_addma_2019_100819 crossref_primary_10_1142_S2424862220500219 crossref_primary_10_1017_pma_2023_8 crossref_primary_10_1142_S2737549822300012 crossref_primary_10_1002_adma_201906564 crossref_primary_10_1126_sciadv_abc0034 crossref_primary_10_1002_adma_202209566 crossref_primary_10_1016_j_matpr_2021_10_391 crossref_primary_10_1002_anie_202202577 crossref_primary_10_1021_acsami_0c19051 crossref_primary_10_1021_acsami_4c06130 crossref_primary_10_1021_acs_chemrev_4c00070 crossref_primary_10_1016_j_sna_2024_115041 crossref_primary_10_1021_acsapm_3c02207 crossref_primary_10_1016_j_addma_2022_103376 crossref_primary_10_1021_acsami_4c14792 crossref_primary_10_1002_advs_202001000 crossref_primary_10_1021_acsami_9b04480 crossref_primary_10_1016_j_mechmat_2022_104501 crossref_primary_10_3390_app13137744 crossref_primary_10_1021_jacs_4c01642 crossref_primary_10_1002_adfm_201805290 crossref_primary_10_1088_1361_665X_ab9fd6 crossref_primary_10_1016_j_finmec_2022_100081 crossref_primary_10_1016_j_matdes_2025_113737 crossref_primary_10_1088_2399_7532_abcbe1 crossref_primary_10_3390_ma14164521 crossref_primary_10_1016_j_cossms_2020_100869 crossref_primary_10_1039_D2SM00166G crossref_primary_10_1002_pol_20210718 crossref_primary_10_1002_aisy_201900163 crossref_primary_10_1002_ange_202202577 crossref_primary_10_3390_molecules29020319 crossref_primary_10_3390_ma17205028 crossref_primary_10_1007_s10311_024_01726_2 crossref_primary_10_1016_j_mee_2022_111874 crossref_primary_10_1002_adma_202204890 crossref_primary_10_1088_1361_665X_ac3590 crossref_primary_10_1002_pen_26450 crossref_primary_10_1039_C9SM02237F crossref_primary_10_1039_D3SM01374J crossref_primary_10_1021_acsami_2c11954 crossref_primary_10_1038_s41467_024_49775_z crossref_primary_10_3390_act12030101 crossref_primary_10_1039_D2ME00124A crossref_primary_10_1002_adfm_202100338 crossref_primary_10_1021_acsami_2c23028 crossref_primary_10_1039_D0TB00392A crossref_primary_10_1002_adfm_202201766 crossref_primary_10_1002_adma_202200182 crossref_primary_10_1021_acsapm_3c01335 crossref_primary_10_1002_adem_202401796 crossref_primary_10_1002_adfm_201907615 crossref_primary_10_1016_j_progpolymsci_2024_101829 crossref_primary_10_1021_acsami_3c14140 crossref_primary_10_1016_j_matdes_2021_110193 crossref_primary_10_1016_j_addma_2022_102861 crossref_primary_10_1002_aisy_202000271 crossref_primary_10_1016_j_apmt_2020_100611 crossref_primary_10_1021_acsami_3c14783 crossref_primary_10_3390_polym13111889 crossref_primary_10_1021_acsami_9b18037 crossref_primary_10_1021_acsapm_1c01598 crossref_primary_10_1016_j_addma_2021_101950 crossref_primary_10_1016_j_jmapro_2023_12_038 crossref_primary_10_1093_pnasnexus_pgad042 crossref_primary_10_1002_admt_202101732 crossref_primary_10_1080_09506608_2021_1971428 crossref_primary_10_1002_adfm_201806723 crossref_primary_10_1021_acsami_0c02038 crossref_primary_10_1002_adma_202103309 crossref_primary_10_1038_s42004_024_01141_2 crossref_primary_10_1088_1361_665X_ac13b3 crossref_primary_10_1155_2024_6621344 crossref_primary_10_1002_adfm_202007125 crossref_primary_10_1016_j_compscitech_2019_107692 crossref_primary_10_1021_acsami_1c03572 crossref_primary_10_1002_adfm_201907384 crossref_primary_10_1002_adma_202302066 crossref_primary_10_1088_1361_665X_ac775c crossref_primary_10_1115_1_4062220 crossref_primary_10_1063_5_0078455 crossref_primary_10_54227_mlab_20220030 crossref_primary_10_1080_17452759_2020_1795209 crossref_primary_10_1088_2399_7532_abbdc1 crossref_primary_10_1146_annurev_matsci_080921_102916 crossref_primary_10_1002_smll_202100910 crossref_primary_10_1080_25740881_2021_1934016 crossref_primary_10_1002_adma_202109198 crossref_primary_10_1016_j_compositesb_2023_110938 crossref_primary_10_1088_1361_665X_ab47e4 crossref_primary_10_1016_j_matchemphys_2022_126930 crossref_primary_10_1016_j_eurpolymj_2024_113648 crossref_primary_10_1002_adma_202312263 crossref_primary_10_1021_acs_chemrev_0c01057 crossref_primary_10_1039_D3SM01084H crossref_primary_10_1016_j_eml_2022_101713 crossref_primary_10_1002_aisy_202100065 crossref_primary_10_1038_s41467_024_52716_5 crossref_primary_10_1007_s10118_025_3276_z crossref_primary_10_21926_rpm_2501005 crossref_primary_10_1063_5_0014619 crossref_primary_10_1002_adma_202007952 crossref_primary_10_1002_adfm_202410908 crossref_primary_10_1016_j_sna_2022_113670 crossref_primary_10_1038_s41565_022_01220_2 crossref_primary_10_1021_acsami_4c01809 crossref_primary_10_1002_admt_202100944 crossref_primary_10_1007_s44174_024_00161_9 crossref_primary_10_1007_s42114_024_00988_2 crossref_primary_10_1016_j_mtadv_2019_100045 crossref_primary_10_1002_adfm_202005560 crossref_primary_10_1002_adfm_202010872 crossref_primary_10_1016_j_cej_2020_126162 crossref_primary_10_3389_fmats_2021_661593 crossref_primary_10_1002_adfm_202203236 crossref_primary_10_1038_s41524_022_00962_w crossref_primary_10_1016_j_amf_2024_200115 crossref_primary_10_1103_PhysRevE_101_042701 crossref_primary_10_1002_adma_202108855 crossref_primary_10_1002_adma_202414209 crossref_primary_10_1016_j_mechmat_2022_104329 crossref_primary_10_1021_acsami_0c07331 crossref_primary_10_1016_j_eurpolymj_2019_109287 crossref_primary_10_1063_5_0021143 crossref_primary_10_1002_adom_201900091 crossref_primary_10_1021_acsami_0c18988 crossref_primary_10_1002_adma_202101814 crossref_primary_10_1002_aisy_202100163 crossref_primary_10_1021_acsami_1c05547 crossref_primary_10_1016_j_addma_2023_103411 crossref_primary_10_1002_adma_202106787 crossref_primary_10_1016_j_buildenv_2022_109714 crossref_primary_10_1002_marc_202400370 crossref_primary_10_1016_j_addma_2019_100886 |
Cites_doi | 10.1002/ad.1710 10.1119/1.12095 10.1038/425145a 10.1089/soro.2015.0019 10.1002/marc.1991.030121211 10.1109/EMBC.2016.7591143 10.1038/srep07422 10.1109/IROS.2013.6697016 10.1039/C7SM01466J 10.1016/j.mattod.2014.07.002 10.1109/86.895946 10.1002/adfm.201504786 10.1038/nmat3812 10.1002/marc.201700710 10.1039/C7SM00759K 10.1038/srep24224 10.1523/JNEUROSCI.5171-07.2008 10.1021/mz200195n 10.1038/ncomms15546 10.1073/pnas.1116564108 10.1002/mame.201600212 10.1103/PhysRevB.77.052105 10.1002/macp.1994.021950601 10.1002/adma.201706164 10.1021/acsami.7b18265 10.1002/adfm.201500443 10.3390/polym6082287 10.1126/science.332.6036.1376 10.1109/TRO.2007.909786 10.1016/j.progpolymsci.2015.04.001 10.1021/ma001639q 10.1126/science.1261019 10.1016/j.matdes.2017.10.004 10.1021/ja400518c 10.1038/nmat2487 10.1039/b615954k 10.1126/sciadv.1602890 10.1002/marc.201600628 10.1002/adma.201706597 10.1016/j.piutam.2014.12.021 10.1002/adfm.200600434 10.1109/LRA.2017.2716445 10.1038/nmat1118 10.1038/srep31110 10.1038/s41467-017-00685-3 10.1021/ja0575070 10.1002/adfm.201801209 10.1021/jp9011894 10.1002/adma.200702953 10.1039/C5RA01039J 10.1364/OME.8.001536 10.1021/acsami.7b11851 10.1038/s41598-017-03412-6 10.3791/53546 10.1038/nmat4544 10.1002/marc.201500079 10.1038/nature19344 10.1038/srep13616 10.1039/B813120C 10.1016/j.eml.2015.07.005 10.1002/adma.201703554 10.1021/acsami.7b09246 10.1103/PhysRevLett.99.084301 |
ContentType | Journal Article |
Copyright | 2018 IOP Publishing Ltd |
Copyright_xml | – notice: 2018 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/aae96f |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_aae96f smsaae96f |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: FA9550-16-1-0169 funderid: https://doi.org/10.13039/100000181 – fundername: Division of Civil, Mechanical and Manufacturing Innovation grantid: 1462894; 1462895 funderid: https://doi.org/10.13039/100000147 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c442t-41470ce69fd9b6c4038e82434dbcb3c5f707987b961d47dd4f49dd5ae78f7fb03 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Tue Jul 01 03:38:41 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Thu Jan 07 13:52:43 EST 2021 Wed Aug 21 03:40:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-41470ce69fd9b6c4038e82434dbcb3c5f707987b961d47dd4f49dd5ae78f7fb03 |
Notes | SMS-107282.R1 |
ORCID | 0000-0002-3212-5284 0000-0002-8825-0340 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1088_1361_665X_aae96f crossref_citationtrail_10_1088_1361_665X_aae96f iop_journals_10_1088_1361_665X_aae96f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-13 |
PublicationDateYYYYMMDD | 2018-11-13 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-13 day: 13 |
PublicationDecade | 2010 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 47 48 Ge Q (16) 2014; 23 49 Jonathan R (58) 2014; 23 50 51 52 53 10 11 55 12 56 13 57 14 15 59 Prater T J (66) 2016; 1 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 23 67 24 68 25 26 27 28 29 Mistry D S (46) 2018 30 31 32 33 34 35 36 37 38 39 Quanyi M (54) 2017; 26 40 41 42 43 |
References_xml | – ident: 1 doi: 10.1002/ad.1710 – ident: 57 doi: 10.1119/1.12095 – ident: 32 doi: 10.1038/425145a – ident: 63 doi: 10.1089/soro.2015.0019 – ident: 48 doi: 10.1002/marc.1991.030121211 – ident: 8 doi: 10.1109/EMBC.2016.7591143 – ident: 27 doi: 10.1038/srep07422 – ident: 6 doi: 10.1109/IROS.2013.6697016 – ident: 61 doi: 10.1039/C7SM01466J – volume: 1 start-page: 156 year: 2016 ident: 66 publication-title: NASA Tech. Rep. Server. – ident: 23 doi: 10.1016/j.mattod.2014.07.002 – ident: 67 doi: 10.1109/86.895946 – ident: 28 doi: 10.1002/adfm.201504786 – ident: 30 doi: 10.1038/nmat3812 – ident: 51 doi: 10.1002/marc.201700710 – ident: 5 doi: 10.1039/C7SM00759K – ident: 13 doi: 10.1038/srep24224 – ident: 68 doi: 10.1523/JNEUROSCI.5171-07.2008 – ident: 12 doi: 10.1021/mz200195n – ident: 65 doi: 10.1038/ncomms15546 – ident: 4 doi: 10.1073/pnas.1116564108 – ident: 24 doi: 10.1002/mame.201600212 – start-page: 11 year: 2018 ident: 46 publication-title: Soft Condensed Matter – ident: 59 doi: 10.1103/PhysRevB.77.052105 – ident: 40 doi: 10.1002/macp.1994.021950601 – ident: 50 doi: 10.1002/adma.201706164 – ident: 53 doi: 10.1021/acsami.7b18265 – ident: 29 doi: 10.1002/adfm.201500443 – ident: 21 doi: 10.3390/polym6082287 – ident: 64 doi: 10.1126/science.332.6036.1376 – ident: 7 doi: 10.1109/TRO.2007.909786 – ident: 22 doi: 10.1016/j.progpolymsci.2015.04.001 – ident: 43 doi: 10.1021/ma001639q – ident: 33 doi: 10.1126/science.1261019 – ident: 19 doi: 10.1016/j.matdes.2017.10.004 – ident: 25 doi: 10.1021/ja400518c – ident: 35 doi: 10.1038/nmat2487 – volume: 26 issn: 0964-1726 year: 2017 ident: 54 publication-title: Smart Mater. Struct. – volume: 23 issn: 0964-1726 year: 2014 ident: 16 publication-title: Smart Mater. Struct. – ident: 20 doi: 10.1039/b615954k – ident: 18 doi: 10.1126/sciadv.1602890 – ident: 9 doi: 10.1002/marc.201600628 – ident: 34 doi: 10.1002/adma.201706597 – volume: 23 issn: 0964-1726 year: 2014 ident: 58 publication-title: Smart Mater. Struct. – ident: 15 doi: 10.1016/j.piutam.2014.12.021 – ident: 55 doi: 10.1002/adfm.200600434 – ident: 62 doi: 10.1109/LRA.2017.2716445 – ident: 36 doi: 10.1038/nmat1118 – ident: 2 doi: 10.1038/srep31110 – ident: 3 doi: 10.1038/s41467-017-00685-3 – ident: 44 doi: 10.1021/ja0575070 – ident: 47 doi: 10.1002/adfm.201801209 – ident: 42 doi: 10.1021/jp9011894 – ident: 39 doi: 10.1002/adma.200702953 – ident: 38 doi: 10.1039/C5RA01039J – ident: 45 doi: 10.1364/OME.8.001536 – ident: 49 doi: 10.1021/acsami.7b11851 – ident: 10 doi: 10.1038/s41598-017-03412-6 – ident: 52 doi: 10.3791/53546 – ident: 26 doi: 10.1038/nmat4544 – ident: 11 doi: 10.1002/marc.201500079 – ident: 31 doi: 10.1038/nature19344 – ident: 17 doi: 10.1038/srep13616 – ident: 41 doi: 10.1039/B813120C – ident: 14 doi: 10.1016/j.eml.2015.07.005 – ident: 37 doi: 10.1002/adma.201703554 – ident: 56 doi: 10.1021/acsami.7b09246 – ident: 60 doi: 10.1103/PhysRevLett.99.084301 |
SSID | ssj0011831 |
Score | 2.5937917 |
Snippet | Structures capable of reversible shape changes directly after 3D printing are highly desirable for myriad of applications ranging from soft robotics to... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 125011 |
SubjectTerms | 3D printing 4D printing active structures liquid crystal elastomer soft robotics |
Title | Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/aae96f |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS9xAFH-oRbAHW62l2g9G0IOH7G4yLzMTeiptRQpVDy7sQRgyXyBdN6ubFdq_vm-S7KIiUgo55PBmMryZyfv-PYADsgBIDERHVfA2QWPyxIhAVkohM895pkLTY-nnqTgZ4o9RPlqBz8tamGra_fp79NoCBbcs7BLiVD_lIk2EyEf9svSFCKvwgisSnLF67-x8GUKgs9q0yysEJiSlFzHKp2Z4IJNW6bv3RMzxK7hcLK7NLPnVm9emZ_88wm38z9W_hs1O9WRfWtItWPGTbXh5D5BwG9abhFA7ewPD0-rOjxlZqozUWlZem1g4ych6dk2SF4sOwZgyzarAxlc38yvH7O1v0jXHzJNGXlfRId6MxW9L4h0YHn-_-HqSdC0YEouY1QmmKAfWiyK4wgiLA668ypCjM9Zwm4cIsKekKUTqUDqHAQvn8tJLFWQwA_4W1ibVxL8DhjJaw066EBHwQzDloMSczEFTZqXBbBf6i03QtsMnj20yxrqJkyulI-t0ZJ1uWbcLR8sR0xab4xnaQ9oR3V3Q2TN0-w_oZtcznUmdZvTQYlM9dWHvH-d6DxukXqlYuZjyD7BW3879R1JhavOpOap_ATul6g4 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61RSA48CggytNI9MBhk6zttb0HDogQtRRCD0TKzaxfUkWaDd0NqPwp_go_ifHuJmoRqrj0gLSHPYwt2zP2zGfPA-AFIgBUA_GiKnibcGOyxIiAKCWX1DNGVWhqLH0Yi70JfzfNphvwcx0LUy66o7-Hv22i4HYJO4c41U-ZSBMhsmm_KHwuQn_hQudVeeBPvyNmq17tD5HBu5SO3n56s5d0ZQUSyzmtE55yObBe5MHlRlg-YMoryhl3xhpmsxCTxilpcpE6Lp3jgefOZYWXKshgBgz73YQrGUNdHSMGPx6uny1wfzQl-nLBE7QMVu-ifxv1OT24iXM9o9ZGt-DXakFab5YvvWVtevbHH7ki_6MVuw03OxObvG6Hdwc2_HwbbpxJvLgNVxvHV1vdhcm4_OZnBBE5QfOdFMcmBogSW8anfJRZEi8-o2s4KQOZHX1dHjliT07Rpp4Rj8ijLuPFf9OWD9fE92ByKTO8D1vzcu4fAOEyon4nXYiZ_kMwxaDgGcJeU9DCcLoD_RXjte3ysMdyIDPd-AMopSO7dGSXbtm1Ay_XLRZtDpILaHdRCnR3EFUX0D0_R1cdV5pKnVL8cLCpRhF5-I99PYNrh8ORfr8_PngE19GiVDFYM2WPYas-WfonaLXV5mmzUwh8vmxB-w0bN0pS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+ink+for+ambient+condition+printing+of+liquid+crystal+elastomers+for+4D+printing&rft.jtitle=Smart+materials+and+structures&rft.au=Roach%2C+Devin+J&rft.au=Kuang%2C+Xiao&rft.au=Yuan%2C+Chao&rft.au=Chen%2C+Kaijuan&rft.date=2018-11-13&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=27&rft.issue=12&rft.spage=125011&rft_id=info:doi/10.1088%2F1361-665X%2Faae96f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_aae96f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |