Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control
Rootless plants in the genus are some of the fastest growing known plants on Earth. have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for (Benth.) Hartog & Plas, which has the smallest genome size in the gen...
Saved in:
Published in | Genome research Vol. 31; no. 2; pp. 225 - 238 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rootless plants in the genus
are some of the fastest growing known plants on Earth.
have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for
(Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from
clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways.
has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of
genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants
and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in
, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The
genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth. |
---|---|
AbstractList | Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ~40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth. Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth. Rootless plants in the genus are some of the fastest growing known plants on Earth. have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in , where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth. Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana , where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth. |
Author | Sree, K Sowjanya Mockler, Todd C Chu, Philomena Fuchs, Joerg Ernst, Evan Hartwick, Nolan Jupe, Florian Michael, Todd P Appenroth, Klaus J Gilbert, Sarah Baggs, Erin L Lam, Eric Borisjuk, Ljudmylla Bryant, Douglas Ortleb, Stefan Martienssen, Robert A Krasileva, Ksenia V Ecker, Joseph R Sandoval, Justin P |
AuthorAffiliation | 3 Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA 2 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA 5 Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA 9 Friedrich Schiller University of Jena, Jena 07737, Germany 4 Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA 7 Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA 1 Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA 6 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany 10 Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA 8 Department of Environmental Science, Central University of Kerala, Periye, Kerala 671316, India |
AuthorAffiliation_xml | – name: 1 Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA – name: 3 Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA – name: 5 Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA – name: 2 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA – name: 6 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany – name: 7 Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA – name: 9 Friedrich Schiller University of Jena, Jena 07737, Germany – name: 8 Department of Environmental Science, Central University of Kerala, Periye, Kerala 671316, India – name: 10 Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA – name: 4 Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA |
Author_xml | – sequence: 1 givenname: Todd P orcidid: 0000-0001-6272-2875 surname: Michael fullname: Michael, Todd P organization: Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA – sequence: 2 givenname: Evan orcidid: 0000-0003-4213-136X surname: Ernst fullname: Ernst, Evan organization: Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA – sequence: 3 givenname: Nolan surname: Hartwick fullname: Hartwick, Nolan organization: Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA – sequence: 4 givenname: Philomena orcidid: 0000-0002-0936-501X surname: Chu fullname: Chu, Philomena organization: Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA – sequence: 5 givenname: Douglas orcidid: 0000-0002-9773-6545 surname: Bryant fullname: Bryant, Douglas organization: Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA – sequence: 6 givenname: Sarah orcidid: 0000-0002-3458-1347 surname: Gilbert fullname: Gilbert, Sarah organization: Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA – sequence: 7 givenname: Stefan orcidid: 0000-0002-8655-0112 surname: Ortleb fullname: Ortleb, Stefan organization: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany – sequence: 8 givenname: Erin L orcidid: 0000-0003-3076-9489 surname: Baggs fullname: Baggs, Erin L organization: Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA – sequence: 9 givenname: K Sowjanya orcidid: 0000-0002-1356-3406 surname: Sree fullname: Sree, K Sowjanya organization: Department of Environmental Science, Central University of Kerala, Periye, Kerala 671316, India – sequence: 10 givenname: Klaus J orcidid: 0000-0002-6385-6645 surname: Appenroth fullname: Appenroth, Klaus J organization: Friedrich Schiller University of Jena, Jena 07737, Germany – sequence: 11 givenname: Joerg orcidid: 0000-0003-4171-5371 surname: Fuchs fullname: Fuchs, Joerg organization: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany – sequence: 12 givenname: Florian orcidid: 0000-0001-5741-4931 surname: Jupe fullname: Jupe, Florian organization: Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA – sequence: 13 givenname: Justin P orcidid: 0000-0003-0012-7223 surname: Sandoval fullname: Sandoval, Justin P organization: Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA – sequence: 14 givenname: Ksenia V orcidid: 0000-0002-1679-0700 surname: Krasileva fullname: Krasileva, Ksenia V organization: Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA – sequence: 15 givenname: Ljudmylla orcidid: 0000-0001-6910-0841 surname: Borisjuk fullname: Borisjuk, Ljudmylla organization: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany – sequence: 16 givenname: Todd C orcidid: 0000-0002-0462-5775 surname: Mockler fullname: Mockler, Todd C organization: Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA – sequence: 17 givenname: Joseph R orcidid: 0000-0001-5799-5895 surname: Ecker fullname: Ecker, Joseph R organization: Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA – sequence: 18 givenname: Robert A orcidid: 0000-0003-1285-9608 surname: Martienssen fullname: Martienssen, Robert A organization: Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA – sequence: 19 givenname: Eric orcidid: 0000-0001-8462-9794 surname: Lam fullname: Lam, Eric organization: Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33361111$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1817049$$D View this record in Osti.gov |
BookMark | eNpdks1vFCEYxompsR969GqIXnqZFWaYAS4mptFq0sSLxiNhmXdmqQzvCqxNPfqXy3Zro3LhTZ5f3s_nlBxFjEDIc85WnDP-ek6rdhhEq1e8ZY_ICe-Fbnox6KMaM6UazXp-TE5zvmaMdUKpJ-S467qB13dCfl1CxAWojSMtfoEGp2a0t7QkG7NLflv2Kk70K4Zp8pbaXa5a8DZaGnz8RhdM2w0GnL2zgS4--sX_tMVjpDe-bOgMEWjAnO9qBKjBnPCmKg5jSRiekseTDRme3f9n5Mv7d58vPjRXny4_Xry9apwQbWkEs5o5p5lag2QtdEoOzkqtHR_B2XEQUoDoJzk6kLqHntVN6JGt-6lfq2HozsibQ97tbr1ApeJ-ELNNfrHp1qD15l8l-o2Z8YeRSmjBRE3w8pAAc_EmO1_AbeoQEVwxXHHJhK7Q-X2VhN93kItZfHYQgo2Au2xaITvBdb1ARV_9h17jLsW6g0pp2bZcaVap5kC5VJeYYHromDOzt4CZkzlYwFQLVP7F32M-0H9u3v0G1gCwxA |
CitedBy_id | crossref_primary_10_1111_nph_18453 crossref_primary_10_1111_pbi_13943 crossref_primary_10_3390_photochem2020022 crossref_primary_10_1016_j_envres_2023_118015 crossref_primary_10_1093_plcell_koab189 crossref_primary_10_1093_plphys_kiac480 crossref_primary_10_3390_oxygen2020016 crossref_primary_10_1016_j_csbj_2022_06_026 crossref_primary_10_1093_pnasnexus_pgad141 crossref_primary_10_1038_s41467_021_26644_7 crossref_primary_10_3390_plants11020145 crossref_primary_10_1111_nph_19242 crossref_primary_10_2139_ssrn_4053166 crossref_primary_10_1007_s12892_022_00158_0 crossref_primary_10_1007_s13205_021_02762_3 crossref_primary_10_1186_s12870_021_03165_5 crossref_primary_10_1111_pce_14297 crossref_primary_10_1093_aob_mcae012 crossref_primary_10_3390_plants11202674 crossref_primary_10_1007_s11103_021_01213_0 crossref_primary_10_3390_plants12112208 crossref_primary_10_1093_jxb_erad499 crossref_primary_10_1016_j_cub_2022_12_036 crossref_primary_10_1111_nph_18941 crossref_primary_10_3390_plants11111468 crossref_primary_10_3390_plants12030589 crossref_primary_10_1038_s42003_021_02422_5 crossref_primary_10_3390_plants11223033 crossref_primary_10_1186_s12870_022_03696_5 crossref_primary_10_3390_plants10091896 crossref_primary_10_1371_journal_pone_0296717 crossref_primary_10_1111_1755_0998_13653 crossref_primary_10_3390_cells10061481 crossref_primary_10_1016_j_ijbiomac_2021_08_037 crossref_primary_10_1016_j_tplants_2021_11_014 crossref_primary_10_3389_fpls_2021_697206 crossref_primary_10_3390_plants12010166 crossref_primary_10_3390_plants12132525 crossref_primary_10_1093_aob_mcac062 crossref_primary_10_1017_qpb_2023_8 |
Cites_doi | 10.1038/nmeth.3176 10.1093/bioinformatics/btw494 10.3390/biology8010014 10.1093/bioinformatics/btu031 10.1186/1471-2164-11-192 10.1111/tpj.13400 10.1007/s11738-015-1951-3 10.1177/0748730410379711 10.1007/978-1-4939-9173-0_5 10.1093/nar/gkr944 10.1186/1471-2105-15-182 10.1126/science.1115581 10.1073/pnas.0807264105 10.1007/s10750-014-2163-3 10.1104/pp.110.163683 10.1186/s12864-017-3916-y 10.2307/2997125 10.1038/nmeth.3317 10.1016/j.devcel.2008.09.019 10.3389/fpls.2017.01217 10.1105/tpc.15.00498 10.1074/mcp.M115.054064 10.1016/j.flora.2014.10.006 10.1105/tpc.7.4.473 10.1093/bioinformatics/btn013 10.3389/fpls.2014.00563 10.1155/2011/570319 10.1007/s11103-013-0162-9 10.1104/pp.17.00835 10.1038/nature05286 10.1126/science.1082971 10.1101/gr.215087.116 10.1371/journal.pone.0021800 10.1101/cshperspect.a034611 10.1186/s12915-016-0228-7 10.1093/nar/gky1049 10.1186/s13059-019-1832-y 10.1016/j.pbi.2019.12.009 10.1093/pcp/pcf084 10.1038/nature03959 10.1007/s13205-014-0220-2 10.1126/science.290.5499.2110 10.1371/journal.pbio.0060225 10.1101/gr.214270.116 10.1186/1471-2105-12-491 10.1023/A:1006191502391 10.1038/nmeth.2019 10.1101/sqb.2007.72.006 10.1038/s41467-018-04721-8 10.1093/bioinformatics/btv661 10.1016/j.cell.2016.06.044 10.1038/s41467-019-08703-2 10.1038/nature05703 10.1038/nbt.1883 10.1186/s13059-015-0721-2 10.1038/s41598-019-39332-w 10.1016/j.tplants.2019.05.005 10.1016/j.devcel.2018.02.022 10.1104/pp.004929 10.1093/bioinformatics/btw108 10.1038/s41586-019-1693-2 10.1111/nph.15997 10.1111/plb.12184 10.1104/pp.19.01273 10.1111/j.1365-313X.2008.03595.x 10.1104/pp.004374 10.1126/science.193.4252.453 10.1038/nmeth.1923 10.1111/tpj.14049 10.1111/tpj.12268 10.1101/gr.132102 10.1038/nature12309 10.1093/nar/gkp335 10.1093/bioinformatics/btv351 10.1093/bioinformatics/btx153 10.1038/s41467-018-04344-z 10.1093/bioinformatics/btv383 10.1007/s12042-008-9020-3 10.1111/nph.16507 10.1111/plb.12229 10.1101/gr.123356.111 10.1104/pp.111.188300 10.1186/1471-2105-7-62 10.1007/BF02879642 10.1016/j.jprot.2008.11.010 10.1093/nar/gkx1002 10.1105/tpc.17.00677 10.1038/nprot.2013.084 10.1086/314298 10.1126/science.286.5441.961 10.1104/pp.114.239137 10.1186/1472-6750-11-54 10.1371/journal.pone.0112963 10.1371/journal.pone.0025154 10.1073/pnas.1910401116 10.1038/nprot.2012.016 10.1038/nature12132 10.1111/pce.12900 10.1105/tpc.109.073403 10.1371/journal.pgen.0040014 10.1093/nar/gkg770 10.3389/fpls.2016.02045 10.1093/molbev/msx148 10.1104/pp.021006 10.1105/tpc.112.099499 10.3389/fpls.2018.00692 10.1104/pp.113.230144 10.1016/j.devcel.2015.04.024 10.1104/pp.17.00942 10.1093/bioinformatics/bty191 10.1371/journal.pgen.1008209 10.1038/ncomms4311 10.1371/journal.pone.0016907 |
ContentType | Journal Article |
Copyright | 2021 Michael et al.; Published by Cold Spring Harbor Laboratory Press. Copyright Cold Spring Harbor Laboratory Press Feb 2021 2021 |
Copyright_xml | – notice: 2021 Michael et al.; Published by Cold Spring Harbor Laboratory Press. – notice: Copyright Cold Spring Harbor Laboratory Press Feb 2021 – notice: 2021 |
CorporateAuthor | Rutgers Univ., New Brunswick, NJ (United States) Salk Institute for Biological Studies, La Jolla, CA (United States) |
CorporateAuthor_xml | – name: Rutgers Univ., New Brunswick, NJ (United States) – name: Salk Institute for Biological Studies, La Jolla, CA (United States) |
DBID | NPM AAYXX CITATION 7TM 8FD FR3 P64 RC3 7X8 OIOZB OTOTI 5PM |
DOI | 10.1101/gr.266429.120 |
DatabaseName | PubMed CrossRef Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Michael et al |
EISSN | 1549-5469 |
EndPage | 238 |
ExternalDocumentID | 1817049 10_1101_gr_266429_120 33361111 |
Genre | Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research grantid: DE-SC0018244 – fundername: Lam Laboratory grantid: #12116 – fundername: New Jersey Agricultural Experiment Station at Rutgers University |
GroupedDBID | --- 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAZTW ABDIX ABDNZ ACGFO ADBBV ADNWM AEILP AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CS3 DIK DU5 E3Z EBS F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 NPM R.V RCX RHF RHI RNS RPM RXW SJN TAE TR2 W8F WOQ YKV .GJ AAYOK AAYXX ABRJW ACYGS AI. C1A CITATION EJD VH1 ZCG ZGI ZXP 7TM 8FD FR3 P64 RC3 7X8 ABPTK OIOZB OTOTI ZA5 5PM |
ID | FETCH-LOGICAL-c442t-40a90cc908be702e3876ca799c1decad6474e45f7dce795e505499d0b5f5b8663 |
IEDL.DBID | RPM |
ISSN | 1088-9051 |
IngestDate | Tue Sep 17 20:54:47 EDT 2024 Mon Feb 13 02:20:52 EST 2023 Thu Oct 24 21:22:55 EDT 2024 Thu Oct 10 17:33:44 EDT 2024 Thu Sep 12 16:29:46 EDT 2024 Wed Oct 16 00:45:29 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2021 Michael et al.; Published by Cold Spring Harbor Laboratory Press. This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-40a90cc908be702e3876ca799c1decad6474e45f7dce795e505499d0b5f5b8663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDA SC0018244; 12116 USDOE Office of Science (SC), Biological and Environmental Research (BER) These authors contributed equally to this work. Present addresses: 12Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim NO-7491, Norway; 13NewLeaf Symbiotics, BRDG Park, St. Louis, MO 63132, USA; 14Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; 15Bayer Crop Science, Chesterfield, MO 63017, USA |
ORCID | 0000-0001-6910-0841 0000-0002-1679-0700 0000-0002-1356-3406 0000-0001-5741-4931 0000-0002-3458-1347 0000-0003-4171-5371 0000-0003-1285-9608 0000-0002-0462-5775 0000-0001-5799-5895 0000-0002-9773-6545 0000-0003-0012-7223 0000-0003-4213-136X 0000-0002-0936-501X 0000-0001-6272-2875 0000-0001-8462-9794 0000-0003-3076-9489 0000-0002-8655-0112 0000-0002-6385-6645 0000000263856645 0000000216790700 000000020936501X 0000000286550112 0000000297736545 0000000341715371 0000000157414931 0000000330769489 0000000213563406 0000000204625775 0000000312859608 0000000184629794 0000000234581347 0000000300127223 0000000157995895 0000000162722875 0000000169100841 000000034213136X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849404/ |
PMID | 33361111 |
PQID | 2497221890 |
PQPubID | 2049132 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7849404 osti_scitechconnect_1817049 proquest_miscellaneous_2473419333 proquest_journals_2497221890 crossref_primary_10_1101_gr_266429_120 pubmed_primary_33361111 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Genome research |
PublicationTitleAlternate | Genome Res |
PublicationYear | 2021 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111811210698000_31.2.225.59 2021111811210698000_31.2.225.57 2021111811210698000_31.2.225.58 2021111811210698000_31.2.225.51 2021111811210698000_31.2.225.52 2021111811210698000_31.2.225.50 2021111811210698000_31.2.225.55 2021111811210698000_31.2.225.56 2021111811210698000_31.2.225.53 2021111811210698000_31.2.225.54 2021111811210698000_31.2.225.48 2021111811210698000_31.2.225.49 2021111811210698000_31.2.225.46 2021111811210698000_31.2.225.47 2021111811210698000_31.2.225.100 2021111811210698000_31.2.225.101 2021111811210698000_31.2.225.102 2021111811210698000_31.2.225.103 2021111811210698000_31.2.225.104 2021111811210698000_31.2.225.40 2021111811210698000_31.2.225.105 2021111811210698000_31.2.225.41 2021111811210698000_31.2.225.106 2021111811210698000_31.2.225.107 2021111811210698000_31.2.225.108 2021111811210698000_31.2.225.44 2021111811210698000_31.2.225.109 2021111811210698000_31.2.225.45 2021111811210698000_31.2.225.42 2021111811210698000_31.2.225.43 2021111811210698000_31.2.225.79 2021111811210698000_31.2.225.110 2021111811210698000_31.2.225.111 2021111811210698000_31.2.225.112 2021111811210698000_31.2.225.70 2021111811210698000_31.2.225.113 2021111811210698000_31.2.225.114 2021111811210698000_31.2.225.115 2021111811210698000_31.2.225.73 2021111811210698000_31.2.225.116 2021111811210698000_31.2.225.74 2021111811210698000_31.2.225.71 2021111811210698000_31.2.225.72 2021111811210698000_31.2.225.77 2021111811210698000_31.2.225.78 2021111811210698000_31.2.225.75 2021111811210698000_31.2.225.76 2021111811210698000_31.2.225.68 2021111811210698000_31.2.225.69 2021111811210698000_31.2.225.8 2021111811210698000_31.2.225.9 2021111811210698000_31.2.225.6 2021111811210698000_31.2.225.7 2021111811210698000_31.2.225.4 2021111811210698000_31.2.225.62 2021111811210698000_31.2.225.5 2021111811210698000_31.2.225.63 2021111811210698000_31.2.225.2 2021111811210698000_31.2.225.60 2021111811210698000_31.2.225.3 2021111811210698000_31.2.225.61 2021111811210698000_31.2.225.66 2021111811210698000_31.2.225.1 2021111811210698000_31.2.225.67 2021111811210698000_31.2.225.64 2021111811210698000_31.2.225.65 2021111811210698000_31.2.225.15 2021111811210698000_31.2.225.16 2021111811210698000_31.2.225.13 2021111811210698000_31.2.225.14 2021111811210698000_31.2.225.19 2021111811210698000_31.2.225.17 2021111811210698000_31.2.225.18 2021111811210698000_31.2.225.91 2021111811210698000_31.2.225.92 2021111811210698000_31.2.225.90 2021111811210698000_31.2.225.95 2021111811210698000_31.2.225.96 2021111811210698000_31.2.225.93 2021111811210698000_31.2.225.94 2021111811210698000_31.2.225.11 2021111811210698000_31.2.225.99 2021111811210698000_31.2.225.12 2021111811210698000_31.2.225.97 2021111811210698000_31.2.225.10 2021111811210698000_31.2.225.98 2021111811210698000_31.2.225.80 2021111811210698000_31.2.225.81 2021111811210698000_31.2.225.84 2021111811210698000_31.2.225.85 2021111811210698000_31.2.225.82 2021111811210698000_31.2.225.83 2021111811210698000_31.2.225.88 2021111811210698000_31.2.225.89 2021111811210698000_31.2.225.86 2021111811210698000_31.2.225.87 2021111811210698000_31.2.225.37 2021111811210698000_31.2.225.38 2021111811210698000_31.2.225.35 2021111811210698000_31.2.225.36 2021111811210698000_31.2.225.39 2021111811210698000_31.2.225.30 2021111811210698000_31.2.225.33 2021111811210698000_31.2.225.34 2021111811210698000_31.2.225.31 2021111811210698000_31.2.225.32 2021111811210698000_31.2.225.26 2021111811210698000_31.2.225.27 2021111811210698000_31.2.225.24 2021111811210698000_31.2.225.25 2021111811210698000_31.2.225.28 2021111811210698000_31.2.225.29 2021111811210698000_31.2.225.22 2021111811210698000_31.2.225.23 2021111811210698000_31.2.225.20 2021111811210698000_31.2.225.21 |
References_xml | – ident: 2021111811210698000_31.2.225.7 doi: 10.1038/nmeth.3176 – ident: 2021111811210698000_31.2.225.46 doi: 10.1093/bioinformatics/btw494 – ident: 2021111811210698000_31.2.225.61 doi: 10.3390/biology8010014 – ident: 2021111811210698000_31.2.225.41 doi: 10.1093/bioinformatics/btu031 – ident: 2021111811210698000_31.2.225.70 doi: 10.1186/1471-2164-11-192 – ident: 2021111811210698000_31.2.225.68 doi: 10.1111/tpj.13400 – ident: 2021111811210698000_31.2.225.91 doi: 10.1007/s11738-015-1951-3 – ident: 2021111811210698000_31.2.225.36 doi: 10.1177/0748730410379711 – ident: 2021111811210698000_31.2.225.30 doi: 10.1007/978-1-4939-9173-0_5 – ident: 2021111811210698000_31.2.225.49 – ident: 2021111811210698000_31.2.225.20 doi: 10.1093/nar/gkr944 – ident: 2021111811210698000_31.2.225.38 doi: 10.1186/1471-2105-15-182 – ident: 2021111811210698000_31.2.225.14 doi: 10.1126/science.1115581 – ident: 2021111811210698000_31.2.225.55 doi: 10.1073/pnas.0807264105 – ident: 2021111811210698000_31.2.225.5 doi: 10.1007/s10750-014-2163-3 – ident: 2021111811210698000_31.2.225.42 doi: 10.1104/pp.110.163683 – ident: 2021111811210698000_31.2.225.11 doi: 10.1186/s12864-017-3916-y – ident: 2021111811210698000_31.2.225.4 doi: 10.2307/2997125 – ident: 2021111811210698000_31.2.225.45 doi: 10.1038/nmeth.3317 – ident: 2021111811210698000_31.2.225.110 doi: 10.1016/j.devcel.2008.09.019 – ident: 2021111811210698000_31.2.225.12 doi: 10.3389/fpls.2017.01217 – ident: 2021111811210698000_31.2.225.116 doi: 10.1105/tpc.15.00498 – ident: 2021111811210698000_31.2.225.33 doi: 10.1074/mcp.M115.054064 – ident: 2021111811210698000_31.2.225.90 doi: 10.1016/j.flora.2014.10.006 – ident: 2021111811210698000_31.2.225.53 doi: 10.1105/tpc.7.4.473 – ident: 2021111811210698000_31.2.225.93 doi: 10.1093/bioinformatics/btn013 – ident: 2021111811210698000_31.2.225.100 doi: 10.3389/fpls.2014.00563 – ident: 2021111811210698000_31.2.225.107 doi: 10.1155/2011/570319 – ident: 2021111811210698000_31.2.225.48 doi: 10.1007/s11103-013-0162-9 – ident: 2021111811210698000_31.2.225.9 doi: 10.1104/pp.17.00835 – ident: 2021111811210698000_31.2.225.40 doi: 10.1038/nature05286 – ident: 2021111811210698000_31.2.225.65 doi: 10.1126/science.1082971 – ident: 2021111811210698000_31.2.225.47 doi: 10.1101/gr.215087.116 – ident: 2021111811210698000_31.2.225.96 doi: 10.1371/journal.pone.0021800 – ident: 2021111811210698000_31.2.225.10 doi: 10.1101/cshperspect.a034611 – ident: 2021111811210698000_31.2.225.80 doi: 10.1186/s12915-016-0228-7 – ident: 2021111811210698000_31.2.225.89 – ident: 2021111811210698000_31.2.225.98 doi: 10.1093/nar/gky1049 – ident: 2021111811210698000_31.2.225.16 doi: 10.1186/s13059-019-1832-y – ident: 2021111811210698000_31.2.225.64 doi: 10.1016/j.pbi.2019.12.009 – ident: 2021111811210698000_31.2.225.72 doi: 10.1093/pcp/pcf084 – ident: 2021111811210698000_31.2.225.59 doi: 10.1038/nature03959 – ident: 2021111811210698000_31.2.225.86 doi: 10.1007/s13205-014-0220-2 – ident: 2021111811210698000_31.2.225.25 doi: 10.1126/science.290.5499.2110 – ident: 2021111811210698000_31.2.225.66 doi: 10.1371/journal.pbio.0060225 – ident: 2021111811210698000_31.2.225.102 doi: 10.1101/gr.214270.116 – ident: 2021111811210698000_31.2.225.31 doi: 10.1186/1471-2105-12-491 – ident: 2021111811210698000_31.2.225.77 doi: 10.1023/A:1006191502391 – ident: 2021111811210698000_31.2.225.82 doi: 10.1038/nmeth.2019 – ident: 2021111811210698000_31.2.225.69 doi: 10.1101/sqb.2007.72.006 – ident: 2021111811210698000_31.2.225.95 doi: 10.1038/s41467-018-04721-8 – ident: 2021111811210698000_31.2.225.29 doi: 10.1093/bioinformatics/btv661 – ident: 2021111811210698000_31.2.225.44 doi: 10.1016/j.cell.2016.06.044 – ident: 2021111811210698000_31.2.225.17 doi: 10.1038/s41467-019-08703-2 – ident: 2021111811210698000_31.2.225.79 doi: 10.1038/nature05703 – ident: 2021111811210698000_31.2.225.21 doi: 10.1038/nbt.1883 – ident: 2021111811210698000_31.2.225.15 doi: 10.1186/s13059-015-0721-2 – ident: 2021111811210698000_31.2.225.28 doi: 10.1038/s41598-019-39332-w – ident: 2021111811210698000_31.2.225.101 doi: 10.1016/j.tplants.2019.05.005 – ident: 2021111811210698000_31.2.225.19 doi: 10.1016/j.devcel.2018.02.022 – ident: 2021111811210698000_31.2.225.62 doi: 10.1104/pp.004929 – ident: 2021111811210698000_31.2.225.43 doi: 10.1093/bioinformatics/btw108 – ident: 2021111811210698000_31.2.225.73 doi: 10.1038/s41586-019-1693-2 – ident: 2021111811210698000_31.2.225.34 doi: 10.1111/nph.15997 – ident: 2021111811210698000_31.2.225.115 doi: 10.1111/plb.12184 – ident: 2021111811210698000_31.2.225.94 doi: 10.1104/pp.19.01273 – ident: 2021111811210698000_31.2.225.75 doi: 10.1111/j.1365-313X.2008.03595.x – ident: 2021111811210698000_31.2.225.22 doi: 10.1104/pp.004374 – ident: 2021111811210698000_31.2.225.26 doi: 10.1126/science.193.4252.453 – ident: 2021111811210698000_31.2.225.50 doi: 10.1038/nmeth.1923 – ident: 2021111811210698000_31.2.225.27 doi: 10.1111/tpj.14049 – ident: 2021111811210698000_31.2.225.32 doi: 10.1111/tpj.12268 – ident: 2021111811210698000_31.2.225.13 doi: 10.1101/gr.132102 – ident: 2021111811210698000_31.2.225.87 doi: 10.1038/nature12309 – ident: 2021111811210698000_31.2.225.3 doi: 10.1093/nar/gkp335 – ident: 2021111811210698000_31.2.225.85 doi: 10.1093/bioinformatics/btv351 – ident: 2021111811210698000_31.2.225.104 doi: 10.1093/bioinformatics/btx153 – ident: 2021111811210698000_31.2.225.103 doi: 10.1038/s41467-018-04344-z – ident: 2021111811210698000_31.2.225.109 doi: 10.1093/bioinformatics/btv383 – ident: 2021111811210698000_31.2.225.112 doi: 10.1007/s12042-008-9020-3 – ident: 2021111811210698000_31.2.225.58 doi: 10.1111/nph.16507 – ident: 2021111811210698000_31.2.225.6 doi: 10.1111/plb.12229 – ident: 2021111811210698000_31.2.225.74 doi: 10.1101/gr.123356.111 – ident: 2021111811210698000_31.2.225.60 doi: 10.1104/pp.111.188300 – ident: 2021111811210698000_31.2.225.92 doi: 10.1186/1471-2105-7-62 – ident: 2021111811210698000_31.2.225.2 doi: 10.1007/BF02879642 – ident: 2021111811210698000_31.2.225.83 doi: 10.1016/j.jprot.2008.11.010 – ident: 2021111811210698000_31.2.225.99 doi: 10.1093/nar/gkx1002 – ident: 2021111811210698000_31.2.225.113 doi: 10.1105/tpc.17.00677 – ident: 2021111811210698000_31.2.225.24 doi: 10.1038/nprot.2013.084 – ident: 2021111811210698000_31.2.225.51 doi: 10.1086/314298 – ident: 2021111811210698000_31.2.225.71 doi: 10.1126/science.286.5441.961 – ident: 2021111811210698000_31.2.225.78 doi: 10.1104/pp.114.239137 – ident: 2021111811210698000_31.2.225.56 doi: 10.1186/1472-6750-11-54 – ident: 2021111811210698000_31.2.225.106 doi: 10.1371/journal.pone.0112963 – ident: 2021111811210698000_31.2.225.39 doi: 10.1371/journal.pone.0025154 – ident: 2021111811210698000_31.2.225.1 doi: 10.1073/pnas.1910401116 – ident: 2021111811210698000_31.2.225.97 doi: 10.1038/nprot.2012.016 – ident: 2021111811210698000_31.2.225.37 doi: 10.1038/nature12132 – ident: 2021111811210698000_31.2.225.84 doi: 10.1111/pce.12900 – ident: 2021111811210698000_31.2.225.81 doi: 10.1105/tpc.109.073403 – ident: 2021111811210698000_31.2.225.67 doi: 10.1371/journal.pgen.0040014 – ident: 2021111811210698000_31.2.225.23 doi: 10.1093/nar/gkg770 – ident: 2021111811210698000_31.2.225.114 doi: 10.3389/fpls.2016.02045 – ident: 2021111811210698000_31.2.225.35 doi: 10.1093/molbev/msx148 – ident: 2021111811210698000_31.2.225.88 – ident: 2021111811210698000_31.2.225.63 doi: 10.1104/pp.021006 – ident: 2021111811210698000_31.2.225.54 doi: 10.1105/tpc.112.099499 – ident: 2021111811210698000_31.2.225.57 doi: 10.3389/fpls.2018.00692 – ident: 2021111811210698000_31.2.225.8 doi: 10.1104/pp.113.230144 – ident: 2021111811210698000_31.2.225.76 doi: 10.1016/j.devcel.2015.04.024 – ident: 2021111811210698000_31.2.225.111 doi: 10.1104/pp.17.00942 – ident: 2021111811210698000_31.2.225.52 doi: 10.1093/bioinformatics/bty191 – ident: 2021111811210698000_31.2.225.105 doi: 10.1371/journal.pgen.1008209 – ident: 2021111811210698000_31.2.225.108 doi: 10.1038/ncomms4311 – ident: 2021111811210698000_31.2.225.18 doi: 10.1371/journal.pone.0016907 |
SSID | ssj0003488 |
Score | 2.5807052 |
Snippet | Rootless plants in the genus
are some of the fastest growing known plants on Earth.
have a reduced body plan, primarily multiplying through a budding type of... Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a... Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a... |
SourceID | pubmedcentral osti proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 225 |
SubjectTerms | Asexual reproduction BASIC BIOLOGICAL SCIENCES Budding Chloroplasts Flowering Gene expression Genomes Innate immunity Leucine Transcriptomes Wolffia |
Title | Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33361111 https://www.proquest.com/docview/2497221890 https://search.proquest.com/docview/2473419333 https://www.osti.gov/servlets/purl/1817049 https://pubmed.ncbi.nlm.nih.gov/PMC7849404 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51V0JwQdDyCC2VkVBv2c3DXsfHsqJUoCKQqOgtsh17WWmTVNv00Gt_eWe8ycIiTtwiTaw4nvE87M-fAd7rNPGZK0ScqILH3Lg8NqKwsReV8VoLm6d0OPni6-z8kn--Eld7IIazMAG0b81y0qzqSbP8FbCV17WdDjix6beLuSy44gmfjmCEBjqU6L37zXmxOf-GJkDkU1tizXS6WE8wHqEHnqQZXQGX5_mMXMZOTBq3OLf-lW_-DZv8Iw6dPYOnfQLJTjcdfQ57rtmHg9MGi-f6jp2wAOkMa-X78OjD8PR4PlzsdgD3n1zT1o7ppmJ0tXzc-rjSd6yjsBWcCElbz362K--Xmv2mBtKMNnxZ3aJ2Bq_JiJ2k7o9zMlrXZWiUjq3wV8M3cDhv2ALLfZT0yPgXcHn28cf8PO6vYogt51mHVaZWibUqKYyTSeZydKJWS6VsWjmrqxmX3HHhJQ6OVMJhXoWlVJUY4YUpMKt5CeOmbdxrYLPMi1x4b6kUVVIYzGCcc4krvM-MrSI4GZRRXm8YN8pQqSRpuViXGwWWqMAIDklVJaYKxHdrCRhkuzIlykGuIjgaNFj20_KmxFpTZpjUKGz8bivG4addEt249pbekcRxh7YRwauNwrf9GAwmArljCtsXiKx7V4I2HEi7e5t9898tD-FJRniagBg_gnG3vnVvMSHqzDGMvnwvjsM0eACIrA5K |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH4aRWhcJthglA0wEtotrZPYdXwcFaPAOnHYxG6W49ilUpNMXXbYdb-cZycpFHHiFsmx4vg9P79nf-97AB90TF1iMx5RmbGI5TaNcp6ZyPEid1pzk8Y-OXl-MZldsa_X_HoHeJ8LE0D7Jl-OqlU5qpY_A7bypjTjHic2_j6fioxJRtn4ETzG9UpZH6R3BjhlWZsBh0rg6ac21JrxeLEe4Y6ENngUJ74IXJqmE280tnalQY2r618e59_AyT92orNnsNe5kOS0Hepz2LHVPhycVhg-l_fkhARQZzgt34cnH_un3Wlf2u0AHj7bqi4t0VVBfHH5qHZRoe9J4zeuYEZ8a-3Ij3rl3FKT3-RAmvgrX1LWKJ_ebhLPT1J2CZ3En-wSVEtLVvir4Rs4obdkgQE_tnTY-BdwdfbpcjqLumIMkWEsaTDO1JIaI2mWW0ETm6IZNVpIaeLCGl1MmGCWcSdwcoTkFj0rDKYKmnPH8wz9mpcwqOrKvgIySRxPuXPGB6NS8Bx9GGsttZlzSW6KIZz0wlA3LeeGCrEKjdVirVoBKhTgEI68qBQ6C57x1nhokGlU7EkHmRzCcS9B1S3MW4XRpkjQrZHY-f2mGaff35PoytZ3_h3hWe5QN4Zw2Ap8M45eYYYgtlRh84Kn695uQS0OtN2d1r7-757vYHd2OT9X518uvh3B08SjawJ-_BgGzfrOvkH3qMnfhsXwC4OTEKs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegCNgFwcYgbICR0G5pnMSO4-MolPGxaQcmdrNsxy6VmqTqusOu-8t5dpKyIk7cIjlWHL8Pv2f__HsIvVcpcZktWUxESWOqbR5rVprYsUo7pZjJU385-fSsOLmgXy_Z5Z1SXwG0b_R83CzqcTP_FbCVy9okA04sOT-d8JIKSmiyrFxyHz0AmyXFkKj3TjinZXcLDhTBU1Bt6DXTZLYaw6oEfnicZr4QXJ7nhXccWyvTqAUL-1fU-Td48s5qNH2KnvRhJD7uhvsM3bPNLto7biCFrm_wEQ7AzrBjvosefhieHk-G8m576PazbdraYtVU2BeYj1sXV-oGr_3iFVyJb20d_tkunJsr_IcgSGF_7IvrFmQ0-E7sOUrq_lIn9ru7GFTT4gX8avgGTOoVnkHSDy09Pv45uph--jE5ifuCDLGhNFtDrqkEMUaQUltOMpuDKzWKC2HSyhpVFZRTS5njMDlcMAvRFSRUFdHMMV1CbLOPRk3b2JcIF5ljOXPO-IRUcKYhjrHWEls6l2lTRehoEIZcdrwbMuQrJJWzlewEKEGAETrwopIQMHjWW-PhQWYtU088SEWEDgcJyt44ryRknDyD0EZA53ebZph-f1aiGtte-3e4Z7oD3YjQi07gm3EMChMhvqUKmxc8Zfd2C2hyoO7uNffVf_d8ix6df5zK71_Ovh2gncwDbAKE_BCN1qtr-xoipLV-E2zhN2GSEb4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome+and+time-of-day+transcriptome+of+Wolffia+australiana+link+morphological+minimization+with+gene+loss+and+less+growth+control&rft.jtitle=Genome+research&rft.au=Michael%2C+Todd+P&rft.au=Ernst%2C+Evan&rft.au=Hartwick%2C+Nolan&rft.au=Chu%2C+Philomena&rft.date=2021-02-01&rft.eissn=1549-5469&rft.volume=31&rft.issue=2&rft.spage=225&rft.epage=238&rft_id=info:doi/10.1101%2Fgr.266429.120&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |