Two-dimensional MOF-derived nanoporous Cu/Cu2O networks as catalytic membrane reactor for the continuous reduction of p-nitrophenol
A novel kind of Cu-based catalytic membrane reactor (CMR) has been developed for the efficient reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) in a continuous flow-through system. The CMR is prepared by the composite of MOF-derived nanoporous Cu/Cu2O networks and a porous matrix of nylon f...
Saved in:
Published in | Journal of membrane science Vol. 582; pp. 30 - 36 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel kind of Cu-based catalytic membrane reactor (CMR) has been developed for the efficient reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) in a continuous flow-through system. The CMR is prepared by the composite of MOF-derived nanoporous Cu/Cu2O networks and a porous matrix of nylon film. In this process, the pre-synthesized Cu-MOF-nanosheets are deposited onto a porous nylon film via filtration, and then the composite membrane is in-situ reduced by NaBH4 in the liquid phase, producing nanoporous Cu/Cu2O networks/nylon composite membrane. Remarkably, the nanoporous Cu/Cu2O networks exhibit fluffy structure with multidimensional porosity, which shows relatively high mass transportation ability and excellent catalytic activity. Therefore, the nanoporous Cu/Cu2O networks/nylon composite membrane can work as highly efficient and stable CMR, which can continuously convert over 95% of p-NP to p-AP in an 8 h test (8 mL/min) without obvious structure change and deactivation. This new type two-dimensional MOF-derived CMR offers an effective and convenient continuous catalytic process from p-NP to p-AP, which would have a potential application in this industrial reduction reaction.
[Display omitted]
•Cu-MOF membrane is converted into nanoporous Cu/Cu2O networks by liquid-phase reduction method.•The nanoporous Cu/Cu2O networks exhibit relatively high mass transportation ability and stability.•The nanoporous Cu/Cu2O networks is used as an efficient catalytic membrane reactor for the continuous reduction of p-NP. |
---|---|
AbstractList | A novel kind of Cu-based catalytic membrane reactor (CMR) has been developed for the efficient reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) in a continuous flow-through system. The CMR is prepared by the composite of MOF-derived nanoporous Cu/Cu2O networks and a porous matrix of nylon film. In this process, the pre-synthesized Cu-MOF-nanosheets are deposited onto a porous nylon film via filtration, and then the composite membrane is in-situ reduced by NaBH4 in the liquid phase, producing nanoporous Cu/Cu2O networks/nylon composite membrane. Remarkably, the nanoporous Cu/Cu2O networks exhibit fluffy structure with multidimensional porosity, which shows relatively high mass transportation ability and excellent catalytic activity. Therefore, the nanoporous Cu/Cu2O networks/nylon composite membrane can work as highly efficient and stable CMR, which can continuously convert over 95% of p-NP to p-AP in an 8 h test (8 mL/min) without obvious structure change and deactivation. This new type two-dimensional MOF-derived CMR offers an effective and convenient continuous catalytic process from p-NP to p-AP, which would have a potential application in this industrial reduction reaction.
[Display omitted]
•Cu-MOF membrane is converted into nanoporous Cu/Cu2O networks by liquid-phase reduction method.•The nanoporous Cu/Cu2O networks exhibit relatively high mass transportation ability and stability.•The nanoporous Cu/Cu2O networks is used as an efficient catalytic membrane reactor for the continuous reduction of p-NP. A novel kind of Cu-based catalytic membrane reactor (CMR) has been developed for the efficient reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) in a continuous flow-through system. The CMR is prepared by the composite of MOF-derived nanoporous Cu/Cu2O networks and a porous matrix of nylon film. In this process, the pre-synthesized Cu-MOF-nanosheets are deposited onto a porous nylon film via filtration, and then the composite membrane is in-situ reduced by NaBH4 in the liquid phase, producing nanoporous Cu/Cu2O networks/nylon composite membrane. Remarkably, the nanoporous Cu/Cu2O networks exhibit fluffy structure with multidimensional porosity, which shows relatively high mass transportation ability and excellent catalytic activity. Therefore, the nanoporous Cu/Cu2O networks/nylon composite membrane can work as highly efficient and stable CMR, which can continuously convert over 95% of p-NP to p-AP in an 8 h test (8 mL/min) without obvious structure change and deactivation. This new type two-dimensional MOF-derived CMR offers an effective and convenient continuous catalytic process from p-NP to p-AP, which would have a potential application in this industrial reduction reaction. |
Author | Zhang, Xue-Min Zhang, Ming-Yu Li, Yu-Nong Bai, Xiao-Jue Chen, Dan Yang, Xi-Man Fu, Yu Qi, Xuan Wang, Tie-Qiang Zhang, Li-Ying Qi, Wei |
Author_xml | – sequence: 1 givenname: Xiao-Jue surname: Bai fullname: Bai, Xiao-Jue organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China – sequence: 2 givenname: Dan surname: Chen fullname: Chen, Dan organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China – sequence: 3 givenname: Yu-Nong surname: Li fullname: Li, Yu-Nong organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China – sequence: 4 givenname: Xi-Man surname: Yang fullname: Yang, Xi-Man organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China – sequence: 5 givenname: Ming-Yu surname: Zhang fullname: Zhang, Ming-Yu organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China – sequence: 6 givenname: Tie-Qiang surname: Wang fullname: Wang, Tie-Qiang organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China – sequence: 7 givenname: Xue-Min surname: Zhang fullname: Zhang, Xue-Min organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China – sequence: 8 givenname: Li-Ying surname: Zhang fullname: Zhang, Li-Ying organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China – sequence: 9 givenname: Yu surname: Fu fullname: Fu, Yu email: fuyu@mail.neu.edu.cn organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China – sequence: 10 givenname: Xuan surname: Qi fullname: Qi, Xuan email: kent.qx@163.com organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China – sequence: 11 givenname: Wei surname: Qi fullname: Qi, Wei email: wqi@imr.ac.cn organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China |
BookMark | eNqFkD1v2zAQhokiBeok_QcdOHaRwg_ZlDoUKIymDZDASzoT9OmI0JVIlaQSeM4fDwVnytAMh1vej7vnnJz54JGQL5zVnPHN1aEecUzgasF4VzNZs_X6A1nxVslKciHPyIpJtamUbNtP5DylA2NcsbZbkef7p1D1bkSfXPBmoHe766rH6B6xp974MIUY5kS389V2FjvqMT-F-DdRkyiYbIZjdkBL_T4ajzSigRwitWXyA1IIPjs_LwkR-xlyKaHB0qnyLscwPaAPwyX5aM2Q8PPrviB_rn_eb39Xt7tfN9sftxU0jcgVtx1Xa95awcAa0ynLBKDh-962wnQtyA2KzgLb20aolllQSslGds2ecym4vCBfT7lTDP9mTFmPLgEOQ7m8XKiFWMtCUMhF2pykEENKEa2eohtNPGrO9MJcH_SJuV6YayZ1YV5s397YwGWzPJ2jccN75u8nMxYGjw6jLgr0gL2LCFn3wf0_4AXCgqRs |
CitedBy_id | crossref_primary_10_1016_j_inoche_2020_107859 crossref_primary_10_1016_j_chemosphere_2020_127995 crossref_primary_10_1002_asia_202201152 crossref_primary_10_1016_j_memsci_2020_118463 crossref_primary_10_1016_j_memsci_2022_120465 crossref_primary_10_1016_j_cej_2023_142437 crossref_primary_10_1016_j_jssc_2020_121635 crossref_primary_10_1016_j_memsci_2023_122098 crossref_primary_10_3390_molecules29071416 crossref_primary_10_1016_j_seppur_2023_124781 crossref_primary_10_1021_acs_iecr_0c03707 crossref_primary_10_1016_j_jclepro_2020_123826 crossref_primary_10_1039_D4VA00010B crossref_primary_10_1002_app_51508 crossref_primary_10_1021_acs_inorgchem_1c02277 crossref_primary_10_1021_acs_iecr_1c01378 crossref_primary_10_1016_j_colcom_2021_100407 crossref_primary_10_1016_j_seppur_2025_132083 crossref_primary_10_3390_catal12070752 crossref_primary_10_1016_j_apsusc_2024_159775 crossref_primary_10_1016_j_cej_2023_143435 crossref_primary_10_1016_j_jmat_2020_10_008 crossref_primary_10_1016_j_jhazmat_2023_132376 crossref_primary_10_1016_j_ces_2024_119710 crossref_primary_10_1021_acs_langmuir_2c02360 crossref_primary_10_1039_D3CC01518A crossref_primary_10_1021_acs_iecr_0c00862 crossref_primary_10_1016_j_colcom_2023_100730 crossref_primary_10_1039_D4CE00896K crossref_primary_10_1021_acsami_1c04155 crossref_primary_10_1016_j_mtsust_2022_100145 crossref_primary_10_1039_D1CC01613J crossref_primary_10_1016_j_matt_2021_06_038 crossref_primary_10_1039_D0GC01709D crossref_primary_10_1016_j_jallcom_2023_170191 crossref_primary_10_1016_j_cis_2020_102207 crossref_primary_10_1016_j_memsci_2020_118559 crossref_primary_10_1021_acsami_0c17857 crossref_primary_10_1039_C9NJ02768H crossref_primary_10_1016_j_jhazmat_2021_125478 crossref_primary_10_1016_j_seppur_2025_132022 crossref_primary_10_1016_j_colsurfa_2023_131562 crossref_primary_10_1016_j_seppur_2025_132345 crossref_primary_10_1016_j_memsci_2021_120014 crossref_primary_10_1016_j_jece_2022_108689 crossref_primary_10_1016_j_memsci_2023_122244 crossref_primary_10_1016_j_memsci_2021_120183 crossref_primary_10_1021_acs_iecr_2c01190 crossref_primary_10_1016_j_carbpol_2022_119136 crossref_primary_10_1016_j_cej_2023_145671 |
Cites_doi | 10.1016/j.memsci.2014.07.047 10.1002/anie.200902543 10.1016/j.memsci.2010.12.029 10.1021/acs.langmuir.6b04353 10.1016/j.memsci.2006.09.014 10.1016/j.cej.2009.01.008 10.1016/j.jhazmat.2008.10.034 10.1016/j.micromeso.2015.07.027 10.1021/acs.chemrev.5b00482 10.1002/anie.201407857 10.1002/adfm.201505380 10.1002/adma.200400792 10.1039/C6CS00724D 10.1016/j.memsci.2015.05.051 10.1126/science.1230444 10.1021/acs.est.6b03431 10.1016/j.cep.2004.04.002 10.1002/adma.201604018 10.1039/b821109b 10.1021/acscatal.7b01803 10.1002/adma.201200330 10.1021/es402775z 10.1039/C7CC00295E 10.1016/j.cej.2016.04.029 10.1016/j.apcatb.2015.10.006 10.1039/C4EE02281E 10.1016/j.jcat.2015.08.014 10.1016/j.cep.2008.07.001 10.1021/cm4033258 10.1016/S0926-860X(01)00812-2 10.1016/j.memsci.2018.05.047 10.1002/adma.201504032 10.1016/j.memsci.2013.12.049 10.1016/S0376-7388(01)00631-7 10.1021/acscatal.6b01222 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.memsci.2019.03.055 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3123 |
EndPage | 36 |
ExternalDocumentID | 10_1016_j_memsci_2019_03_055 S0376738818334483 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ 7S9 L.6 |
ID | FETCH-LOGICAL-c442t-1f917518f20cfaa97f02cea1bdf82a98c36e29fc0bf42780fc77734394b113213 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Fri Jul 11 03:49:35 EDT 2025 Tue Jul 01 02:49:32 EDT 2025 Thu Apr 24 22:53:21 EDT 2025 Fri Feb 23 02:28:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Two-dimensional MOF Cu/Cu2O Liquid-phase reduction Nanoporous metallic networks Catalytic membrane reactor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-1f917518f20cfaa97f02cea1bdf82a98c36e29fc0bf42780fc77734394b113213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2253201231 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2253201231 crossref_primary_10_1016_j_memsci_2019_03_055 crossref_citationtrail_10_1016_j_memsci_2019_03_055 elsevier_sciencedirect_doi_10_1016_j_memsci_2019_03_055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-15 |
PublicationDateYYYYMMDD | 2019-07-15 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xia, Zou, An, Xia, Guo (bib27) 2015; 8 Huang, Zhu, Su, Qi, He (bib12) 2016; 50 Gu, Favier, Pradel, Gin, Lahitte, Noble, Gomez, Remigy (bib18) 2015; 492 Ron, Haleva, Salomon (bib14) 2018 Israni, Harold (bib10) 2011; 369 Westermann, Melin (bib11) 2009; 48 deKrafft, Wang, Lin (bib29) 2012; 24 Bae, Gim, Kim, Hanna (bib36) 2016; 182 Furukawa, Cordova, O'Keeffe, Yaghi (bib23) 2013; 341 Bhatia, Thien, Mohamed (bib3) 2009; 148 Luc, Jiao (bib13) 2017; 7 Ayturk, Kazantzis, Ma (bib9) 2009; 2 Herrmann, Formanek, Borchardt, Klose, Giebeler, Eckert, Kaskel, Gaponik, Eychmueller (bib22) 2014; 26 Hasan, Cho, Chon, Yoon, Song (bib35) 2016; 298 Dolan, Dave, Ilyushechkin, Morpeth, McLennan (bib2) 2006; 285 Bigall, Herrmann, Vogel, Rose, Simon, Carrillo-Cabrera, Dorfs, Kaskel, Gaponik, Eychmueller (bib21) 2009; 48 Bo, Zhang, Han, Li, Li, Xing (bib6) 2018; 563 Woltinger, Drauz, Bommarius (bib5) 2001; 221 Emin, Remigy, Lahitte (bib32) 2014; 455 Ron, Gachet, Rechav, Salomon (bib19) 2017; 29 Chang, Chen (bib30) 2009; 165 Yang, Xu, Jiang (bib24) 2017; 46 Zhan, Zeng (bib28) 2016; 26 Shi, Hu, Lou, Lu, Keller, Yuan (bib7) 2013; 47 Duan, Xu (bib15) 2015; 332 Niu, Liu, Cai, Wu, Zhao (bib25) 2016; 219 Nour, Berean, Chrimes, Zoolfakar, Latham, McSweeney, Field, Sriram, Kalantar-zadeh, Ou (bib8) 2014; 470 Drioli (bib1) 2004; 43 Thomas, Leary (bib17) 2014; 53 Yang, Goh, Wang, Bae (bib34) 2017; 53 Ding, Kim, Erlebacher (bib20) 2004; 16 Shen, Chen, Chen, Li (bib26) 2016; 6 Liu, Guan, Hirata, Zhang, Chen, Wen, Ding, Fujita, Erlebacher, Chen (bib16) 2016; 28 Gawande, Goswami, Felpin, Asefa, Huang, Silva, Zou, Zboril, Varma (bib31) 2016; 116 Li, Wang, Zhou, Bai, Song, Zhao, Wang, Qi, Zhang, Fu (bib33) 2017; 33 Bottino, Capannelli, Comite (bib4) 2002; 197 Liu (10.1016/j.memsci.2019.03.055_bib16) 2016; 28 deKrafft (10.1016/j.memsci.2019.03.055_bib29) 2012; 24 Li (10.1016/j.memsci.2019.03.055_bib33) 2017; 33 Ayturk (10.1016/j.memsci.2019.03.055_bib9) 2009; 2 Drioli (10.1016/j.memsci.2019.03.055_bib1) 2004; 43 Yang (10.1016/j.memsci.2019.03.055_bib24) 2017; 46 Israni (10.1016/j.memsci.2019.03.055_bib10) 2011; 369 Nour (10.1016/j.memsci.2019.03.055_bib8) 2014; 470 Duan (10.1016/j.memsci.2019.03.055_bib15) 2015; 332 Furukawa (10.1016/j.memsci.2019.03.055_bib23) 2013; 341 Bottino (10.1016/j.memsci.2019.03.055_bib4) 2002; 197 Shi (10.1016/j.memsci.2019.03.055_bib7) 2013; 47 Bigall (10.1016/j.memsci.2019.03.055_bib21) 2009; 48 Bae (10.1016/j.memsci.2019.03.055_bib36) 2016; 182 Woltinger (10.1016/j.memsci.2019.03.055_bib5) 2001; 221 Hasan (10.1016/j.memsci.2019.03.055_bib35) 2016; 298 Gu (10.1016/j.memsci.2019.03.055_bib18) 2015; 492 Huang (10.1016/j.memsci.2019.03.055_bib12) 2016; 50 Niu (10.1016/j.memsci.2019.03.055_bib25) 2016; 219 Ron (10.1016/j.memsci.2019.03.055_bib19) 2017; 29 Herrmann (10.1016/j.memsci.2019.03.055_bib22) 2014; 26 Zhan (10.1016/j.memsci.2019.03.055_bib28) 2016; 26 Gawande (10.1016/j.memsci.2019.03.055_bib31) 2016; 116 Shen (10.1016/j.memsci.2019.03.055_bib26) 2016; 6 Thomas (10.1016/j.memsci.2019.03.055_bib17) 2014; 53 Chang (10.1016/j.memsci.2019.03.055_bib30) 2009; 165 Emin (10.1016/j.memsci.2019.03.055_bib32) 2014; 455 Ron (10.1016/j.memsci.2019.03.055_bib14) 2018 Dolan (10.1016/j.memsci.2019.03.055_bib2) 2006; 285 Luc (10.1016/j.memsci.2019.03.055_bib13) 2017; 7 Bhatia (10.1016/j.memsci.2019.03.055_bib3) 2009; 148 Bo (10.1016/j.memsci.2019.03.055_bib6) 2018; 563 Yang (10.1016/j.memsci.2019.03.055_bib34) 2017; 53 Ding (10.1016/j.memsci.2019.03.055_bib20) 2004; 16 Xia (10.1016/j.memsci.2019.03.055_bib27) 2015; 8 Westermann (10.1016/j.memsci.2019.03.055_bib11) 2009; 48 |
References_xml | – volume: 332 start-page: 31 year: 2015 end-page: 37 ident: bib15 article-title: Low-temperature CO oxidation over unsupported nanoporous gold catalysts with active or inert oxide residues publication-title: J. Catal. – volume: 369 start-page: 375 year: 2011 end-page: 387 ident: bib10 article-title: Methanol steam reforming in single-fiber packed bed Pd-Ag membrane reactor: experiments and modeling publication-title: J. Membr. Sci. – volume: 26 start-page: 3268 year: 2016 end-page: 3281 ident: bib28 article-title: Synthesis and functionalization of oriented metal-organic-framework nanosheets: toward a series of 2D catalysts publication-title: Adv. Funct. Mater. – volume: 285 start-page: 30 year: 2006 end-page: 55 ident: bib2 article-title: Composition and operation of hydrogen-selective amorphous alloy membranes publication-title: J. Membr. Sci. – volume: 33 start-page: 1060 year: 2017 end-page: 1065 ident: bib33 article-title: Fabrication of metal-organic framework and infinite coordination polymer nanosheets by the spray technique publication-title: Langmuir – volume: 182 start-page: 541 year: 2016 end-page: 549 ident: bib36 article-title: Effect of NaBH publication-title: Appl. Catal. B Environ. – volume: 46 start-page: 4774 year: 2017 end-page: 4808 ident: bib24 article-title: Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis publication-title: Chem. Soc. Rev. – year: 2018 ident: bib14 article-title: Nanoporous metallic networks: fabrication, optical properties, and applications publication-title: Adv. Mater. – volume: 455 start-page: 55 year: 2014 end-page: 63 ident: bib32 article-title: Influence of UV grafting conditions and gel formation on the loading and stabilization of palladium nanoparticles in photografted polyethersulfone membrane for catalytic reactions publication-title: J. Membr. Sci. – volume: 16 start-page: 1897 year: 2004 end-page: 1898 ident: bib20 article-title: Nanoporous gold leaf: “Ancient technology”/advanced material publication-title: Adv. Mater. – volume: 341 start-page: 974 year: 2013 end-page: + ident: bib23 article-title: The chemistry and applications of metal-organic frameworks publication-title: Science – volume: 470 start-page: 346 year: 2014 end-page: 355 ident: bib8 article-title: Silver nanoparticle/PDMS nanocomposite catalytic membranes for H publication-title: J. Membr. Sci. – volume: 197 start-page: 75 year: 2002 end-page: 88 ident: bib4 article-title: Catalytic membrane reactors for the oxide hydrogenation of propane: experimental and modelling study publication-title: J. Membr. Sci. – volume: 116 start-page: 3722 year: 2016 end-page: 3811 ident: bib31 article-title: Cu and Cu-based nanoparticles: synthesis and applications in review catalysis publication-title: Chem. Rev. – volume: 221 start-page: 171 year: 2001 end-page: 185 ident: bib5 article-title: The membrane reactor in the fine chemicals industry publication-title: Appl. Catal. A-Gen. – volume: 563 start-page: 10 year: 2018 end-page: 21 ident: bib6 article-title: Fabrication of bilayer catalytic composite membrane PVA-SA/SPVA and application for ethyl acetate synthesis publication-title: J. Membr. Sci. – volume: 492 start-page: 331 year: 2015 end-page: 339 ident: bib18 article-title: High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki-Miyaura cross-coupling reaction publication-title: J. Membr. Sci. – volume: 165 start-page: 664 year: 2009 end-page: 669 ident: bib30 article-title: Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst publication-title: J. Hazard. Mater. – volume: 53 start-page: 4254 year: 2017 end-page: 4257 ident: bib34 article-title: High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets publication-title: Chem. Commun. – volume: 8 start-page: 568 year: 2015 end-page: 576 ident: bib27 article-title: A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction publication-title: Energy Environ. Sci. – volume: 28 start-page: 1753 year: 2016 end-page: 1759 ident: bib16 article-title: Visualizing under-coordinated surface atoms on 3D nanoporous gold catalysts publication-title: Adv. Mater. – volume: 48 start-page: 9731 year: 2009 end-page: 9734 ident: bib21 article-title: Hydrogels and aerogels from noble metal nanoparticles publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 5856 year: 2017 end-page: 5861 ident: bib13 article-title: Nanoporous metals as electrocatalysts: state-of-the-art, opportunities, and challenges publication-title: ACS Catal. – volume: 24 start-page: 2014 year: 2012 end-page: 2018 ident: bib29 article-title: Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production publication-title: Adv. Mater. – volume: 148 start-page: 525 year: 2009 end-page: 532 ident: bib3 article-title: Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors publication-title: Chem. Eng. J. – volume: 298 start-page: 183 year: 2016 end-page: 190 ident: bib35 article-title: Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks publication-title: Chem. Eng. J. – volume: 47 start-page: 11577 year: 2013 end-page: 11583 ident: bib7 article-title: Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor publication-title: Environ. Sci. Technol. – volume: 6 start-page: 5887 year: 2016 end-page: 5903 ident: bib26 article-title: Development of MOF-derived carbon-based nanomaterials for efficient catalysis publication-title: ACS Catal. – volume: 50 start-page: 11263 year: 2016 end-page: 11273 ident: bib12 article-title: Catalytic membrane reactor immobilized with alloy nanoparticle-loaded protein fibrils for continuous reduction of 4-nitrophenol publication-title: Environ. Sci. Technol. – volume: 43 start-page: 1101 year: 2004 end-page: 1102 ident: bib1 article-title: Membrane reactors publication-title: Chem. Eng. Process. – volume: 48 start-page: 17 year: 2009 end-page: 28 ident: bib11 article-title: Flow-through catalytic membrane reactors-Principles and applications publication-title: Chem. Eng. Process. – volume: 53 start-page: 12020 year: 2014 end-page: 12021 ident: bib17 article-title: A major advance in characterizing nanoporous solids using a complementary triad of existing techniques publication-title: Angew. Chem. Int. Ed. – volume: 26 start-page: 1074 year: 2014 end-page: 1083 ident: bib22 article-title: Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt, and Pd nanoparticles publication-title: Chem. Mater. – volume: 2 start-page: 430 year: 2009 end-page: 438 ident: bib9 article-title: Modeling and performance assessment of Pd- and Pd/Au-based catalytic membrane reactors for hydrogen production publication-title: Energy Environ. Sci. – volume: 29 year: 2017 ident: bib19 article-title: Direct fabrication of 3D metallic networks and their performance publication-title: Adv. Mater. – volume: 219 start-page: 48 year: 2016 end-page: 53 ident: bib25 article-title: MOF derived porous carbon supported Cu/Cu publication-title: Microporous Mesoporous Mater. – volume: 470 start-page: 346 year: 2014 ident: 10.1016/j.memsci.2019.03.055_bib8 article-title: Silver nanoparticle/PDMS nanocomposite catalytic membranes for H2S gas removal publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.07.047 – volume: 48 start-page: 9731 year: 2009 ident: 10.1016/j.memsci.2019.03.055_bib21 article-title: Hydrogels and aerogels from noble metal nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200902543 – volume: 369 start-page: 375 year: 2011 ident: 10.1016/j.memsci.2019.03.055_bib10 article-title: Methanol steam reforming in single-fiber packed bed Pd-Ag membrane reactor: experiments and modeling publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.12.029 – volume: 33 start-page: 1060 year: 2017 ident: 10.1016/j.memsci.2019.03.055_bib33 article-title: Fabrication of metal-organic framework and infinite coordination polymer nanosheets by the spray technique publication-title: Langmuir doi: 10.1021/acs.langmuir.6b04353 – volume: 285 start-page: 30 year: 2006 ident: 10.1016/j.memsci.2019.03.055_bib2 article-title: Composition and operation of hydrogen-selective amorphous alloy membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.09.014 – volume: 148 start-page: 525 year: 2009 ident: 10.1016/j.memsci.2019.03.055_bib3 article-title: Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.01.008 – volume: 165 start-page: 664 year: 2009 ident: 10.1016/j.memsci.2019.03.055_bib30 article-title: Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.10.034 – volume: 219 start-page: 48 year: 2016 ident: 10.1016/j.memsci.2019.03.055_bib25 article-title: MOF derived porous carbon supported Cu/Cu2O composite as high performance non-noble catalyst publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2015.07.027 – volume: 116 start-page: 3722 year: 2016 ident: 10.1016/j.memsci.2019.03.055_bib31 article-title: Cu and Cu-based nanoparticles: synthesis and applications in review catalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00482 – volume: 53 start-page: 12020 year: 2014 ident: 10.1016/j.memsci.2019.03.055_bib17 article-title: A major advance in characterizing nanoporous solids using a complementary triad of existing techniques publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407857 – volume: 26 start-page: 3268 year: 2016 ident: 10.1016/j.memsci.2019.03.055_bib28 article-title: Synthesis and functionalization of oriented metal-organic-framework nanosheets: toward a series of 2D catalysts publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201505380 – volume: 16 start-page: 1897 year: 2004 ident: 10.1016/j.memsci.2019.03.055_bib20 article-title: Nanoporous gold leaf: “Ancient technology”/advanced material publication-title: Adv. Mater. doi: 10.1002/adma.200400792 – volume: 46 start-page: 4774 year: 2017 ident: 10.1016/j.memsci.2019.03.055_bib24 article-title: Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00724D – volume: 492 start-page: 331 year: 2015 ident: 10.1016/j.memsci.2019.03.055_bib18 article-title: High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki-Miyaura cross-coupling reaction publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.05.051 – volume: 341 start-page: 974 year: 2013 ident: 10.1016/j.memsci.2019.03.055_bib23 article-title: The chemistry and applications of metal-organic frameworks publication-title: Science doi: 10.1126/science.1230444 – volume: 50 start-page: 11263 year: 2016 ident: 10.1016/j.memsci.2019.03.055_bib12 article-title: Catalytic membrane reactor immobilized with alloy nanoparticle-loaded protein fibrils for continuous reduction of 4-nitrophenol publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03431 – volume: 43 start-page: 1101 year: 2004 ident: 10.1016/j.memsci.2019.03.055_bib1 article-title: Membrane reactors publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2004.04.002 – volume: 29 year: 2017 ident: 10.1016/j.memsci.2019.03.055_bib19 article-title: Direct fabrication of 3D metallic networks and their performance publication-title: Adv. Mater. doi: 10.1002/adma.201604018 – volume: 2 start-page: 430 year: 2009 ident: 10.1016/j.memsci.2019.03.055_bib9 article-title: Modeling and performance assessment of Pd- and Pd/Au-based catalytic membrane reactors for hydrogen production publication-title: Energy Environ. Sci. doi: 10.1039/b821109b – year: 2018 ident: 10.1016/j.memsci.2019.03.055_bib14 article-title: Nanoporous metallic networks: fabrication, optical properties, and applications publication-title: Adv. Mater. – volume: 7 start-page: 5856 year: 2017 ident: 10.1016/j.memsci.2019.03.055_bib13 article-title: Nanoporous metals as electrocatalysts: state-of-the-art, opportunities, and challenges publication-title: ACS Catal. doi: 10.1021/acscatal.7b01803 – volume: 24 start-page: 2014 year: 2012 ident: 10.1016/j.memsci.2019.03.055_bib29 article-title: Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production publication-title: Adv. Mater. doi: 10.1002/adma.201200330 – volume: 47 start-page: 11577 year: 2013 ident: 10.1016/j.memsci.2019.03.055_bib7 article-title: Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor publication-title: Environ. Sci. Technol. doi: 10.1021/es402775z – volume: 53 start-page: 4254 year: 2017 ident: 10.1016/j.memsci.2019.03.055_bib34 article-title: High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets publication-title: Chem. Commun. doi: 10.1039/C7CC00295E – volume: 298 start-page: 183 year: 2016 ident: 10.1016/j.memsci.2019.03.055_bib35 article-title: Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.04.029 – volume: 182 start-page: 541 year: 2016 ident: 10.1016/j.memsci.2019.03.055_bib36 article-title: Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.10.006 – volume: 8 start-page: 568 year: 2015 ident: 10.1016/j.memsci.2019.03.055_bib27 article-title: A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02281E – volume: 332 start-page: 31 year: 2015 ident: 10.1016/j.memsci.2019.03.055_bib15 article-title: Low-temperature CO oxidation over unsupported nanoporous gold catalysts with active or inert oxide residues publication-title: J. Catal. doi: 10.1016/j.jcat.2015.08.014 – volume: 48 start-page: 17 year: 2009 ident: 10.1016/j.memsci.2019.03.055_bib11 article-title: Flow-through catalytic membrane reactors-Principles and applications publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2008.07.001 – volume: 26 start-page: 1074 year: 2014 ident: 10.1016/j.memsci.2019.03.055_bib22 article-title: Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt, and Pd nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm4033258 – volume: 221 start-page: 171 year: 2001 ident: 10.1016/j.memsci.2019.03.055_bib5 article-title: The membrane reactor in the fine chemicals industry publication-title: Appl. Catal. A-Gen. doi: 10.1016/S0926-860X(01)00812-2 – volume: 563 start-page: 10 year: 2018 ident: 10.1016/j.memsci.2019.03.055_bib6 article-title: Fabrication of bilayer catalytic composite membrane PVA-SA/SPVA and application for ethyl acetate synthesis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.05.047 – volume: 28 start-page: 1753 year: 2016 ident: 10.1016/j.memsci.2019.03.055_bib16 article-title: Visualizing under-coordinated surface atoms on 3D nanoporous gold catalysts publication-title: Adv. Mater. doi: 10.1002/adma.201504032 – volume: 455 start-page: 55 year: 2014 ident: 10.1016/j.memsci.2019.03.055_bib32 article-title: Influence of UV grafting conditions and gel formation on the loading and stabilization of palladium nanoparticles in photografted polyethersulfone membrane for catalytic reactions publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.12.049 – volume: 197 start-page: 75 year: 2002 ident: 10.1016/j.memsci.2019.03.055_bib4 article-title: Catalytic membrane reactors for the oxide hydrogenation of propane: experimental and modelling study publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(01)00631-7 – volume: 6 start-page: 5887 year: 2016 ident: 10.1016/j.memsci.2019.03.055_bib26 article-title: Development of MOF-derived carbon-based nanomaterials for efficient catalysis publication-title: ACS Catal. doi: 10.1021/acscatal.6b01222 |
SSID | ssj0017089 |
Score | 2.5170538 |
Snippet | A novel kind of Cu-based catalytic membrane reactor (CMR) has been developed for the efficient reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) in a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 30 |
SubjectTerms | asymmetric membranes catalytic activity Catalytic membrane reactor Cu/Cu2O filtration Liquid-phase reduction liquids nanopores Nanoporous metallic networks nylon p-nitrophenol porosity sodium borohydride Two-dimensional MOF |
Title | Two-dimensional MOF-derived nanoporous Cu/Cu2O networks as catalytic membrane reactor for the continuous reduction of p-nitrophenol |
URI | https://dx.doi.org/10.1016/j.memsci.2019.03.055 https://www.proquest.com/docview/2253201231 |
Volume | 582 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-UwEA_iXvQg7rqy6ipZ8BpfPtqmPcrDx9Nl9aCCt5CmCbxF08f7ULx48R_fmX6ILoLgsW0ylJl0ZpL-5jeEHHInbZrqghXeSpYU3LNcOMcgNDmN1bqubFC-59n4Ojm7SW9WyLCvhUFYZef7W5_eeOvuzqDT5mA6mQwuORKRqBwijlKwyUDGzyTRuMqPnl5gHkLzpg0eDmY4ui-fazBed_4ORCPAq6U6xYK_98PTf466iT6jTbLRpY30uH2zr2TFx29k_RWZ4BZ5vnqoWYVk_S3RBv1zMWIVPLz3FY021pBpwzafDpeD4VJe0NgCwOfUzmlziPMIsim8K-yfo6eQTOJ5PoWklkKSSBHTPolLlDBDulc0KK0DnTJwCjNkJ4j17XdyPTq5Go5Z12KBuSSRCyYCbNdSkQfJXbC20IFL560oq5BLW-ROZV4WwfEyYE8OHpzWWmE1bYkt6oXaJquxjv4HoZ6HYCHYiZDZxBZZGcosk5Xl3ubgFdwOUb1mjev4x7ENxq3pgWZ_TWsPg_YwXBmwxw5hL7OmLf_GB-N1bzTzZh0ZCBEfzPzV29jAJ4b_TUDboFUDLk9JzD3F7qel75E1vMJTYZH-JKuL2dLvQzqzKA-a9XpAvhyf_h6f_wO0d_ej |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RcGh7qEofKpQWI_VqxWvv84giolAgHAgSN8vrtaVU4I1CAuLcP96ZfSCKkJC4ru2RNeOdhz3zDcAvYaVJkqzghTOSx4VwPI-s5WiabEbVurZssnyn6eQi_n2ZXG7AqK-FobTKTve3Or3R1t2XYcfN4WI-H54LAiJROVocpTDIUG9gk9CpkgFsHhwdT6YPjwmZaDrh0XxOC_oKuibN69pdI3XK8WrRTqnm73kL9URXNwZo_BE-dJ4jO2g3twUbLnyC94_wBD_D39ldzSvC62-xNtjp2ZhXOHjrKhZMqNHZxkifjdbD0VqesdDmgN8wc8Oae5x7pM1wrxhCB8fQn6QrfYZ-LUM_kVFa-zysicKSEF9Jpqz2bMFRLywJoCDUV1_gYnw4G01412WB2ziWKx55jNiSKPdSWG9MkXkhrTNRWflcmiK3KnWy8FaUntpyCG-zLFNUUFtSl_pIfYVBqIP7BswJ7w3au8inJjZFWvoyTWVlhDM5Kga7DarnrLYdBDl1wrjSfa7ZH93KQ5M8tFAa5bEN_GHVooXgeGF-1gtN_3eUNFqJF1bu9zLW-JfR0wlyG7mqUespSe5ntPNq6nvwdjI7PdEnR9Pj7_CORuiSOEp2YbBart0P9G5W5c_u9P4DJu76VA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+MOF-derived+nanoporous+Cu%2FCu2O+networks+as+catalytic+membrane+reactor+for+the+continuous+reduction+of+p-nitrophenol&rft.jtitle=Journal+of+membrane+science&rft.au=Bai%2C+Xiao-Jue&rft.au=Chen%2C+Dan&rft.au=Li%2C+Yu-Nong&rft.au=Yang%2C+Xi-Man&rft.date=2019-07-15&rft.issn=0376-7388&rft.volume=582&rft.spage=30&rft.epage=36&rft_id=info:doi/10.1016%2Fj.memsci.2019.03.055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2019_03_055 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |