Adiponectin and Functional Adiponectin Receptor 1 Are Expressed by Airway Epithelial Cells in Chronic Obstructive Pulmonary Disease

We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine array and demonstrated that adiponectin was highly expressed in BAL in COPD-E. An adiponectin ELISA confirmed that adiponectin was highly express...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 182; no. 1; pp. 684 - 691
Main Authors Miller, Marina, Cho, Jae Youn, Pham, Alexa, Ramsdell, Joe, Broide, David H
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 01.01.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine array and demonstrated that adiponectin was highly expressed in BAL in COPD-E. An adiponectin ELISA confirmed that adiponectin was highly expressed in BAL in COPD-E compared with smokers and healthy control subjects. Immunohistochemistry studies of lung sections from subjects with COPD-E demonstrated that airway epithelial cells expressed significant levels of adiponectin and adiponectin receptor (AdipoR) 1 but not AdipoR2. In vitro studies with purified populations of human lung A549 epithelial cells demonstrated that they expressed both adiponectin and AdipoR1 (but not AdipoR2) as assessed by RT-PCR, Western blot, and immunohistochemistry. Lung A549 epithelial AdipoR1were functional as incubation with adiponectin induced release of IL-8, which was inhibited by small interfering RNA to AdipoR1. Using a mouse model of COPD, tobacco smoke exposure induced both evidence of COPD as well as increased levels of adiponectin in BAL fluid and increased adiponectin expression by airway epithelial cells. As adiponectin expression in adipocytes is dependent upon NF-κB we determined levels of adiponectin in tobacco smoke exposed CC10-Cretg/IkkβΔ/Δ mice (deficient in the ability to activate NF-κB in airway epithelium). These studies demonstrated that CC10-Cretg/IkkβΔ/Δ and wild-type mice had similar levels of BAL adiponectin and airway epithelial adiponectin immunostaining. Overall, these studies demonstrate the novel observation that adiponectin and functional AdipoR1are expressed by lung epithelial cells, suggesting a potential autocrine and/or paracrine pathway for adiponectin to activate epithelial cells in COPD-E.
AbstractList We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine array and demonstrated that adiponectin was highly expressed in BAL in COPD-E. An adiponectin ELISA confirmed that adiponectin was highly expressed in BAL in COPD-E compared with smokers and healthy control subjects. Immunohistochemistry studies of lung sections from subjects with COPD-E demonstrated that airway epithelial cells expressed significant levels of adiponectin and adiponectin receptor (AdipoR) 1 but not AdipoR2. In vitro studies with purified populations of human lung A549 epithelial cells demonstrated that they expressed both adiponectin and AdipoR1 (but not AdipoR2) as assessed by RT-PCR, Western blot, and immunohistochemistry. Lung A549 epithelial AdipoR1were functional as incubation with adiponectin induced release of IL-8, which was inhibited by small interfering RNA to AdipoR1. Using a mouse model of COPD, tobacco smoke exposure induced both evidence of COPD as well as increased levels of adiponectin in BAL fluid and increased adiponectin expression by airway epithelial cells. As adiponectin expression in adipocytes is dependent upon NF-kappaB we determined levels of adiponectin in tobacco smoke exposed CC10-Cre(tg)/Ikkbeta(Delta/Delta) mice (deficient in the ability to activate NF-kappaB in airway epithelium). These studies demonstrated that CC10-Cre(tg)/Ikkbeta(Delta/Delta) and wild-type mice had similar levels of BAL adiponectin and airway epithelial adiponectin immunostaining. Overall, these studies demonstrate the novel observation that adiponectin and functional AdipoR1are expressed by lung epithelial cells, suggesting a potential autocrine and/or paracrine pathway for adiponectin to activate epithelial cells in COPD-E.
We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine array and demonstrated that adiponectin was highly expressed in BAL in COPD-E. An adiponectin ELISA confirmed that adiponectin was highly expressed in BAL in COPD-E compared with smokers and healthy control subjects. Immunohistochemistry studies of lung sections from subjects with COPD-E demonstrated that airway epithelial cells expressed significant levels of adiponectin and adiponectin receptor (AdipoR) 1 but not AdipoR2. In vitro studies with purified populations of human lung A549 epithelial cells demonstrated that they expressed both adiponectin and AdipoR1 (but not AdipoR2) as assessed by RT-PCR, Western blot, and immunohistochemistry. Lung A549 epithelial AdipoR1were functional as incubation with adiponectin induced release of IL-8, which was inhibited by small interfering RNA to AdipoR1. Using a mouse model of COPD, tobacco smoke exposure induced both evidence of COPD as well as increased levels of adiponectin in BAL fluid and increased adiponectin expression by airway epithelial cells. As adiponectin expression in adipocytes is dependent upon NF-κB we determined levels of adiponectin in tobacco smoke exposed CC10-Cretg/IkkβΔ/Δ mice (deficient in the ability to activate NF-κB in airway epithelium). These studies demonstrated that CC10-Cretg/IkkβΔ/Δ and wild-type mice had similar levels of BAL adiponectin and airway epithelial adiponectin immunostaining. Overall, these studies demonstrate the novel observation that adiponectin and functional AdipoR1are expressed by lung epithelial cells, suggesting a potential autocrine and/or paracrine pathway for adiponectin to activate epithelial cells in COPD-E.
We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine array and demonstrated that adiponectin was highly expressed in BAL in COPD-E. An adiponectin ELISA confirmed that adiponectin was highly expressed in BAL in COPD-E compared with smokers and healthy control subjects. Immunohistochemistry studies of lung sections from subjects with COPD-E demonstrated that airway epithelial cells expressed significant levels of adiponectin and adiponectin receptor (AdipoR) 1 but not AdipoR2. In vitro studies with purified populations of human lung A549 epithelial cells demonstrated that they expressed both adiponectin and AdipoR1 (but not AdipoR2) as assessed by RT-PCR, Western blot, and immunohistochemistry. Lung A549 epithelial AdipoR1were functional as incubation with adiponectin induced release of IL-8, which was inhibited by small interfering RNA to AdipoR1. Using a mouse model of COPD, tobacco smoke exposure induced both evidence of COPD as well as increased levels of adiponectin in BAL fluid and increased adiponectin expression by airway epithelial cells. As adiponectin expression in adipocytes is dependent upon NF-kappaB we determined levels of adiponectin in tobacco smoke exposed CC10-Cre(tg)/Ikkbeta(Delta/Delta) mice (deficient in the ability to activate NF-kappaB in airway epithelium). These studies demonstrated that CC10-Cre(tg)/Ikkbeta(Delta/Delta) and wild-type mice had similar levels of BAL adiponectin and airway epithelial adiponectin immunostaining. Overall, these studies demonstrate the novel observation that adiponectin and functional AdipoR1are expressed by lung epithelial cells, suggesting a potential autocrine and/or paracrine pathway for adiponectin to activate epithelial cells in COPD-E.We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine array and demonstrated that adiponectin was highly expressed in BAL in COPD-E. An adiponectin ELISA confirmed that adiponectin was highly expressed in BAL in COPD-E compared with smokers and healthy control subjects. Immunohistochemistry studies of lung sections from subjects with COPD-E demonstrated that airway epithelial cells expressed significant levels of adiponectin and adiponectin receptor (AdipoR) 1 but not AdipoR2. In vitro studies with purified populations of human lung A549 epithelial cells demonstrated that they expressed both adiponectin and AdipoR1 (but not AdipoR2) as assessed by RT-PCR, Western blot, and immunohistochemistry. Lung A549 epithelial AdipoR1were functional as incubation with adiponectin induced release of IL-8, which was inhibited by small interfering RNA to AdipoR1. Using a mouse model of COPD, tobacco smoke exposure induced both evidence of COPD as well as increased levels of adiponectin in BAL fluid and increased adiponectin expression by airway epithelial cells. As adiponectin expression in adipocytes is dependent upon NF-kappaB we determined levels of adiponectin in tobacco smoke exposed CC10-Cre(tg)/Ikkbeta(Delta/Delta) mice (deficient in the ability to activate NF-kappaB in airway epithelium). These studies demonstrated that CC10-Cre(tg)/Ikkbeta(Delta/Delta) and wild-type mice had similar levels of BAL adiponectin and airway epithelial adiponectin immunostaining. Overall, these studies demonstrate the novel observation that adiponectin and functional AdipoR1are expressed by lung epithelial cells, suggesting a potential autocrine and/or paracrine pathway for adiponectin to activate epithelial cells in COPD-E.
Author Cho, Jae Youn
Ramsdell, Joe
Broide, David H
Miller, Marina
Pham, Alexa
Author_xml – sequence: 1
  fullname: Miller, Marina
– sequence: 2
  fullname: Cho, Jae Youn
– sequence: 3
  fullname: Pham, Alexa
– sequence: 4
  fullname: Ramsdell, Joe
– sequence: 5
  fullname: Broide, David H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19109202$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFL8AB-cQt27E3cZLjatkCUqUiBGfLfyasK8cJdkLYM18cV91CxYHTjDS_9_Q074KchSEgIa8ZrEso26s71_dzGPyaNXzN1qIpn5EVqyoohABxRlYAnBesFvU5uUjpDgAE8PIFOWctg5YDX5FfW-vGbGsmF6gKll7PIe9DUJ4-PX1Gg-M0RMroNiLd_xwjpoSW6iPdurioI92Pbjqgd1m5Q-8TzbLdIQ7BGXqr0xTn7PQD6afZ99k_Huk7l1AlfEmed8onfHWal-Tr9f7L7kNxc_v-4257U5iy5FOxwRo4CF3BBjuDaqNb3ujKmgbqutKdsV2nFee1YAJaxlQlRGdFV6IWrQW7uSRvH3zHOHyfMU2yd8nkqCrgMCcpRC2aum0y-OYEzrpHK8fo-pxXPr4tA80DYOKQUsROGjep-7dNUTkvGcj7huRjQzI3JJnMDWUp_0f6x_1_olPyg_t2WFxEmXrlfY7H5LIsf8HflFynAg
CitedBy_id crossref_primary_10_1016_j_chemosphere_2020_126026
crossref_primary_10_1016_j_biocel_2011_12_016
crossref_primary_10_1002_jat_2785
crossref_primary_10_17116_profmed202023041126
crossref_primary_10_2147_JIR_S483689
crossref_primary_10_1152_japplphysiol_00838_2009
crossref_primary_10_1016_j_aquaculture_2018_05_039
crossref_primary_10_1186_s41231_020_00053_2
crossref_primary_10_1164_rccm_201203_0573OC
crossref_primary_10_1152_ajplung_00326_2009
crossref_primary_10_1007_s11926_013_0381_8
crossref_primary_10_1038_s41598_020_62872_5
crossref_primary_10_1378_chest_10_2521
crossref_primary_10_1016_j_ejcdt_2014_02_006
crossref_primary_10_4161_cc_11_4_19125
crossref_primary_10_1038_aps_2015_158
crossref_primary_10_24884_1607_4181_2014_21_3_34_40
crossref_primary_10_4049_jimmunol_1203455
crossref_primary_10_1016_j_pupt_2019_01_004
crossref_primary_10_4049_jimmunol_1200461
crossref_primary_10_3390_nu16121851
crossref_primary_10_1189_jlb_1109723
crossref_primary_10_1016_j_chemosphere_2017_04_001
crossref_primary_10_1155_2010_585989
crossref_primary_10_1007_s11695_021_05255_7
crossref_primary_10_1165_rcmb_2009_0086OC
crossref_primary_10_1016_j_rmed_2013_08_016
crossref_primary_10_3390_ijms222413656
crossref_primary_10_4046_trd_2014_77_4_155
crossref_primary_10_1016_j_atherosclerosis_2011_12_014
crossref_primary_10_1007_s13577_024_01131_5
crossref_primary_10_12677_ACM_2023_133436
crossref_primary_10_1007_s13273_015_0024_4
crossref_primary_10_1007_s11357_010_9173_5
crossref_primary_10_1016_j_chest_2015_12_034
crossref_primary_10_1164_rccm_201007_1091OC
crossref_primary_10_3390_v16010024
crossref_primary_10_4103_0366_6999_173486
crossref_primary_10_1016_j_envpol_2019_03_109
crossref_primary_10_14814_phy2_14553
crossref_primary_10_1080_01902148_2016_1174749
crossref_primary_10_1155_2013_349520
crossref_primary_10_3109_02770903_2011_555033
crossref_primary_10_1016_j_intimp_2010_05_001
crossref_primary_10_3389_fphar_2020_00056
crossref_primary_10_1016_j_intimp_2018_12_030
crossref_primary_10_1136_thoraxjnl_2021_217675
crossref_primary_10_1016_j_ejcdt_2013_03_005
crossref_primary_10_1097_MD_0000000000034825
crossref_primary_10_3390_biom13010048
crossref_primary_10_1016_j_pmrj_2017_08_437
crossref_primary_10_1513_AnnalsATS_201705_371AW
crossref_primary_10_1155_2021_3524571
crossref_primary_10_1371_journal_pone_0033965
crossref_primary_10_3390_ijms23137349
crossref_primary_10_1016_j_bbrc_2014_06_028
crossref_primary_10_1371_journal_pone_0050848
crossref_primary_10_1620_tjem_229_153
crossref_primary_10_3389_fimmu_2019_01057
crossref_primary_10_1016_j_trsl_2016_11_001
crossref_primary_10_1038_s41390_021_01442_5
crossref_primary_10_1016_j_mce_2010_11_032
crossref_primary_10_1080_10934529_2016_1191819
crossref_primary_10_3390_molecules25215091
crossref_primary_10_1155_2014_232454
crossref_primary_10_3945_ajcn_112_040774
crossref_primary_10_1016_j_biocel_2013_03_003
crossref_primary_10_3109_10799893_2014_898658
crossref_primary_10_1042_BSR20192234
crossref_primary_10_18093_0869_0189_2018_28_3_359_367
crossref_primary_10_1002_acn3_77
crossref_primary_10_1111_j_1365_3083_2010_02474_x
crossref_primary_10_1164_rccm_201110_1767OC
crossref_primary_10_3109_02770903_2014_882934
crossref_primary_10_3892_ijmm_2019_4072
crossref_primary_10_1016_j_lfs_2019_01_008
crossref_primary_10_1080_15412555_2025_2477235
crossref_primary_10_1378_chest_10_0705
crossref_primary_10_1038_ki_2012_408
crossref_primary_10_1681_ASN_2013030217
crossref_primary_10_3390_ijms25063213
crossref_primary_10_1164_rccm_201212_2299OC
crossref_primary_10_1111_bjh_12464
crossref_primary_10_3892_br_2020_1298
crossref_primary_10_1016_j_soard_2013_06_021
crossref_primary_10_1016_j_metabol_2014_02_001
crossref_primary_10_1007_s10528_016_9726_0
crossref_primary_10_1111_all_13369
crossref_primary_10_3390_jcm10143039
crossref_primary_10_1186_s40749_015_0017_7
crossref_primary_10_1152_physiolgenomics_00056_2012
crossref_primary_10_1378_chest_11_2173
crossref_primary_10_5301_jbm_5000140
crossref_primary_10_1002_cbf_3603
crossref_primary_10_3892_etm_2016_3872
crossref_primary_10_1016_j_biochi_2012_03_006
crossref_primary_10_1038_s41392_019_0079_0
crossref_primary_10_2500_ajra_2011_25_3651
crossref_primary_10_1515_med_2024_0904
crossref_primary_10_1186_s12887_023_04046_6
crossref_primary_10_1152_japplphysiol_00749_2009
crossref_primary_10_3109_10799893_2014_896380
crossref_primary_10_1016_j_atherosclerosis_2009_02_027
crossref_primary_10_1186_s40749_015_0005_y
crossref_primary_10_4168_aair_2014_6_3_189
crossref_primary_10_3389_fgene_2020_585998
crossref_primary_10_1164_rccm_201307_1243ED
crossref_primary_10_1038_nri2921
crossref_primary_10_1016_j_ecoenv_2020_111609
crossref_primary_10_1186_s12890_018_0618_4
crossref_primary_10_1016_j_chest_2019_10_011
crossref_primary_10_1016_j_pharmthera_2019_02_013
crossref_primary_10_1513_AnnalsATS_201408_351OC
crossref_primary_10_1016_j_cyto_2018_11_013
crossref_primary_10_3390_nu5104115
crossref_primary_10_1155_2013_785835
crossref_primary_10_1186_1465_9921_11_176
crossref_primary_10_1378_chest_12_1030
crossref_primary_10_3389_fphar_2021_718929
crossref_primary_10_1007_s11434_016_1127_6
crossref_primary_10_1016_j_cyto_2013_06_317
Cites_doi 10.1172/JCI29126
10.1073/pnas.0509235102
10.1038/nature01705
10.2337/db06-1405
10.1165/ajrcmb.22.2.3809
10.1016/j.bbrc.2003.12.058
10.1164/rccm.200404-511OC
10.1111/j.1463-1326.2005.00510.x
10.1081/COPD-120028701
10.1172/JCI21625
10.1074/jbc.274.45.32048
10.4049/jimmunol.176.7.4468
10.1146/annurev.immunol.19.1.683
10.2337/diabetes.55.02.06.db05-0446
10.1126/science.277.5334.2002
10.1161/01.CIR.0000149747.82157.01
10.1093/toxsci/kfl016
10.1016/j.bbrc.2004.08.083
10.1006/bbrc.1996.0587
10.1152/ajplung.00397.2007
10.1097/01.all.0000244791.18486.f7
10.1016/j.lfs.2006.08.004
10.1136/ard.2005.046540
10.1016/S0272-5231(05)70172-6
10.1016/j.jaci.2007.08.045
10.1038/nri1937
10.1182/blood.V96.5.1723
10.1183/09031936.03.00040703
10.1074/jbc.270.45.26746
10.1002/(SICI)1097-4652(199904)179:1<58::AID-JCP8>3.0.CO;2-1
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.4049/jimmunol.182.1.684
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 691
ExternalDocumentID 19109202
10_4049_jimmunol_182_1_684
www182_1_684
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL72342
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
79B
85S
8RP
AALRV
AARDX
ABEFU
ABFLS
ABOCM
ABPPZ
ABPTK
ACGFS
ACIWK
ACNCT
ACPRK
ADACO
ADBBV
ADKFC
AENEX
AETEA
AFFNX
AFRAH
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FH7
FRP
GX1
H13
IH2
K-O
K78
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
PQEST
PQQKQ
R.V
RHF
RHI
RZQ
SJN
TWZ
WH7
WOQ
X
X7M
XJT
ZA5
ZE2
ZGI
---
-~X
.55
0R~
18M
5WD
AAYXX
ABCQX
ABDFA
ABEJV
ABGNP
ABJNI
ABXVV
ACGFO
ADIPN
ADNWM
AFHIN
AFOSN
AGORE
AHMMS
AHWXS
AIZAD
ARBBW
BCRHZ
BTFSW
CITATION
OCZFY
OWPYF
ROX
TR2
W8F
XSW
XTH
YHG
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIN
7X8
ID FETCH-LOGICAL-c442t-3e70206b503efcea3b928b5dc80775bfcdffba2276160911a566fd6f4eb69d0d3
ISSN 0022-1767
1550-6606
IngestDate Thu Jul 10 18:15:36 EDT 2025
Wed Feb 19 02:36:56 EST 2025
Tue Jul 01 03:26:04 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Tue Nov 10 19:22:56 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-3e70206b503efcea3b928b5dc80775bfcdffba2276160911a566fd6f4eb69d0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.aai.org/jimmunol/article-pdf/182/1/684/1270221/zim00109000684.pdf
PMID 19109202
PQID 66768798
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_66768798
pubmed_primary_19109202
crossref_citationtrail_10_4049_jimmunol_182_1_684
crossref_primary_10_4049_jimmunol_182_1_684
highwire_smallpub1_www182_1_684
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090101
2009-01-01
2009-Jan-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 20090101
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2009
Publisher Am Assoc Immnol
Publisher_xml – name: Am Assoc Immnol
References 2023010200533581600_R28
2023010200533581600_R29
2023010200533581600_R24
2023010200533581600_R25
2023010200533581600_R26
2023010200533581600_R27
2023010200533581600_R20
2023010200533581600_R21
2023010200533581600_R22
2023010200533581600_R23
2023010200533581600_R8
2023010200533581600_R17
2023010200533581600_R9
2023010200533581600_R18
2023010200533581600_R6
2023010200533581600_R19
2023010200533581600_R7
2023010200533581600_R13
2023010200533581600_R14
2023010200533581600_R15
2023010200533581600_R16
2023010200533581600_R1
2023010200533581600_R4
2023010200533581600_R5
2023010200533581600_R2
2023010200533581600_R3
2023010200533581600_R10
2023010200533581600_R11
2023010200533581600_R12
2023010200533581600_R30
References_xml – ident: 2023010200533581600_R8
  doi: 10.1172/JCI29126
– ident: 2023010200533581600_R22
  doi: 10.1073/pnas.0509235102
– ident: 2023010200533581600_R12
  doi: 10.1038/nature01705
– ident: 2023010200533581600_R18
  doi: 10.2337/db06-1405
– ident: 2023010200533581600_R4
  doi: 10.1165/ajrcmb.22.2.3809
– ident: 2023010200533581600_R11
  doi: 10.1016/j.bbrc.2003.12.058
– ident: 2023010200533581600_R21
  doi: 10.1164/rccm.200404-511OC
– ident: 2023010200533581600_R7
  doi: 10.1111/j.1463-1326.2005.00510.x
– ident: 2023010200533581600_R3
  doi: 10.1081/COPD-120028701
– ident: 2023010200533581600_R27
  doi: 10.1172/JCI21625
– ident: 2023010200533581600_R26
  doi: 10.1074/jbc.274.45.32048
– ident: 2023010200533581600_R17
  doi: 10.4049/jimmunol.176.7.4468
– ident: 2023010200533581600_R25
  doi: 10.1146/annurev.immunol.19.1.683
– ident: 2023010200533581600_R30
  doi: 10.2337/diabetes.55.02.06.db05-0446
– ident: 2023010200533581600_R5
  doi: 10.1126/science.277.5334.2002
– ident: 2023010200533581600_R19
  doi: 10.1161/01.CIR.0000149747.82157.01
– ident: 2023010200533581600_R20
  doi: 10.1093/toxsci/kfl016
– ident: 2023010200533581600_R15
  doi: 10.1016/j.bbrc.2004.08.083
– ident: 2023010200533581600_R10
  doi: 10.1006/bbrc.1996.0587
– ident: 2023010200533581600_R28
  doi: 10.1152/ajplung.00397.2007
– ident: 2023010200533581600_R29
  doi: 10.1097/01.all.0000244791.18486.f7
– ident: 2023010200533581600_R13
  doi: 10.1016/j.lfs.2006.08.004
– ident: 2023010200533581600_R23
  doi: 10.1136/ard.2005.046540
– ident: 2023010200533581600_R2
  doi: 10.1016/S0272-5231(05)70172-6
– ident: 2023010200533581600_R16
  doi: 10.1016/j.jaci.2007.08.045
– ident: 2023010200533581600_R6
  doi: 10.1038/nri1937
– ident: 2023010200533581600_R24
  doi: 10.1182/blood.V96.5.1723
– ident: 2023010200533581600_R1
  doi: 10.1183/09031936.03.00040703
– ident: 2023010200533581600_R9
  doi: 10.1074/jbc.270.45.26746
– ident: 2023010200533581600_R14
  doi: 10.1002/(SICI)1097-4652(199904)179:1<58::AID-JCP8>3.0.CO;2-1
SSID ssj0006024
Score 2.330818
Snippet We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine...
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 684
SubjectTerms Adiponectin - biosynthesis
Adiponectin - genetics
Adiponectin - physiology
Animals
Cell Line, Tumor
Disease Models, Animal
Female
Humans
Interleukin-8 - metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
NF-kappa B - physiology
Pulmonary Disease, Chronic Obstructive - immunology
Pulmonary Disease, Chronic Obstructive - metabolism
Pulmonary Disease, Chronic Obstructive - pathology
Pulmonary Emphysema - immunology
Pulmonary Emphysema - metabolism
Pulmonary Emphysema - pathology
Receptors, Adiponectin - biosynthesis
Receptors, Adiponectin - genetics
Receptors, Adiponectin - physiology
Respiratory Mucosa - metabolism
Respiratory Mucosa - pathology
Signal Transduction - genetics
Signal Transduction - immunology
Title Adiponectin and Functional Adiponectin Receptor 1 Are Expressed by Airway Epithelial Cells in Chronic Obstructive Pulmonary Disease
URI http://www.jimmunol.org/cgi/content/abstract/182/1/684
https://www.ncbi.nlm.nih.gov/pubmed/19109202
https://www.proquest.com/docview/66768798
Volume 182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIgXBONWrn6Apygldhyneax20QAVXjZpb5EdO6IoS6u1oyqv_DF-Gsexk7gbQ4yXqMrlxO73xT7HPheE3gqVMMkFDzko9yGjGr45LqKQkiIyyUCSsjAL-tPP_OiEfTxNTgeDX57X0sVKjooff4wr-R9U4RzgaqJkb4BsJxROwG_AF46AMBz_CeOJmi3mtRmyrEvxIUxSbm3PvwSqoV6AbR2QYHKuTXbjJmN4o3pOZudrsQkOFiY2ozLL53u6qhonWZc3N_giXZLZ78a7p4LeGU-7fW9n51tPOU_BnZnQE5vi6V2zkRZ5yw59DOIUrPW69xf6areChA7MQNRvWljiNvE4_d7U2VK1XjpzvbWAkXkLGH1AAUltVY6RduNwAlYtj_j2QE2vMNIOu9yWmXMzOLf1vy5PDgyMITM5uN6PQNyIjLpH_Uzcl2bIzm8RLCYjJW9l5CAjJznIuIVuUzBUTA2N_Q-fOl2AR5S1-epNF23YlpHx_mo7tlWjNl319aZPowIdP0D3HbR4Yon4EA10vYvu2Gqmm110d-r8NB6hnx79MDAT98zE_qWWmZiAVI07ZmK5wZaZuGcmbpiJ4THHTOwxE3fMxI6Zj9HJ4cHx3lHoyn2EBWN0FcY6BduFyySKdVloEcuMjmWiirFJ0yjLQpWlFJSmnHDQcokAS6RUvGRa8kxFKn6Cdmpo_zOEKdE0LmOWKZUyYJHMRFzETMlUMVHqcohI-0_nhcuFb0qyAKDXIjxEQffMwmaC-evdb1oA8-WZqCoAjuTr9dq_o8U1hyHd7NOJWs8vlrlxOx-n2XiInlq4-_eBcp_RiD6_UVteoHv9d_cS7QAy-hWo0iv5umHrb0dmzhs
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adiponectin+and+Functional+Adiponectin+Receptor+1+Are+Expressed+by+Airway+Epithelial+Cells+in+Chronic+Obstructive+Pulmonary+Disease&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Miller%2C+Marina&rft.au=Cho%2C+Jae+Youn&rft.au=Pham%2C+Alexa&rft.au=Ramsdell%2C+Joe&rft.date=2009-01-01&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=182&rft.issue=1&rft.spage=684&rft.epage=691&rft_id=info:doi/10.4049%2Fjimmunol.182.1.684&rft.externalDBID=n%2Fa&rft.externalDocID=10_4049_jimmunol_182_1_684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon