Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing

Structures capable of reversible shape changes directly after 3D printing are highly desirable for myriad of applications ranging from soft robotics to implantable medical devices. Liquid crystal elastomers (LCEs) have been studied for their large, reversible mechanical actuations in response to tem...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 27; no. 12; pp. 125011 - 125021
Main Authors Roach, Devin J, Kuang, Xiao, Yuan, Chao, Chen, Kaijuan, Qi, H Jerry
Format Journal Article
LanguageEnglish
Published IOP Publishing 13.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structures capable of reversible shape changes directly after 3D printing are highly desirable for myriad of applications ranging from soft robotics to implantable medical devices. Liquid crystal elastomers (LCEs) have been studied for their large, reversible mechanical actuations in response to temperature. Recently, several efforts were carried out to direct ink write (DIW) 3D print LCE, however, these methods require high temperatures for printing and actuation. Here, we present a novel LCE ink formulation which allows LCE to be printed at room temperature with a maximum actuation temperature of 75 °C. These advantages allow the 3D printed LCEs to be integrated with other 3D printing methods and materials to create more complex shape changes. By 3D printing LCE and conductive wires, which provide Joule heating, we demonstrated an active hinge, a reversibly opening and closing box, a soft robotic gripper for pick and place, and a printed hand for sign language.
AbstractList Structures capable of reversible shape changes directly after 3D printing are highly desirable for myriad of applications ranging from soft robotics to implantable medical devices. Liquid crystal elastomers (LCEs) have been studied for their large, reversible mechanical actuations in response to temperature. Recently, several efforts were carried out to direct ink write (DIW) 3D print LCE, however, these methods require high temperatures for printing and actuation. Here, we present a novel LCE ink formulation which allows LCE to be printed at room temperature with a maximum actuation temperature of 75 °C. These advantages allow the 3D printed LCEs to be integrated with other 3D printing methods and materials to create more complex shape changes. By 3D printing LCE and conductive wires, which provide Joule heating, we demonstrated an active hinge, a reversibly opening and closing box, a soft robotic gripper for pick and place, and a printed hand for sign language.
Author Qi, H Jerry
Chen, Kaijuan
Roach, Devin J
Yuan, Chao
Kuang, Xiao
Author_xml – sequence: 1
  givenname: Devin J
  orcidid: 0000-0002-8825-0340
  surname: Roach
  fullname: Roach, Devin J
  organization: Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, United States of America
– sequence: 2
  givenname: Xiao
  surname: Kuang
  fullname: Kuang, Xiao
  organization: Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, United States of America
– sequence: 3
  givenname: Chao
  surname: Yuan
  fullname: Yuan, Chao
  organization: Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, United States of America
– sequence: 4
  givenname: Kaijuan
  surname: Chen
  fullname: Chen, Kaijuan
  organization: Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, United States of America
– sequence: 5
  givenname: H Jerry
  orcidid: 0000-0002-3212-5284
  surname: Qi
  fullname: Qi, H Jerry
  email: qih@me.gatech.edu
  organization: Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, United States of America
BookMark eNp9kE1LAzEQhoNUsK3ePebowbXJbjbZPUq1KhS9WPAWsvmQ1N2kJqnQf--ulR5EhYGB4X2GmWcCRs47DcA5RlcYVdUMFxRnlJYvMyF0Tc0RGB9GIzBGNSUZZjk9AZMY1whhXBV4DFaP_kO30Lo3aHyAomusdglK75RN1ju4CdYl616hN7C171uroAy7mEQLdSti8p0O8YslN4fwKTg2oo367LtPwWpx-zy_z5ZPdw_z62UmCclTRjBhSGpaG1U3VBJUVLrKSUFUI5tCloYhVlesqSlWhClFDKmVKoVmlWGmQcUUoP1eGXyMQRveX9CJsOMY8UELHxzwwQHfa-kR-gORNonh1RSEbf8DL_ag9Ru-9tvg-s947CLPGcd5X2UvlW_UEL38Jfrn5k8ktIdk
CODEN SMSTER
CitedBy_id crossref_primary_10_1002_aisy_202200384
crossref_primary_10_1002_adma_202104390
crossref_primary_10_1002_aisy_202100019
crossref_primary_10_1016_j_nanoen_2022_107340
crossref_primary_10_1016_j_addma_2021_101911
crossref_primary_10_1088_1361_665X_adadcd
crossref_primary_10_1016_j_compositesb_2023_110585
crossref_primary_10_1088_2399_7532_aba1d9
crossref_primary_10_1039_D0TB00754D
crossref_primary_10_1126_sciadv_abg3677
crossref_primary_10_1002_adfm_202210353
crossref_primary_10_1002_chem_202301027
crossref_primary_10_1063_5_0044533
crossref_primary_10_1115_1_4049165
crossref_primary_10_1002_aisy_202300788
crossref_primary_10_1038_s41578_021_00359_z
crossref_primary_10_3390_molecules25184246
crossref_primary_10_1007_s00170_020_04927_5
crossref_primary_10_3390_biomedicines9111537
crossref_primary_10_1002_advs_202308561
crossref_primary_10_1039_D2MH00232A
crossref_primary_10_34133_research_0234
crossref_primary_10_1038_s41427_023_00492_x
crossref_primary_10_1016_j_addma_2023_103420
crossref_primary_10_1002_admt_202400074
crossref_primary_10_1002_mame_202400445
crossref_primary_10_1002_adfm_202109805
crossref_primary_10_1016_j_addma_2019_100819
crossref_primary_10_1142_S2424862220500219
crossref_primary_10_1017_pma_2023_8
crossref_primary_10_1142_S2737549822300012
crossref_primary_10_1002_adma_201906564
crossref_primary_10_1126_sciadv_abc0034
crossref_primary_10_1002_adma_202209566
crossref_primary_10_1016_j_matpr_2021_10_391
crossref_primary_10_1002_anie_202202577
crossref_primary_10_1021_acsami_0c19051
crossref_primary_10_1021_acsami_4c06130
crossref_primary_10_1021_acs_chemrev_4c00070
crossref_primary_10_1016_j_sna_2024_115041
crossref_primary_10_1021_acsapm_3c02207
crossref_primary_10_1016_j_addma_2022_103376
crossref_primary_10_1021_acsami_4c14792
crossref_primary_10_1002_advs_202001000
crossref_primary_10_1021_acsami_9b04480
crossref_primary_10_1016_j_mechmat_2022_104501
crossref_primary_10_3390_app13137744
crossref_primary_10_1021_jacs_4c01642
crossref_primary_10_1002_adfm_201805290
crossref_primary_10_1088_1361_665X_ab9fd6
crossref_primary_10_1016_j_finmec_2022_100081
crossref_primary_10_1016_j_matdes_2025_113737
crossref_primary_10_1088_2399_7532_abcbe1
crossref_primary_10_3390_ma14164521
crossref_primary_10_1016_j_cossms_2020_100869
crossref_primary_10_1039_D2SM00166G
crossref_primary_10_1002_pol_20210718
crossref_primary_10_1002_aisy_201900163
crossref_primary_10_1002_ange_202202577
crossref_primary_10_3390_molecules29020319
crossref_primary_10_3390_ma17205028
crossref_primary_10_1007_s10311_024_01726_2
crossref_primary_10_1016_j_mee_2022_111874
crossref_primary_10_1002_adma_202204890
crossref_primary_10_1088_1361_665X_ac3590
crossref_primary_10_1002_pen_26450
crossref_primary_10_1039_C9SM02237F
crossref_primary_10_1039_D3SM01374J
crossref_primary_10_1021_acsami_2c11954
crossref_primary_10_1038_s41467_024_49775_z
crossref_primary_10_3390_act12030101
crossref_primary_10_1039_D2ME00124A
crossref_primary_10_1002_adfm_202100338
crossref_primary_10_1021_acsami_2c23028
crossref_primary_10_1039_D0TB00392A
crossref_primary_10_1002_adfm_202201766
crossref_primary_10_1002_adma_202200182
crossref_primary_10_1021_acsapm_3c01335
crossref_primary_10_1002_adem_202401796
crossref_primary_10_1002_adfm_201907615
crossref_primary_10_1016_j_progpolymsci_2024_101829
crossref_primary_10_1021_acsami_3c14140
crossref_primary_10_1016_j_matdes_2021_110193
crossref_primary_10_1016_j_addma_2022_102861
crossref_primary_10_1002_aisy_202000271
crossref_primary_10_1016_j_apmt_2020_100611
crossref_primary_10_1021_acsami_3c14783
crossref_primary_10_3390_polym13111889
crossref_primary_10_1021_acsami_9b18037
crossref_primary_10_1021_acsapm_1c01598
crossref_primary_10_1016_j_addma_2021_101950
crossref_primary_10_1016_j_jmapro_2023_12_038
crossref_primary_10_1093_pnasnexus_pgad042
crossref_primary_10_1002_admt_202101732
crossref_primary_10_1080_09506608_2021_1971428
crossref_primary_10_1002_adfm_201806723
crossref_primary_10_1021_acsami_0c02038
crossref_primary_10_1002_adma_202103309
crossref_primary_10_1038_s42004_024_01141_2
crossref_primary_10_1088_1361_665X_ac13b3
crossref_primary_10_1155_2024_6621344
crossref_primary_10_1002_adfm_202007125
crossref_primary_10_1016_j_compscitech_2019_107692
crossref_primary_10_1021_acsami_1c03572
crossref_primary_10_1002_adfm_201907384
crossref_primary_10_1002_adma_202302066
crossref_primary_10_1088_1361_665X_ac775c
crossref_primary_10_1115_1_4062220
crossref_primary_10_1063_5_0078455
crossref_primary_10_54227_mlab_20220030
crossref_primary_10_1080_17452759_2020_1795209
crossref_primary_10_1088_2399_7532_abbdc1
crossref_primary_10_1146_annurev_matsci_080921_102916
crossref_primary_10_1002_smll_202100910
crossref_primary_10_1080_25740881_2021_1934016
crossref_primary_10_1002_adma_202109198
crossref_primary_10_1016_j_compositesb_2023_110938
crossref_primary_10_1088_1361_665X_ab47e4
crossref_primary_10_1016_j_matchemphys_2022_126930
crossref_primary_10_1016_j_eurpolymj_2024_113648
crossref_primary_10_1002_adma_202312263
crossref_primary_10_1021_acs_chemrev_0c01057
crossref_primary_10_1039_D3SM01084H
crossref_primary_10_1016_j_eml_2022_101713
crossref_primary_10_1002_aisy_202100065
crossref_primary_10_1038_s41467_024_52716_5
crossref_primary_10_1007_s10118_025_3276_z
crossref_primary_10_21926_rpm_2501005
crossref_primary_10_1063_5_0014619
crossref_primary_10_1002_adma_202007952
crossref_primary_10_1002_adfm_202410908
crossref_primary_10_1016_j_sna_2022_113670
crossref_primary_10_1038_s41565_022_01220_2
crossref_primary_10_1021_acsami_4c01809
crossref_primary_10_1002_admt_202100944
crossref_primary_10_1007_s44174_024_00161_9
crossref_primary_10_1007_s42114_024_00988_2
crossref_primary_10_1016_j_mtadv_2019_100045
crossref_primary_10_1002_adfm_202005560
crossref_primary_10_1002_adfm_202010872
crossref_primary_10_1016_j_cej_2020_126162
crossref_primary_10_3389_fmats_2021_661593
crossref_primary_10_1002_adfm_202203236
crossref_primary_10_1038_s41524_022_00962_w
crossref_primary_10_1016_j_amf_2024_200115
crossref_primary_10_1103_PhysRevE_101_042701
crossref_primary_10_1002_adma_202108855
crossref_primary_10_1002_adma_202414209
crossref_primary_10_1016_j_mechmat_2022_104329
crossref_primary_10_1021_acsami_0c07331
crossref_primary_10_1016_j_eurpolymj_2019_109287
crossref_primary_10_1063_5_0021143
crossref_primary_10_1002_adom_201900091
crossref_primary_10_1021_acsami_0c18988
crossref_primary_10_1002_adma_202101814
crossref_primary_10_1002_aisy_202100163
crossref_primary_10_1021_acsami_1c05547
crossref_primary_10_1016_j_addma_2023_103411
crossref_primary_10_1002_adma_202106787
crossref_primary_10_1016_j_buildenv_2022_109714
crossref_primary_10_1002_marc_202400370
crossref_primary_10_1016_j_addma_2019_100886
Cites_doi 10.1002/ad.1710
10.1119/1.12095
10.1038/425145a
10.1089/soro.2015.0019
10.1002/marc.1991.030121211
10.1109/EMBC.2016.7591143
10.1038/srep07422
10.1109/IROS.2013.6697016
10.1039/C7SM01466J
10.1016/j.mattod.2014.07.002
10.1109/86.895946
10.1002/adfm.201504786
10.1038/nmat3812
10.1002/marc.201700710
10.1039/C7SM00759K
10.1038/srep24224
10.1523/JNEUROSCI.5171-07.2008
10.1021/mz200195n
10.1038/ncomms15546
10.1073/pnas.1116564108
10.1002/mame.201600212
10.1103/PhysRevB.77.052105
10.1002/macp.1994.021950601
10.1002/adma.201706164
10.1021/acsami.7b18265
10.1002/adfm.201500443
10.3390/polym6082287
10.1126/science.332.6036.1376
10.1109/TRO.2007.909786
10.1016/j.progpolymsci.2015.04.001
10.1021/ma001639q
10.1126/science.1261019
10.1016/j.matdes.2017.10.004
10.1021/ja400518c
10.1038/nmat2487
10.1039/b615954k
10.1126/sciadv.1602890
10.1002/marc.201600628
10.1002/adma.201706597
10.1016/j.piutam.2014.12.021
10.1002/adfm.200600434
10.1109/LRA.2017.2716445
10.1038/nmat1118
10.1038/srep31110
10.1038/s41467-017-00685-3
10.1021/ja0575070
10.1002/adfm.201801209
10.1021/jp9011894
10.1002/adma.200702953
10.1039/C5RA01039J
10.1364/OME.8.001536
10.1021/acsami.7b11851
10.1038/s41598-017-03412-6
10.3791/53546
10.1038/nmat4544
10.1002/marc.201500079
10.1038/nature19344
10.1038/srep13616
10.1039/B813120C
10.1016/j.eml.2015.07.005
10.1002/adma.201703554
10.1021/acsami.7b09246
10.1103/PhysRevLett.99.084301
ContentType Journal Article
Copyright 2018 IOP Publishing Ltd
Copyright_xml – notice: 2018 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-665X/aae96f
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_aae96f
smsaae96f
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  grantid: FA9550-16-1-0169
  funderid: https://doi.org/10.13039/100000181
– fundername: Division of Civil, Mechanical and Manufacturing Innovation
  grantid: 1462894; 1462895
  funderid: https://doi.org/10.13039/100000147
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c442t-41470ce69fd9b6c4038e82434dbcb3c5f707987b961d47dd4f49dd5ae78f7fb03
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Tue Jul 01 03:38:41 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Thu Jan 07 13:52:43 EST 2021
Wed Aug 21 03:40:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-41470ce69fd9b6c4038e82434dbcb3c5f707987b961d47dd4f49dd5ae78f7fb03
Notes SMS-107282.R1
ORCID 0000-0002-3212-5284
0000-0002-8825-0340
PageCount 11
ParticipantIDs crossref_primary_10_1088_1361_665X_aae96f
crossref_citationtrail_10_1088_1361_665X_aae96f
iop_journals_10_1088_1361_665X_aae96f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-13
PublicationDateYYYYMMDD 2018-11-13
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-13
  day: 13
PublicationDecade 2010
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
47
48
Ge Q (16) 2014; 23
49
Jonathan R (58) 2014; 23
50
51
52
53
10
11
55
12
56
13
57
14
15
59
Prater T J (66) 2016; 1
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
23
67
24
68
25
26
27
28
29
Mistry D S (46) 2018
30
31
32
33
34
35
36
37
38
39
Quanyi M (54) 2017; 26
40
41
42
43
References_xml – ident: 1
  doi: 10.1002/ad.1710
– ident: 57
  doi: 10.1119/1.12095
– ident: 32
  doi: 10.1038/425145a
– ident: 63
  doi: 10.1089/soro.2015.0019
– ident: 48
  doi: 10.1002/marc.1991.030121211
– ident: 8
  doi: 10.1109/EMBC.2016.7591143
– ident: 27
  doi: 10.1038/srep07422
– ident: 6
  doi: 10.1109/IROS.2013.6697016
– ident: 61
  doi: 10.1039/C7SM01466J
– volume: 1
  start-page: 156
  year: 2016
  ident: 66
  publication-title: NASA Tech. Rep. Server.
– ident: 23
  doi: 10.1016/j.mattod.2014.07.002
– ident: 67
  doi: 10.1109/86.895946
– ident: 28
  doi: 10.1002/adfm.201504786
– ident: 30
  doi: 10.1038/nmat3812
– ident: 51
  doi: 10.1002/marc.201700710
– ident: 5
  doi: 10.1039/C7SM00759K
– ident: 13
  doi: 10.1038/srep24224
– ident: 68
  doi: 10.1523/JNEUROSCI.5171-07.2008
– ident: 12
  doi: 10.1021/mz200195n
– ident: 65
  doi: 10.1038/ncomms15546
– ident: 4
  doi: 10.1073/pnas.1116564108
– ident: 24
  doi: 10.1002/mame.201600212
– start-page: 11
  year: 2018
  ident: 46
  publication-title: Soft Condensed Matter
– ident: 59
  doi: 10.1103/PhysRevB.77.052105
– ident: 40
  doi: 10.1002/macp.1994.021950601
– ident: 50
  doi: 10.1002/adma.201706164
– ident: 53
  doi: 10.1021/acsami.7b18265
– ident: 29
  doi: 10.1002/adfm.201500443
– ident: 21
  doi: 10.3390/polym6082287
– ident: 64
  doi: 10.1126/science.332.6036.1376
– ident: 7
  doi: 10.1109/TRO.2007.909786
– ident: 22
  doi: 10.1016/j.progpolymsci.2015.04.001
– ident: 43
  doi: 10.1021/ma001639q
– ident: 33
  doi: 10.1126/science.1261019
– ident: 19
  doi: 10.1016/j.matdes.2017.10.004
– ident: 25
  doi: 10.1021/ja400518c
– ident: 35
  doi: 10.1038/nmat2487
– volume: 26
  issn: 0964-1726
  year: 2017
  ident: 54
  publication-title: Smart Mater. Struct.
– volume: 23
  issn: 0964-1726
  year: 2014
  ident: 16
  publication-title: Smart Mater. Struct.
– ident: 20
  doi: 10.1039/b615954k
– ident: 18
  doi: 10.1126/sciadv.1602890
– ident: 9
  doi: 10.1002/marc.201600628
– ident: 34
  doi: 10.1002/adma.201706597
– volume: 23
  issn: 0964-1726
  year: 2014
  ident: 58
  publication-title: Smart Mater. Struct.
– ident: 15
  doi: 10.1016/j.piutam.2014.12.021
– ident: 55
  doi: 10.1002/adfm.200600434
– ident: 62
  doi: 10.1109/LRA.2017.2716445
– ident: 36
  doi: 10.1038/nmat1118
– ident: 2
  doi: 10.1038/srep31110
– ident: 3
  doi: 10.1038/s41467-017-00685-3
– ident: 44
  doi: 10.1021/ja0575070
– ident: 47
  doi: 10.1002/adfm.201801209
– ident: 42
  doi: 10.1021/jp9011894
– ident: 39
  doi: 10.1002/adma.200702953
– ident: 38
  doi: 10.1039/C5RA01039J
– ident: 45
  doi: 10.1364/OME.8.001536
– ident: 49
  doi: 10.1021/acsami.7b11851
– ident: 10
  doi: 10.1038/s41598-017-03412-6
– ident: 52
  doi: 10.3791/53546
– ident: 26
  doi: 10.1038/nmat4544
– ident: 11
  doi: 10.1002/marc.201500079
– ident: 31
  doi: 10.1038/nature19344
– ident: 17
  doi: 10.1038/srep13616
– ident: 41
  doi: 10.1039/B813120C
– ident: 14
  doi: 10.1016/j.eml.2015.07.005
– ident: 37
  doi: 10.1002/adma.201703554
– ident: 56
  doi: 10.1021/acsami.7b09246
– ident: 60
  doi: 10.1103/PhysRevLett.99.084301
SSID ssj0011831
Score 2.5937917
Snippet Structures capable of reversible shape changes directly after 3D printing are highly desirable for myriad of applications ranging from soft robotics to...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 125011
SubjectTerms 3D printing
4D printing
active structures
liquid crystal elastomer
soft robotics
Title Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing
URI https://iopscience.iop.org/article/10.1088/1361-665X/aae96f
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS9xAFH-oRbAHW62l2g9G0IOH7G4yLzMTeiptRQpVDy7sQRgyXyBdN6ubFdq_vm-S7KIiUgo55PBmMryZyfv-PYADsgBIDERHVfA2QWPyxIhAVkohM895pkLTY-nnqTgZ4o9RPlqBz8tamGra_fp79NoCBbcs7BLiVD_lIk2EyEf9svSFCKvwgisSnLF67-x8GUKgs9q0yysEJiSlFzHKp2Z4IJNW6bv3RMzxK7hcLK7NLPnVm9emZ_88wm38z9W_hs1O9WRfWtItWPGTbXh5D5BwG9abhFA7ewPD0-rOjxlZqozUWlZem1g4ych6dk2SF4sOwZgyzarAxlc38yvH7O1v0jXHzJNGXlfRId6MxW9L4h0YHn-_-HqSdC0YEouY1QmmKAfWiyK4wgiLA668ypCjM9Zwm4cIsKekKUTqUDqHAQvn8tJLFWQwA_4W1ibVxL8DhjJaw066EBHwQzDloMSczEFTZqXBbBf6i03QtsMnj20yxrqJkyulI-t0ZJ1uWbcLR8sR0xab4xnaQ9oR3V3Q2TN0-w_oZtcznUmdZvTQYlM9dWHvH-d6DxukXqlYuZjyD7BW3879R1JhavOpOap_ATul6g4
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61RSA48CggytNI9MBhk6zttb0HDogQtRRCD0TKzaxfUkWaDd0NqPwp_go_ifHuJmoRqrj0gLSHPYwt2zP2zGfPA-AFIgBUA_GiKnibcGOyxIiAKCWX1DNGVWhqLH0Yi70JfzfNphvwcx0LUy66o7-Hv22i4HYJO4c41U-ZSBMhsmm_KHwuQn_hQudVeeBPvyNmq17tD5HBu5SO3n56s5d0ZQUSyzmtE55yObBe5MHlRlg-YMoryhl3xhpmsxCTxilpcpE6Lp3jgefOZYWXKshgBgz73YQrGUNdHSMGPx6uny1wfzQl-nLBE7QMVu-ifxv1OT24iXM9o9ZGt-DXakFab5YvvWVtevbHH7ki_6MVuw03OxObvG6Hdwc2_HwbbpxJvLgNVxvHV1vdhcm4_OZnBBE5QfOdFMcmBogSW8anfJRZEi8-o2s4KQOZHX1dHjliT07Rpp4Rj8ijLuPFf9OWD9fE92ByKTO8D1vzcu4fAOEyon4nXYiZ_kMwxaDgGcJeU9DCcLoD_RXjte3ysMdyIDPd-AMopSO7dGSXbtm1Ay_XLRZtDpILaHdRCnR3EFUX0D0_R1cdV5pKnVL8cLCpRhF5-I99PYNrh8ORfr8_PngE19GiVDFYM2WPYas-WfonaLXV5mmzUwh8vmxB-w0bN0pS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+ink+for+ambient+condition+printing+of+liquid+crystal+elastomers+for+4D+printing&rft.jtitle=Smart+materials+and+structures&rft.au=Roach%2C+Devin+J&rft.au=Kuang%2C+Xiao&rft.au=Yuan%2C+Chao&rft.au=Chen%2C+Kaijuan&rft.date=2018-11-13&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=27&rft.issue=12&rft.spage=125011&rft_id=info:doi/10.1088%2F1361-665X%2Faae96f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_aae96f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon