Nonlinear Measurement Function in the Ensemble Kalman Filter
ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, th...
Saved in:
Published in | Advances in atmospheric sciences Vol. 31; no. 3; pp. 551 - 558 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Science Press
01.05.2014
Springer Nature B.V Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012%Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9 International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology,Hamburg, Germany 20146%State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1530 1861-9533 |
DOI | 10.1007/s00376-013-3117-9 |
Cover
Abstract | ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated. |
---|---|
AbstractList | The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated.[PUBLICATION ABSTRACT] ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated. The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated. The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated. |
Author | Ambandan, Jaison Tang, Youmin Chen, Dake |
AuthorAffiliation | Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9;State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012%Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9;International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology,Hamburg, Germany 20146%State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012 |
AuthorAffiliation_xml | – name: Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9;State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012%Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9;International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology,Hamburg, Germany 20146%State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012 |
Author_xml | – sequence: 1 givenname: Youmin surname: Tang fullname: Tang, Youmin email: ytang@unbc.ca organization: Environmental Science and Engineering, University of Northern British, State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration – sequence: 2 givenname: Jaison surname: Ambandan fullname: Ambandan, Jaison organization: Environmental Science and Engineering, University of Northern British, International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology – sequence: 3 givenname: Dake surname: Chen fullname: Chen, Dake organization: State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration |
BookMark | eNqFkU1P3DAQhi0EEgv0B3AL6qUc0s74M5F6qRALVYFe2rPlDZMl28Rh7URAf329ymqFONCTL88z73jeI7bve0-MnSJ8RgDzJQIIo3NAkQtEk5d7bIaFxrxUQuyzGXClc1QCDtlRjKtEl6LAGft61_u28eRCdksujoE68kM2H301NL3PGp8ND5Rd-kjdoqXsh2s757N50w4UTthB7dpIH7bvMfs9v_x1cZ3f_Lz6fvHtJq-k5EPOlXKgKiFpoc1CciQgktJAXWJdlDU3XJfSVK4mZ9BQsXCF0IXhwCWvkMQxO5_mPjlfO7-0q34MPiXa-_Wf59VfSxxQggDQif00sY-hX48UB9s1saK2dZ76MVrUkidQpLP8F1WojUqbqYR-fIPuVkgUxwKV3GSbiapCH2Og2lbN4DZ3HIJrWotgN2XZqSybyrKbsmyZTHxjPoamc-HlXYdPTkysX1J4tdM70tk26KH3y3XydkmyFIBF-uw_XwGwJA |
CitedBy_id | crossref_primary_10_3389_fphy_2022_998503 crossref_primary_10_1007_s00376_016_5249_1 crossref_primary_10_1016_j_physd_2021_132979 crossref_primary_10_1109_ACCESS_2020_3014850 crossref_primary_10_1007_s10439_017_1904_7 crossref_primary_10_4236_acs_2018_83022 crossref_primary_10_1007_s40295_019_00177_0 crossref_primary_10_5194_gmd_15_8869_2022 crossref_primary_10_3390_atmos5040788 crossref_primary_10_1002_qj_3180 crossref_primary_10_1155_2019_6793175 crossref_primary_10_1002_cnm_2824 crossref_primary_10_1175_JTECH_D_13_00172_1 crossref_primary_10_1007_s13131_015_0757_x crossref_primary_10_1016_j_ifacol_2020_12_1101 crossref_primary_10_1371_journal_pone_0256227 crossref_primary_10_3390_aerospace5020037 crossref_primary_10_1016_j_anucene_2021_108490 crossref_primary_10_2514_1_G003796 crossref_primary_10_3402_tellusa_v67_25950 crossref_primary_10_1002_2014MS000373 |
Cites_doi | 10.1002/0470045345 10.1029/94JC00572 10.1016/j.physd.2006.11.008 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 10.1115/1.3662552 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1175/1520-0493(1997)125<1342:ADAFSN>2.0.CO;2 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 10.1175/MWR-2864.1 10.1002/qj.49712656417 10.1175/2009JAS3273.1 10.1007/s10236-003-0036-9 10.1016/j.jmva.2006.08.003 10.1111/j.1600-0870.2006.00216.x 10.1080/07055900.2012.719823 10.1029/2011MS000065 10.1111/j.1600-0870.1986.tb00459.x 10.1109/9.855552 10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2 10.1109/ACC.1995.529783 |
ContentType | Journal Article |
Copyright | Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2014 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2014 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 3V. 7TG 7XB 88F 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M1Q M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U 7UA C1K 8FD H8D L7M 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s00376-013-3117-9 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Collection (ProQuest) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Military Database (ProQuest) Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Military Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Military Collection (Alumni Edition) Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
DocumentTitleAlternate | Nonlinear Measurement Function in the Ensemble Kalman Filter |
EISSN | 1861-9533 |
EndPage | 558 |
ExternalDocumentID | dqkxjz_e201403006 3264045341 10_1007_s00376_013_3117_9 49301875 |
Genre | Feature |
GrantInformation_xml | – fundername: research grants from the NSERC (Natural Sciences and Engineering Research Council of Canada) Discovery Program,the National Natural Science Foundation of China; the National Basic Research Program funderid: (Grant .41276029 and 40730843); (Grant 2007CB816005) |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 2.D 23M 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VR 5VS 67M 6J9 6NX 7XC 88I 8FE 8FH 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABDZT ABECU ABEOS ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACGOD ACHSB ACHXU ACIGE ACIHN ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ C1A CAG CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC I~X I~Z J-C JBSCW JZLTJ K6- KOV L8X LAS LK5 LLZTM M1Q M2P M4Y M7R MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCL SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGP TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W94 WK6 WK8 YLTOR Z7R Z83 Z8M Z8W ZMTXR ~A9 ~WA -SA -S~ 5XA 5XB AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV ADMLS AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU BSONS CAJEA H13 Q-- U1G U5K AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TG 7XB 8FK ABRTQ F1W H96 KL. L.G PKEHL PQEST PQUKI PUEGO Q9U 7UA C1K 8FD H8D L7M 4A8 PMFND PSX |
ID | FETCH-LOGICAL-c442t-255a05c34eb67b421e0ee4470f91f89f2726947cafea717e8ba8368720242c1e3 |
IEDL.DBID | BENPR |
ISSN | 0256-1530 |
IngestDate | Thu May 29 04:02:39 EDT 2025 Fri Sep 05 06:14:56 EDT 2025 Fri Sep 05 11:25:02 EDT 2025 Tue Sep 09 14:52:00 EDT 2025 Tue Jul 01 02:40:56 EDT 2025 Thu Apr 24 23:12:07 EDT 2025 Fri Feb 21 02:34:55 EST 2025 Wed Feb 14 10:37:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | measurement function data assimilation ensemble Kalman filter |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-255a05c34eb67b421e0ee4470f91f89f2726947cafea717e8ba8368720242c1e3 |
Notes | ensemble Kalman filter, measurement function, data assimilation. Youmin TANG^1,2, Jaison AMBANDAN^1,3, and Dake CHEN^2 l Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9 2 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012 31nternational Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology, Hamburg, Germany 20146 ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated. 11-1925/O4 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1512181546 |
PQPubID | 54452 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_dqkxjz_e201403006 proquest_miscellaneous_1642300353 proquest_miscellaneous_1516759475 proquest_journals_1512181546 crossref_citationtrail_10_1007_s00376_013_3117_9 crossref_primary_10_1007_s00376_013_3117_9 springer_journals_10_1007_s00376_013_3117_9 chongqing_primary_49301875 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: Dordrecht |
PublicationTitle | Advances in atmospheric sciences |
PublicationTitleAbbrev | Adv. Atmos. Sci |
PublicationTitleAlternate | Advances in Atmospheric Sciences |
PublicationTitle_FL | Advances in Atmospheric Sciences |
PublicationYear | 2014 |
Publisher | Science Press Springer Nature B.V Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012%Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9 International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology,Hamburg, Germany 20146%State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012 |
Publisher_xml | – name: Science Press – name: Springer Nature B.V – name: Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9 – name: International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology,Hamburg, Germany 20146%State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012 – name: State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012%Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9 |
References | Jazwinski (CR14) 1970 Anderson (CR3) 2007; 59A Lorenz (CR19) 1963; 20 Hunt, Kostelich, Szunyogh (CR12) 2007; 230 Courtier (CR4) 1998; 124 Deng, Tang, Chen, Wang (CR5) 2012; 50 Ito, Xiong (CR13) 2000; 45 Talagrand, Bouttier (CR22) 2007 Kalman (CR16) 1960; 82 Anderson (CR2) 2001; 129 Julier, Uhlmann, Durrant-Whyte (CR15) 1995 Klinker, Rabier, Kelly, Mahfouf (CR17) 2000; 126 Houtekamer, Mitchell (CR10) 2001; 129 Houtekamer, Mitchell, Pellerin, Buehner, Charron, Spacek, Hansen (CR11) 2005; 133 Evensen (CR7) 1997; 125 Miller, Ghil, Gauthiez (CR20) 1994; 51 Tippett, Anderson, Bishop, Hamill, Whitaker (CR24) 2003; 131 Ambadan, Tang (CR1) 2011; 3 Le Dimet, Talagrand (CR18) 1986; 38A Tang, Ambadan (CR23) 2009; 66 Evensen (CR8) 2003; 53 Furrer, Bengtsson (CR9) 2007; 98 Evensen (CR6) 1994; 99 Simon (CR21) 2006 B R Hunt (3117_CR12) 2007; 230 J L Anderson (3117_CR3) 2007; 59A A H Jazwinski (3117_CR14) 1970 G Evensen (3117_CR8) 2003; 53 S J Julier (3117_CR15) 1995 E N Lorenz (3117_CR19) 1963; 20 R E Kalman (3117_CR16) 1960; 82 P Courtier (3117_CR4) 1998; 124 R Furrer (3117_CR9) 2007; 98 R N Miller (3117_CR20) 1994; 51 K Ito (3117_CR13) 2000; 45 M K Tippett (3117_CR24) 2003; 131 P L Houtekamer (3117_CR11) 2005; 133 G Evensen (3117_CR6) 1994; 99 F X Dimet Le (3117_CR18) 1986; 38A G Evensen (3117_CR7) 1997; 125 Y M Tang (3117_CR23) 2009; 66 P L Houtekamer (3117_CR10) 2001; 129 J T Ambadan (3117_CR1) 2011; 3 J L Anderson (3117_CR2) 2001; 129 D Simon (3117_CR21) 2006 Z Deng (3117_CR5) 2012; 50 E Klinker (3117_CR17) 2000; 126 O Talagrand (3117_CR22) 2007 |
References_xml | – year: 2006 ident: CR21 publication-title: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches doi: 10.1002/0470045345 – volume: 124 start-page: 1783 year: 1998 end-page: 1807 ident: CR4 article-title: The ECMWF implementation of three-dimensional variational assimilation (3D-Var) publication-title: I: Formulation. Quart. J. Roy. Meteor. Soc. – volume: 99 start-page: 10 143 issue: C5 year: 1994 end-page: 10 162 ident: CR6 article-title: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics publication-title: J. Geophys. Res. doi: 10.1029/94JC00572 – volume: 230 start-page: 112 year: 2007 end-page: 126 ident: CR12 article-title: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform kalman filter publication-title: Physica D doi: 10.1016/j.physd.2006.11.008 – volume: 129 start-page: 123 year: 2001 end-page: 137 ident: CR10 article-title: A sequential ensemble kalman filter for atmospheric data assimilation publication-title: Mon.Wea. Rev. doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 – volume: 82 start-page: 35 year: 1960 end-page: 45 ident: CR16 article-title: A new approach to linear filtering and prediction problems publication-title: Journal of Basic Engineering doi: 10.1115/1.3662552 – volume: 20 start-page: 130 year: 1963 end-page: 141 ident: CR19 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 125 start-page: 1342 year: 1997 end-page: 1354 ident: CR7 article-title: Advanced data assimilation for strongly nonlinear dynamics publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1997)125<1342:ADAFSN>2.0.CO;2 – volume: 131 start-page: 1485 year: 2003 end-page: 1490 ident: CR24 article-title: Ensemble square root filters publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2 – volume: 129 start-page: 2884 year: 2001 end-page: 2903 ident: CR2 article-title: An ensemble adjustment kalman filter for data assimilation publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 – volume: 133 start-page: 604 year: 2005 end-page: 620 ident: CR11 article-title: Atmospheric data assimilation with an Ensemble Kalman Filter: Results with real observations publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-2864.1 – volume: 126 start-page: 1191 year: 2000 end-page: 1215 ident: CR17 article-title: The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49712656417 – volume: 66 start-page: 3501 issue: 11 year: 2009 end-page: 3503 ident: CR23 article-title: Reply to comment on ”Sigmapoint Kalman Filters for the assimilation of strongly nonlinear systems” publication-title: J. Atmos. Sci. doi: 10.1175/2009JAS3273.1 – volume: 53 start-page: 343 year: 2003 end-page: 367 ident: CR8 article-title: The Ensemble Kalman Filter: Theoretical formulation and practical implementation publication-title: Ocean Dynamics doi: 10.1007/s10236-003-0036-9 – year: 1970 ident: CR14 publication-title: Stochastic Processes and Filtering Theory – volume: 98 start-page: 227 year: 2007 end-page: 255 ident: CR9 article-title: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants publication-title: Journal of Multivariate Analysis doi: 10.1016/j.jmva.2006.08.003 – volume: 59A start-page: 210 year: 2007 end-page: 224 ident: CR3 article-title: An adaptive covariance inflation error correction algorithm for ensemble filters publication-title: Tellus doi: 10.1111/j.1600-0870.2006.00216.x – volume: 50 start-page: 129 year: 2012 end-page: 145 ident: CR5 article-title: A hybrid ensemble generation method for EnKF for Argo data assimilation publication-title: Atmos-Ocean doi: 10.1080/07055900.2012.719823 – start-page: 1628 year: 1995 end-page: 1632 ident: CR15 article-title: A new approach for filtering nonlinear systems publication-title: 1995 , Seattle WA, USA – volume: 3 start-page: M12005 year: 2011 ident: CR1 article-title: Sigma-point particle filter for parameter estimation in a multiplicative noise environment publication-title: Journal of Advances in Modeling Earth Systems doi: 10.1029/2011MS000065 – volume: 38A start-page: 97 year: 1986 end-page: 110 ident: CR18 article-title: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects publication-title: Tellus doi: 10.1111/j.1600-0870.1986.tb00459.x – year: 2007 ident: CR22 publication-title: Data Assimilation in Meteorology and Oceanography – volume: 45 start-page: 910 issue: 5 year: 2000 end-page: 927 ident: CR13 article-title: Gaussian filters for nonlinear filtering problems publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/9.855552 – volume: 51 start-page: 1037 year: 1994 end-page: 1056 ident: CR20 article-title: Advanced data assimilation in strongly nonlinear dynamical systems publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2 – volume: 133 start-page: 604 year: 2005 ident: 3117_CR11 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-2864.1 – volume: 51 start-page: 1037 year: 1994 ident: 3117_CR20 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2 – volume: 53 start-page: 343 year: 2003 ident: 3117_CR8 publication-title: Ocean Dynamics doi: 10.1007/s10236-003-0036-9 – volume: 98 start-page: 227 year: 2007 ident: 3117_CR9 publication-title: Journal of Multivariate Analysis doi: 10.1016/j.jmva.2006.08.003 – volume: 124 start-page: 1783 year: 1998 ident: 3117_CR4 publication-title: I: Formulation. Quart. J. Roy. Meteor. Soc. – volume: 45 start-page: 910 issue: 5 year: 2000 ident: 3117_CR13 publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/9.855552 – volume: 99 start-page: 10 143 issue: C5 year: 1994 ident: 3117_CR6 publication-title: J. Geophys. Res. doi: 10.1029/94JC00572 – volume-title: Data Assimilation in Meteorology and Oceanography year: 2007 ident: 3117_CR22 – volume-title: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches year: 2006 ident: 3117_CR21 doi: 10.1002/0470045345 – volume: 129 start-page: 123 year: 2001 ident: 3117_CR10 publication-title: Mon.Wea. Rev. doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 – volume: 126 start-page: 1191 year: 2000 ident: 3117_CR17 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49712656417 – volume: 20 start-page: 130 year: 1963 ident: 3117_CR19 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – start-page: 1628 volume-title: Proc. of the 1995 American Control Conference, Seattle WA, USA year: 1995 ident: 3117_CR15 doi: 10.1109/ACC.1995.529783 – volume: 50 start-page: 129 year: 2012 ident: 3117_CR5 publication-title: Atmos-Ocean doi: 10.1080/07055900.2012.719823 – volume: 38A start-page: 97 year: 1986 ident: 3117_CR18 publication-title: Tellus doi: 10.1111/j.1600-0870.1986.tb00459.x – volume: 66 start-page: 3501 issue: 11 year: 2009 ident: 3117_CR23 publication-title: J. Atmos. Sci. doi: 10.1175/2009JAS3273.1 – volume: 131 start-page: 1485 year: 2003 ident: 3117_CR24 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2 – volume: 3 start-page: M12005 year: 2011 ident: 3117_CR1 publication-title: Journal of Advances in Modeling Earth Systems doi: 10.1029/2011MS000065 – volume: 129 start-page: 2884 year: 2001 ident: 3117_CR2 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 – volume: 59A start-page: 210 year: 2007 ident: 3117_CR3 publication-title: Tellus doi: 10.1111/j.1600-0870.2006.00216.x – volume: 125 start-page: 1342 year: 1997 ident: 3117_CR7 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1997)125<1342:ADAFSN>2.0.CO;2 – volume: 82 start-page: 35 year: 1960 ident: 3117_CR16 publication-title: Journal of Basic Engineering doi: 10.1115/1.3662552 – volume: 230 start-page: 112 year: 2007 ident: 3117_CR12 publication-title: Physica D doi: 10.1016/j.physd.2006.11.008 – volume-title: Stochastic Processes and Filtering Theory year: 1970 ident: 3117_CR14 |
SSID | ssj0039381 |
Score | 2.1374867 |
Snippet | ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of... The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the... |
SourceID | wanfang proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 551 |
SubjectTerms | Algorithms Atmospheric Sciences Dynamical systems Earth and Environmental Science Earth Sciences Equivalence Gain Geophysics/Geodesy Kalman Kalman filters Mathematical models Meteorology Nonlinearity Optimization 卡尔曼滤波算法 增益算法 测量功能 组件模型 统计分析 集合 非线性动力系统 |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9sKFNyKlIIMQB1CqJHbiWOJSVS0VVXtqpXKy7Oy4LN3N0u2uhPrrmclrC4JKPUbxc8bj-cbjGQO8H8uKr-Fi7E2uYoUk6T5TIZZFrjCXXmvkAOej4-LgVH09y8-6OO6r_rZ775Jsduoh2I1TpbD1y_FgtLWa-7CRp6UpR7Cx8-Xb4V6_AUsjm7dJWZvHJNCDM_NfjXBKhe_z-vySOvxTNa3x5uAibQJ76uDq8xs6aP8RnPSjb6-eXGyvln67uv4rseMdp_cYHnaYVOy0i-gJ3MP6KURHBKfni-bUXXwQu9MJYdvm6xl8Pm4TbLiFmK3PGAXrSOazmNSCcKUgCxlnfori0E1nrhZhwq7553C6v3eyexB3zzDElVLZMiajwyV5JRX6QnuVpZggKqWTYNJQmpBpjobVlQvoyDjE0rtSFqXOWP1XKcoXMKrnNb4EkWY6VFo5OQ6lGhelyxLnjXFktRCuKLMINgdu2J9tug2rjOSXA_MIkp49tuoSmPM7GlM7pF5uaGiJhpZpaE0EH4cqfXO3FN7qeW47Qb6yDIgIBOWqiODt8JtEkP0qrsb5qilDEyAS5LeUITtPsttWRvCpXwA3uvn_oN51S25deHx58evHtcWMrWNqtNi8U5Ov4AHXbG9tbsFouVjha0JWS_-mk6TfB94WuQ priority: 102 providerName: Springer Nature |
Title | Nonlinear Measurement Function in the Ensemble Kalman Filter |
URI | http://lib.cqvip.com/qk/84334X/201403/49301875.html https://link.springer.com/article/10.1007/s00376-013-3117-9 https://www.proquest.com/docview/1512181546 https://www.proquest.com/docview/1516759475 https://www.proquest.com/docview/1642300353 https://d.wanfangdata.com.cn/periodical/dqkxjz-e201403006 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw8MTWF14QDBAZo_ImxAMoIrGdD0tIqGwdE6MVAiqNJ8tJnK3QJmvXSYhfz13qpOOBPkVRLo7j-76z7wBeFiKnbbjWz1QkfWmR0zMuS1_EkbSRyJLE0gHn0Tg-m8hPF9GFC7jduG2VrUxsBHVR5xQjf0uaCbVRJOP31wufukZRdtW10NiBHorgFOm892E4_vK1lcVCiaZNKSl2H3m7y2sGTRlRZC6fuhuIEEW1ouoKV3V1uUCd8a-W2pieXba0OeNTlaa6vKOOTh_CA2dHssEa8Y_gnq32wBuhCVwvm0g5e8WOZ1O0R5u7x_BuvC6KYZZsvokLMtJrhBs2rRjaggy9WjvPZpadm9ncVKycUjr9CUxOh9-Pz3zXOsHPpeQrHx0FE0S5kDaLk0zy0AbWSpkEpQrLVJU8oROsSW5Ka9Chs2lmUhGnCSeVnYdWPIXdqq7sM2AhT8o8kUYUZSqLODU8MJlSBj0NtAVS7sF-t2z6el0iQ0slqNtf5EHQrqPOXdFx6n0x01255AYNGtGgCQ1aefC6e6UdbgvwQYsc7ZjvRm9IxYPD7jGyDeVCTGXr2wYGfwCXINoCg76ZoFSr8OBNi_g7n_n_pI4cbWyAi8Wv3z__aMvJo8VB4_3tM38O9wl0vbXyAHZXy1v7As2fVdaH3uBk9PkbXT_-OB_2Hc33YWfCB38BzBsCyw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEJ8iY4BBwAMoIrGdLwmEYGzq6FohtEl7M05yGYU2WbtOfPxR_I3cpUk6HujbHqPYjuO78_3O57sDeJqrjK_hopsmgXY1kqSnUheuCgONgUqjCDnAeTgK-0f643FwvAF_2lgYvlbZ7on1Rp1XGZ-Rv2LNRNoo0OHb05nLVaPYu9qW0FiyxQB__SCT7ezN_gei7zMp93YPd_puU1XAzbSWC5cwtPWCTGlMwyjV0kcPUevIKxK_iJNCRhzcGWW2QEu2DsapjVUYR5K1WeajonGvwKbmiNYebL7fHX363O79KlF1WVQGEi7tJZ0f1avTlpIwu1xNQfmkGhLO5vC1Kk9mpKP-1YorqNt5Z-uYorKw5ckF9bd3A643uFW8WzLaTdjA8hY4Q4Lc1bw-mRfPxc5kTPi3froNr0fLJBx2Lqarc0jBepR5QYxLQdhTkBWN03SCYmAnU1uKYszu-ztwdCmLehd6ZVXiPRC-jIos0lblRazzMLbSs2mSWLJsCHvE0oGtbtnM6TIlh9GJ4uqCgQNeu44ma5Kcc62NienSM9dkMEQGw2QwiQMvui7tcGsab7fEMY2wn5kVazrwuHtNYsq-F1tidV63oR-gJQjWtCFbULFrVznwsiX8hc_8f1JPGt5YNc5n339--21QsgVNg4Zb62f-CK72D4cH5mB_NLgP17jb8lrnNvQW83N8QNBrkT5s-F3Al8sWsb_OtDpV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdgSIgXxKfoGCwgxAOoWpukTSvxMm2cBmMnHjhpb1HSJtttd7ntdpMQfz12v25IMInHqq7bxnH8cxzbAO9qUdExXBfbMpOxdKjplksfizyTLhNWKUcJzkfj_GAivx5nx12f06v-tHsfkmxzGqhKU1jtXNR-Z0h8o7Ip5AlTbhgus-VduIercUoTfcJ3-6VYlKLpUkp2PUbVHsKaf2NBxRVOF-HkEl_9p5FaI88hWNqk-ARvwskNazR6BA87GMl2W7k_hjsuPIHoCBHwYtlslLP3bG82RTjaXD2FT-O2JoZZsvl6W5CRWSPRsGlgCAUZOrVubmeOHZrZ3ATmpxRNfwaT0ecfewdx1zkhrqTkqxj9BJNklZDO5spKnrrEOSlV4svUF6XnihJYVWW8M-jPucKaQuSF4mSxq9SJ57ARFsG9AJZy5Ssljah9Ieu8MDwxtiwNOhoIBQoeweYwbPqirZChZSmo2V8WQdKPo666muPU-mKmh2rJjRg0ikGTGHQZwYfhkZ7dLcRbvXB0p3tXmjAM4pZM5hG8GW6j1lAoxAS3uG5o8AdwCLJbaNA1ExRpFRF87AV_4zX__qi33dxYE9eX5z_PfmnHyaFFpvnmf7Hchvvf90f625fx4Ut4QEzaM5dbsLFaXrtXiItW9nUz938DJMABEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+measurement+function+in+the+ensemble+Kalman+filter&rft.jtitle=Advances+in+atmospheric+sciences&rft.au=Tang%2C+Youmin&rft.au=Ambandan%2C+Jaison&rft.au=Chen%2C+Dake&rft.date=2014-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1530&rft.eissn=1861-9533&rft.volume=31&rft.issue=3&rft.spage=551&rft_id=info:doi/10.1007%2Fs00376-013-3117-9&rft.externalDocID=3264045341 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84334X%2F84334X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdqkxjz-e%2Fdqkxjz-e.jpg |