Adiponectin and Functional Adiponectin Receptor 1 Are Expressed by Airway Epithelial Cells in Chronic Obstructive Pulmonary Disease
We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine array and demonstrated that adiponectin was highly expressed in BAL in COPD-E. An adiponectin ELISA confirmed that adiponectin was highly express...
Saved in:
Published in | The Journal of immunology (1950) Vol. 182; no. 1; pp. 684 - 691 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Assoc Immnol
01.01.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine array and demonstrated that adiponectin was highly expressed in BAL in COPD-E. An adiponectin ELISA confirmed that adiponectin was highly expressed in BAL in COPD-E compared with smokers and healthy control subjects. Immunohistochemistry studies of lung sections from subjects with COPD-E demonstrated that airway epithelial cells expressed significant levels of adiponectin and adiponectin receptor (AdipoR) 1 but not AdipoR2. In vitro studies with purified populations of human lung A549 epithelial cells demonstrated that they expressed both adiponectin and AdipoR1 (but not AdipoR2) as assessed by RT-PCR, Western blot, and immunohistochemistry. Lung A549 epithelial AdipoR1were functional as incubation with adiponectin induced release of IL-8, which was inhibited by small interfering RNA to AdipoR1. Using a mouse model of COPD, tobacco smoke exposure induced both evidence of COPD as well as increased levels of adiponectin in BAL fluid and increased adiponectin expression by airway epithelial cells. As adiponectin expression in adipocytes is dependent upon NF-κB we determined levels of adiponectin in tobacco smoke exposed CC10-Cretg/IkkβΔ/Δ mice (deficient in the ability to activate NF-κB in airway epithelium). These studies demonstrated that CC10-Cretg/IkkβΔ/Δ and wild-type mice had similar levels of BAL adiponectin and airway epithelial adiponectin immunostaining. Overall, these studies demonstrate the novel observation that adiponectin and functional AdipoR1are expressed by lung epithelial cells, suggesting a potential autocrine and/or paracrine pathway for adiponectin to activate epithelial cells in COPD-E. |
---|---|
AbstractList | We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine array and demonstrated that adiponectin was highly expressed in BAL in COPD-E. An adiponectin ELISA confirmed that adiponectin was highly expressed in BAL in COPD-E compared with smokers and healthy control subjects. Immunohistochemistry studies of lung sections from subjects with COPD-E demonstrated that airway epithelial cells expressed significant levels of adiponectin and adiponectin receptor (AdipoR) 1 but not AdipoR2. In vitro studies with purified populations of human lung A549 epithelial cells demonstrated that they expressed both adiponectin and AdipoR1 (but not AdipoR2) as assessed by RT-PCR, Western blot, and immunohistochemistry. Lung A549 epithelial AdipoR1were functional as incubation with adiponectin induced release of IL-8, which was inhibited by small interfering RNA to AdipoR1. Using a mouse model of COPD, tobacco smoke exposure induced both evidence of COPD as well as increased levels of adiponectin in BAL fluid and increased adiponectin expression by airway epithelial cells. As adiponectin expression in adipocytes is dependent upon NF-kappaB we