Permeability Predictions for Tight Sandstone Reservoir Using Explainable Machine Learning and Particle Swarm Optimization

High-precision permeability prediction is of great significance to tight sandstone reservoirs. However, while considerable progress has recently been made in the machine learning based prediction of reservoir permeability, the generalization of this approach is limited by weak interpretability. Henc...

Full description

Saved in:
Bibliographic Details
Published inGeofluids Vol. 2022; pp. 1 - 15
Main Authors Liu, Jing-Jing, Liu, Jian-Chao
Format Journal Article
LanguageEnglish
Published Chichester Hindawi 06.01.2022
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-precision permeability prediction is of great significance to tight sandstone reservoirs. However, while considerable progress has recently been made in the machine learning based prediction of reservoir permeability, the generalization of this approach is limited by weak interpretability. Hence, an interpretable XGBoost model is proposed herein based on particle swarm optimization to predict the permeability of tight sandstone reservoirs with higher accuracy and robust interpretability. The porosity and permeability of 202 core plugs and 6 logging curves (namely, the gamma-ray (GR) curve, the acoustic curve (AC), the spontaneous potential (SP) curve, the caliper (CAL) curve, the deep lateral resistivity (RILD) curve, and eight lateral resistivity (RFOC) curve) are extracted along with three derived variables (i.e., the shale content, the AC slope, and the GR slope) as data sets. Based on the data preprocessing, global and local interpretations are performed according to the Shapley additive explanations (SHAP) analysis, and the redundant features in the data set are screened to identify the porosity, AC, CAL, and GR slope as the four most important features. The particle swarm optimization algorithm is then used to optimize the hyperparameters of the XGBoost model. The prediction results of the PSO-XGBoost model indicate a superior performance compared with that of the benchmark XGBoost model. In addition, the reliable application of the interpretable PSO-XGBoost model in the prediction of tight sandstone reservoir permeability is examined by comparing the results with those of two traditional mathematical regression models, five machine learning models, and three deep learning models. Thus, the interpretable PSO-XGBoost model is shown to have more advantages in permeability prediction along with the lowest root mean square error, thereby confirming the effectiveness and practicability of this method.
AbstractList High-precision permeability prediction is of great significance to tight sandstone reservoirs. However, while considerable progress has recently been made in the machine learning based prediction of reservoir permeability, the generalization of this approach is limited by weak interpretability. Hence, an interpretable XGBoost model is proposed herein based on particle swarm optimization to predict the permeability of tight sandstone reservoirs with higher accuracy and robust interpretability. The porosity and permeability of 202 core plugs and 6 logging curves (namely, the gamma-ray (GR) curve, the acoustic curve (AC), the spontaneous potential (SP) curve, the caliper (CAL) curve, the deep lateral resistivity (RILD) curve, and eight lateral resistivity (RFOC) curve) are extracted along with three derived variables (i.e., the shale content, the AC slope, and the GR slope) as data sets. Based on the data preprocessing, global and local interpretations are performed according to the Shapley additive explanations (SHAP) analysis, and the redundant features in the data set are screened to identify the porosity, AC, CAL, and GR slope as the four most important features. The particle swarm optimization algorithm is then used to optimize the hyperparameters of the XGBoost model. The prediction results of the PSO-XGBoost model indicate a superior performance compared with that of the benchmark XGBoost model. In addition, the reliable application of the interpretable PSO-XGBoost model in the prediction of tight sandstone reservoir permeability is examined by comparing the results with those of two traditional mathematical regression models, five machine learning models, and three deep learning models. Thus, the interpretable PSO-XGBoost model is shown to have more advantages in permeability prediction along with the lowest root mean square error, thereby confirming the effectiveness and practicability of this method.
Audience Academic
Author Liu, Jing-Jing
Liu, Jian-Chao
Author_xml – sequence: 1
  givenname: Jing-Jing
  orcidid: 0000-0003-0840-0984
  surname: Liu
  fullname: Liu, Jing-Jing
  organization: School of Earth Science and ResourcesChang’an UniversityXi’an 710064Chinachd.edu.cn
– sequence: 2
  givenname: Jian-Chao
  surname: Liu
  fullname: Liu, Jian-Chao
  organization: School of Earth Science and ResourcesChang’an UniversityXi’an 710064Chinachd.edu.cn
BookMark eNp9UU1v1DAQjVCRaAs3foAljrBt7MROfKyqApUWdUXbszWxJ9tZZePFdinLr8dpVj0ggXywNfM-xvNOiqPRj1gU73l5xrmU56IU4lwIVVVCvyqOea3aRctFdfTy5vJNcRLjpix5U7XiuNivMGwROhoo7dkqoCObyI-R9T6wO1o_JHYLo4spW7HvGDH89BTYfaRxza5-7QagEboB2TewD5QxS4QwTs3MYisIiWzu3j5B2LKbXaIt_YbJ4W3xuoch4rvDfVrcf766u_y6WN58ub68WC5sXYu0ECAtV45L1TtUXdc2Ta0bhdBrJ3UlbeMqaFuhNXZS1bapsNO2dy23dedQVqfF9azrPGzMLtAWwt54IPNc8GFtDkMazLpcVo0qmzKTsxfo1pZSNZM2Ytb6MGvtgv_xiDGZjX8MYx7fCMW1lqUoJ8ezGbWGLEpj71MAm4_DLdm8x55y_ULlb9RK1DoTPs0EG3yMAfuXMXlppmTNlKw5JJvh4i-4pfS80-xDw79IH2dSDsnBE_3f4g_QKrW-
CitedBy_id crossref_primary_10_1155_2022_3299768
crossref_primary_10_3390_en17236060
crossref_primary_10_1007_s11069_025_07109_2
crossref_primary_10_1155_2022_6955884
crossref_primary_10_1007_s12145_023_01099_0
crossref_primary_10_1016_j_eswa_2023_121369
crossref_primary_10_1007_s13202_022_01593_z
crossref_primary_10_1109_ACCESS_2023_3349216
crossref_primary_10_1190_INT_2023_0131_1
crossref_primary_10_1109_ACCESS_2024_3438556
Cites_doi 10.1038/s41598-021-93771-y
10.1016/j.petrol.2021.109154
10.1016/j.petrol.2021.108350
10.1145/2939672.2939785
10.1016/j.jngse.2021.103962
10.1016/j.enggeo.2010.05.005
10.1016/j.jafrearsci.2020.104049
10.1016/j.marpetgeo.2021.105320
10.1190/geo2019-0261.1
10.1016/j.marpetgeo.2019.104096
10.1016/j.engstruct.2020.110927
10.1155/2021/5580185
10.1190/geo2020-0291.1
10.1016/j.marpetgeo.2020.104737
10.1016/j.petrol.2021.108451
10.1016/j.eswa.2017.05.016
10.1190/geo2018-0588.1
10.1016/j.conbuildmat.2020.118527
10.1155/2012/670723
10.3390/en10081168
10.1109/ACCESS.2018.2818678
10.1016/j.ecoinf.2019.101039
10.1155/2021/5021298
10.1109/ACCESS.2019.2936454
10.1007/s12182-019-0332-8
10.1109/ACCESS.2020.2982418
10.1016/j.marpetgeo.2018.01.013
10.1016/j.eswa.2019.01.083
10.1016/j.cageo.2011.04.015
10.1016/j.eswa.2021.115736
10.1093/gji/ggw130
10.1016/j.petrol.2021.109455
10.1016/j.petrol.2018.11.067
10.1016/j.marpetgeo.2021.104939
10.1016/S1876-3804(19)60250-8
10.1016/j.petrol.2019.106825
10.1016/j.marpetgeo.2019.104059
10.1016/j.petrol.2017.08.002
10.1016/j.energy.2021.121915
10.1038/s41598-021-82029-2
10.1007/s12145-019-00381-4
10.1016/j.apenergy.2019.113723
10.1016/j.petrol.2014.06.032
10.1016/j.energy.2020.117239
10.1155/2021/6641678
10.1038/s42256-019-0048-x
10.1016/j.marpetgeo.2018.10.031
ContentType Journal Article
Copyright Copyright © 2022 Jing-Jing Liu and Jian-Chao Liu.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Jing-Jing Liu and Jian-Chao Liu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 Jing-Jing Liu and Jian-Chao Liu.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Jing-Jing Liu and Jian-Chao Liu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7TG
7UA
AEUYN
AFKRA
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1155/2022/2263329
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest Central (New)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1468-8123
Editor Song, Hongqing
Editor_xml – sequence: 1
  givenname: Hongqing
  surname: Song
  fullname: Song, Hongqing
EndPage 15
ExternalDocumentID oai_doaj_org_article_e76e153760704bdb87a98c0567eb56ee
A697646249
10_1155_2022_2263329
GeographicLocations China
Ordos Basin
GeographicLocations_xml – name: China
– name: Ordos Basin
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 300102278402
GroupedDBID .3N
.GA
05W
0R~
10A
24P
29H
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABCQN
ABDBF
ABEML
ABJIA
ABPVW
ACCMX
ACSCC
ACUHS
ADBBV
ADIZJ
AENEX
AEUYN
AFBPY
AFEBI
AFKRA
AFPKN
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ATUGU
AZBYB
AZVAB
BAFTC
BCNDV
BENPR
BHBCM
BHPHI
BKSAR
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBS
EMK
EST
ESX
F00
F01
F04
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HZI
HZ~
I-F
IAO
IHE
ITC
IX1
J0M
K48
L8X
LC2
LC3
LITHE
LK5
LP6
LP7
M7R
MK4
MM-
N04
N05
N9A
NF~
O9-
OIG
OK1
P2P
P2X
P4D
PCBAR
PHGZT
Q.N
Q11
QB0
R.K
RHU
RHW
RHX
RX1
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WQJ
XG1
~02
~IA
~KM
~WT
AAYXX
CITATION
PHGZM
PMFND
7TG
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c442t-2a5c16d156fde6bb8774976eaf9d5935c7d3a88299eb564c73eb9cfd81c4bde53
IEDL.DBID DOA
ISSN 1468-8115
IngestDate Wed Aug 27 01:08:34 EDT 2025
Fri Jul 25 21:02:56 EDT 2025
Tue Jun 10 21:03:26 EDT 2025
Tue Jul 01 01:30:16 EDT 2025
Thu Apr 24 22:53:43 EDT 2025
Wed Apr 16 06:25:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-2a5c16d156fde6bb8774976eaf9d5935c7d3a88299eb564c73eb9cfd81c4bde53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0840-0984
OpenAccessLink https://doaj.org/article/e76e153760704bdb87a98c0567eb56ee
PQID 2619950205
PQPubID 2034142
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_e76e153760704bdb87a98c0567eb56ee
proquest_journals_2619950205
gale_infotracacademiconefile_A697646249
crossref_primary_10_1155_2022_2263329
crossref_citationtrail_10_1155_2022_2263329
hindawi_primary_10_1155_2022_2263329
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-06
PublicationDateYYYYMMDD 2022-01-06
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-06
  day: 06
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Geofluids
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 22
44
23
45
24
46
25
47
26
48
27
28
29
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
S. M. Lundberg (30)
40
41
20
42
21
43
References_xml – ident: 27
  doi: 10.1038/s41598-021-93771-y
– ident: 10
  doi: 10.1016/j.petrol.2021.109154
– ident: 25
  doi: 10.1016/j.petrol.2021.108350
– ident: 22
  doi: 10.1145/2939672.2939785
– ident: 24
  doi: 10.1016/j.jngse.2021.103962
– ident: 19
  doi: 10.1016/j.enggeo.2010.05.005
– ident: 4
  doi: 10.1016/j.jafrearsci.2020.104049
– ident: 3
  doi: 10.1016/j.marpetgeo.2021.105320
– ident: 47
  doi: 10.1190/geo2019-0261.1
– ident: 17
  doi: 10.1016/j.marpetgeo.2019.104096
– ident: 32
  doi: 10.1016/j.engstruct.2020.110927
– ident: 2
  doi: 10.1155/2021/5580185
– ident: 16
  doi: 10.1190/geo2020-0291.1
– ident: 1
  doi: 10.1016/j.marpetgeo.2020.104737
– ident: 5
  doi: 10.1016/j.petrol.2021.108451
– ident: 28
  doi: 10.1016/j.eswa.2017.05.016
– ident: 46
  doi: 10.1190/geo2018-0588.1
– ident: 13
  doi: 10.1016/j.conbuildmat.2020.118527
– ident: 20
  doi: 10.1155/2012/670723
– ident: 23
  doi: 10.3390/en10081168
– ident: 38
  doi: 10.1109/ACCESS.2018.2818678
– start-page: 4768
  ident: 30
  article-title: A unified approach to interpreting model predictions
– ident: 31
  doi: 10.1016/j.ecoinf.2019.101039
– ident: 6
  doi: 10.1155/2021/5021298
– ident: 40
  doi: 10.1109/ACCESS.2019.2936454
– ident: 12
  doi: 10.1007/s12182-019-0332-8
– ident: 41
  doi: 10.1109/ACCESS.2020.2982418
– ident: 35
  doi: 10.1016/j.marpetgeo.2018.01.013
– ident: 39
  doi: 10.1016/j.eswa.2019.01.083
– ident: 9
  doi: 10.1016/j.cageo.2011.04.015
– ident: 33
  doi: 10.1016/j.eswa.2021.115736
– ident: 14
  doi: 10.1093/gji/ggw130
– ident: 45
  doi: 10.1016/j.petrol.2021.109455
– ident: 21
  doi: 10.1016/j.petrol.2018.11.067
– ident: 29
  doi: 10.1016/j.marpetgeo.2021.104939
– ident: 7
  doi: 10.1016/S1876-3804(19)60250-8
– ident: 44
  doi: 10.1016/j.petrol.2019.106825
– ident: 36
  doi: 10.1016/j.marpetgeo.2019.104059
– ident: 15
  doi: 10.1016/j.petrol.2017.08.002
– ident: 43
  doi: 10.1016/j.energy.2021.121915
– ident: 8
  doi: 10.1038/s41598-021-82029-2
– ident: 37
  doi: 10.1007/s12145-019-00381-4
– ident: 42
  doi: 10.1016/j.apenergy.2019.113723
– ident: 11
  doi: 10.1016/j.petrol.2014.06.032
– ident: 18
  doi: 10.1016/j.energy.2020.117239
– ident: 48
  doi: 10.1155/2021/6641678
– ident: 26
  doi: 10.1038/s42256-019-0048-x
– ident: 34
  doi: 10.1016/j.marpetgeo.2018.10.031
SSID ssj0017382
Score 2.4486742
Snippet High-precision permeability prediction is of great significance to tight sandstone reservoirs. However, while considerable progress has recently been made in...
SourceID doaj
proquest
gale
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Additives
Algorithms
Analysis
Artificial intelligence
Datasets
Decision trees
Deep learning
Electrical resistivity
Experiments
Gamma rays
Learning algorithms
Logging
Machine learning
Mathematical models
Mathematical optimization
Methods
Natural gas reserves
Oil reserves
Optimization
Particle swarm optimization
Permeability
Porosity
Predictions
Regression analysis
Regression models
Reservoirs
Robustness (mathematics)
Sandstone
Sedimentary rocks
Shale
Slopes
Support vector machines
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4qCHoQn7i-yEHxIEW3zaM5qiiLoC6osLeQpFMVfFFXxX_vTDa7-ED02JKUJDOZ-aaZ-cLYpgDcYVCbTDgImagN0I-mvUx7WXtUEagkFTifnqnOlTjpyV4iSXr-eYSP3o7C83wXUUJR5GacjaOCUVDe6Y0OC3QR74SKRUQldhnmt3_r-8XzRIL-kRmevKEA-O32h0GOXuZ4ls0keMj3B_KcY2PwMM-mP5EGLrD3LhpTGNBrv_NuQyctUXk44k9-ScE2v6ACXqLZ5pRZ17w-3jY8JgdwyrlLBVP8NCZSAk8cq9cce_Fu0iV-8eaae36OJuU-1Wousqvjo8vDTpYuUMiCEHk_y50MbVVhiFZXoLwvEesh_ABXm0qaQgZdFQ4htjHgpRJBF-BNqKuyHYSvQBZLbOIBx7rMeCA_rlUNe7pGhOWc19KoUhSIj0KuZYvtDBfXhsQuTpdc3NkYZUhpSRQ2iaLFtkatnwasGr-0OyA5jdoQF3Z8gfph03JY1DZoEysNWi8cNs7SmTIgsNM0K4AW2yYpW9qxOKTgUuEBToy4r-y-wjURCuPQFttMivDHqNaGWmLTjn-2FIkaieBbrvzvK6tsih7j7xy1xib6zQusI8Dp-42o3h9LtvId
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA4-EPQgPnF9kYPiQYruNo_mJCqKCOriA7yFJJ2qoK7WVfHfO5PNroKo1zYtSWYy-SaZ-YaxNQG4wqAymXAQMlEZoIOm7Ux7WXlUESglJTifnKqjK3F8La_TgdtLCqvs28RoqMtOoDPyLUL6RiK4kTtPzxlVjaLb1VRCY5iNogku0Pka3Ts4bZ8P7hF0HstFxfyiAsFPP_RdSvL6W1sIPvI8wsuvTSly9w8s9Ngt-cbvdz9sddyADqfYZEKOfLcn6mk2BI8zbOIbn-As-2ijnYUe8_YHb9d0CRP1iiM05Zfkh_MLyu0lBm5OQXf1W-eu5jFugFM4Xsql4icxxhJ4ol-94fgVbyc14xfvrn7gZ2htHlIa5xy7Ojy43D_KUm2FLAjR6mYtJ0NTlei9VSUo7wuEgYhMwFWmlCaXQZe5Q_RtDHipRNA5eBOqsmgG4UuQ-TwbecS-LjAeaIvXqoJtXSH4cs5raVQhcoROoaVlg232J9eGRDxO9S_ubXRApLQkCptE0WDrg9ZPPcKNX9rtkZwGbYgmOz7o1Dc2TYdFRYQmEdagYcNu4yidKQJiPk2jAmiwDZKypcWMXQou5STgwIgWy-4qnBOh0EVtsLWkCP_0armvJTYZgxf7pbqLf79eYuP0s3jCo5bZSLd-hRXEPF2_mhT7E63__ck
  priority: 102
  providerName: ProQuest
Title Permeability Predictions for Tight Sandstone Reservoir Using Explainable Machine Learning and Particle Swarm Optimization
URI https://dx.doi.org/10.1155/2022/2263329
https://www.proquest.com/docview/2619950205
https://doaj.org/article/e76e153760704bdb87a98c0567eb56ee
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEG5EEfQgq6s464M-KHuQoJP0I31UUQZBHUaFuTXdncrugC-yo-K_36pOzyiIePGSQ-gklerqqq-Sqq8Z2xGAKwxqkwkHIRO1AfrQdJBpL2uPJgKVpAbn8wvVuxFnQzl8t9UX1YS19MCt4vbxXtAlzhG0TeErX2pnyoBhW4OXCoC8L8a8STKV_h_ooswnZe5SUoaf7yPQKIoIJd8CUOTpn3rj-b-UB7-MPvjlGGxOf7ClhBL5YSvdMpuB-xW2-I478Cd77aNPhZZl-5X3G_rhEm2IIwzl15Rz8yvq4yW2bU4Fds3zw6jhsUaAU-ld6pvi57GeEniiWv3D8SreT5rhVy-uueOX6FnuUsvmKrs5Pbk-7mVpH4UsCJGPs9zJ0FUVZmp1BcqjCrVAFAKuNpU0hQy6KhwibWNIpSLoArwJdVV2A2ocZLHGZu9R1nXGA4VzrWo40DUCLee8lkaVokCYFHItO2xvolwbEsk47XVxa2OyIaWlqbBpKjpsdzr6sSXX-GTcEc3TdAxRYscTaCg2qcN-ZSgd9ptm2dLCRZGCS_0H-GJEgWUPFepEKExHO2wnGcIXUm1OrMSmhf_PUkJqJGJw-es7hN5gC_TI-M1HbbLZcfMEW4iCxn6bzR2dXPQH29Hw6TjI8TjoDf8D-1kGiQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB2hoKrtoeqnGgrUB1AP1Qqya--uD1UFFBQKSaMSJG7G652lSIXAkjbKn-I3dsbxhkpV2xPXxIlsz3jmjT3zBmBNIp0wrHQkLbpIVhr5omkzygpVFaQiWCoucO710-6x_HyiThbgtqmF4bTKxiZ6Q12OHN-RbzDS14rAjfp4dR1x1yh-XW1aaMzU4gCnEwrZbj7sfyL5rsfx3u5wpxuFrgKRkzIeR7FVrpOWFLdUJaZFkRMAIp-MttKl0olyWZlYwp1aY6FS6bIEC-2qMu84WZTIXSLI5C_KhEKZFixu7_YHX-fvFlni21P5eqacwFaTaq8U3zLEGwR2ksTD2Tsn6HsFzD3Cg28ci0_O__AN3uHtPYUnAamKrZlqPYMFvHwOj3_jL3wB0wHZdZwxfU_FoOZHH6_HgqCwGHLcL464lpgZvwUn-dU_R-e18HkKgtP_Qu2W6PmcThSB7vVM0K_EIKi1OJrY-kJ8Iet2EcpGX8Lxvez6K2hd0lxfg3AMKbK0ws2sIrBnbZEpneYyIajm4ky14X2zucYFonPut_Hd-IBHKcOiMEEUbVifj76aEXz8Zdw2y2k-hmm5_Qej-syE7TCk-NhhghwypDRtWqXVuSOMmfGqENvwjqVs2HjQlJwNNRC0MKbhMlsp7YlMKSRuw1pQhP_MarnREhOMz425OypL__76LTzsDnuH5nC_f_AGHvEf-9uldBla4_oHrhDeGherQckFnN73ufoFSPo77Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Permeability+Predictions+for+Tight+Sandstone+Reservoir+Using+Explainable+Machine+Learning+and+Particle+Swarm+Optimization&rft.jtitle=Geofluids&rft.au=Jing-Jing+Liu&rft.au=Jian-Chao+Liu&rft.date=2022-01-06&rft.pub=Wiley&rft.eissn=1468-8123&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F2263329&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e76e153760704bdb87a98c0567eb56ee
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-8115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-8115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-8115&client=summon