Nonlinear Measurement Function in the Ensemble Kalman Filter

ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, th...

Full description

Saved in:
Bibliographic Details
Published inAdvances in atmospheric sciences Vol. 31; no. 3; pp. 551 - 558
Main Authors Tang, Youmin, Ambandan, Jaison, Chen, Dake
Format Journal Article
LanguageEnglish
Published Heidelberg Science Press 01.05.2014
Springer Nature B.V
Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012%Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9
International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology,Hamburg, Germany 20146%State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012
Subjects
Online AccessGet full text
ISSN0256-1530
1861-9533
DOI10.1007/s00376-013-3117-9

Cover

Abstract ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated.
AbstractList The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated.[PUBLICATION ABSTRACT]
ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated.
The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated.
The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated.
Author Ambandan, Jaison
Tang, Youmin
Chen, Dake
AuthorAffiliation Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9;State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012%Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9;International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology,Hamburg, Germany 20146%State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012
AuthorAffiliation_xml – name: Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9;State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012%Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9;International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology,Hamburg, Germany 20146%State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012
Author_xml – sequence: 1
  givenname: Youmin
  surname: Tang
  fullname: Tang, Youmin
  email: ytang@unbc.ca
  organization: Environmental Science and Engineering, University of Northern British, State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration
– sequence: 2
  givenname: Jaison
  surname: Ambandan
  fullname: Ambandan, Jaison
  organization: Environmental Science and Engineering, University of Northern British, International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology
– sequence: 3
  givenname: Dake
  surname: Chen
  fullname: Chen, Dake
  organization: State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration
BookMark eNqFkU1P3DAQhi0EEgv0B3AL6qUc0s74M5F6qRALVYFe2rPlDZMl28Rh7URAf329ymqFONCTL88z73jeI7bve0-MnSJ8RgDzJQIIo3NAkQtEk5d7bIaFxrxUQuyzGXClc1QCDtlRjKtEl6LAGft61_u28eRCdksujoE68kM2H301NL3PGp8ND5Rd-kjdoqXsh2s757N50w4UTthB7dpIH7bvMfs9v_x1cZ3f_Lz6fvHtJq-k5EPOlXKgKiFpoc1CciQgktJAXWJdlDU3XJfSVK4mZ9BQsXCF0IXhwCWvkMQxO5_mPjlfO7-0q34MPiXa-_Wf59VfSxxQggDQif00sY-hX48UB9s1saK2dZ76MVrUkidQpLP8F1WojUqbqYR-fIPuVkgUxwKV3GSbiapCH2Og2lbN4DZ3HIJrWotgN2XZqSybyrKbsmyZTHxjPoamc-HlXYdPTkysX1J4tdM70tk26KH3y3XydkmyFIBF-uw_XwGwJA
CitedBy_id crossref_primary_10_3389_fphy_2022_998503
crossref_primary_10_1007_s00376_016_5249_1
crossref_primary_10_1016_j_physd_2021_132979
crossref_primary_10_1109_ACCESS_2020_3014850
crossref_primary_10_1007_s10439_017_1904_7
crossref_primary_10_4236_acs_2018_83022
crossref_primary_10_1007_s40295_019_00177_0
crossref_primary_10_5194_gmd_15_8869_2022
crossref_primary_10_3390_atmos5040788
crossref_primary_10_1002_qj_3180
crossref_primary_10_1155_2019_6793175
crossref_primary_10_1002_cnm_2824
crossref_primary_10_1175_JTECH_D_13_00172_1
crossref_primary_10_1007_s13131_015_0757_x
crossref_primary_10_1016_j_ifacol_2020_12_1101
crossref_primary_10_1371_journal_pone_0256227
crossref_primary_10_3390_aerospace5020037
crossref_primary_10_1016_j_anucene_2021_108490
crossref_primary_10_2514_1_G003796
crossref_primary_10_3402_tellusa_v67_25950
crossref_primary_10_1002_2014MS000373
Cites_doi 10.1002/0470045345
10.1029/94JC00572
10.1016/j.physd.2006.11.008
10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
10.1115/1.3662552
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1175/1520-0493(1997)125<1342:ADAFSN>2.0.CO;2
10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
10.1175/MWR-2864.1
10.1002/qj.49712656417
10.1175/2009JAS3273.1
10.1007/s10236-003-0036-9
10.1016/j.jmva.2006.08.003
10.1111/j.1600-0870.2006.00216.x
10.1080/07055900.2012.719823
10.1029/2011MS000065
10.1111/j.1600-0870.1986.tb00459.x
10.1109/9.855552
10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2
10.1109/ACC.1995.529783
ContentType Journal Article
Copyright Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2014
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2014
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
3V.
7TG
7XB
88F
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M1Q
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7UA
C1K
8FD
H8D
L7M
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s00376-013-3117-9
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Collection (ProQuest)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Military Database (ProQuest)
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Military Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Military Collection (Alumni Edition)
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
DocumentTitleAlternate Nonlinear Measurement Function in the Ensemble Kalman Filter
EISSN 1861-9533
EndPage 558
ExternalDocumentID dqkxjz_e201403006
3264045341
10_1007_s00376_013_3117_9
49301875
Genre Feature
GrantInformation_xml – fundername: research grants from the NSERC (Natural Sciences and Engineering Research Council of Canada) Discovery Program,the National Natural Science Foundation of China; the National Basic Research Program
  funderid: (Grant .41276029 and 40730843); (Grant 2007CB816005)
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
2.D
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
67M
6J9
6NX
7XC
88I
8FE
8FH
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABDZT
ABECU
ABEOS
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
C1A
CAG
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
K6-
KOV
L8X
LAS
LK5
LLZTM
M1Q
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCL
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGP
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W94
WK6
WK8
YLTOR
Z7R
Z83
Z8M
Z8W
ZMTXR
~A9
~WA
-SA
-S~
5XA
5XB
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
ADMLS
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CAJEA
H13
Q--
U1G
U5K
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TG
7XB
8FK
ABRTQ
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
PUEGO
Q9U
7UA
C1K
8FD
H8D
L7M
4A8
PMFND
PSX
ID FETCH-LOGICAL-c442t-255a05c34eb67b421e0ee4470f91f89f2726947cafea717e8ba8368720242c1e3
IEDL.DBID BENPR
ISSN 0256-1530
IngestDate Thu May 29 04:02:39 EDT 2025
Fri Sep 05 06:14:56 EDT 2025
Fri Sep 05 11:25:02 EDT 2025
Tue Sep 09 14:52:00 EDT 2025
Tue Jul 01 02:40:56 EDT 2025
Thu Apr 24 23:12:07 EDT 2025
Fri Feb 21 02:34:55 EST 2025
Wed Feb 14 10:37:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords measurement function
data assimilation
ensemble Kalman filter
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-255a05c34eb67b421e0ee4470f91f89f2726947cafea717e8ba8368720242c1e3
Notes ensemble Kalman filter, measurement function, data assimilation.
Youmin TANG^1,2, Jaison AMBANDAN^1,3, and Dake CHEN^2 l Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9 2 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012 31nternational Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology, Hamburg, Germany 20146
ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated.
11-1925/O4
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1512181546
PQPubID 54452
PageCount 8
ParticipantIDs wanfang_journals_dqkxjz_e201403006
proquest_miscellaneous_1642300353
proquest_miscellaneous_1516759475
proquest_journals_1512181546
crossref_citationtrail_10_1007_s00376_013_3117_9
crossref_primary_10_1007_s00376_013_3117_9
springer_journals_10_1007_s00376_013_3117_9
chongqing_primary_49301875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Dordrecht
PublicationTitle Advances in atmospheric sciences
PublicationTitleAbbrev Adv. Atmos. Sci
PublicationTitleAlternate Advances in Atmospheric Sciences
PublicationTitle_FL Advances in Atmospheric Sciences
PublicationYear 2014
Publisher Science Press
Springer Nature B.V
Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012%Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9
International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology,Hamburg, Germany 20146%State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012
Publisher_xml – name: Science Press
– name: Springer Nature B.V
– name: Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9
– name: International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology,Hamburg, Germany 20146%State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012
– name: State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012%Environmental Science and Engineering, University of Northern British, Columbia, Prince George, Canada, V2N 4Z9
References Jazwinski (CR14) 1970
Anderson (CR3) 2007; 59A
Lorenz (CR19) 1963; 20
Hunt, Kostelich, Szunyogh (CR12) 2007; 230
Courtier (CR4) 1998; 124
Deng, Tang, Chen, Wang (CR5) 2012; 50
Ito, Xiong (CR13) 2000; 45
Talagrand, Bouttier (CR22) 2007
Kalman (CR16) 1960; 82
Anderson (CR2) 2001; 129
Julier, Uhlmann, Durrant-Whyte (CR15) 1995
Klinker, Rabier, Kelly, Mahfouf (CR17) 2000; 126
Houtekamer, Mitchell (CR10) 2001; 129
Houtekamer, Mitchell, Pellerin, Buehner, Charron, Spacek, Hansen (CR11) 2005; 133
Evensen (CR7) 1997; 125
Miller, Ghil, Gauthiez (CR20) 1994; 51
Tippett, Anderson, Bishop, Hamill, Whitaker (CR24) 2003; 131
Ambadan, Tang (CR1) 2011; 3
Le Dimet, Talagrand (CR18) 1986; 38A
Tang, Ambadan (CR23) 2009; 66
Evensen (CR8) 2003; 53
Furrer, Bengtsson (CR9) 2007; 98
Evensen (CR6) 1994; 99
Simon (CR21) 2006
B R Hunt (3117_CR12) 2007; 230
J L Anderson (3117_CR3) 2007; 59A
A H Jazwinski (3117_CR14) 1970
G Evensen (3117_CR8) 2003; 53
S J Julier (3117_CR15) 1995
E N Lorenz (3117_CR19) 1963; 20
R E Kalman (3117_CR16) 1960; 82
P Courtier (3117_CR4) 1998; 124
R Furrer (3117_CR9) 2007; 98
R N Miller (3117_CR20) 1994; 51
K Ito (3117_CR13) 2000; 45
M K Tippett (3117_CR24) 2003; 131
P L Houtekamer (3117_CR11) 2005; 133
G Evensen (3117_CR6) 1994; 99
F X Dimet Le (3117_CR18) 1986; 38A
G Evensen (3117_CR7) 1997; 125
Y M Tang (3117_CR23) 2009; 66
P L Houtekamer (3117_CR10) 2001; 129
J T Ambadan (3117_CR1) 2011; 3
J L Anderson (3117_CR2) 2001; 129
D Simon (3117_CR21) 2006
Z Deng (3117_CR5) 2012; 50
E Klinker (3117_CR17) 2000; 126
O Talagrand (3117_CR22) 2007
References_xml – year: 2006
  ident: CR21
  publication-title: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
  doi: 10.1002/0470045345
– volume: 124
  start-page: 1783
  year: 1998
  end-page: 1807
  ident: CR4
  article-title: The ECMWF implementation of three-dimensional variational assimilation (3D-Var)
  publication-title: I: Formulation. Quart. J. Roy. Meteor. Soc.
– volume: 99
  start-page: 10 143
  issue: C5
  year: 1994
  end-page: 10 162
  ident: CR6
  article-title: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JC00572
– volume: 230
  start-page: 112
  year: 2007
  end-page: 126
  ident: CR12
  article-title: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform kalman filter
  publication-title: Physica D
  doi: 10.1016/j.physd.2006.11.008
– volume: 129
  start-page: 123
  year: 2001
  end-page: 137
  ident: CR10
  article-title: A sequential ensemble kalman filter for atmospheric data assimilation
  publication-title: Mon.Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
– volume: 82
  start-page: 35
  year: 1960
  end-page: 45
  ident: CR16
  article-title: A new approach to linear filtering and prediction problems
  publication-title: Journal of Basic Engineering
  doi: 10.1115/1.3662552
– volume: 20
  start-page: 130
  year: 1963
  end-page: 141
  ident: CR19
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 125
  start-page: 1342
  year: 1997
  end-page: 1354
  ident: CR7
  article-title: Advanced data assimilation for strongly nonlinear dynamics
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1997)125<1342:ADAFSN>2.0.CO;2
– volume: 131
  start-page: 1485
  year: 2003
  end-page: 1490
  ident: CR24
  article-title: Ensemble square root filters
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
– volume: 129
  start-page: 2884
  year: 2001
  end-page: 2903
  ident: CR2
  article-title: An ensemble adjustment kalman filter for data assimilation
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
– volume: 133
  start-page: 604
  year: 2005
  end-page: 620
  ident: CR11
  article-title: Atmospheric data assimilation with an Ensemble Kalman Filter: Results with real observations
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-2864.1
– volume: 126
  start-page: 1191
  year: 2000
  end-page: 1215
  ident: CR17
  article-title: The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49712656417
– volume: 66
  start-page: 3501
  issue: 11
  year: 2009
  end-page: 3503
  ident: CR23
  article-title: Reply to comment on ”Sigmapoint Kalman Filters for the assimilation of strongly nonlinear systems”
  publication-title: J. Atmos. Sci.
  doi: 10.1175/2009JAS3273.1
– volume: 53
  start-page: 343
  year: 2003
  end-page: 367
  ident: CR8
  article-title: The Ensemble Kalman Filter: Theoretical formulation and practical implementation
  publication-title: Ocean Dynamics
  doi: 10.1007/s10236-003-0036-9
– year: 1970
  ident: CR14
  publication-title: Stochastic Processes and Filtering Theory
– volume: 98
  start-page: 227
  year: 2007
  end-page: 255
  ident: CR9
  article-title: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2006.08.003
– volume: 59A
  start-page: 210
  year: 2007
  end-page: 224
  ident: CR3
  article-title: An adaptive covariance inflation error correction algorithm for ensemble filters
  publication-title: Tellus
  doi: 10.1111/j.1600-0870.2006.00216.x
– volume: 50
  start-page: 129
  year: 2012
  end-page: 145
  ident: CR5
  article-title: A hybrid ensemble generation method for EnKF for Argo data assimilation
  publication-title: Atmos-Ocean
  doi: 10.1080/07055900.2012.719823
– start-page: 1628
  year: 1995
  end-page: 1632
  ident: CR15
  article-title: A new approach for filtering nonlinear systems
  publication-title: 1995 , Seattle WA, USA
– volume: 3
  start-page: M12005
  year: 2011
  ident: CR1
  article-title: Sigma-point particle filter for parameter estimation in a multiplicative noise environment
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1029/2011MS000065
– volume: 38A
  start-page: 97
  year: 1986
  end-page: 110
  ident: CR18
  article-title: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects
  publication-title: Tellus
  doi: 10.1111/j.1600-0870.1986.tb00459.x
– year: 2007
  ident: CR22
  publication-title: Data Assimilation in Meteorology and Oceanography
– volume: 45
  start-page: 910
  issue: 5
  year: 2000
  end-page: 927
  ident: CR13
  article-title: Gaussian filters for nonlinear filtering problems
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/9.855552
– volume: 51
  start-page: 1037
  year: 1994
  end-page: 1056
  ident: CR20
  article-title: Advanced data assimilation in strongly nonlinear dynamical systems
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2
– volume: 133
  start-page: 604
  year: 2005
  ident: 3117_CR11
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-2864.1
– volume: 51
  start-page: 1037
  year: 1994
  ident: 3117_CR20
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2
– volume: 53
  start-page: 343
  year: 2003
  ident: 3117_CR8
  publication-title: Ocean Dynamics
  doi: 10.1007/s10236-003-0036-9
– volume: 98
  start-page: 227
  year: 2007
  ident: 3117_CR9
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2006.08.003
– volume: 124
  start-page: 1783
  year: 1998
  ident: 3117_CR4
  publication-title: I: Formulation. Quart. J. Roy. Meteor. Soc.
– volume: 45
  start-page: 910
  issue: 5
  year: 2000
  ident: 3117_CR13
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/9.855552
– volume: 99
  start-page: 10 143
  issue: C5
  year: 1994
  ident: 3117_CR6
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JC00572
– volume-title: Data Assimilation in Meteorology and Oceanography
  year: 2007
  ident: 3117_CR22
– volume-title: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
  year: 2006
  ident: 3117_CR21
  doi: 10.1002/0470045345
– volume: 129
  start-page: 123
  year: 2001
  ident: 3117_CR10
  publication-title: Mon.Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
– volume: 126
  start-page: 1191
  year: 2000
  ident: 3117_CR17
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49712656417
– volume: 20
  start-page: 130
  year: 1963
  ident: 3117_CR19
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– start-page: 1628
  volume-title: Proc. of the 1995 American Control Conference, Seattle WA, USA
  year: 1995
  ident: 3117_CR15
  doi: 10.1109/ACC.1995.529783
– volume: 50
  start-page: 129
  year: 2012
  ident: 3117_CR5
  publication-title: Atmos-Ocean
  doi: 10.1080/07055900.2012.719823
– volume: 38A
  start-page: 97
  year: 1986
  ident: 3117_CR18
  publication-title: Tellus
  doi: 10.1111/j.1600-0870.1986.tb00459.x
– volume: 66
  start-page: 3501
  issue: 11
  year: 2009
  ident: 3117_CR23
  publication-title: J. Atmos. Sci.
  doi: 10.1175/2009JAS3273.1
– volume: 131
  start-page: 1485
  year: 2003
  ident: 3117_CR24
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
– volume: 3
  start-page: M12005
  year: 2011
  ident: 3117_CR1
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1029/2011MS000065
– volume: 129
  start-page: 2884
  year: 2001
  ident: 3117_CR2
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
– volume: 59A
  start-page: 210
  year: 2007
  ident: 3117_CR3
  publication-title: Tellus
  doi: 10.1111/j.1600-0870.2006.00216.x
– volume: 125
  start-page: 1342
  year: 1997
  ident: 3117_CR7
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1997)125<1342:ADAFSN>2.0.CO;2
– volume: 82
  start-page: 35
  year: 1960
  ident: 3117_CR16
  publication-title: Journal of Basic Engineering
  doi: 10.1115/1.3662552
– volume: 230
  start-page: 112
  year: 2007
  ident: 3117_CR12
  publication-title: Physica D
  doi: 10.1016/j.physd.2006.11.008
– volume-title: Stochastic Processes and Filtering Theory
  year: 1970
  ident: 3117_CR14
SSID ssj0039381
Score 2.1374867
Snippet ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of...
The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 551
SubjectTerms Algorithms
Atmospheric Sciences
Dynamical systems
Earth and Environmental Science
Earth Sciences
Equivalence
Gain
Geophysics/Geodesy
Kalman
Kalman filters
Mathematical models
Meteorology
Nonlinearity
Optimization
卡尔曼滤波算法
增益算法
测量功能
组件模型
统计分析
集合
非线性动力系统
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9sKFNyKlIIMQB1CqJHbiWOJSVS0VVXtqpXKy7Oy4LN3N0u2uhPrrmclrC4JKPUbxc8bj-cbjGQO8H8uKr-Fi7E2uYoUk6T5TIZZFrjCXXmvkAOej4-LgVH09y8-6OO6r_rZ775Jsduoh2I1TpbD1y_FgtLWa-7CRp6UpR7Cx8-Xb4V6_AUsjm7dJWZvHJNCDM_NfjXBKhe_z-vySOvxTNa3x5uAibQJ76uDq8xs6aP8RnPSjb6-eXGyvln67uv4rseMdp_cYHnaYVOy0i-gJ3MP6KURHBKfni-bUXXwQu9MJYdvm6xl8Pm4TbLiFmK3PGAXrSOazmNSCcKUgCxlnfori0E1nrhZhwq7553C6v3eyexB3zzDElVLZMiajwyV5JRX6QnuVpZggKqWTYNJQmpBpjobVlQvoyDjE0rtSFqXOWP1XKcoXMKrnNb4EkWY6VFo5OQ6lGhelyxLnjXFktRCuKLMINgdu2J9tug2rjOSXA_MIkp49tuoSmPM7GlM7pF5uaGiJhpZpaE0EH4cqfXO3FN7qeW47Qb6yDIgIBOWqiODt8JtEkP0qrsb5qilDEyAS5LeUITtPsttWRvCpXwA3uvn_oN51S25deHx58evHtcWMrWNqtNi8U5Ov4AHXbG9tbsFouVjha0JWS_-mk6TfB94WuQ
  priority: 102
  providerName: Springer Nature
Title Nonlinear Measurement Function in the Ensemble Kalman Filter
URI http://lib.cqvip.com/qk/84334X/201403/49301875.html
https://link.springer.com/article/10.1007/s00376-013-3117-9
https://www.proquest.com/docview/1512181546
https://www.proquest.com/docview/1516759475
https://www.proquest.com/docview/1642300353
https://d.wanfangdata.com.cn/periodical/dqkxjz-e201403006
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw8MTWF14QDBAZo_ImxAMoIrGdD0tIqGwdE6MVAiqNJ8tJnK3QJmvXSYhfz13qpOOBPkVRLo7j-76z7wBeFiKnbbjWz1QkfWmR0zMuS1_EkbSRyJLE0gHn0Tg-m8hPF9GFC7jduG2VrUxsBHVR5xQjf0uaCbVRJOP31wufukZRdtW10NiBHorgFOm892E4_vK1lcVCiaZNKSl2H3m7y2sGTRlRZC6fuhuIEEW1ouoKV3V1uUCd8a-W2pieXba0OeNTlaa6vKOOTh_CA2dHssEa8Y_gnq32wBuhCVwvm0g5e8WOZ1O0R5u7x_BuvC6KYZZsvokLMtJrhBs2rRjaggy9WjvPZpadm9ncVKycUjr9CUxOh9-Pz3zXOsHPpeQrHx0FE0S5kDaLk0zy0AbWSpkEpQrLVJU8oROsSW5Ka9Chs2lmUhGnCSeVnYdWPIXdqq7sM2AhT8o8kUYUZSqLODU8MJlSBj0NtAVS7sF-t2z6el0iQ0slqNtf5EHQrqPOXdFx6n0x01255AYNGtGgCQ1aefC6e6UdbgvwQYsc7ZjvRm9IxYPD7jGyDeVCTGXr2wYGfwCXINoCg76ZoFSr8OBNi_g7n_n_pI4cbWyAi8Wv3z__aMvJo8VB4_3tM38O9wl0vbXyAHZXy1v7As2fVdaH3uBk9PkbXT_-OB_2Hc33YWfCB38BzBsCyw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEJ8iY4BBwAMoIrGdLwmEYGzq6FohtEl7M05yGYU2WbtOfPxR_I3cpUk6HujbHqPYjuO78_3O57sDeJqrjK_hopsmgXY1kqSnUheuCgONgUqjCDnAeTgK-0f643FwvAF_2lgYvlbZ7on1Rp1XGZ-Rv2LNRNoo0OHb05nLVaPYu9qW0FiyxQB__SCT7ezN_gei7zMp93YPd_puU1XAzbSWC5cwtPWCTGlMwyjV0kcPUevIKxK_iJNCRhzcGWW2QEu2DsapjVUYR5K1WeajonGvwKbmiNYebL7fHX363O79KlF1WVQGEi7tJZ0f1avTlpIwu1xNQfmkGhLO5vC1Kk9mpKP-1YorqNt5Z-uYorKw5ckF9bd3A643uFW8WzLaTdjA8hY4Q4Lc1bw-mRfPxc5kTPi3froNr0fLJBx2Lqarc0jBepR5QYxLQdhTkBWN03SCYmAnU1uKYszu-ztwdCmLehd6ZVXiPRC-jIos0lblRazzMLbSs2mSWLJsCHvE0oGtbtnM6TIlh9GJ4uqCgQNeu44ma5Kcc62NienSM9dkMEQGw2QwiQMvui7tcGsab7fEMY2wn5kVazrwuHtNYsq-F1tidV63oR-gJQjWtCFbULFrVznwsiX8hc_8f1JPGt5YNc5n339--21QsgVNg4Zb62f-CK72D4cH5mB_NLgP17jb8lrnNvQW83N8QNBrkT5s-F3Al8sWsb_OtDpV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdgSIgXxKfoGCwgxAOoWpukTSvxMm2cBmMnHjhpb1HSJtttd7ntdpMQfz12v25IMInHqq7bxnH8cxzbAO9qUdExXBfbMpOxdKjplksfizyTLhNWKUcJzkfj_GAivx5nx12f06v-tHsfkmxzGqhKU1jtXNR-Z0h8o7Ip5AlTbhgus-VduIercUoTfcJ3-6VYlKLpUkp2PUbVHsKaf2NBxRVOF-HkEl_9p5FaI88hWNqk-ARvwskNazR6BA87GMl2W7k_hjsuPIHoCBHwYtlslLP3bG82RTjaXD2FT-O2JoZZsvl6W5CRWSPRsGlgCAUZOrVubmeOHZrZ3ATmpxRNfwaT0ecfewdx1zkhrqTkqxj9BJNklZDO5spKnrrEOSlV4svUF6XnihJYVWW8M-jPucKaQuSF4mSxq9SJ57ARFsG9AJZy5Ssljah9Ieu8MDwxtiwNOhoIBQoeweYwbPqirZChZSmo2V8WQdKPo666muPU-mKmh2rJjRg0ikGTGHQZwYfhkZ7dLcRbvXB0p3tXmjAM4pZM5hG8GW6j1lAoxAS3uG5o8AdwCLJbaNA1ExRpFRF87AV_4zX__qi33dxYE9eX5z_PfmnHyaFFpvnmf7Hchvvf90f625fx4Ut4QEzaM5dbsLFaXrtXiItW9nUz938DJMABEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+measurement+function+in+the+ensemble+Kalman+filter&rft.jtitle=Advances+in+atmospheric+sciences&rft.au=Tang%2C+Youmin&rft.au=Ambandan%2C+Jaison&rft.au=Chen%2C+Dake&rft.date=2014-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1530&rft.eissn=1861-9533&rft.volume=31&rft.issue=3&rft.spage=551&rft_id=info:doi/10.1007%2Fs00376-013-3117-9&rft.externalDocID=3264045341
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84334X%2F84334X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdqkxjz-e%2Fdqkxjz-e.jpg