determined levels of adiponectin in tobacco smoke exposed CC10-Cre(tg)/Ikkbeta(Delta/Delta) mice (deficient in the ability to activate NF-kappaB in airway epithelium). These studies demonstrated that CC10-Cre(tg)/Ikkbeta(Delta/Delta) and wild-type mice had similar levels of BAL adiponectin and airway epithelial adiponectin immunostaining. Overall, these studies demonstrate the novel observation that adiponectin and functional AdipoR1are expressed by lung epithelial cells, suggesting a potential autocrine and/or paracrine pathway for adiponectin to activate epithelial cells in COPD-E. We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine array and demonstrated that adiponectin was highly expressed in BAL in COPD-E. An adiponectin ELISA confirmed that adiponectin was highly expressed in BAL in COPD-E compared with smokers and healthy control subjects. Immunohistochemistry studies of lung sections from subjects with COPD-E demonstrated that airway epithelial cells expressed significant levels of adiponectin and adiponectin receptor (AdipoR) 1 but not AdipoR2. In vitro studies with purified populations of human lung A549 epithelial cells demonstrated that they expressed both adiponectin and AdipoR1 (but not AdipoR2) as assessed by RT-PCR, Western blot, and immunohistochemistry. Lung A549 epithelial AdipoR1were functional as incubation with adiponectin induced release of IL-8, which was inhibited by small interfering RNA to AdipoR1. Using a mouse model of COPD, tobacco smoke exposure induced both evidence of COPD as well as increased levels of adiponectin in BAL fluid and increased adiponectin expression by airway epithelial cells. As adiponectin expression in adipocytes is dependent upon NF-κB we determined levels of adiponectin in tobacco smoke exposed CC10-Cretg/IkkβΔ/Δ mice (deficient in the ability to activate NF-κB in airway epithelium). These studies demonstrated that CC10-Cretg/IkkβΔ/Δ and wild-type mice had similar levels of BAL adiponectin and airway epithelial adiponectin immunostaining. Overall, these studies demonstrate the novel observation that adiponectin and functional AdipoR1are expressed by lung epithelial cells, suggesting a potential autocrine and/or paracrine pathway for adiponectin to activate epithelial cells in COPD-E. We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine array and demonstrated that adiponectin was highly expressed in BAL in COPD-E. An adiponectin ELISA confirmed that adiponectin was highly expressed in BAL in COPD-E compared with smokers and healthy control subjects. Immunohistochemistry studies of lung sections from subjects with COPD-E demonstrated that airway epithelial cells expressed significant levels of adiponectin and adiponectin receptor (AdipoR) 1 but not AdipoR2. In vitro studies with purified populations of human lung A549 epithelial cells demonstrated that they expressed both adiponectin and AdipoR1 (but not AdipoR2) as assessed by RT-PCR, Western blot, and immunohistochemistry. Lung A549 epithelial AdipoR1were functional as incubation with adiponectin induced release of IL-8, which was inhibited by small interfering RNA to AdipoR1. Using a mouse model of COPD, tobacco smoke exposure induced both evidence of COPD as well as increased levels of adiponectin in BAL fluid and increased adiponectin expression by airway epithelial cells. As adiponectin expression in adipocytes is dependent upon NF-kappaB we determined levels of adiponectin in tobacco smoke exposed CC10-Cre(tg)/Ikkbeta(Delta/Delta) mice (deficient in the ability to activate NF-kappaB in airway epithelium). These studies demonstrated that CC10-Cre(tg)/Ikkbeta(Delta/Delta) and wild-type mice had similar levels of BAL adiponectin and airway epithelial adiponectin immunostaining. Overall, these studies demonstrate the novel observation that adiponectin and functional AdipoR1are expressed by lung epithelial cells, suggesting a potential autocrine and/or paracrine pathway for adiponectin to activate epithelial cells in COPD-E.We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine array and demonstrated that adiponectin was highly expressed in BAL in COPD-E. An adiponectin ELISA confirmed that adiponectin was highly expressed in BAL in COPD-E compared with smokers and healthy control subjects. Immunohistochemistry studies of lung sections from subjects with COPD-E demonstrated that airway epithelial cells expressed significant levels of adiponectin and adiponectin receptor (AdipoR) 1 but not AdipoR2. In vitro studies with purified populations of human lung A549 epithelial cells demonstrated that they expressed both adiponectin and AdipoR1 (but not AdipoR2) as assessed by RT-PCR, Western blot, and immunohistochemistry. Lung A549 epithelial AdipoR1were functional as incubation with adiponectin induced release of IL-8, which was inhibited by small interfering RNA to AdipoR1. Using a mouse model of COPD, tobacco smoke exposure induced both evidence of COPD as well as increased levels of adiponectin in BAL fluid and increased adiponectin expression by airway epithelial cells. As adiponectin expression in adipocytes is dependent upon NF-kappaB we determined levels of adiponectin in tobacco smoke exposed CC10-Cre(tg)/Ikkbeta(Delta/Delta) mice (deficient in the ability to activate NF-kappaB in airway epithelium). These studies demonstrated that CC10-Cre(tg)/Ikkbeta(Delta/Delta) and wild-type mice had similar levels of BAL adiponectin and airway epithelial adiponectin immunostaining. Overall, these studies demonstrate the novel observation that adiponectin and functional AdipoR1are expressed by lung epithelial cells, suggesting a potential autocrine and/or paracrine pathway for adiponectin to activate epithelial cells in COPD-E. |
Author | Cho, Jae Youn Ramsdell, Joe Broide, David H Miller, Marina Pham, Alexa |
Author_xml | – sequence: 1 fullname: Miller, Marina – sequence: 2 fullname: Cho, Jae Youn – sequence: 3 fullname: Pham, Alexa – sequence: 4 fullname: Ramsdell, Joe – sequence: 5 fullname: Broide, David H |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19109202$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URLeFL8AB-cQt27E3cZLjatkCUqUiBGfLfyasK8cJdkLYM18cV91CxYHTjDS_9_Q074KchSEgIa8ZrEso26s71_dzGPyaNXzN1qIpn5EVqyoohABxRlYAnBesFvU5uUjpDgAE8PIFOWctg5YDX5FfW-vGbGsmF6gKll7PIe9DUJ4-PX1Gg-M0RMroNiLd_xwjpoSW6iPdurioI92Pbjqgd1m5Q-8TzbLdIQ7BGXqr0xTn7PQD6afZ99k_Huk7l1AlfEmed8onfHWal-Tr9f7L7kNxc_v-4257U5iy5FOxwRo4CF3BBjuDaqNb3ujKmgbqutKdsV2nFee1YAJaxlQlRGdFV6IWrQW7uSRvH3zHOHyfMU2yd8nkqCrgMCcpRC2aum0y-OYEzrpHK8fo-pxXPr4tA80DYOKQUsROGjep-7dNUTkvGcj7huRjQzI3JJnMDWUp_0f6x_1_olPyg_t2WFxEmXrlfY7H5LIsf8HflFynAg |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2020_126026 crossref_primary_10_1016_j_biocel_2011_12_016 crossref_primary_10_1002_jat_2785 crossref_primary_10_17116_profmed202023041126 crossref_primary_10_2147_JIR_S483689 crossref_primary_10_1152_japplphysiol_00838_2009 crossref_primary_10_1016_j_aquaculture_2018_05_039 crossref_primary_10_1186_s41231_020_00053_2 crossref_primary_10_1164_rccm_201203_0573OC crossref_primary_10_1152_ajplung_00326_2009 crossref_primary_10_1007_s11926_013_0381_8 crossref_primary_10_1038_s41598_020_62872_5 crossref_primary_10_1378_chest_10_2521 crossref_primary_10_1016_j_ejcdt_2014_02_006 crossref_primary_10_4161_cc_11_4_19125 crossref_primary_10_1038_aps_2015_158 crossref_primary_10_24884_1607_4181_2014_21_3_34_40 crossref_primary_10_4049_jimmunol_1203455 crossref_primary_10_1016_j_pupt_2019_01_004 crossref_primary_10_4049_jimmunol_1200461 crossref_primary_10_3390_nu16121851 crossref_primary_10_1189_jlb_1109723 crossref_primary_10_1016_j_chemosphere_2017_04_001 crossref_primary_10_1155_2010_585989 crossref_primary_10_1007_s11695_021_05255_7 crossref_primary_10_1165_rcmb_2009_0086OC crossref_primary_10_1016_j_rmed_2013_08_016 crossref_primary_10_3390_ijms222413656 crossref_primary_10_4046_trd_2014_77_4_155 crossref_primary_10_1016_j_atherosclerosis_2011_12_014 crossref_primary_10_1007_s13577_024_01131_5 crossref_primary_10_12677_ACM_2023_133436 crossref_primary_10_1007_s13273_015_0024_4 crossref_primary_10_1007_s11357_010_9173_5 crossref_primary_10_1016_j_chest_2015_12_034 crossref_primary_10_1164_rccm_201007_1091OC crossref_primary_10_3390_v16010024 crossref_primary_10_4103_0366_6999_173486 crossref_primary_10_1016_j_envpol_2019_03_109 crossref_primary_10_14814_phy2_14553 crossref_primary_10_1080_01902148_2016_1174749 crossref_primary_10_1155_2013_349520 crossref_primary_10_3109_02770903_2011_555033 crossref_primary_10_1016_j_intimp_2010_05_001 crossref_primary_10_3389_fphar_2020_00056 crossref_primary_10_1016_j_intimp_2018_12_030 crossref_primary_10_1136_thoraxjnl_2021_217675 crossref_primary_10_1016_j_ejcdt_2013_03_005 crossref_primary_10_1097_MD_0000000000034825 crossref_primary_10_3390_biom13010048 crossref_primary_10_1016_j_pmrj_2017_08_437 crossref_primary_10_1513_AnnalsATS_201705_371AW crossref_primary_10_1155_2021_3524571 crossref_primary_10_1371_journal_pone_0033965 crossref_primary_10_3390_ijms23137349 crossref_primary_10_1016_j_bbrc_2014_06_028 crossref_primary_10_1371_journal_pone_0050848 crossref_primary_10_1620_tjem_229_153 crossref_primary_10_3389_fimmu_2019_01057 crossref_primary_10_1016_j_trsl_2016_11_001 crossref_primary_10_1038_s41390_021_01442_5 crossref_primary_10_1016_j_mce_2010_11_032 crossref_primary_10_1080_10934529_2016_1191819 crossref_primary_10_3390_molecules25215091 crossref_primary_10_1155_2014_232454 crossref_primary_10_3945_ajcn_112_040774 crossref_primary_10_1016_j_biocel_2013_03_003 crossref_primary_10_3109_10799893_2014_898658 crossref_primary_10_1042_BSR20192234 crossref_primary_10_18093_0869_0189_2018_28_3_359_367 crossref_primary_10_1002_acn3_77 crossref_primary_10_1111_j_1365_3083_2010_02474_x crossref_primary_10_1164_rccm_201110_1767OC crossref_primary_10_3109_02770903_2014_882934 crossref_primary_10_3892_ijmm_2019_4072 crossref_primary_10_1016_j_lfs_2019_01_008 crossref_primary_10_1080_15412555_2025_2477235 crossref_primary_10_1378_chest_10_0705 crossref_primary_10_1038_ki_2012_408 crossref_primary_10_1681_ASN_2013030217 crossref_primary_10_3390_ijms25063213 crossref_primary_10_1164_rccm_201212_2299OC crossref_primary_10_1111_bjh_12464 crossref_primary_10_3892_br_2020_1298 crossref_primary_10_1016_j_soard_2013_06_021 crossref_primary_10_1016_j_metabol_2014_02_001 crossref_primary_10_1007_s10528_016_9726_0 crossref_primary_10_1111_all_13369 crossref_primary_10_3390_jcm10143039 crossref_primary_10_1186_s40749_015_0017_7 crossref_primary_10_1152_physiolgenomics_00056_2012 crossref_primary_10_1378_chest_11_2173 crossref_primary_10_5301_jbm_5000140 crossref_primary_10_1002_cbf_3603 crossref_primary_10_3892_etm_2016_3872 crossref_primary_10_1016_j_biochi_2012_03_006 crossref_primary_10_1038_s41392_019_0079_0 crossref_primary_10_2500_ajra_2011_25_3651 crossref_primary_10_1515_med_2024_0904 crossref_primary_10_1186_s12887_023_04046_6 crossref_primary_10_1152_japplphysiol_00749_2009 crossref_primary_10_3109_10799893_2014_896380 crossref_primary_10_1016_j_atherosclerosis_2009_02_027 crossref_primary_10_1186_s40749_015_0005_y crossref_primary_10_4168_aair_2014_6_3_189 crossref_primary_10_3389_fgene_2020_585998 crossref_primary_10_1164_rccm_201307_1243ED crossref_primary_10_1038_nri2921 crossref_primary_10_1016_j_ecoenv_2020_111609 crossref_primary_10_1186_s12890_018_0618_4 crossref_primary_10_1016_j_chest_2019_10_011 crossref_primary_10_1016_j_pharmthera_2019_02_013 crossref_primary_10_1513_AnnalsATS_201408_351OC crossref_primary_10_1016_j_cyto_2018_11_013 crossref_primary_10_3390_nu5104115 crossref_primary_10_1155_2013_785835 crossref_primary_10_1186_1465_9921_11_176 crossref_primary_10_1378_chest_12_1030 crossref_primary_10_3389_fphar_2021_718929 crossref_primary_10_1007_s11434_016_1127_6 crossref_primary_10_1016_j_cyto_2013_06_317 |
Cites_doi | 10.1172/JCI29126 10.1073/pnas.0509235102 10.1038/nature01705 10.2337/db06-1405 10.1165/ajrcmb.22.2.3809 10.1016/j.bbrc.2003.12.058 10.1164/rccm.200404-511OC 10.1111/j.1463-1326.2005.00510.x 10.1081/COPD-120028701 10.1172/JCI21625 10.1074/jbc.274.45.32048 10.4049/jimmunol.176.7.4468 10.1146/annurev.immunol.19.1.683 10.2337/diabetes.55.02.06.db05-0446 10.1126/science.277.5334.2002 10.1161/01.CIR.0000149747.82157.01 10.1093/toxsci/kfl016 10.1016/j.bbrc.2004.08.083 10.1006/bbrc.1996.0587 10.1152/ajplung.00397.2007 10.1097/01.all.0000244791.18486.f7 10.1016/j.lfs.2006.08.004 10.1136/ard.2005.046540 10.1016/S0272-5231(05)70172-6 10.1016/j.jaci.2007.08.045 10.1038/nri1937 10.1182/blood.V96.5.1723 10.1183/09031936.03.00040703 10.1074/jbc.270.45.26746 10.1002/(SICI)1097-4652(199904)179:1<58::AID-JCP8>3.0.CO;2-1 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.4049/jimmunol.182.1.684 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 691 |
ExternalDocumentID | 19109202 10_4049_jimmunol_182_1_684 www182_1_684 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL72342 |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS 79B 85S 8RP AALRV AARDX ABEFU ABFLS ABOCM ABPPZ ABPTK ACGFS ACIWK ACNCT ACPRK ADACO ADBBV ADKFC AENEX AETEA AFFNX AFRAH AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL D0L DIK DU5 E3Z EBS EJD F5P FH7 FRP GX1 H13 IH2 K-O K78 KQ8 L7B MVM O0- OK1 P0W P2P PQEST PQQKQ R.V RHF RHI RZQ SJN TWZ WH7 WOQ X X7M XJT ZA5 ZE2 ZGI --- -~X .55 0R~ 18M 5WD AAYXX ABCQX ABDFA ABEJV ABGNP ABJNI ABXVV ACGFO ADIPN ADNWM AFHIN AFOSN AGORE AHMMS AHWXS AIZAD ARBBW BCRHZ BTFSW CITATION OCZFY OWPYF ROX TR2 W8F XSW XTH YHG CGR CUY CVF ECM EIF NPM VXZ YIN 7X8 |
ID | FETCH-LOGICAL-c442t-3e70206b503efcea3b928b5dc80775bfcdffba2276160911a566fd6f4eb69d0d3 |
ISSN | 0022-1767 1550-6606 |
IngestDate | Thu Jul 10 18:15:36 EDT 2025 Wed Feb 19 02:36:56 EST 2025 Tue Jul 01 03:26:04 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Tue Nov 10 19:22:56 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c442t-3e70206b503efcea3b928b5dc80775bfcdffba2276160911a566fd6f4eb69d0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://journals.aai.org/jimmunol/article-pdf/182/1/684/1270221/zim00109000684.pdf |
PMID | 19109202 |
PQID | 66768798 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_66768798 pubmed_primary_19109202 crossref_citationtrail_10_4049_jimmunol_182_1_684 crossref_primary_10_4049_jimmunol_182_1_684 highwire_smallpub1_www182_1_684 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090101 2009-01-01 2009-Jan-01 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 20090101 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2009 |
Publisher | Am Assoc Immnol |
Publisher_xml | – name: Am Assoc Immnol |
References | 2023010200533581600_R28 2023010200533581600_R29 2023010200533581600_R24 2023010200533581600_R25 2023010200533581600_R26 2023010200533581600_R27 2023010200533581600_R20 2023010200533581600_R21 2023010200533581600_R22 2023010200533581600_R23 2023010200533581600_R8 2023010200533581600_R17 2023010200533581600_R9 2023010200533581600_R18 2023010200533581600_R6 2023010200533581600_R19 2023010200533581600_R7 2023010200533581600_R13 2023010200533581600_R14 2023010200533581600_R15 2023010200533581600_R16 2023010200533581600_R1 2023010200533581600_R4 2023010200533581600_R5 2023010200533581600_R2 2023010200533581600_R3 2023010200533581600_R10 2023010200533581600_R11 2023010200533581600_R12 2023010200533581600_R30 |
References_xml | – ident: 2023010200533581600_R8 doi: 10.1172/JCI29126 – ident: 2023010200533581600_R22 doi: 10.1073/pnas.0509235102 – ident: 2023010200533581600_R12 doi: 10.1038/nature01705 – ident: 2023010200533581600_R18 doi: 10.2337/db06-1405 – ident: 2023010200533581600_R4 doi: 10.1165/ajrcmb.22.2.3809 – ident: 2023010200533581600_R11 doi: 10.1016/j.bbrc.2003.12.058 – ident: 2023010200533581600_R21 doi: 10.1164/rccm.200404-511OC – ident: 2023010200533581600_R7 doi: 10.1111/j.1463-1326.2005.00510.x – ident: 2023010200533581600_R3 doi: 10.1081/COPD-120028701 – ident: 2023010200533581600_R27 doi: 10.1172/JCI21625 – ident: 2023010200533581600_R26 doi: 10.1074/jbc.274.45.32048 – ident: 2023010200533581600_R17 doi: 10.4049/jimmunol.176.7.4468 – ident: 2023010200533581600_R25 doi: 10.1146/annurev.immunol.19.1.683 – ident: 2023010200533581600_R30 doi: 10.2337/diabetes.55.02.06.db05-0446 – ident: 2023010200533581600_R5 doi: 10.1126/science.277.5334.2002 – ident: 2023010200533581600_R19 doi: 10.1161/01.CIR.0000149747.82157.01 – ident: 2023010200533581600_R20 doi: 10.1093/toxsci/kfl016 – ident: 2023010200533581600_R15 doi: 10.1016/j.bbrc.2004.08.083 – ident: 2023010200533581600_R10 doi: 10.1006/bbrc.1996.0587 – ident: 2023010200533581600_R28 doi: 10.1152/ajplung.00397.2007 – ident: 2023010200533581600_R29 doi: 10.1097/01.all.0000244791.18486.f7 – ident: 2023010200533581600_R13 doi: 10.1016/j.lfs.2006.08.004 – ident: 2023010200533581600_R23 doi: 10.1136/ard.2005.046540 – ident: 2023010200533581600_R2 doi: 10.1016/S0272-5231(05)70172-6 – ident: 2023010200533581600_R16 doi: 10.1016/j.jaci.2007.08.045 – ident: 2023010200533581600_R6 doi: 10.1038/nri1937 – ident: 2023010200533581600_R24 doi: 10.1182/blood.V96.5.1723 – ident: 2023010200533581600_R1 doi: 10.1183/09031936.03.00040703 – ident: 2023010200533581600_R9 doi: 10.1074/jbc.270.45.26746 – ident: 2023010200533581600_R14 doi: 10.1002/(SICI)1097-4652(199904)179:1<58::AID-JCP8>3.0.CO;2-1 |
SSID | ssj0006024 |
Score | 2.330818 |
Snippet | We screened bronchoalveolar lavage (BAL) fluids from COPD-E (chronic obstructive pulmonary disease-Emphysema) and control subjects using a 120 Ab cytokine... |
SourceID | proquest pubmed crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 684 |
SubjectTerms | Adiponectin - biosynthesis Adiponectin - genetics Adiponectin - physiology Animals Cell Line, Tumor Disease Models, Animal Female Humans Interleukin-8 - metabolism Mice Mice, Inbred C57BL Mice, Transgenic NF-kappa B - physiology Pulmonary Disease, Chronic Obstructive - immunology Pulmonary Disease, Chronic Obstructive - metabolism Pulmonary Disease, Chronic Obstructive - pathology Pulmonary Emphysema - immunology Pulmonary Emphysema - metabolism Pulmonary Emphysema - pathology Receptors, Adiponectin - biosynthesis Receptors, Adiponectin - genetics Receptors, Adiponectin - physiology Respiratory Mucosa - metabolism Respiratory Mucosa - pathology Signal Transduction - genetics Signal Transduction - immunology |
Title | Adiponectin and Functional Adiponectin Receptor 1 Are Expressed by Airway Epithelial Cells in Chronic Obstructive Pulmonary Disease |
URI | http://www.jimmunol.org/cgi/content/abstract/182/1/684 https://www.ncbi.nlm.nih.gov/pubmed/19109202 https://www.proquest.com/docview/66768798 |
Volume | 182 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIgXBONWrn6Apygldhyneax20QAVXjZpb5EdO6IoS6u1oyqv_DF-Gsexk7gbQ4yXqMrlxO73xT7HPheE3gqVMMkFDzko9yGjGr45LqKQkiIyyUCSsjAL-tPP_OiEfTxNTgeDX57X0sVKjooff4wr-R9U4RzgaqJkb4BsJxROwG_AF46AMBz_CeOJmi3mtRmyrEvxIUxSbm3PvwSqoV6AbR2QYHKuTXbjJmN4o3pOZudrsQkOFiY2ozLL53u6qhonWZc3N_giXZLZ78a7p4LeGU-7fW9n51tPOU_BnZnQE5vi6V2zkRZ5yw59DOIUrPW69xf6areChA7MQNRvWljiNvE4_d7U2VK1XjpzvbWAkXkLGH1AAUltVY6RduNwAlYtj_j2QE2vMNIOu9yWmXMzOLf1vy5PDgyMITM5uN6PQNyIjLpH_Uzcl2bIzm8RLCYjJW9l5CAjJznIuIVuUzBUTA2N_Q-fOl2AR5S1-epNF23YlpHx_mo7tlWjNl319aZPowIdP0D3HbR4Yon4EA10vYvu2Gqmm110d-r8NB6hnx79MDAT98zE_qWWmZiAVI07ZmK5wZaZuGcmbpiJ4THHTOwxE3fMxI6Zj9HJ4cHx3lHoyn2EBWN0FcY6BduFyySKdVloEcuMjmWiirFJ0yjLQpWlFJSmnHDQcokAS6RUvGRa8kxFKn6Cdmpo_zOEKdE0LmOWKZUyYJHMRFzETMlUMVHqcohI-0_nhcuFb0qyAKDXIjxEQffMwmaC-evdb1oA8-WZqCoAjuTr9dq_o8U1hyHd7NOJWs8vlrlxOx-n2XiInlq4-_eBcp_RiD6_UVteoHv9d_cS7QAy-hWo0iv5umHrb0dmzhs |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adiponectin+and+Functional+Adiponectin+Receptor+1+Are+Expressed+by+Airway+Epithelial+Cells+in+Chronic+Obstructive+Pulmonary+Disease&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Miller%2C+Marina&rft.au=Cho%2C+Jae+Youn&rft.au=Pham%2C+Alexa&rft.au=Ramsdell%2C+Joe&rft.date=2009-01-01&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=182&rft.issue=1&rft.spage=684&rft.epage=691&rft_id=info:doi/10.4049%2Fjimmunol.182.1.684&rft.externalDBID=n%2Fa&rft.externalDocID=10_4049_jimmunol_182_1_684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |