Bacillus velezensis CLA178-Induced Systemic Resistance of Rosa multiflora Against Crown Gall Disease

Plant growth-promoting rhizobacteria (PGPRs) are able to activate induced systemic resistance (ISR) of the plants against phytopathogens. However, whether and how ISR can be activated by PGPRs in plants of the Rosa genus is unclear. The effects of PGPR Bacillus velezensis CLA178 and the pathogen Agr...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 11; p. 587667
Main Authors Chen, Lin, Wang, Xinghong, Ma, Qinghua, Bian, Lusen, Liu, Xue, Xu, Yan, Zhang, Huihui, Shao, Jiahui, Liu, Yunpeng
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 22.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant growth-promoting rhizobacteria (PGPRs) are able to activate induced systemic resistance (ISR) of the plants against phytopathogens. However, whether and how ISR can be activated by PGPRs in plants of the Rosa genus is unclear. The effects of PGPR Bacillus velezensis CLA178 and the pathogen Agrobacterium tumefaciens C58 on the growth, plant defense-related genes, hormones, and reactive oxygen species (ROS) in the rose plants were compared. Pretreatment with CLA178 significantly reduced crown gall tumor biomass and relieved the negative effects of the C58 pathogen on plant biomass, chlorophyll content, and photosynthesis of roses. Pretreatment of the roots with CLA178 activated ISR and significantly reduced disease severity. Pretreatment with CLA178 enhanced plant defense response to C58, including the accumulation of ROS, antioxidants, and plant hormones. Moreover, pretreatment with CLA178 enhanced C58-dependent induction of the expression of the genes related to the salicylic acid (SA) or ethylene (ET) signaling pathways. This result suggested that SA- and ET-signaling may participate in CLA178-mediated ISR in roses. Additional experiments in the Arabidopsis mutants showed that CLA178 triggered ISR against C58 in the pad4 and jar1 mutants and not in the etr1 and npr1 mutants. The ISR phenotypes of the Arabidopsis mutants indicated that CLA178-mediated ISR is dependent on the ET-signaling pathway in an NPR1-dependent manner. Overall, this study provides useful information to expand the application of PGPRs to protect the plants of the Rosa genus from phytopathogens.Plant growth-promoting rhizobacteria (PGPRs) are able to activate induced systemic resistance (ISR) of the plants against phytopathogens. However, whether and how ISR can be activated by PGPRs in plants of the Rosa genus is unclear. The effects of PGPR Bacillus velezensis CLA178 and the pathogen Agrobacterium tumefaciens C58 on the growth, plant defense-related genes, hormones, and reactive oxygen species (ROS) in the rose plants were compared. Pretreatment with CLA178 significantly reduced crown gall tumor biomass and relieved the negative effects of the C58 pathogen on plant biomass, chlorophyll content, and photosynthesis of roses. Pretreatment of the roots with CLA178 activated ISR and significantly reduced disease severity. Pretreatment with CLA178 enhanced plant defense response to C58, including the accumulation of ROS, antioxidants, and plant hormones. Moreover, pretreatment with CLA178 enhanced C58-dependent induction of the expression of the genes related to the salicylic acid (SA) or ethylene (ET) signaling pathways. This result suggested that SA- and ET-signaling may participate in CLA178-mediated ISR in roses. Additional experiments in the Arabidopsis mutants showed that CLA178 triggered ISR against C58 in the pad4 and jar1 mutants and not in the etr1 and npr1 mutants. The ISR phenotypes of the Arabidopsis mutants indicated that CLA178-mediated ISR is dependent on the ET-signaling pathway in an NPR1-dependent manner. Overall, this study provides useful information to expand the application of PGPRs to protect the plants of the Rosa genus from phytopathogens.
AbstractList Plant growth-promoting rhizobacteria (PGPRs) are able to activate induced systemic resistance (ISR) of the plants against phytopathogens. However, whether and how ISR can be activated by PGPRs in plants of the Rosa genus is unclear. The effects of PGPR Bacillus velezensis CLA178 and the pathogen Agrobacterium tumefaciens C58 on the growth, plant defense-related genes, hormones, and reactive oxygen species (ROS) in the rose plants were compared. Pretreatment with CLA178 significantly reduced crown gall tumor biomass and relieved the negative effects of the C58 pathogen on plant biomass, chlorophyll content, and photosynthesis of roses. Pretreatment of the roots with CLA178 activated ISR and significantly reduced disease severity. Pretreatment with CLA178 enhanced plant defense response to C58, including the accumulation of ROS, antioxidants, and plant hormones. Moreover, pretreatment with CLA178 enhanced C58-dependent induction of the expression of the genes related to the salicylic acid (SA) or ethylene (ET) signaling pathways. This result suggested that SA- and ET-signaling may participate in CLA178-mediated ISR in roses. Additional experiments in the Arabidopsis mutants showed that CLA178 triggered ISR against C58 in the pad4 and jar1 mutants and not in the etr1 and npr1 mutants. The ISR phenotypes of the Arabidopsis mutants indicated that CLA178-mediated ISR is dependent on the ET-signaling pathway in an NPR1-dependent manner. Overall, this study provides useful information to expand the application of PGPRs to protect the plants of the Rosa genus from phytopathogens.Plant growth-promoting rhizobacteria (PGPRs) are able to activate induced systemic resistance (ISR) of the plants against phytopathogens. However, whether and how ISR can be activated by PGPRs in plants of the Rosa genus is unclear. The effects of PGPR Bacillus velezensis CLA178 and the pathogen Agrobacterium tumefaciens C58 on the growth, plant defense-related genes, hormones, and reactive oxygen species (ROS) in the rose plants were compared. Pretreatment with CLA178 significantly reduced crown gall tumor biomass and relieved the negative effects of the C58 pathogen on plant biomass, chlorophyll content, and photosynthesis of roses. Pretreatment of the roots with CLA178 activated ISR and significantly reduced disease severity. Pretreatment with CLA178 enhanced plant defense response to C58, including the accumulation of ROS, antioxidants, and plant hormones. Moreover, pretreatment with CLA178 enhanced C58-dependent induction of the expression of the genes related to the salicylic acid (SA) or ethylene (ET) signaling pathways. This result suggested that SA- and ET-signaling may participate in CLA178-mediated ISR in roses. Additional experiments in the Arabidopsis mutants showed that CLA178 triggered ISR against C58 in the pad4 and jar1 mutants and not in the etr1 and npr1 mutants. The ISR phenotypes of the Arabidopsis mutants indicated that CLA178-mediated ISR is dependent on the ET-signaling pathway in an NPR1-dependent manner. Overall, this study provides useful information to expand the application of PGPRs to protect the plants of the Rosa genus from phytopathogens.
Plant growth-promoting rhizobacteria (PGPRs) are able to activate induced systemic resistance (ISR) of the plants against phytopathogens. However, whether and how ISR can be activated by PGPRs in plants of the Rosa genus is unclear. The effects of PGPR Bacillus velezensis CLA178 and the pathogen Agrobacterium tumefaciens C58 on the growth, plant defense-related genes, hormones, and reactive oxygen species (ROS) in the rose plants were compared. Pretreatment with CLA178 significantly reduced crown gall tumor biomass and relieved the negative effects of the C58 pathogen on plant biomass, chlorophyll content, and photosynthesis of roses. Pretreatment of the roots with CLA178 activated ISR and significantly reduced disease severity. Pretreatment with CLA178 enhanced plant defense response to C58, including the accumulation of ROS, antioxidants, and plant hormones. Moreover, pretreatment with CLA178 enhanced C58-dependent induction of the expression of the genes related to the salicylic acid (SA) or ethylene (ET) signaling pathways. This result suggested that SA- and ET-signaling may participate in CLA178-mediated ISR in roses. Additional experiments in the Arabidopsis mutants showed that CLA178 triggered ISR against C58 in the pad4 and jar1 mutants and not in the etr1 and npr1 mutants. The ISR phenotypes of the Arabidopsis mutants indicated that CLA178-mediated ISR is dependent on the ET-signaling pathway in an NPR1-dependent manner. Overall, this study provides useful information to expand the application of PGPRs to protect the plants of the Rosa genus from phytopathogens.
Plant growth-promoting rhizobacteria (PGPRs) are able to activate induced systemic resistance (ISR) of the plants against phytopathogens. However, whether and how ISR can be activated by PGPRs in plants of the Rosa genus is unclear. The effects of PGPR Bacillus velezensis CLA178 and the pathogen Agrobacterium tumefaciens C58 on the growth, plant defense-related genes, hormones, and reactive oxygen species (ROS) in the rose plants were compared. Pretreatment with CLA178 significantly reduced crown gall tumor biomass and relieved the negative effects of the C58 pathogen on plant biomass, chlorophyll content, and photosynthesis of roses. Pretreatment of the roots with CLA178 activated ISR and significantly reduced disease severity. Pretreatment with CLA178 enhanced plant defense response to C58, including the accumulation of ROS, antioxidants, and plant hormones. Moreover, pretreatment with CLA178 enhanced C58-dependent induction of the expression of the genes related to the salicylic acid (SA) or ethylene (ET) signaling pathways. This result suggested that SA- and ET-signaling may participate in CLA178-mediated ISR in roses. Additional experiments in the Arabidopsis mutants showed that CLA178 triggered ISR against C58 in the pad4 and jar1 mutants and not in the etr1 and npr1 mutants. The ISR phenotypes of the Arabidopsis mutants indicated that CLA178-mediated ISR is dependent on the ET-signaling pathway in an NPR1-dependent manner. Overall, this study provides useful information to expand the application of PGPRs to protect the plants of the Rosa genus from phytopathogens.
Author Ma, Qinghua
Xu, Yan
Wang, Xinghong
Liu, Yunpeng
Zhang, Huihui
Chen, Lin
Liu, Xue
Shao, Jiahui
Bian, Lusen
AuthorAffiliation 3 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University , Nanjing , China
1 Experimental Center of Forestry in North China, Chinese Academy of Forestry , Beijing , China
2 Key Laboratory of Agricultural Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences , Beijing , China
AuthorAffiliation_xml – name: 3 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University , Nanjing , China
– name: 1 Experimental Center of Forestry in North China, Chinese Academy of Forestry , Beijing , China
– name: 2 Key Laboratory of Agricultural Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences , Beijing , China
Author_xml – sequence: 1
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
– sequence: 2
  givenname: Xinghong
  surname: Wang
  fullname: Wang, Xinghong
– sequence: 3
  givenname: Qinghua
  surname: Ma
  fullname: Ma, Qinghua
– sequence: 4
  givenname: Lusen
  surname: Bian
  fullname: Bian, Lusen
– sequence: 5
  givenname: Xue
  surname: Liu
  fullname: Liu, Xue
– sequence: 6
  givenname: Yan
  surname: Xu
  fullname: Xu, Yan
– sequence: 7
  givenname: Huihui
  surname: Zhang
  fullname: Zhang, Huihui
– sequence: 8
  givenname: Jiahui
  surname: Shao
  fullname: Shao, Jiahui
– sequence: 9
  givenname: Yunpeng
  surname: Liu
  fullname: Liu, Yunpeng
BookMark eNp9kU9vFCEYxompsbX2A3jj6GVWhmGGmYvJumrdZBOT2oM3wp-XlYaBCkxN_fSy3cZYD3KB8Dzv732S5yU6CTEAQq9bsuq6cXprZ6fVihJKVv3Ih4E_Q2ftMLCmI_TbyV_vU3SR8w2ph1UzIS_Qade1U0cZO0PmvdTO-yXjO_DwC0J2GW9265aPzTaYRYPBX-9zgboNX0FViwwacLT4KmaJ58UXZ31MEq_30oVc8CbFnwFfSu_xB5dBZniFnlvpM1w83ufo-tPH683nZvflcrtZ7xrNGC0NVYTCpJRqtVEW7GTIyO3Y277vlTas00MNDopZQ7WylNFR9ZzLDiyj09Sdo-0Ra6K8EbfJzTLdiyidePiIaS9kKk57EKpvwVIzKcOBSegnPkqrWU8Jb2nVKuvdkXW7qBmMhlCS9E-gT5Xgvot9vBN8qLH4UAFvHgEp_lggFzG7rMF7GSAuWVA2tITQnvFqbY9WnWLOCeyfNS0Rh67FQ9fi0LU4dl1n-D8z2hVZXDykcf4_k78B5teyMg
CitedBy_id crossref_primary_10_3390_ijpb13030018
crossref_primary_10_1007_s00253_024_13255_7
crossref_primary_10_1002_ps_7194
crossref_primary_10_1007_s00344_023_11180_z
crossref_primary_10_3390_biology12060779
crossref_primary_10_1016_j_micres_2024_127694
crossref_primary_10_3389_fpls_2023_1289959
crossref_primary_10_1111_1758_2229_13228
crossref_primary_10_3390_microorganisms10112225
crossref_primary_10_3390_pathogens13080708
crossref_primary_10_1016_j_crmicr_2021_100076
crossref_primary_10_3390_microorganisms9071386
crossref_primary_10_1128_spectrum_04805_22
crossref_primary_10_1002_ldr_4244
crossref_primary_10_1094_MPMI_08_22_0173_R
crossref_primary_10_3389_fmicb_2024_1289466
crossref_primary_10_1111_jph_12960
crossref_primary_10_1111_pce_15162
crossref_primary_10_1111_ppl_14323
crossref_primary_10_3389_fpls_2021_717643
crossref_primary_10_1002_jmv_29471
crossref_primary_10_1111_1462_2920_15798
crossref_primary_10_1016_j_foodcont_2023_110068
crossref_primary_10_1016_j_scienta_2023_112358
crossref_primary_10_3389_fpls_2022_952397
crossref_primary_10_3389_fpls_2022_1090947
crossref_primary_10_1016_j_stress_2024_100681
crossref_primary_10_1111_nbu_12580
crossref_primary_10_1128_spectrum_00981_23
crossref_primary_10_1007_s10658_021_02381_x
crossref_primary_10_1007_s00203_020_02141_1
crossref_primary_10_1080_13102818_2024_2312115
crossref_primary_10_1093_hr_uhae049
crossref_primary_10_3390_microorganisms11030776
Cites_doi 10.1128/AEM.00902-09
10.1007/82_2018_81
10.17957/IJAB/15.0200
10.1146/annurev-phyto-082712-102340
10.1023/A:1008660500107
10.1039/C7NP00062F
10.1089/cmb.2012.0021
10.1371/journal.pone.0112963
10.1016/j.envint.2020.105695
10.1146/annurev.phyto.43.040204.135923
10.3389/fpls.2019.01741
10.1007/978-0-387-77491-6_17
10.1016/j.cell.2018.10.020
10.1126/science.aaa8764
10.1046/j.1365-3059.2003.00807.x
10.1046/j.1365-2958.2000.01709.x
10.1007/s11248-010-9373-x
10.1093/nar/27.11.2369
10.1080/17429145.2011.637161
10.3389/fpls.2013.00122
10.1006/meth.2001.1262
10.3390/molecules24061046
10.1101/gr.215087.116
10.1099/ijs.0.056994-0
10.1038/s41396-018-0093-1
10.1016/S0092-8674(00)81858-9
10.1006/pmpp.2000.0291
10.1111/1462-2920.14704
10.1099/ijs.0.059774-0
10.1186/s13104-016-1900-2
10.1007/s00018-002-8433-7
10.1007/s10526-012-9479-6
10.1126/science.241.4869.1086
10.1186/2047-217X-1-18
10.1111/j.1469-8137.2008.02583.x
10.1073/pnas.0704866104
10.1073/pnas.090719110
10.3389/fpls.2014.00155
10.2174/1874840601003010001
10.1007/s13580-015-0144-8
10.1111/j.1365-313X.2007.03369.x
10.3389/fmicb.2017.00022
10.1094/PHYTO.1999.89.4.286
10.1016/j.plantsci.2007.08.002
10.1094/MPMI-06-11-0179
10.1186/gb-2004-5-2-r12
10.1111/ppl.12441
10.1094/MPMI-11-17-0273-R
10.1038/nmeth.4035
10.1046/j.1365-2443.1996.d01-265.x
10.1094/MPMI-07-16-0131-R
10.1099/ijsem.0.001421
10.1007/978-3-642-20332-9_3
10.1046/j.1365-313X.2003.01796.x
10.1073/pnas.89.15.6837
10.1105/tpc.108.064576
10.3389/fpls.2014.00017
10.1146/annurev.py.31.090193.002155
10.1111/nph.13324
10.1046/j.1365-313X.2003.01717.x
10.1094/MPMI-09-10-0213
10.1199/tab.0156
10.3389/fpls.2019.00287
10.1371/journal.pone.0042304
10.1094/PHYTO-98-11-1218
10.1073/pnas.1722335115
ContentType Journal Article
Copyright Copyright © 2020 Chen, Wang, Ma, Bian, Liu, Xu, Zhang, Shao and Liu.
Copyright © 2020 Chen, Wang, Ma, Bian, Liu, Xu, Zhang, Shao and Liu. 2020 Chen, Wang, Ma, Bian, Liu, Xu, Zhang, Shao and Liu
Copyright_xml – notice: Copyright © 2020 Chen, Wang, Ma, Bian, Liu, Xu, Zhang, Shao and Liu.
– notice: Copyright © 2020 Chen, Wang, Ma, Bian, Liu, Xu, Zhang, Shao and Liu. 2020 Chen, Wang, Ma, Bian, Liu, Xu, Zhang, Shao and Liu
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fmicb.2020.587667
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_b51ef2d9bd7e4ae5978afc452071251e
PMC7642876
10_3389_fmicb_2020_587667
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31601826
– fundername: Fundamental Research Funds for the Central Universities
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c442t-2b02e9bbb1cdbfef9d087f85f555bcd43c6331eb4fd2cbf2428b577a3ef42993
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:28:51 EDT 2025
Thu Aug 21 14:08:57 EDT 2025
Thu Jul 10 18:34:19 EDT 2025
Tue Jul 01 01:12:38 EDT 2025
Thu Apr 24 22:59:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-2b02e9bbb1cdbfef9d087f85f555bcd43c6331eb4fd2cbf2428b577a3ef42993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Yong-Soon Park, Chungbuk National University, South Korea; Adriana Fabra, National University of Río Cuarto, Argentina
Edited by: Christos Zamioudis, Democritus University of Thrace, Greece
This article was submitted to Microbe and Virus Interactions with Plants, a section of the journal Frontiers in Microbiology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2020.587667
PMID 33193244
PQID 2461002547
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b51ef2d9bd7e4ae5978afc452071251e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7642876
proquest_miscellaneous_2461002547
crossref_primary_10_3389_fmicb_2020_587667
crossref_citationtrail_10_3389_fmicb_2020_587667
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-22
PublicationDateYYYYMMDD 2020-10-22
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-22
  day: 22
PublicationDecade 2020
PublicationTitle Frontiers in microbiology
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Xu (B64) 2000; 35
Glazebrook (B19) 2005; 43
Meier-Kolthoff (B40) 2014; 64
Miller (B41) 2016; 66
Bleecker (B4) 1988; 241
Lebeis (B31) 2015; 349
Luo (B37) 2012; 1
Schubert (B51) 2016; 9
Rojas (B49) 2014; 5
Tariq (B56) 2016; 18
Yuan (B66) 2007; 104
Durán (B15) 2018; 175
Zamioudis (B67) 2012; 25
Romera (B50) 2019; 10
Nicholson (B43) 2002; 59
Glazebrook (B20) 2003; 34
Pascale (B45) 2020; 10
Tsuda (B58) 2008; 53
Baltruschat (B1) 2008; 180
Guo (B23) 2009; 75
Kim (B27) 2014; 64
Hassanein (B25) 2010; 6
Niu (B44) 2011; 24
Livak (B35) 2001; 25
Rabbee (B48) 2019; 24
Compant (B10) 2013; 58
Gupta (B24) 2010; 3
Delcher (B11) 1999; 27
López-López (B36) 1999; 89
Berendsen (B3) 2018; 12
Cao (B7) 1997; 88
Pieterse (B47) 2014; 52
Gohlke (B22) 2014; 5
Wang (B62) 2003; 52
Dong (B14) 2007; 173
Mauck (B39) 2010; 107
Liu (B34) 2017; 30
Martí (B38) 1999; 105
Gan (B18) 2018; 418
Chin (B9) 2016; 13
Wu (B63) 2018; 31
Fan (B17) 2017; 8
Borriss (B5) 2011
Bankevich (B2) 2012; 19
Waard (B60) 1993; 31
Staswick (B53) 1992; 89
Song (B52) 2015; 207
Stringlis (B55); 35
Yi (B65) 2013; 4
Lee (B32) 2009; 21
Stringlis (B54); 115
Dempsey (B12) 2011; 9
El-Deeb (B16) 2012; 7
Veena, Jiang (B59) 2003; 35
Byrne (B6) 2009
Walker (B61) 2014; 9
Koren (B28) 2017; 27
Pieterse (B46) 2000; 57
Diel (B13) 2019; 21
Chen (B8) 2016; 158
Glazebrook (B21) 1996; 143
Lin (B33) 2020; 139
Nadeem (B42) 2015; 56
Kawaguchi (B26) 2008; 98
Krastanova (B29) 2010; 19
Kurtz (B30) 2004; 5
Tritt (B57) 2012; 7
References_xml – volume: 75
  start-page: 6792
  year: 2009
  ident: B23
  article-title: Mutations that disrupt either the pqq or the gdh gene of Rahnella aquatilis abolish the production of an antibacterial substance and result in reduced biological control of grapevine grown gall.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00902-09
– volume: 418
  start-page: 1
  year: 2018
  ident: B18
  article-title: One more decade of Agrobacterium taxonomy.
  publication-title: Curr. Top. Microbiol. Immunol.
  doi: 10.1007/82_2018_81
– volume: 18
  start-page: 997
  year: 2016
  ident: B56
  article-title: Screening of PGPR isolates for plant growth promotion of Rosa damascena.
  publication-title: Int. J. Agric. Biol.
  doi: 10.17957/IJAB/15.0200
– volume: 52
  start-page: 347
  year: 2014
  ident: B47
  article-title: Induced systemic resistance by beneficial microbes.
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-082712-102340
– volume: 105
  start-page: 39
  year: 1999
  ident: B38
  article-title: Evidence of migration and endophytic presence of Agrobacterium tumefaciens in rose plants.
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1023/A:1008660500107
– volume: 35
  start-page: 410
  ident: B55
  article-title: Microbial small molecules – weapons of plant subversion.
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/C7NP00062F
– volume: 19
  start-page: 455
  year: 2012
  ident: B2
  article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2012.0021
– volume: 9
  year: 2014
  ident: B61
  article-title: Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0112963
– volume: 139
  year: 2020
  ident: B33
  article-title: Phytotoxicity and metabolic responses induced by tetrachlorobiphenyl and its hydroxylated and methoxylated derivatives in rice (Oryza sative L.).
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105695
– volume: 43
  start-page: 205
  year: 2005
  ident: B19
  article-title: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens.
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.phyto.43.040204.135923
– volume: 10
  year: 2020
  ident: B45
  article-title: Modulation of the root microbiome by plant molecules: The basis for targeted disease suppression and plant growth promotion.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01741
– start-page: 353
  year: 2009
  ident: B6
  publication-title: Rose Structural Genomics. Genetic Genomics Rosaceae.
  doi: 10.1007/978-0-387-77491-6_17
– volume: 175
  start-page: 973.e
  year: 2018
  ident: B15
  article-title: Microbial interkingdom interactions in roots promote Arabidopsis survival.
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.020
– volume: 349
  start-page: 860
  year: 2015
  ident: B31
  article-title: Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa.
  publication-title: Science
  doi: 10.1126/science.aaa8764
– volume: 52
  start-page: 134
  year: 2003
  ident: B62
  article-title: Purification and characterization of an antibacterial compound produced by Agrobacterium vitis strain E26 with activity against A. tumefaciens.
  publication-title: Plant Pathol.
  doi: 10.1046/j.1365-3059.2003.00807.x
– volume: 35
  start-page: 407
  year: 2000
  ident: B64
  article-title: An Agrobacterium catalase is a virulence factor involved in tumorigenesis.
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.01709.x
– volume: 19
  start-page: 949
  year: 2010
  ident: B29
  article-title: Resistance to crown gall disease in transgenic grapevine rootstocks containing truncated virE2 of Agrobacterium.
  publication-title: Transgenic Res.
  doi: 10.1007/s11248-010-9373-x
– volume: 27
  start-page: 2369
  year: 1999
  ident: B11
  article-title: Alignment of whole genomes.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.11.2369
– volume: 7
  start-page: 248
  year: 2012
  ident: B16
  article-title: Characterization of endophytic bacteria associated with rose plant (Rosa damascena trigintipeta) during flowering stage and their plant growth promoting traits.
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2011.637161
– volume: 4
  year: 2013
  ident: B65
  article-title: ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00122
– volume: 25
  start-page: 402
  year: 2001
  ident: B35
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 24
  start-page: 1
  year: 2019
  ident: B48
  article-title: Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes.
  publication-title: Molecules
  doi: 10.3390/molecules24061046
– volume: 27
  start-page: 722
  year: 2017
  ident: B28
  article-title: Canu: scalable and accurate long-read assembly via adaptive κ-mer weighting and repeat separation.
  publication-title: Genome Res.
  doi: 10.1101/gr.215087.116
– volume: 64
  start-page: 352
  year: 2014
  ident: B40
  article-title: Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age.
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.056994-0
– volume: 12
  start-page: 1496
  year: 2018
  ident: B3
  article-title: Disease-induced assemblage of a plant-beneficial bacterial consortium.
  publication-title: ISME J.
  doi: 10.1038/s41396-018-0093-1
– volume: 88
  start-page: 57
  year: 1997
  ident: B7
  article-title: The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81858-9
– volume: 57
  start-page: 123
  year: 2000
  ident: B46
  article-title: Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production.
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1006/pmpp.2000.0291
– volume: 21
  start-page: 3063
  year: 2019
  ident: B13
  article-title: A novel plasmid-transcribed regulatory sRNA, QfsR, controls chromosomal polycistronic gene expression in Agrobacterium fabrum.
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14704
– volume: 64
  start-page: 346
  year: 2014
  ident: B27
  article-title: Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes.
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.059774-0
– volume: 9
  year: 2016
  ident: B51
  article-title: AdapterRemoval v2: rapid adapter trimming, identification, and read merging.
  publication-title: BMC Res.
  doi: 10.1186/s13104-016-1900-2
– volume: 59
  start-page: 410
  year: 2002
  ident: B43
  article-title: Roles of Bacillus endospores in the environment.
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-002-8433-7
– volume: 58
  start-page: 1
  year: 2013
  ident: B10
  article-title: Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases.
  publication-title: BioControl
  doi: 10.1007/s10526-012-9479-6
– volume: 241
  start-page: 1086
  year: 1988
  ident: B4
  article-title: Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana.
  publication-title: Science
  doi: 10.1126/science.241.4869.1086
– volume: 1
  year: 2012
  ident: B37
  article-title: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler.
  publication-title: Gigascience
  doi: 10.1186/2047-217X-1-18
– volume: 180
  start-page: 501
  year: 2008
  ident: B1
  article-title: Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02583.x
– volume: 104
  start-page: 11790
  year: 2007
  ident: B66
  article-title: The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0704866104
– volume: 107
  start-page: 3600
  year: 2010
  ident: B39
  article-title: Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.090719110
– volume: 5
  year: 2014
  ident: B22
  article-title: Plant responses to Agrobacterium tumefaciens and crown gall development.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00155
– volume: 3
  start-page: 1
  year: 2010
  ident: B24
  article-title: Biological control of crown gall on peach and cherry rootstock colt by native Agrobacterium radiobacter isolates.
  publication-title: Open Hortic. J.
  doi: 10.2174/1874840601003010001
– volume: 56
  start-page: 487
  year: 2015
  ident: B42
  article-title: Crossability among modern roses and heterosis of quantitative and qualitative traits in hybrids.
  publication-title: Hortic. Environ. Biotechnol.
  doi: 10.1007/s13580-015-0144-8
– volume: 53
  start-page: 763
  year: 2008
  ident: B58
  article-title: Interplay between MAMP-triggered and SA-mediated defense responses.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03369.x
– volume: 8
  year: 2017
  ident: B17
  article-title: Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “Operational Group B. amyloliquefaciens” within the B. subtilis species complex.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00022
– volume: 89
  start-page: 286
  year: 1999
  ident: B36
  article-title: Behavior of a virulent strain derived from Agrobacterium radiobacter strain K84 after spontaneous Ti plasmid acquisition.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.1999.89.4.286
– volume: 173
  start-page: 501
  year: 2007
  ident: B14
  article-title: Resistance of transgenic tall fescue to two major fungal diseases.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2007.08.002
– volume: 25
  start-page: 139
  year: 2012
  ident: B67
  article-title: Modulation of host immunity by beneficial microbes.
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-06-11-0179
– volume: 5
  year: 2004
  ident: B30
  article-title: Versatile and open software for comparing large genomes.
  publication-title: Genome Biol.
  doi: 10.1186/gb-2004-5-2-r12
– volume: 158
  start-page: 34
  year: 2016
  ident: B8
  article-title: Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9.
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12441
– volume: 31
  start-page: 560
  year: 2018
  ident: B63
  article-title: Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways.
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-11-17-0273-R
– volume: 13
  start-page: 1050
  year: 2016
  ident: B9
  article-title: Phased diploid genome assembly with single-molecule real-time sequencing.
  publication-title: Nat. Methods.
  doi: 10.1038/nmeth.4035
– volume: 143
  start-page: 973
  year: 1996
  ident: B21
  article-title: Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening.
  publication-title: Genetics
  doi: 10.1046/j.1365-2443.1996.d01-265.x
– volume: 30
  start-page: 53
  year: 2017
  ident: B34
  article-title: Identification of root-secreted compounds involved in the communication between cucumber, the beneficial Bacillus amyloliquefaciens, and the soil-borne pathogen Fusarium oxysporum.
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-07-16-0131-R
– volume: 66
  start-page: 4744
  year: 2016
  ident: B41
  article-title: Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments.
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijsem.0.001421
– start-page: 41
  year: 2011
  ident: B5
  publication-title: Use of Plant-Associated Bacillus Strains as Biofertilizers and Biocontrol Agents in Agriculture. Bact. Agrobiol. Plant Growth Responses.
  doi: 10.1007/978-3-642-20332-9_3
– volume: 35
  start-page: 219
  year: 2003
  ident: B59
  article-title: Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01796.x
– volume: 89
  start-page: 6837
  year: 1992
  ident: B53
  article-title: Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.89.15.6837
– volume: 21
  start-page: 2948
  year: 2009
  ident: B32
  article-title: Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana.
  publication-title: Plant Cell Online
  doi: 10.1105/tpc.108.064576
– volume: 5
  year: 2014
  ident: B49
  article-title: Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00017
– volume: 31
  start-page: 403
  year: 1993
  ident: B60
  article-title: Chemical control of plant diseases: problems and prospects.
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.py.31.090193.002155
– volume: 207
  start-page: 148
  year: 2015
  ident: B52
  article-title: Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation.
  publication-title: New Phytol.
  doi: 10.1111/nph.13324
– volume: 34
  start-page: 217
  year: 2003
  ident: B20
  article-title: Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01717.x
– volume: 24
  start-page: 533
  year: 2011
  ident: B44
  article-title: The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways.
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-09-10-0213
– volume: 9
  year: 2011
  ident: B12
  article-title: Salicylic acid biosynthesis and metabolism.
  publication-title: Arab. B
  doi: 10.1199/tab.0156
– volume: 10
  year: 2019
  ident: B50
  article-title: Induced systemic resistance (ISR) and fe deficiency responses in dicot plants.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00287
– volume: 7
  year: 2012
  ident: B57
  article-title: An integrated pipeline for de novo assembly of microbial genomes.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0042304
– volume: 98
  start-page: 1218
  year: 2008
  ident: B26
  article-title: Biological control of crown gall on grapevine and root colonization by nonpathogenic Agrobacterium vitis Strain VAR03-1.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-98-11-1218
– volume: 6
  start-page: 260
  year: 2010
  ident: B25
  article-title: Improved quality and quantity of winter flowering in rose (Rosa spp.) by controlling the timing and type of pruning applied in autumn.
  publication-title: World J. Agric. Sci.
– volume: 115
  start-page: E5213
  ident: B54
  article-title: MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1722335115
SSID ssj0000402000
Score 2.419284
Snippet Plant growth-promoting rhizobacteria (PGPRs) are able to activate induced systemic resistance (ISR) of the plants against phytopathogens. However, whether and...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 587667
SubjectTerms crown gall disease
hormone
induced systemic resistance
Microbiology
plant growth-promoting rhizobacteria
rose
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqSki9IKBFLAXkSpwqBbKOHSfH7UJbIeihaqXeLI8_IFKURWT30P76zjhp2VzohWs-ZGdm7DdPnrxh7KNXOlYiQgaFp19yRJnV2uksiDLKOg9CJ-3OHxfl-bX8dqNutlp9UU3YIA88GO4zqHmIwtfgdZA2YP5b2eikEoiNiM2Bdl_EvC0ylfZgokX5eIyJLKxGNzUOkA-K_JPCHSD1lf8LREmvf5JkTksktzDn9AV7PiaLfDFM8iXbCd0r9mxoH3m7z_yJdU3bbnpO3SPuqBS958vvizlSNmrJ4YLngyJ54_hl6ClVRB_zVeSXq97yVEwYkbBbvvhpG0wU-ZJYOT-zbcu_DEc3B-zq9OvV8jwbuyZkTkqxzgTkItQAMHceYoi1zyv0h4pKKXBeFq4sinkAGb1wEBGiK1Ba2yJEwqbiNdvtVl14wzgUmK5YVVhMKaSvwCqXi9rlUkdc1UHPWP5gQeNGRXFqbNEaZBZkdJOMbsjoZjD6jB0_vvJ7kNP418Mn5JbHB0kJO13A-DBjfJin4mPGjh6canDl0HGI7cJq0xtS0ktiADiQnnh7MuL0Ttf8ShrcmnibLt_-jykesj36akJEId6x3fWfTXiPqc4aPqSovge5Of6o
  priority: 102
  providerName: Directory of Open Access Journals
Title Bacillus velezensis CLA178-Induced Systemic Resistance of Rosa multiflora Against Crown Gall Disease
URI https://www.proquest.com/docview/2461002547
https://pubmed.ncbi.nlm.nih.gov/PMC7642876
https://doaj.org/article/b51ef2d9bd7e4ae5978afc452071251e
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBVpSqGXkn7RbZOgQk8FB1uWLPtQymbbJJSmh5DA3oQ-E4Ox2_UuNP31nZG9IYZQevHBlmU8o_G8Z0lvCPnghAwlCyYxucMtOaxIKmll4lkReJV6JqN25_mP4uyKf1uK5Q7ZlrcaDdg_SO2wntTVqjn6_ev2MwT8J2SckG_BA7U1QPVYeiQguAv5iDyGxCSxoMH5iPbjhxm5UtyUkhUFzgew5TDP-XAvk0wVBf0nKHS6hvJeUjrZI89GNEnng_ufkx3fviBPhvqSty-JO9a2bppNT7G8xB9cq97Txfd5BpwOa3ZY7-ggWV5beuF7xJIwCGgX6EXXaxpXGwZg9JrOr3UNSJIukLbTU9009Mswt_OKXJ58vVycJWNZhcRyztYJMynzlTEms84EHyqXluAwEYQQxjqe2yLPM294cMyaADm8NEJKnfuAySt_TXbbrvVvCDU54Bktcg2Yg7vSaGFTVtmUywBh7-WMpFsLKjtKjmPli0YB9UCjq2h0hUZXg9Fn5OPdLT8HvY1_NT5Gt9w1RKnseKJbXasx8pQRmQ_MVcZJz7UHAlXqYLlgAK4A3PkZeb91qoLQwvkS3fpu0yuU2otqAfAgOfH25InTK219E0W6JRI7Wbz9j97fkaf4UpgRGdsnu-vVxh8A1Fmbw_iLAI6ny-wwDua_6ev_XA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacillus+velezensis+CLA178-Induced+Systemic+Resistance+of+Rosa+multiflora+Against+Crown+Gall+Disease&rft.jtitle=Frontiers+in+microbiology&rft.au=Chen%2C+Lin&rft.au=Wang%2C+Xinghong&rft.au=Ma%2C+Qinghua&rft.au=Bian%2C+Lusen&rft.date=2020-10-22&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=11&rft.spage=587667&rft_id=info:doi/10.3389%2Ffmicb.2020.587667&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon