Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control

Rootless plants in the genus are some of the fastest growing known plants on Earth. have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for (Benth.) Hartog & Plas, which has the smallest genome size in the gen...

Full description

Saved in:
Bibliographic Details
Published inGenome research Vol. 31; no. 2; pp. 225 - 238
Main Authors Michael, Todd P, Ernst, Evan, Hartwick, Nolan, Chu, Philomena, Bryant, Douglas, Gilbert, Sarah, Ortleb, Stefan, Baggs, Erin L, Sree, K Sowjanya, Appenroth, Klaus J, Fuchs, Joerg, Jupe, Florian, Sandoval, Justin P, Krasileva, Ksenia V, Borisjuk, Ljudmylla, Mockler, Todd C, Ecker, Joseph R, Martienssen, Robert A, Lam, Eric
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rootless plants in the genus are some of the fastest growing known plants on Earth. have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in , where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.
AbstractList Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ~40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.
Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.
Rootless plants in the genus are some of the fastest growing known plants on Earth. have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in , where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.
Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana , where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.
Author Sree, K Sowjanya
Mockler, Todd C
Chu, Philomena
Fuchs, Joerg
Ernst, Evan
Hartwick, Nolan
Jupe, Florian
Michael, Todd P
Appenroth, Klaus J
Gilbert, Sarah
Baggs, Erin L
Lam, Eric
Borisjuk, Ljudmylla
Bryant, Douglas
Ortleb, Stefan
Martienssen, Robert A
Krasileva, Ksenia V
Ecker, Joseph R
Sandoval, Justin P
AuthorAffiliation 3 Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
2 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
5 Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
9 Friedrich Schiller University of Jena, Jena 07737, Germany
4 Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
7 Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
1 Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
6 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
10 Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
8 Department of Environmental Science, Central University of Kerala, Periye, Kerala 671316, India
AuthorAffiliation_xml – name: 1 Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
– name: 3 Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
– name: 5 Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
– name: 2 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
– name: 6 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
– name: 7 Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
– name: 9 Friedrich Schiller University of Jena, Jena 07737, Germany
– name: 8 Department of Environmental Science, Central University of Kerala, Periye, Kerala 671316, India
– name: 10 Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
– name: 4 Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
Author_xml – sequence: 1
  givenname: Todd P
  orcidid: 0000-0001-6272-2875
  surname: Michael
  fullname: Michael, Todd P
  organization: Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
– sequence: 2
  givenname: Evan
  orcidid: 0000-0003-4213-136X
  surname: Ernst
  fullname: Ernst, Evan
  organization: Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
– sequence: 3
  givenname: Nolan
  surname: Hartwick
  fullname: Hartwick, Nolan
  organization: Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
– sequence: 4
  givenname: Philomena
  orcidid: 0000-0002-0936-501X
  surname: Chu
  fullname: Chu, Philomena
  organization: Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
– sequence: 5
  givenname: Douglas
  orcidid: 0000-0002-9773-6545
  surname: Bryant
  fullname: Bryant, Douglas
  organization: Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
– sequence: 6
  givenname: Sarah
  orcidid: 0000-0002-3458-1347
  surname: Gilbert
  fullname: Gilbert, Sarah
  organization: Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
– sequence: 7
  givenname: Stefan
  orcidid: 0000-0002-8655-0112
  surname: Ortleb
  fullname: Ortleb, Stefan
  organization: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
– sequence: 8
  givenname: Erin L
  orcidid: 0000-0003-3076-9489
  surname: Baggs
  fullname: Baggs, Erin L
  organization: Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
– sequence: 9
  givenname: K Sowjanya
  orcidid: 0000-0002-1356-3406
  surname: Sree
  fullname: Sree, K Sowjanya
  organization: Department of Environmental Science, Central University of Kerala, Periye, Kerala 671316, India
– sequence: 10
  givenname: Klaus J
  orcidid: 0000-0002-6385-6645
  surname: Appenroth
  fullname: Appenroth, Klaus J
  organization: Friedrich Schiller University of Jena, Jena 07737, Germany
– sequence: 11
  givenname: Joerg
  orcidid: 0000-0003-4171-5371
  surname: Fuchs
  fullname: Fuchs, Joerg
  organization: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
– sequence: 12
  givenname: Florian
  orcidid: 0000-0001-5741-4931
  surname: Jupe
  fullname: Jupe, Florian
  organization: Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
– sequence: 13
  givenname: Justin P
  orcidid: 0000-0003-0012-7223
  surname: Sandoval
  fullname: Sandoval, Justin P
  organization: Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
– sequence: 14
  givenname: Ksenia V
  orcidid: 0000-0002-1679-0700
  surname: Krasileva
  fullname: Krasileva, Ksenia V
  organization: Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
– sequence: 15
  givenname: Ljudmylla
  orcidid: 0000-0001-6910-0841
  surname: Borisjuk
  fullname: Borisjuk, Ljudmylla
  organization: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
– sequence: 16
  givenname: Todd C
  orcidid: 0000-0002-0462-5775
  surname: Mockler
  fullname: Mockler, Todd C
  organization: Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
– sequence: 17
  givenname: Joseph R
  orcidid: 0000-0001-5799-5895
  surname: Ecker
  fullname: Ecker, Joseph R
  organization: Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
– sequence: 18
  givenname: Robert A
  orcidid: 0000-0003-1285-9608
  surname: Martienssen
  fullname: Martienssen, Robert A
  organization: Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
– sequence: 19
  givenname: Eric
  orcidid: 0000-0001-8462-9794
  surname: Lam
  fullname: Lam, Eric
  organization: Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33361111$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1817049$$D View this record in Osti.gov
BookMark eNpdks1vFCEYxompsR969GqIXnqZFWaYAS4mptFq0sSLxiNhmXdmqQzvCqxNPfqXy3Zro3LhTZ5f3s_nlBxFjEDIc85WnDP-ek6rdhhEq1e8ZY_ICe-Fbnox6KMaM6UazXp-TE5zvmaMdUKpJ-S467qB13dCfl1CxAWojSMtfoEGp2a0t7QkG7NLflv2Kk70K4Zp8pbaXa5a8DZaGnz8RhdM2w0GnL2zgS4--sX_tMVjpDe-bOgMEWjAnO9qBKjBnPCmKg5jSRiekseTDRme3f9n5Mv7d58vPjRXny4_Xry9apwQbWkEs5o5p5lag2QtdEoOzkqtHR_B2XEQUoDoJzk6kLqHntVN6JGt-6lfq2HozsibQ97tbr1ApeJ-ELNNfrHp1qD15l8l-o2Z8YeRSmjBRE3w8pAAc_EmO1_AbeoQEVwxXHHJhK7Q-X2VhN93kItZfHYQgo2Au2xaITvBdb1ARV_9h17jLsW6g0pp2bZcaVap5kC5VJeYYHromDOzt4CZkzlYwFQLVP7F32M-0H9u3v0G1gCwxA
CitedBy_id crossref_primary_10_1111_nph_18453
crossref_primary_10_1111_pbi_13943
crossref_primary_10_3390_photochem2020022
crossref_primary_10_1016_j_envres_2023_118015
crossref_primary_10_1093_plcell_koab189
crossref_primary_10_1093_plphys_kiac480
crossref_primary_10_3390_oxygen2020016
crossref_primary_10_1016_j_csbj_2022_06_026
crossref_primary_10_1093_pnasnexus_pgad141
crossref_primary_10_1038_s41467_021_26644_7
crossref_primary_10_3390_plants11020145
crossref_primary_10_1111_nph_19242
crossref_primary_10_2139_ssrn_4053166
crossref_primary_10_1007_s12892_022_00158_0
crossref_primary_10_1007_s13205_021_02762_3
crossref_primary_10_1186_s12870_021_03165_5
crossref_primary_10_1111_pce_14297
crossref_primary_10_1093_aob_mcae012
crossref_primary_10_3390_plants11202674
crossref_primary_10_1007_s11103_021_01213_0
crossref_primary_10_3390_plants12112208
crossref_primary_10_1093_jxb_erad499
crossref_primary_10_1016_j_cub_2022_12_036
crossref_primary_10_1111_nph_18941
crossref_primary_10_3390_plants11111468
crossref_primary_10_3390_plants12030589
crossref_primary_10_1038_s42003_021_02422_5
crossref_primary_10_3390_plants11223033
crossref_primary_10_1186_s12870_022_03696_5
crossref_primary_10_3390_plants10091896
crossref_primary_10_1371_journal_pone_0296717
crossref_primary_10_1111_1755_0998_13653
crossref_primary_10_3390_cells10061481
crossref_primary_10_1016_j_ijbiomac_2021_08_037
crossref_primary_10_1016_j_tplants_2021_11_014
crossref_primary_10_3389_fpls_2021_697206
crossref_primary_10_3390_plants12010166
crossref_primary_10_3390_plants12132525
crossref_primary_10_1093_aob_mcac062
crossref_primary_10_1017_qpb_2023_8
Cites_doi 10.1038/nmeth.3176
10.1093/bioinformatics/btw494
10.3390/biology8010014
10.1093/bioinformatics/btu031
10.1186/1471-2164-11-192
10.1111/tpj.13400
10.1007/s11738-015-1951-3
10.1177/0748730410379711
10.1007/978-1-4939-9173-0_5
10.1093/nar/gkr944
10.1186/1471-2105-15-182
10.1126/science.1115581
10.1073/pnas.0807264105
10.1007/s10750-014-2163-3
10.1104/pp.110.163683
10.1186/s12864-017-3916-y
10.2307/2997125
10.1038/nmeth.3317
10.1016/j.devcel.2008.09.019
10.3389/fpls.2017.01217
10.1105/tpc.15.00498
10.1074/mcp.M115.054064
10.1016/j.flora.2014.10.006
10.1105/tpc.7.4.473
10.1093/bioinformatics/btn013
10.3389/fpls.2014.00563
10.1155/2011/570319
10.1007/s11103-013-0162-9
10.1104/pp.17.00835
10.1038/nature05286
10.1126/science.1082971
10.1101/gr.215087.116
10.1371/journal.pone.0021800
10.1101/cshperspect.a034611
10.1186/s12915-016-0228-7
10.1093/nar/gky1049
10.1186/s13059-019-1832-y
10.1016/j.pbi.2019.12.009
10.1093/pcp/pcf084
10.1038/nature03959
10.1007/s13205-014-0220-2
10.1126/science.290.5499.2110
10.1371/journal.pbio.0060225
10.1101/gr.214270.116
10.1186/1471-2105-12-491
10.1023/A:1006191502391
10.1038/nmeth.2019
10.1101/sqb.2007.72.006
10.1038/s41467-018-04721-8
10.1093/bioinformatics/btv661
10.1016/j.cell.2016.06.044
10.1038/s41467-019-08703-2
10.1038/nature05703
10.1038/nbt.1883
10.1186/s13059-015-0721-2
10.1038/s41598-019-39332-w
10.1016/j.tplants.2019.05.005
10.1016/j.devcel.2018.02.022
10.1104/pp.004929
10.1093/bioinformatics/btw108
10.1038/s41586-019-1693-2
10.1111/nph.15997
10.1111/plb.12184
10.1104/pp.19.01273
10.1111/j.1365-313X.2008.03595.x
10.1104/pp.004374
10.1126/science.193.4252.453
10.1038/nmeth.1923
10.1111/tpj.14049
10.1111/tpj.12268
10.1101/gr.132102
10.1038/nature12309
10.1093/nar/gkp335
10.1093/bioinformatics/btv351
10.1093/bioinformatics/btx153
10.1038/s41467-018-04344-z
10.1093/bioinformatics/btv383
10.1007/s12042-008-9020-3
10.1111/nph.16507
10.1111/plb.12229
10.1101/gr.123356.111
10.1104/pp.111.188300
10.1186/1471-2105-7-62
10.1007/BF02879642
10.1016/j.jprot.2008.11.010
10.1093/nar/gkx1002
10.1105/tpc.17.00677
10.1038/nprot.2013.084
10.1086/314298
10.1126/science.286.5441.961
10.1104/pp.114.239137
10.1186/1472-6750-11-54
10.1371/journal.pone.0112963
10.1371/journal.pone.0025154
10.1073/pnas.1910401116
10.1038/nprot.2012.016
10.1038/nature12132
10.1111/pce.12900
10.1105/tpc.109.073403
10.1371/journal.pgen.0040014
10.1093/nar/gkg770
10.3389/fpls.2016.02045
10.1093/molbev/msx148
10.1104/pp.021006
10.1105/tpc.112.099499
10.3389/fpls.2018.00692
10.1104/pp.113.230144
10.1016/j.devcel.2015.04.024
10.1104/pp.17.00942
10.1093/bioinformatics/bty191
10.1371/journal.pgen.1008209
10.1038/ncomms4311
10.1371/journal.pone.0016907
ContentType Journal Article
Copyright 2021 Michael et al.; Published by Cold Spring Harbor Laboratory Press.
Copyright Cold Spring Harbor Laboratory Press Feb 2021
2021
Copyright_xml – notice: 2021 Michael et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: Copyright Cold Spring Harbor Laboratory Press Feb 2021
– notice: 2021
CorporateAuthor Rutgers Univ., New Brunswick, NJ (United States)
Salk Institute for Biological Studies, La Jolla, CA (United States)
CorporateAuthor_xml – name: Rutgers Univ., New Brunswick, NJ (United States)
– name: Salk Institute for Biological Studies, La Jolla, CA (United States)
DBID NPM
AAYXX
CITATION
7TM
8FD
FR3
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1101/gr.266429.120
DatabaseName PubMed
CrossRef
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Genetics Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Michael et al
EISSN 1549-5469
EndPage 238
ExternalDocumentID 1817049
10_1101_gr_266429_120
33361111
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research
  grantid: DE-SC0018244
– fundername: Lam Laboratory
  grantid: #12116
– fundername: New Jersey Agricultural Experiment Station at Rutgers University
GroupedDBID ---
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAZTW
ABDIX
ABDNZ
ACGFO
ADBBV
ADNWM
AEILP
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
NPM
R.V
RCX
RHF
RHI
RNS
RPM
RXW
SJN
TAE
TR2
W8F
WOQ
YKV
.GJ
AAYOK
AAYXX
ABRJW
ACYGS
AI.
C1A
CITATION
EJD
VH1
ZCG
ZGI
ZXP
7TM
8FD
FR3
P64
RC3
7X8
ABPTK
OIOZB
OTOTI
ZA5
5PM
ID FETCH-LOGICAL-c442t-40a90cc908be702e3876ca799c1decad6474e45f7dce795e505499d0b5f5b8663
IEDL.DBID RPM
ISSN 1088-9051
IngestDate Tue Sep 17 20:54:47 EDT 2024
Mon Feb 13 02:20:52 EST 2023
Thu Oct 24 21:22:55 EDT 2024
Thu Oct 10 17:33:44 EDT 2024
Thu Sep 12 16:29:46 EDT 2024
Wed Oct 16 00:45:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2021 Michael et al.; Published by Cold Spring Harbor Laboratory Press.
This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-40a90cc908be702e3876ca799c1decad6474e45f7dce795e505499d0b5f5b8663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDA
SC0018244; 12116
USDOE Office of Science (SC), Biological and Environmental Research (BER)
These authors contributed equally to this work.
Present addresses: 12Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim NO-7491, Norway; 13NewLeaf Symbiotics, BRDG Park, St. Louis, MO 63132, USA; 14Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; 15Bayer Crop Science, Chesterfield, MO 63017, USA
ORCID 0000-0001-6910-0841
0000-0002-1679-0700
0000-0002-1356-3406
0000-0001-5741-4931
0000-0002-3458-1347
0000-0003-4171-5371
0000-0003-1285-9608
0000-0002-0462-5775
0000-0001-5799-5895
0000-0002-9773-6545
0000-0003-0012-7223
0000-0003-4213-136X
0000-0002-0936-501X
0000-0001-6272-2875
0000-0001-8462-9794
0000-0003-3076-9489
0000-0002-8655-0112
0000-0002-6385-6645
0000000263856645
0000000216790700
000000020936501X
0000000286550112
0000000297736545
0000000341715371
0000000157414931
0000000330769489
0000000213563406
0000000204625775
0000000312859608
0000000184629794
0000000234581347
0000000300127223
0000000157995895
0000000162722875
0000000169100841
000000034213136X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849404/
PMID 33361111
PQID 2497221890
PQPubID 2049132
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7849404
osti_scitechconnect_1817049
proquest_miscellaneous_2473419333
proquest_journals_2497221890
crossref_primary_10_1101_gr_266429_120
pubmed_primary_33361111
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Genome research
PublicationTitleAlternate Genome Res
PublicationYear 2021
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021111811210698000_31.2.225.59
2021111811210698000_31.2.225.57
2021111811210698000_31.2.225.58
2021111811210698000_31.2.225.51
2021111811210698000_31.2.225.52
2021111811210698000_31.2.225.50
2021111811210698000_31.2.225.55
2021111811210698000_31.2.225.56
2021111811210698000_31.2.225.53
2021111811210698000_31.2.225.54
2021111811210698000_31.2.225.48
2021111811210698000_31.2.225.49
2021111811210698000_31.2.225.46
2021111811210698000_31.2.225.47
2021111811210698000_31.2.225.100
2021111811210698000_31.2.225.101
2021111811210698000_31.2.225.102
2021111811210698000_31.2.225.103
2021111811210698000_31.2.225.104
2021111811210698000_31.2.225.40
2021111811210698000_31.2.225.105
2021111811210698000_31.2.225.41
2021111811210698000_31.2.225.106
2021111811210698000_31.2.225.107
2021111811210698000_31.2.225.108
2021111811210698000_31.2.225.44
2021111811210698000_31.2.225.109
2021111811210698000_31.2.225.45
2021111811210698000_31.2.225.42
2021111811210698000_31.2.225.43
2021111811210698000_31.2.225.79
2021111811210698000_31.2.225.110
2021111811210698000_31.2.225.111
2021111811210698000_31.2.225.112
2021111811210698000_31.2.225.70
2021111811210698000_31.2.225.113
2021111811210698000_31.2.225.114
2021111811210698000_31.2.225.115
2021111811210698000_31.2.225.73
2021111811210698000_31.2.225.116
2021111811210698000_31.2.225.74
2021111811210698000_31.2.225.71
2021111811210698000_31.2.225.72
2021111811210698000_31.2.225.77
2021111811210698000_31.2.225.78
2021111811210698000_31.2.225.75
2021111811210698000_31.2.225.76
2021111811210698000_31.2.225.68
2021111811210698000_31.2.225.69
2021111811210698000_31.2.225.8
2021111811210698000_31.2.225.9
2021111811210698000_31.2.225.6
2021111811210698000_31.2.225.7
2021111811210698000_31.2.225.4
2021111811210698000_31.2.225.62
2021111811210698000_31.2.225.5
2021111811210698000_31.2.225.63
2021111811210698000_31.2.225.2
2021111811210698000_31.2.225.60
2021111811210698000_31.2.225.3
2021111811210698000_31.2.225.61
2021111811210698000_31.2.225.66
2021111811210698000_31.2.225.1
2021111811210698000_31.2.225.67
2021111811210698000_31.2.225.64
2021111811210698000_31.2.225.65
2021111811210698000_31.2.225.15
2021111811210698000_31.2.225.16
2021111811210698000_31.2.225.13
2021111811210698000_31.2.225.14
2021111811210698000_31.2.225.19
2021111811210698000_31.2.225.17
2021111811210698000_31.2.225.18
2021111811210698000_31.2.225.91
2021111811210698000_31.2.225.92
2021111811210698000_31.2.225.90
2021111811210698000_31.2.225.95
2021111811210698000_31.2.225.96
2021111811210698000_31.2.225.93
2021111811210698000_31.2.225.94
2021111811210698000_31.2.225.11
2021111811210698000_31.2.225.99
2021111811210698000_31.2.225.12
2021111811210698000_31.2.225.97
2021111811210698000_31.2.225.10
2021111811210698000_31.2.225.98
2021111811210698000_31.2.225.80
2021111811210698000_31.2.225.81
2021111811210698000_31.2.225.84
2021111811210698000_31.2.225.85
2021111811210698000_31.2.225.82
2021111811210698000_31.2.225.83
2021111811210698000_31.2.225.88
2021111811210698000_31.2.225.89
2021111811210698000_31.2.225.86
2021111811210698000_31.2.225.87
2021111811210698000_31.2.225.37
2021111811210698000_31.2.225.38
2021111811210698000_31.2.225.35
2021111811210698000_31.2.225.36
2021111811210698000_31.2.225.39
2021111811210698000_31.2.225.30
2021111811210698000_31.2.225.33
2021111811210698000_31.2.225.34
2021111811210698000_31.2.225.31
2021111811210698000_31.2.225.32
2021111811210698000_31.2.225.26
2021111811210698000_31.2.225.27
2021111811210698000_31.2.225.24
2021111811210698000_31.2.225.25
2021111811210698000_31.2.225.28
2021111811210698000_31.2.225.29
2021111811210698000_31.2.225.22
2021111811210698000_31.2.225.23
2021111811210698000_31.2.225.20
2021111811210698000_31.2.225.21
References_xml – ident: 2021111811210698000_31.2.225.7
  doi: 10.1038/nmeth.3176
– ident: 2021111811210698000_31.2.225.46
  doi: 10.1093/bioinformatics/btw494
– ident: 2021111811210698000_31.2.225.61
  doi: 10.3390/biology8010014
– ident: 2021111811210698000_31.2.225.41
  doi: 10.1093/bioinformatics/btu031
– ident: 2021111811210698000_31.2.225.70
  doi: 10.1186/1471-2164-11-192
– ident: 2021111811210698000_31.2.225.68
  doi: 10.1111/tpj.13400
– ident: 2021111811210698000_31.2.225.91
  doi: 10.1007/s11738-015-1951-3
– ident: 2021111811210698000_31.2.225.36
  doi: 10.1177/0748730410379711
– ident: 2021111811210698000_31.2.225.30
  doi: 10.1007/978-1-4939-9173-0_5
– ident: 2021111811210698000_31.2.225.49
– ident: 2021111811210698000_31.2.225.20
  doi: 10.1093/nar/gkr944
– ident: 2021111811210698000_31.2.225.38
  doi: 10.1186/1471-2105-15-182
– ident: 2021111811210698000_31.2.225.14
  doi: 10.1126/science.1115581
– ident: 2021111811210698000_31.2.225.55
  doi: 10.1073/pnas.0807264105
– ident: 2021111811210698000_31.2.225.5
  doi: 10.1007/s10750-014-2163-3
– ident: 2021111811210698000_31.2.225.42
  doi: 10.1104/pp.110.163683
– ident: 2021111811210698000_31.2.225.11
  doi: 10.1186/s12864-017-3916-y
– ident: 2021111811210698000_31.2.225.4
  doi: 10.2307/2997125
– ident: 2021111811210698000_31.2.225.45
  doi: 10.1038/nmeth.3317
– ident: 2021111811210698000_31.2.225.110
  doi: 10.1016/j.devcel.2008.09.019
– ident: 2021111811210698000_31.2.225.12
  doi: 10.3389/fpls.2017.01217
– ident: 2021111811210698000_31.2.225.116
  doi: 10.1105/tpc.15.00498
– ident: 2021111811210698000_31.2.225.33
  doi: 10.1074/mcp.M115.054064
– ident: 2021111811210698000_31.2.225.90
  doi: 10.1016/j.flora.2014.10.006
– ident: 2021111811210698000_31.2.225.53
  doi: 10.1105/tpc.7.4.473
– ident: 2021111811210698000_31.2.225.93
  doi: 10.1093/bioinformatics/btn013
– ident: 2021111811210698000_31.2.225.100
  doi: 10.3389/fpls.2014.00563
– ident: 2021111811210698000_31.2.225.107
  doi: 10.1155/2011/570319
– ident: 2021111811210698000_31.2.225.48
  doi: 10.1007/s11103-013-0162-9
– ident: 2021111811210698000_31.2.225.9
  doi: 10.1104/pp.17.00835
– ident: 2021111811210698000_31.2.225.40
  doi: 10.1038/nature05286
– ident: 2021111811210698000_31.2.225.65
  doi: 10.1126/science.1082971
– ident: 2021111811210698000_31.2.225.47
  doi: 10.1101/gr.215087.116
– ident: 2021111811210698000_31.2.225.96
  doi: 10.1371/journal.pone.0021800
– ident: 2021111811210698000_31.2.225.10
  doi: 10.1101/cshperspect.a034611
– ident: 2021111811210698000_31.2.225.80
  doi: 10.1186/s12915-016-0228-7
– ident: 2021111811210698000_31.2.225.89
– ident: 2021111811210698000_31.2.225.98
  doi: 10.1093/nar/gky1049
– ident: 2021111811210698000_31.2.225.16
  doi: 10.1186/s13059-019-1832-y
– ident: 2021111811210698000_31.2.225.64
  doi: 10.1016/j.pbi.2019.12.009
– ident: 2021111811210698000_31.2.225.72
  doi: 10.1093/pcp/pcf084
– ident: 2021111811210698000_31.2.225.59
  doi: 10.1038/nature03959
– ident: 2021111811210698000_31.2.225.86
  doi: 10.1007/s13205-014-0220-2
– ident: 2021111811210698000_31.2.225.25
  doi: 10.1126/science.290.5499.2110
– ident: 2021111811210698000_31.2.225.66
  doi: 10.1371/journal.pbio.0060225
– ident: 2021111811210698000_31.2.225.102
  doi: 10.1101/gr.214270.116
– ident: 2021111811210698000_31.2.225.31
  doi: 10.1186/1471-2105-12-491
– ident: 2021111811210698000_31.2.225.77
  doi: 10.1023/A:1006191502391
– ident: 2021111811210698000_31.2.225.82
  doi: 10.1038/nmeth.2019
– ident: 2021111811210698000_31.2.225.69
  doi: 10.1101/sqb.2007.72.006
– ident: 2021111811210698000_31.2.225.95
  doi: 10.1038/s41467-018-04721-8
– ident: 2021111811210698000_31.2.225.29
  doi: 10.1093/bioinformatics/btv661
– ident: 2021111811210698000_31.2.225.44
  doi: 10.1016/j.cell.2016.06.044
– ident: 2021111811210698000_31.2.225.17
  doi: 10.1038/s41467-019-08703-2
– ident: 2021111811210698000_31.2.225.79
  doi: 10.1038/nature05703
– ident: 2021111811210698000_31.2.225.21
  doi: 10.1038/nbt.1883
– ident: 2021111811210698000_31.2.225.15
  doi: 10.1186/s13059-015-0721-2
– ident: 2021111811210698000_31.2.225.28
  doi: 10.1038/s41598-019-39332-w
– ident: 2021111811210698000_31.2.225.101
  doi: 10.1016/j.tplants.2019.05.005
– ident: 2021111811210698000_31.2.225.19
  doi: 10.1016/j.devcel.2018.02.022
– ident: 2021111811210698000_31.2.225.62
  doi: 10.1104/pp.004929
– ident: 2021111811210698000_31.2.225.43
  doi: 10.1093/bioinformatics/btw108
– ident: 2021111811210698000_31.2.225.73
  doi: 10.1038/s41586-019-1693-2
– ident: 2021111811210698000_31.2.225.34
  doi: 10.1111/nph.15997
– ident: 2021111811210698000_31.2.225.115
  doi: 10.1111/plb.12184
– ident: 2021111811210698000_31.2.225.94
  doi: 10.1104/pp.19.01273
– ident: 2021111811210698000_31.2.225.75
  doi: 10.1111/j.1365-313X.2008.03595.x
– ident: 2021111811210698000_31.2.225.22
  doi: 10.1104/pp.004374
– ident: 2021111811210698000_31.2.225.26
  doi: 10.1126/science.193.4252.453
– ident: 2021111811210698000_31.2.225.50
  doi: 10.1038/nmeth.1923
– ident: 2021111811210698000_31.2.225.27
  doi: 10.1111/tpj.14049
– ident: 2021111811210698000_31.2.225.32
  doi: 10.1111/tpj.12268
– ident: 2021111811210698000_31.2.225.13
  doi: 10.1101/gr.132102
– ident: 2021111811210698000_31.2.225.87
  doi: 10.1038/nature12309
– ident: 2021111811210698000_31.2.225.3
  doi: 10.1093/nar/gkp335
– ident: 2021111811210698000_31.2.225.85
  doi: 10.1093/bioinformatics/btv351
– ident: 2021111811210698000_31.2.225.104
  doi: 10.1093/bioinformatics/btx153
– ident: 2021111811210698000_31.2.225.103
  doi: 10.1038/s41467-018-04344-z
– ident: 2021111811210698000_31.2.225.109
  doi: 10.1093/bioinformatics/btv383
– ident: 2021111811210698000_31.2.225.112
  doi: 10.1007/s12042-008-9020-3
– ident: 2021111811210698000_31.2.225.58
  doi: 10.1111/nph.16507
– ident: 2021111811210698000_31.2.225.6
  doi: 10.1111/plb.12229
– ident: 2021111811210698000_31.2.225.74
  doi: 10.1101/gr.123356.111
– ident: 2021111811210698000_31.2.225.60
  doi: 10.1104/pp.111.188300
– ident: 2021111811210698000_31.2.225.92
  doi: 10.1186/1471-2105-7-62
– ident: 2021111811210698000_31.2.225.2
  doi: 10.1007/BF02879642
– ident: 2021111811210698000_31.2.225.83
  doi: 10.1016/j.jprot.2008.11.010
– ident: 2021111811210698000_31.2.225.99
  doi: 10.1093/nar/gkx1002
– ident: 2021111811210698000_31.2.225.113
  doi: 10.1105/tpc.17.00677
– ident: 2021111811210698000_31.2.225.24
  doi: 10.1038/nprot.2013.084
– ident: 2021111811210698000_31.2.225.51
  doi: 10.1086/314298
– ident: 2021111811210698000_31.2.225.71
  doi: 10.1126/science.286.5441.961
– ident: 2021111811210698000_31.2.225.78
  doi: 10.1104/pp.114.239137
– ident: 2021111811210698000_31.2.225.56
  doi: 10.1186/1472-6750-11-54
– ident: 2021111811210698000_31.2.225.106
  doi: 10.1371/journal.pone.0112963
– ident: 2021111811210698000_31.2.225.39
  doi: 10.1371/journal.pone.0025154
– ident: 2021111811210698000_31.2.225.1
  doi: 10.1073/pnas.1910401116
– ident: 2021111811210698000_31.2.225.97
  doi: 10.1038/nprot.2012.016
– ident: 2021111811210698000_31.2.225.37
  doi: 10.1038/nature12132
– ident: 2021111811210698000_31.2.225.84
  doi: 10.1111/pce.12900
– ident: 2021111811210698000_31.2.225.81
  doi: 10.1105/tpc.109.073403
– ident: 2021111811210698000_31.2.225.67
  doi: 10.1371/journal.pgen.0040014
– ident: 2021111811210698000_31.2.225.23
  doi: 10.1093/nar/gkg770
– ident: 2021111811210698000_31.2.225.114
  doi: 10.3389/fpls.2016.02045
– ident: 2021111811210698000_31.2.225.35
  doi: 10.1093/molbev/msx148
– ident: 2021111811210698000_31.2.225.88
– ident: 2021111811210698000_31.2.225.63
  doi: 10.1104/pp.021006
– ident: 2021111811210698000_31.2.225.54
  doi: 10.1105/tpc.112.099499
– ident: 2021111811210698000_31.2.225.57
  doi: 10.3389/fpls.2018.00692
– ident: 2021111811210698000_31.2.225.8
  doi: 10.1104/pp.113.230144
– ident: 2021111811210698000_31.2.225.76
  doi: 10.1016/j.devcel.2015.04.024
– ident: 2021111811210698000_31.2.225.111
  doi: 10.1104/pp.17.00942
– ident: 2021111811210698000_31.2.225.52
  doi: 10.1093/bioinformatics/bty191
– ident: 2021111811210698000_31.2.225.105
  doi: 10.1371/journal.pgen.1008209
– ident: 2021111811210698000_31.2.225.108
  doi: 10.1038/ncomms4311
– ident: 2021111811210698000_31.2.225.18
  doi: 10.1371/journal.pone.0016907
SSID ssj0003488
Score 2.5807052
Snippet Rootless plants in the genus are some of the fastest growing known plants on Earth. have a reduced body plan, primarily multiplying through a budding type of...
Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a...
Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a...
SourceID pubmedcentral
osti
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 225
SubjectTerms Asexual reproduction
BASIC BIOLOGICAL SCIENCES
Budding
Chloroplasts
Flowering
Gene expression
Genomes
Innate immunity
Leucine
Transcriptomes
Wolffia
Title Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control
URI https://www.ncbi.nlm.nih.gov/pubmed/33361111
https://www.proquest.com/docview/2497221890
https://search.proquest.com/docview/2473419333
https://www.osti.gov/servlets/purl/1817049
https://pubmed.ncbi.nlm.nih.gov/PMC7849404
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51V0JwQdDyCC2VkVBv2c3DXsfHsqJUoCKQqOgtsh17WWmTVNv00Gt_eWe8ycIiTtwiTaw4nvE87M-fAd7rNPGZK0ScqILH3Lg8NqKwsReV8VoLm6d0OPni6-z8kn--Eld7IIazMAG0b81y0qzqSbP8FbCV17WdDjix6beLuSy44gmfjmCEBjqU6L37zXmxOf-GJkDkU1tizXS6WE8wHqEHnqQZXQGX5_mMXMZOTBq3OLf-lW_-DZv8Iw6dPYOnfQLJTjcdfQ57rtmHg9MGi-f6jp2wAOkMa-X78OjD8PR4PlzsdgD3n1zT1o7ppmJ0tXzc-rjSd6yjsBWcCElbz362K--Xmv2mBtKMNnxZ3aJ2Bq_JiJ2k7o9zMlrXZWiUjq3wV8M3cDhv2ALLfZT0yPgXcHn28cf8PO6vYogt51mHVaZWibUqKYyTSeZydKJWS6VsWjmrqxmX3HHhJQ6OVMJhXoWlVJUY4YUpMKt5CeOmbdxrYLPMi1x4b6kUVVIYzGCcc4krvM-MrSI4GZRRXm8YN8pQqSRpuViXGwWWqMAIDklVJaYKxHdrCRhkuzIlykGuIjgaNFj20_KmxFpTZpjUKGz8bivG4addEt249pbekcRxh7YRwauNwrf9GAwmArljCtsXiKx7V4I2HEi7e5t9898tD-FJRniagBg_gnG3vnVvMSHqzDGMvnwvjsM0eACIrA5K
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH4aRWhcJthglA0wEtotrZPYdXwcFaPAOnHYxG6W49ilUpNMXXbYdb-cZycpFHHiFsmx4vg9P79nf-97AB90TF1iMx5RmbGI5TaNcp6ZyPEid1pzk8Y-OXl-MZldsa_X_HoHeJ8LE0D7Jl-OqlU5qpY_A7bypjTjHic2_j6fioxJRtn4ETzG9UpZH6R3BjhlWZsBh0rg6ac21JrxeLEe4Y6ENngUJ74IXJqmE280tnalQY2r618e59_AyT92orNnsNe5kOS0Hepz2LHVPhycVhg-l_fkhARQZzgt34cnH_un3Wlf2u0AHj7bqi4t0VVBfHH5qHZRoe9J4zeuYEZ8a-3Ij3rl3FKT3-RAmvgrX1LWKJ_ebhLPT1J2CZ3En-wSVEtLVvir4Rs4obdkgQE_tnTY-BdwdfbpcjqLumIMkWEsaTDO1JIaI2mWW0ETm6IZNVpIaeLCGl1MmGCWcSdwcoTkFj0rDKYKmnPH8wz9mpcwqOrKvgIySRxPuXPGB6NS8Bx9GGsttZlzSW6KIZz0wlA3LeeGCrEKjdVirVoBKhTgEI68qBQ6C57x1nhokGlU7EkHmRzCcS9B1S3MW4XRpkjQrZHY-f2mGaff35PoytZ3_h3hWe5QN4Zw2Ap8M45eYYYgtlRh84Kn695uQS0OtN2d1r7-757vYHd2OT9X518uvh3B08SjawJ-_BgGzfrOvkH3qMnfhsXwC4OTEKs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegCNgFwcYgbICR0G5pnMSO4-MolPGxaQcmdrNsxy6VmqTqusOu-8t5dpKyIk7cIjlWHL8Pv2f__HsIvVcpcZktWUxESWOqbR5rVprYsUo7pZjJU385-fSsOLmgXy_Z5Z1SXwG0b_R83CzqcTP_FbCVy9okA04sOT-d8JIKSmiyrFxyHz0AmyXFkKj3TjinZXcLDhTBU1Bt6DXTZLYaw6oEfnicZr4QXJ7nhXccWyvTqAUL-1fU-Td48s5qNH2KnvRhJD7uhvsM3bPNLto7biCFrm_wEQ7AzrBjvosefhieHk-G8m576PazbdraYtVU2BeYj1sXV-oGr_3iFVyJb20d_tkunJsr_IcgSGF_7IvrFmQ0-E7sOUrq_lIn9ru7GFTT4gX8avgGTOoVnkHSDy09Pv45uph--jE5ifuCDLGhNFtDrqkEMUaQUltOMpuDKzWKC2HSyhpVFZRTS5njMDlcMAvRFSRUFdHMMV1CbLOPRk3b2JcIF5ljOXPO-IRUcKYhjrHWEls6l2lTRehoEIZcdrwbMuQrJJWzlewEKEGAETrwopIQMHjWW-PhQWYtU088SEWEDgcJyt44ryRknDyD0EZA53ebZph-f1aiGtte-3e4Z7oD3YjQi07gm3EMChMhvqUKmxc8Zfd2C2hyoO7uNffVf_d8ix6df5zK71_Ovh2gncwDbAKE_BCN1qtr-xoipLV-E2zhN2GSEb4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome+and+time-of-day+transcriptome+of+Wolffia+australiana+link+morphological+minimization+with+gene+loss+and+less+growth+control&rft.jtitle=Genome+research&rft.au=Michael%2C+Todd+P&rft.au=Ernst%2C+Evan&rft.au=Hartwick%2C+Nolan&rft.au=Chu%2C+Philomena&rft.date=2021-02-01&rft.eissn=1549-5469&rft.volume=31&rft.issue=2&rft.spage=225&rft.epage=238&rft_id=info:doi/10.1101%2Fgr.266429.120&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon