Permeability Predictions for Tight Sandstone Reservoir Using Explainable Machine Learning and Particle Swarm Optimization
High-precision permeability prediction is of great significance to tight sandstone reservoirs. However, while considerable progress has recently been made in the machine learning based prediction of reservoir permeability, the generalization of this approach is limited by weak interpretability. Henc...
Saved in:
Published in | Geofluids Vol. 2022; pp. 1 - 15 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester
Hindawi
06.01.2022
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-precision permeability prediction is of great significance to tight sandstone reservoirs. However, while considerable progress has recently been made in the machine learning based prediction of reservoir permeability, the generalization of this approach is limited by weak interpretability. Hence, an interpretable XGBoost model is proposed herein based on particle swarm optimization to predict the permeability of tight sandstone reservoirs with higher accuracy and robust interpretability. The porosity and permeability of 202 core plugs and 6 logging curves (namely, the gamma-ray (GR) curve, the acoustic curve (AC), the spontaneous potential (SP) curve, the caliper (CAL) curve, the deep lateral resistivity (RILD) curve, and eight lateral resistivity (RFOC) curve) are extracted along with three derived variables (i.e., the shale content, the AC slope, and the GR slope) as data sets. Based on the data preprocessing, global and local interpretations are performed according to the Shapley additive explanations (SHAP) analysis, and the redundant features in the data set are screened to identify the porosity, AC, CAL, and GR slope as the four most important features. The particle swarm optimization algorithm is then used to optimize the hyperparameters of the XGBoost model. The prediction results of the PSO-XGBoost model indicate a superior performance compared with that of the benchmark XGBoost model. In addition, the reliable application of the interpretable PSO-XGBoost model in the prediction of tight sandstone reservoir permeability is examined by comparing the results with those of two traditional mathematical regression models, five machine learning models, and three deep learning models. Thus, the interpretable PSO-XGBoost model is shown to have more advantages in permeability prediction along with the lowest root mean square error, thereby confirming the effectiveness and practicability of this method. |
---|---|
AbstractList | High-precision permeability prediction is of great significance to tight sandstone reservoirs. However, while considerable progress has recently been made in the machine learning based prediction of reservoir permeability, the generalization of this approach is limited by weak interpretability. Hence, an interpretable XGBoost model is proposed herein based on particle swarm optimization to predict the permeability of tight sandstone reservoirs with higher accuracy and robust interpretability. The porosity and permeability of 202 core plugs and 6 logging curves (namely, the gamma-ray (GR) curve, the acoustic curve (AC), the spontaneous potential (SP) curve, the caliper (CAL) curve, the deep lateral resistivity (RILD) curve, and eight lateral resistivity (RFOC) curve) are extracted along with three derived variables (i.e., the shale content, the AC slope, and the GR slope) as data sets. Based on the data preprocessing, global and local interpretations are performed according to the Shapley additive explanations (SHAP) analysis, and the redundant features in the data set are screened to identify the porosity, AC, CAL, and GR slope as the four most important features. The particle swarm optimization algorithm is then used to optimize the hyperparameters of the XGBoost model. The prediction results of the PSO-XGBoost model indicate a superior performance compared with that of the benchmark XGBoost model. In addition, the reliable application of the interpretable PSO-XGBoost model in the prediction of tight sandstone reservoir permeability is examined by comparing the results with those of two traditional mathematical regression models, five machine learning models, and three deep learning models. Thus, the interpretable PSO-XGBoost model is shown to have more advantages in permeability prediction along with the lowest root mean square error, thereby confirming the effectiveness and practicability of this method. |
Audience | Academic |
Author | Liu, Jing-Jing Liu, Jian-Chao |
Author_xml | – sequence: 1 givenname: Jing-Jing orcidid: 0000-0003-0840-0984 surname: Liu fullname: Liu, Jing-Jing organization: School of Earth Science and ResourcesChang’an UniversityXi’an 710064Chinachd.edu.cn – sequence: 2 givenname: Jian-Chao surname: Liu fullname: Liu, Jian-Chao organization: School of Earth Science and ResourcesChang’an UniversityXi’an 710064Chinachd.edu.cn |
BookMark | eNp9UU1v1DAQjVCRaAs3foAljrBt7MROfKyqApUWdUXbszWxJ9tZZePFdinLr8dpVj0ggXywNfM-xvNOiqPRj1gU73l5xrmU56IU4lwIVVVCvyqOea3aRctFdfTy5vJNcRLjpix5U7XiuNivMGwROhoo7dkqoCObyI-R9T6wO1o_JHYLo4spW7HvGDH89BTYfaRxza5-7QagEboB2TewD5QxS4QwTs3MYisIiWzu3j5B2LKbXaIt_YbJ4W3xuoch4rvDfVrcf766u_y6WN58ub68WC5sXYu0ECAtV45L1TtUXdc2Ta0bhdBrJ3UlbeMqaFuhNXZS1bapsNO2dy23dedQVqfF9azrPGzMLtAWwt54IPNc8GFtDkMazLpcVo0qmzKTsxfo1pZSNZM2Ytb6MGvtgv_xiDGZjX8MYx7fCMW1lqUoJ8ezGbWGLEpj71MAm4_DLdm8x55y_ULlb9RK1DoTPs0EG3yMAfuXMXlppmTNlKw5JJvh4i-4pfS80-xDw79IH2dSDsnBE_3f4g_QKrW- |
CitedBy_id | crossref_primary_10_1155_2022_3299768 crossref_primary_10_3390_en17236060 crossref_primary_10_1007_s11069_025_07109_2 crossref_primary_10_1155_2022_6955884 crossref_primary_10_1007_s12145_023_01099_0 crossref_primary_10_1016_j_eswa_2023_121369 crossref_primary_10_1007_s13202_022_01593_z crossref_primary_10_1109_ACCESS_2023_3349216 crossref_primary_10_1190_INT_2023_0131_1 crossref_primary_10_1109_ACCESS_2024_3438556 |
Cites_doi | 10.1038/s41598-021-93771-y 10.1016/j.petrol.2021.109154 10.1016/j.petrol.2021.108350 10.1145/2939672.2939785 10.1016/j.jngse.2021.103962 10.1016/j.enggeo.2010.05.005 10.1016/j.jafrearsci.2020.104049 10.1016/j.marpetgeo.2021.105320 10.1190/geo2019-0261.1 10.1016/j.marpetgeo.2019.104096 10.1016/j.engstruct.2020.110927 10.1155/2021/5580185 10.1190/geo2020-0291.1 10.1016/j.marpetgeo.2020.104737 10.1016/j.petrol.2021.108451 10.1016/j.eswa.2017.05.016 10.1190/geo2018-0588.1 10.1016/j.conbuildmat.2020.118527 10.1155/2012/670723 10.3390/en10081168 10.1109/ACCESS.2018.2818678 10.1016/j.ecoinf.2019.101039 10.1155/2021/5021298 10.1109/ACCESS.2019.2936454 10.1007/s12182-019-0332-8 10.1109/ACCESS.2020.2982418 10.1016/j.marpetgeo.2018.01.013 10.1016/j.eswa.2019.01.083 10.1016/j.cageo.2011.04.015 10.1016/j.eswa.2021.115736 10.1093/gji/ggw130 10.1016/j.petrol.2021.109455 10.1016/j.petrol.2018.11.067 10.1016/j.marpetgeo.2021.104939 10.1016/S1876-3804(19)60250-8 10.1016/j.petrol.2019.106825 10.1016/j.marpetgeo.2019.104059 10.1016/j.petrol.2017.08.002 10.1016/j.energy.2021.121915 10.1038/s41598-021-82029-2 10.1007/s12145-019-00381-4 10.1016/j.apenergy.2019.113723 10.1016/j.petrol.2014.06.032 10.1016/j.energy.2020.117239 10.1155/2021/6641678 10.1038/s42256-019-0048-x 10.1016/j.marpetgeo.2018.10.031 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Jing-Jing Liu and Jian-Chao Liu. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Jing-Jing Liu and Jian-Chao Liu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2022 Jing-Jing Liu and Jian-Chao Liu. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Jing-Jing Liu and Jian-Chao Liu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7TG 7UA AEUYN AFKRA BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1155/2022/2263329 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest Central (New) Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1468-8123 |
Editor | Song, Hongqing |
Editor_xml | – sequence: 1 givenname: Hongqing surname: Song fullname: Song, Hongqing |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_e76e153760704bdb87a98c0567eb56ee A697646249 10_1155_2022_2263329 |
GeographicLocations | China Ordos Basin |
GeographicLocations_xml | – name: China – name: Ordos Basin |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 300102278402 |
GroupedDBID | .3N .GA 05W 0R~ 10A 24P 29H 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABCQN ABDBF ABEML ABJIA ABPVW ACCMX ACSCC ACUHS ADBBV ADIZJ AENEX AEUYN AFBPY AFEBI AFKRA AFPKN AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ATUGU AZBYB AZVAB BAFTC BCNDV BENPR BHBCM BHPHI BKSAR BNHUX BROTX BRXPI BY8 CCPQU CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBS EMK EST ESX F00 F01 F04 G-S G.N GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HZI HZ~ I-F IAO IHE ITC IX1 J0M K48 L8X LC2 LC3 LITHE LK5 LP6 LP7 M7R MK4 MM- N04 N05 N9A NF~ O9- OIG OK1 P2P P2X P4D PCBAR PHGZT Q.N Q11 QB0 R.K RHU RHW RHX RX1 SUPJJ TUS UB1 W8V W99 WBKPD WQJ XG1 ~02 ~IA ~KM ~WT AAYXX CITATION PHGZM PMFND 7TG 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K DWQXO F1W H96 KL. L.G PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c442t-2a5c16d156fde6bb8774976eaf9d5935c7d3a88299eb564c73eb9cfd81c4bde53 |
IEDL.DBID | DOA |
ISSN | 1468-8115 |
IngestDate | Wed Aug 27 01:08:34 EDT 2025 Fri Jul 25 21:02:56 EDT 2025 Tue Jun 10 21:03:26 EDT 2025 Tue Jul 01 01:30:16 EDT 2025 Thu Apr 24 22:53:43 EDT 2025 Wed Apr 16 06:25:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-2a5c16d156fde6bb8774976eaf9d5935c7d3a88299eb564c73eb9cfd81c4bde53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0840-0984 |
OpenAccessLink | https://doaj.org/article/e76e153760704bdb87a98c0567eb56ee |
PQID | 2619950205 |
PQPubID | 2034142 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e76e153760704bdb87a98c0567eb56ee proquest_journals_2619950205 gale_infotracacademiconefile_A697646249 crossref_primary_10_1155_2022_2263329 crossref_citationtrail_10_1155_2022_2263329 hindawi_primary_10_1155_2022_2263329 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-06 |
PublicationDateYYYYMMDD | 2022-01-06 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Geofluids |
PublicationYear | 2022 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 22 44 23 45 24 46 25 47 26 48 27 28 29 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 S. M. Lundberg (30) 40 41 20 42 21 43 |
References_xml | – ident: 27 doi: 10.1038/s41598-021-93771-y – ident: 10 doi: 10.1016/j.petrol.2021.109154 – ident: 25 doi: 10.1016/j.petrol.2021.108350 – ident: 22 doi: 10.1145/2939672.2939785 – ident: 24 doi: 10.1016/j.jngse.2021.103962 – ident: 19 doi: 10.1016/j.enggeo.2010.05.005 – ident: 4 doi: 10.1016/j.jafrearsci.2020.104049 – ident: 3 doi: 10.1016/j.marpetgeo.2021.105320 – ident: 47 doi: 10.1190/geo2019-0261.1 – ident: 17 doi: 10.1016/j.marpetgeo.2019.104096 – ident: 32 doi: 10.1016/j.engstruct.2020.110927 – ident: 2 doi: 10.1155/2021/5580185 – ident: 16 doi: 10.1190/geo2020-0291.1 – ident: 1 doi: 10.1016/j.marpetgeo.2020.104737 – ident: 5 doi: 10.1016/j.petrol.2021.108451 – ident: 28 doi: 10.1016/j.eswa.2017.05.016 – ident: 46 doi: 10.1190/geo2018-0588.1 – ident: 13 doi: 10.1016/j.conbuildmat.2020.118527 – ident: 20 doi: 10.1155/2012/670723 – ident: 23 doi: 10.3390/en10081168 – ident: 38 doi: 10.1109/ACCESS.2018.2818678 – start-page: 4768 ident: 30 article-title: A unified approach to interpreting model predictions – ident: 31 doi: 10.1016/j.ecoinf.2019.101039 – ident: 6 doi: 10.1155/2021/5021298 – ident: 40 doi: 10.1109/ACCESS.2019.2936454 – ident: 12 doi: 10.1007/s12182-019-0332-8 – ident: 41 doi: 10.1109/ACCESS.2020.2982418 – ident: 35 doi: 10.1016/j.marpetgeo.2018.01.013 – ident: 39 doi: 10.1016/j.eswa.2019.01.083 – ident: 9 doi: 10.1016/j.cageo.2011.04.015 – ident: 33 doi: 10.1016/j.eswa.2021.115736 – ident: 14 doi: 10.1093/gji/ggw130 – ident: 45 doi: 10.1016/j.petrol.2021.109455 – ident: 21 doi: 10.1016/j.petrol.2018.11.067 – ident: 29 doi: 10.1016/j.marpetgeo.2021.104939 – ident: 7 doi: 10.1016/S1876-3804(19)60250-8 – ident: 44 doi: 10.1016/j.petrol.2019.106825 – ident: 36 doi: 10.1016/j.marpetgeo.2019.104059 – ident: 15 doi: 10.1016/j.petrol.2017.08.002 – ident: 43 doi: 10.1016/j.energy.2021.121915 – ident: 8 doi: 10.1038/s41598-021-82029-2 – ident: 37 doi: 10.1007/s12145-019-00381-4 – ident: 42 doi: 10.1016/j.apenergy.2019.113723 – ident: 11 doi: 10.1016/j.petrol.2014.06.032 – ident: 18 doi: 10.1016/j.energy.2020.117239 – ident: 48 doi: 10.1155/2021/6641678 – ident: 26 doi: 10.1038/s42256-019-0048-x – ident: 34 doi: 10.1016/j.marpetgeo.2018.10.031 |
SSID | ssj0017382 |
Score | 2.4486742 |
Snippet | High-precision permeability prediction is of great significance to tight sandstone reservoirs. However, while considerable progress has recently been made in... |
SourceID | doaj proquest gale crossref hindawi |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Additives Algorithms Analysis Artificial intelligence Datasets Decision trees Deep learning Electrical resistivity Experiments Gamma rays Learning algorithms Logging Machine learning Mathematical models Mathematical optimization Methods Natural gas reserves Oil reserves Optimization Particle swarm optimization Permeability Porosity Predictions Regression analysis Regression models Reservoirs Robustness (mathematics) Sandstone Sedimentary rocks Shale Slopes Support vector machines |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4qCHoQn7i-yEHxIEW3zaM5qiiLoC6osLeQpFMVfFFXxX_vTDa7-ED02JKUJDOZ-aaZ-cLYpgDcYVCbTDgImagN0I-mvUx7WXtUEagkFTifnqnOlTjpyV4iSXr-eYSP3o7C83wXUUJR5GacjaOCUVDe6Y0OC3QR74SKRUQldhnmt3_r-8XzRIL-kRmevKEA-O32h0GOXuZ4ls0keMj3B_KcY2PwMM-mP5EGLrD3LhpTGNBrv_NuQyctUXk44k9-ScE2v6ACXqLZ5pRZ17w-3jY8JgdwyrlLBVP8NCZSAk8cq9cce_Fu0iV-8eaae36OJuU-1Wousqvjo8vDTpYuUMiCEHk_y50MbVVhiFZXoLwvEesh_ABXm0qaQgZdFQ4htjHgpRJBF-BNqKuyHYSvQBZLbOIBx7rMeCA_rlUNe7pGhOWc19KoUhSIj0KuZYvtDBfXhsQuTpdc3NkYZUhpSRQ2iaLFtkatnwasGr-0OyA5jdoQF3Z8gfph03JY1DZoEysNWi8cNs7SmTIgsNM0K4AW2yYpW9qxOKTgUuEBToy4r-y-wjURCuPQFttMivDHqNaGWmLTjn-2FIkaieBbrvzvK6tsih7j7xy1xib6zQusI8Dp-42o3h9LtvId priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA4-EPQgPnF9kYPiQYruNo_mJCqKCOriA7yFJJ2qoK7WVfHfO5PNroKo1zYtSWYy-SaZ-YaxNQG4wqAymXAQMlEZoIOm7Ux7WXlUESglJTifnKqjK3F8La_TgdtLCqvs28RoqMtOoDPyLUL6RiK4kTtPzxlVjaLb1VRCY5iNogku0Pka3Ts4bZ8P7hF0HstFxfyiAsFPP_RdSvL6W1sIPvI8wsuvTSly9w8s9Ngt-cbvdz9sddyADqfYZEKOfLcn6mk2BI8zbOIbn-As-2ijnYUe8_YHb9d0CRP1iiM05Zfkh_MLyu0lBm5OQXf1W-eu5jFugFM4Xsql4icxxhJ4ol-94fgVbyc14xfvrn7gZ2htHlIa5xy7Ojy43D_KUm2FLAjR6mYtJ0NTlei9VSUo7wuEgYhMwFWmlCaXQZe5Q_RtDHipRNA5eBOqsmgG4UuQ-TwbecS-LjAeaIvXqoJtXSH4cs5raVQhcoROoaVlg232J9eGRDxO9S_ubXRApLQkCptE0WDrg9ZPPcKNX9rtkZwGbYgmOz7o1Dc2TYdFRYQmEdagYcNu4yidKQJiPk2jAmiwDZKypcWMXQou5STgwIgWy-4qnBOh0EVtsLWkCP_0armvJTYZgxf7pbqLf79eYuP0s3jCo5bZSLd-hRXEPF2_mhT7E63__ck priority: 102 providerName: ProQuest |
Title | Permeability Predictions for Tight Sandstone Reservoir Using Explainable Machine Learning and Particle Swarm Optimization |
URI | https://dx.doi.org/10.1155/2022/2263329 https://www.proquest.com/docview/2619950205 https://doaj.org/article/e76e153760704bdb87a98c0567eb56ee |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEG5EEfQgq6s464M-KHuQoJP0I31UUQZBHUaFuTXdncrugC-yo-K_36pOzyiIePGSQ-gklerqqq-Sqq8Z2xGAKwxqkwkHIRO1AfrQdJBpL2uPJgKVpAbn8wvVuxFnQzl8t9UX1YS19MCt4vbxXtAlzhG0TeErX2pnyoBhW4OXCoC8L8a8STKV_h_ooswnZe5SUoaf7yPQKIoIJd8CUOTpn3rj-b-UB7-MPvjlGGxOf7ClhBL5YSvdMpuB-xW2-I478Cd77aNPhZZl-5X3G_rhEm2IIwzl15Rz8yvq4yW2bU4Fds3zw6jhsUaAU-ld6pvi57GeEniiWv3D8SreT5rhVy-uueOX6FnuUsvmKrs5Pbk-7mVpH4UsCJGPs9zJ0FUVZmp1BcqjCrVAFAKuNpU0hQy6KhwibWNIpSLoArwJdVV2A2ocZLHGZu9R1nXGA4VzrWo40DUCLee8lkaVokCYFHItO2xvolwbEsk47XVxa2OyIaWlqbBpKjpsdzr6sSXX-GTcEc3TdAxRYscTaCg2qcN-ZSgd9ptm2dLCRZGCS_0H-GJEgWUPFepEKExHO2wnGcIXUm1OrMSmhf_PUkJqJGJw-es7hN5gC_TI-M1HbbLZcfMEW4iCxn6bzR2dXPQH29Hw6TjI8TjoDf8D-1kGiQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB2hoKrtoeqnGgrUB1AP1Qqya--uD1UFFBQKSaMSJG7G652lSIXAkjbKn-I3dsbxhkpV2xPXxIlsz3jmjT3zBmBNIp0wrHQkLbpIVhr5omkzygpVFaQiWCoucO710-6x_HyiThbgtqmF4bTKxiZ6Q12OHN-RbzDS14rAjfp4dR1x1yh-XW1aaMzU4gCnEwrZbj7sfyL5rsfx3u5wpxuFrgKRkzIeR7FVrpOWFLdUJaZFkRMAIp-MttKl0olyWZlYwp1aY6FS6bIEC-2qMu84WZTIXSLI5C_KhEKZFixu7_YHX-fvFlni21P5eqacwFaTaq8U3zLEGwR2ksTD2Tsn6HsFzD3Cg28ci0_O__AN3uHtPYUnAamKrZlqPYMFvHwOj3_jL3wB0wHZdZwxfU_FoOZHH6_HgqCwGHLcL464lpgZvwUn-dU_R-e18HkKgtP_Qu2W6PmcThSB7vVM0K_EIKi1OJrY-kJ8Iet2EcpGX8Lxvez6K2hd0lxfg3AMKbK0ws2sIrBnbZEpneYyIajm4ky14X2zucYFonPut_Hd-IBHKcOiMEEUbVifj76aEXz8Zdw2y2k-hmm5_Qej-syE7TCk-NhhghwypDRtWqXVuSOMmfGqENvwjqVs2HjQlJwNNRC0MKbhMlsp7YlMKSRuw1pQhP_MarnREhOMz425OypL__76LTzsDnuH5nC_f_AGHvEf-9uldBla4_oHrhDeGherQckFnN73ufoFSPo77Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Permeability+Predictions+for+Tight+Sandstone+Reservoir+Using+Explainable+Machine+Learning+and+Particle+Swarm+Optimization&rft.jtitle=Geofluids&rft.au=Jing-Jing+Liu&rft.au=Jian-Chao+Liu&rft.date=2022-01-06&rft.pub=Wiley&rft.eissn=1468-8123&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F2263329&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e76e153760704bdb87a98c0567eb56ee |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-8115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-8115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-8115&client=summon |