Two-dimensional MOF-derived nanoporous Cu/Cu2O networks as catalytic membrane reactor for the continuous reduction of p-nitrophenol

A novel kind of Cu-based catalytic membrane reactor (CMR) has been developed for the efficient reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) in a continuous flow-through system. The CMR is prepared by the composite of MOF-derived nanoporous Cu/Cu2O networks and a porous matrix of nylon f...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 582; pp. 30 - 36
Main Authors Bai, Xiao-Jue, Chen, Dan, Li, Yu-Nong, Yang, Xi-Man, Zhang, Ming-Yu, Wang, Tie-Qiang, Zhang, Xue-Min, Zhang, Li-Ying, Fu, Yu, Qi, Xuan, Qi, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel kind of Cu-based catalytic membrane reactor (CMR) has been developed for the efficient reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) in a continuous flow-through system. The CMR is prepared by the composite of MOF-derived nanoporous Cu/Cu2O networks and a porous matrix of nylon film. In this process, the pre-synthesized Cu-MOF-nanosheets are deposited onto a porous nylon film via filtration, and then the composite membrane is in-situ reduced by NaBH4 in the liquid phase, producing nanoporous Cu/Cu2O networks/nylon composite membrane. Remarkably, the nanoporous Cu/Cu2O networks exhibit fluffy structure with multidimensional porosity, which shows relatively high mass transportation ability and excellent catalytic activity. Therefore, the nanoporous Cu/Cu2O networks/nylon composite membrane can work as highly efficient and stable CMR, which can continuously convert over 95% of p-NP to p-AP in an 8 h test (8 mL/min) without obvious structure change and deactivation. This new type two-dimensional MOF-derived CMR offers an effective and convenient continuous catalytic process from p-NP to p-AP, which would have a potential application in this industrial reduction reaction. [Display omitted] •Cu-MOF membrane is converted into nanoporous Cu/Cu2O networks by liquid-phase reduction method.•The nanoporous Cu/Cu2O networks exhibit relatively high mass transportation ability and stability.•The nanoporous Cu/Cu2O networks is used as an efficient catalytic membrane reactor for the continuous reduction of p-NP.
AbstractList A novel kind of Cu-based catalytic membrane reactor (CMR) has been developed for the efficient reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) in a continuous flow-through system. The CMR is prepared by the composite of MOF-derived nanoporous Cu/Cu2O networks and a porous matrix of nylon film. In this process, the pre-synthesized Cu-MOF-nanosheets are deposited onto a porous nylon film via filtration, and then the composite membrane is in-situ reduced by NaBH4 in the liquid phase, producing nanoporous Cu/Cu2O networks/nylon composite membrane. Remarkably, the nanoporous Cu/Cu2O networks exhibit fluffy structure with multidimensional porosity, which shows relatively high mass transportation ability and excellent catalytic activity. Therefore, the nanoporous Cu/Cu2O networks/nylon composite membrane can work as highly efficient and stable CMR, which can continuously convert over 95% of p-NP to p-AP in an 8 h test (8 mL/min) without obvious structure change and deactivation. This new type two-dimensional MOF-derived CMR offers an effective and convenient continuous catalytic process from p-NP to p-AP, which would have a potential application in this industrial reduction reaction. [Display omitted] •Cu-MOF membrane is converted into nanoporous Cu/Cu2O networks by liquid-phase reduction method.•The nanoporous Cu/Cu2O networks exhibit relatively high mass transportation ability and stability.•The nanoporous Cu/Cu2O networks is used as an efficient catalytic membrane reactor for the continuous reduction of p-NP.
A novel kind of Cu-based catalytic membrane reactor (CMR) has been developed for the efficient reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) in a continuous flow-through system. The CMR is prepared by the composite of MOF-derived nanoporous Cu/Cu2O networks and a porous matrix of nylon film. In this process, the pre-synthesized Cu-MOF-nanosheets are deposited onto a porous nylon film via filtration, and then the composite membrane is in-situ reduced by NaBH4 in the liquid phase, producing nanoporous Cu/Cu2O networks/nylon composite membrane. Remarkably, the nanoporous Cu/Cu2O networks exhibit fluffy structure with multidimensional porosity, which shows relatively high mass transportation ability and excellent catalytic activity. Therefore, the nanoporous Cu/Cu2O networks/nylon composite membrane can work as highly efficient and stable CMR, which can continuously convert over 95% of p-NP to p-AP in an 8 h test (8 mL/min) without obvious structure change and deactivation. This new type two-dimensional MOF-derived CMR offers an effective and convenient continuous catalytic process from p-NP to p-AP, which would have a potential application in this industrial reduction reaction.
Author Zhang, Xue-Min
Zhang, Ming-Yu
Li, Yu-Nong
Bai, Xiao-Jue
Chen, Dan
Yang, Xi-Man
Fu, Yu
Qi, Xuan
Wang, Tie-Qiang
Zhang, Li-Ying
Qi, Wei
Author_xml – sequence: 1
  givenname: Xiao-Jue
  surname: Bai
  fullname: Bai, Xiao-Jue
  organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
– sequence: 2
  givenname: Dan
  surname: Chen
  fullname: Chen, Dan
  organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
– sequence: 3
  givenname: Yu-Nong
  surname: Li
  fullname: Li, Yu-Nong
  organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
– sequence: 4
  givenname: Xi-Man
  surname: Yang
  fullname: Yang, Xi-Man
  organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
– sequence: 5
  givenname: Ming-Yu
  surname: Zhang
  fullname: Zhang, Ming-Yu
  organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
– sequence: 6
  givenname: Tie-Qiang
  surname: Wang
  fullname: Wang, Tie-Qiang
  organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
– sequence: 7
  givenname: Xue-Min
  surname: Zhang
  fullname: Zhang, Xue-Min
  organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
– sequence: 8
  givenname: Li-Ying
  surname: Zhang
  fullname: Zhang, Li-Ying
  organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
– sequence: 9
  givenname: Yu
  surname: Fu
  fullname: Fu, Yu
  email: fuyu@mail.neu.edu.cn
  organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
– sequence: 10
  givenname: Xuan
  surname: Qi
  fullname: Qi, Xuan
  email: kent.qx@163.com
  organization: Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
– sequence: 11
  givenname: Wei
  surname: Qi
  fullname: Qi, Wei
  email: wqi@imr.ac.cn
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
BookMark eNqFkD1v2zAQhokiBeok_QcdOHaRwg_ZlDoUKIymDZDASzoT9OmI0JVIlaQSeM4fDwVnytAMh1vej7vnnJz54JGQL5zVnPHN1aEecUzgasF4VzNZs_X6A1nxVslKciHPyIpJtamUbNtP5DylA2NcsbZbkef7p1D1bkSfXPBmoHe766rH6B6xp974MIUY5kS389V2FjvqMT-F-DdRkyiYbIZjdkBL_T4ajzSigRwitWXyA1IIPjs_LwkR-xlyKaHB0qnyLscwPaAPwyX5aM2Q8PPrviB_rn_eb39Xt7tfN9sftxU0jcgVtx1Xa95awcAa0ynLBKDh-962wnQtyA2KzgLb20aolllQSslGds2ecym4vCBfT7lTDP9mTFmPLgEOQ7m8XKiFWMtCUMhF2pykEENKEa2eohtNPGrO9MJcH_SJuV6YayZ1YV5s397YwGWzPJ2jccN75u8nMxYGjw6jLgr0gL2LCFn3wf0_4AXCgqRs
CitedBy_id crossref_primary_10_1016_j_inoche_2020_107859
crossref_primary_10_1016_j_chemosphere_2020_127995
crossref_primary_10_1002_asia_202201152
crossref_primary_10_1016_j_memsci_2020_118463
crossref_primary_10_1016_j_memsci_2022_120465
crossref_primary_10_1016_j_cej_2023_142437
crossref_primary_10_1016_j_jssc_2020_121635
crossref_primary_10_1016_j_memsci_2023_122098
crossref_primary_10_3390_molecules29071416
crossref_primary_10_1016_j_seppur_2023_124781
crossref_primary_10_1021_acs_iecr_0c03707
crossref_primary_10_1016_j_jclepro_2020_123826
crossref_primary_10_1039_D4VA00010B
crossref_primary_10_1002_app_51508
crossref_primary_10_1021_acs_inorgchem_1c02277
crossref_primary_10_1021_acs_iecr_1c01378
crossref_primary_10_1016_j_colcom_2021_100407
crossref_primary_10_1016_j_seppur_2025_132083
crossref_primary_10_3390_catal12070752
crossref_primary_10_1016_j_apsusc_2024_159775
crossref_primary_10_1016_j_cej_2023_143435
crossref_primary_10_1016_j_jmat_2020_10_008
crossref_primary_10_1016_j_jhazmat_2023_132376
crossref_primary_10_1016_j_ces_2024_119710
crossref_primary_10_1021_acs_langmuir_2c02360
crossref_primary_10_1039_D3CC01518A
crossref_primary_10_1021_acs_iecr_0c00862
crossref_primary_10_1016_j_colcom_2023_100730
crossref_primary_10_1039_D4CE00896K
crossref_primary_10_1021_acsami_1c04155
crossref_primary_10_1016_j_mtsust_2022_100145
crossref_primary_10_1039_D1CC01613J
crossref_primary_10_1016_j_matt_2021_06_038
crossref_primary_10_1039_D0GC01709D
crossref_primary_10_1016_j_jallcom_2023_170191
crossref_primary_10_1016_j_cis_2020_102207
crossref_primary_10_1016_j_memsci_2020_118559
crossref_primary_10_1021_acsami_0c17857
crossref_primary_10_1039_C9NJ02768H
crossref_primary_10_1016_j_jhazmat_2021_125478
crossref_primary_10_1016_j_seppur_2025_132022
crossref_primary_10_1016_j_colsurfa_2023_131562
crossref_primary_10_1016_j_seppur_2025_132345
crossref_primary_10_1016_j_memsci_2021_120014
crossref_primary_10_1016_j_jece_2022_108689
crossref_primary_10_1016_j_memsci_2023_122244
crossref_primary_10_1016_j_memsci_2021_120183
crossref_primary_10_1021_acs_iecr_2c01190
crossref_primary_10_1016_j_carbpol_2022_119136
crossref_primary_10_1016_j_cej_2023_145671
Cites_doi 10.1016/j.memsci.2014.07.047
10.1002/anie.200902543
10.1016/j.memsci.2010.12.029
10.1021/acs.langmuir.6b04353
10.1016/j.memsci.2006.09.014
10.1016/j.cej.2009.01.008
10.1016/j.jhazmat.2008.10.034
10.1016/j.micromeso.2015.07.027
10.1021/acs.chemrev.5b00482
10.1002/anie.201407857
10.1002/adfm.201505380
10.1002/adma.200400792
10.1039/C6CS00724D
10.1016/j.memsci.2015.05.051
10.1126/science.1230444
10.1021/acs.est.6b03431
10.1016/j.cep.2004.04.002
10.1002/adma.201604018
10.1039/b821109b
10.1021/acscatal.7b01803
10.1002/adma.201200330
10.1021/es402775z
10.1039/C7CC00295E
10.1016/j.cej.2016.04.029
10.1016/j.apcatb.2015.10.006
10.1039/C4EE02281E
10.1016/j.jcat.2015.08.014
10.1016/j.cep.2008.07.001
10.1021/cm4033258
10.1016/S0926-860X(01)00812-2
10.1016/j.memsci.2018.05.047
10.1002/adma.201504032
10.1016/j.memsci.2013.12.049
10.1016/S0376-7388(01)00631-7
10.1021/acscatal.6b01222
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.memsci.2019.03.055
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3123
EndPage 36
ExternalDocumentID 10_1016_j_memsci_2019_03_055
S0376738818334483
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
7S9
L.6
ID FETCH-LOGICAL-c442t-1f917518f20cfaa97f02cea1bdf82a98c36e29fc0bf42780fc77734394b113213
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Fri Jul 11 03:49:35 EDT 2025
Tue Jul 01 02:49:32 EDT 2025
Thu Apr 24 22:53:21 EDT 2025
Fri Feb 23 02:28:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Two-dimensional MOF
Cu/Cu2O
Liquid-phase reduction
Nanoporous metallic networks
Catalytic membrane reactor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-1f917518f20cfaa97f02cea1bdf82a98c36e29fc0bf42780fc77734394b113213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2253201231
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2253201231
crossref_primary_10_1016_j_memsci_2019_03_055
crossref_citationtrail_10_1016_j_memsci_2019_03_055
elsevier_sciencedirect_doi_10_1016_j_memsci_2019_03_055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-15
PublicationDateYYYYMMDD 2019-07-15
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of membrane science
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xia, Zou, An, Xia, Guo (bib27) 2015; 8
Huang, Zhu, Su, Qi, He (bib12) 2016; 50
Gu, Favier, Pradel, Gin, Lahitte, Noble, Gomez, Remigy (bib18) 2015; 492
Ron, Haleva, Salomon (bib14) 2018
Israni, Harold (bib10) 2011; 369
Westermann, Melin (bib11) 2009; 48
deKrafft, Wang, Lin (bib29) 2012; 24
Bae, Gim, Kim, Hanna (bib36) 2016; 182
Furukawa, Cordova, O'Keeffe, Yaghi (bib23) 2013; 341
Bhatia, Thien, Mohamed (bib3) 2009; 148
Luc, Jiao (bib13) 2017; 7
Ayturk, Kazantzis, Ma (bib9) 2009; 2
Herrmann, Formanek, Borchardt, Klose, Giebeler, Eckert, Kaskel, Gaponik, Eychmueller (bib22) 2014; 26
Hasan, Cho, Chon, Yoon, Song (bib35) 2016; 298
Dolan, Dave, Ilyushechkin, Morpeth, McLennan (bib2) 2006; 285
Bigall, Herrmann, Vogel, Rose, Simon, Carrillo-Cabrera, Dorfs, Kaskel, Gaponik, Eychmueller (bib21) 2009; 48
Bo, Zhang, Han, Li, Li, Xing (bib6) 2018; 563
Woltinger, Drauz, Bommarius (bib5) 2001; 221
Emin, Remigy, Lahitte (bib32) 2014; 455
Ron, Gachet, Rechav, Salomon (bib19) 2017; 29
Chang, Chen (bib30) 2009; 165
Yang, Xu, Jiang (bib24) 2017; 46
Zhan, Zeng (bib28) 2016; 26
Shi, Hu, Lou, Lu, Keller, Yuan (bib7) 2013; 47
Duan, Xu (bib15) 2015; 332
Niu, Liu, Cai, Wu, Zhao (bib25) 2016; 219
Nour, Berean, Chrimes, Zoolfakar, Latham, McSweeney, Field, Sriram, Kalantar-zadeh, Ou (bib8) 2014; 470
Drioli (bib1) 2004; 43
Thomas, Leary (bib17) 2014; 53
Yang, Goh, Wang, Bae (bib34) 2017; 53
Ding, Kim, Erlebacher (bib20) 2004; 16
Shen, Chen, Chen, Li (bib26) 2016; 6
Liu, Guan, Hirata, Zhang, Chen, Wen, Ding, Fujita, Erlebacher, Chen (bib16) 2016; 28
Gawande, Goswami, Felpin, Asefa, Huang, Silva, Zou, Zboril, Varma (bib31) 2016; 116
Li, Wang, Zhou, Bai, Song, Zhao, Wang, Qi, Zhang, Fu (bib33) 2017; 33
Bottino, Capannelli, Comite (bib4) 2002; 197
Liu (10.1016/j.memsci.2019.03.055_bib16) 2016; 28
deKrafft (10.1016/j.memsci.2019.03.055_bib29) 2012; 24
Li (10.1016/j.memsci.2019.03.055_bib33) 2017; 33
Ayturk (10.1016/j.memsci.2019.03.055_bib9) 2009; 2
Drioli (10.1016/j.memsci.2019.03.055_bib1) 2004; 43
Yang (10.1016/j.memsci.2019.03.055_bib24) 2017; 46
Israni (10.1016/j.memsci.2019.03.055_bib10) 2011; 369
Nour (10.1016/j.memsci.2019.03.055_bib8) 2014; 470
Duan (10.1016/j.memsci.2019.03.055_bib15) 2015; 332
Furukawa (10.1016/j.memsci.2019.03.055_bib23) 2013; 341
Bottino (10.1016/j.memsci.2019.03.055_bib4) 2002; 197
Shi (10.1016/j.memsci.2019.03.055_bib7) 2013; 47
Bigall (10.1016/j.memsci.2019.03.055_bib21) 2009; 48
Bae (10.1016/j.memsci.2019.03.055_bib36) 2016; 182
Woltinger (10.1016/j.memsci.2019.03.055_bib5) 2001; 221
Hasan (10.1016/j.memsci.2019.03.055_bib35) 2016; 298
Gu (10.1016/j.memsci.2019.03.055_bib18) 2015; 492
Huang (10.1016/j.memsci.2019.03.055_bib12) 2016; 50
Niu (10.1016/j.memsci.2019.03.055_bib25) 2016; 219
Ron (10.1016/j.memsci.2019.03.055_bib19) 2017; 29
Herrmann (10.1016/j.memsci.2019.03.055_bib22) 2014; 26
Zhan (10.1016/j.memsci.2019.03.055_bib28) 2016; 26
Gawande (10.1016/j.memsci.2019.03.055_bib31) 2016; 116
Shen (10.1016/j.memsci.2019.03.055_bib26) 2016; 6
Thomas (10.1016/j.memsci.2019.03.055_bib17) 2014; 53
Chang (10.1016/j.memsci.2019.03.055_bib30) 2009; 165
Emin (10.1016/j.memsci.2019.03.055_bib32) 2014; 455
Ron (10.1016/j.memsci.2019.03.055_bib14) 2018
Dolan (10.1016/j.memsci.2019.03.055_bib2) 2006; 285
Luc (10.1016/j.memsci.2019.03.055_bib13) 2017; 7
Bhatia (10.1016/j.memsci.2019.03.055_bib3) 2009; 148
Bo (10.1016/j.memsci.2019.03.055_bib6) 2018; 563
Yang (10.1016/j.memsci.2019.03.055_bib34) 2017; 53
Ding (10.1016/j.memsci.2019.03.055_bib20) 2004; 16
Xia (10.1016/j.memsci.2019.03.055_bib27) 2015; 8
Westermann (10.1016/j.memsci.2019.03.055_bib11) 2009; 48
References_xml – volume: 332
  start-page: 31
  year: 2015
  end-page: 37
  ident: bib15
  article-title: Low-temperature CO oxidation over unsupported nanoporous gold catalysts with active or inert oxide residues
  publication-title: J. Catal.
– volume: 369
  start-page: 375
  year: 2011
  end-page: 387
  ident: bib10
  article-title: Methanol steam reforming in single-fiber packed bed Pd-Ag membrane reactor: experiments and modeling
  publication-title: J. Membr. Sci.
– volume: 26
  start-page: 3268
  year: 2016
  end-page: 3281
  ident: bib28
  article-title: Synthesis and functionalization of oriented metal-organic-framework nanosheets: toward a series of 2D catalysts
  publication-title: Adv. Funct. Mater.
– volume: 285
  start-page: 30
  year: 2006
  end-page: 55
  ident: bib2
  article-title: Composition and operation of hydrogen-selective amorphous alloy membranes
  publication-title: J. Membr. Sci.
– volume: 33
  start-page: 1060
  year: 2017
  end-page: 1065
  ident: bib33
  article-title: Fabrication of metal-organic framework and infinite coordination polymer nanosheets by the spray technique
  publication-title: Langmuir
– volume: 182
  start-page: 541
  year: 2016
  end-page: 549
  ident: bib36
  article-title: Effect of NaBH
  publication-title: Appl. Catal. B Environ.
– volume: 46
  start-page: 4774
  year: 2017
  end-page: 4808
  ident: bib24
  article-title: Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis
  publication-title: Chem. Soc. Rev.
– year: 2018
  ident: bib14
  article-title: Nanoporous metallic networks: fabrication, optical properties, and applications
  publication-title: Adv. Mater.
– volume: 455
  start-page: 55
  year: 2014
  end-page: 63
  ident: bib32
  article-title: Influence of UV grafting conditions and gel formation on the loading and stabilization of palladium nanoparticles in photografted polyethersulfone membrane for catalytic reactions
  publication-title: J. Membr. Sci.
– volume: 16
  start-page: 1897
  year: 2004
  end-page: 1898
  ident: bib20
  article-title: Nanoporous gold leaf: “Ancient technology”/advanced material
  publication-title: Adv. Mater.
– volume: 341
  start-page: 974
  year: 2013
  end-page: +
  ident: bib23
  article-title: The chemistry and applications of metal-organic frameworks
  publication-title: Science
– volume: 470
  start-page: 346
  year: 2014
  end-page: 355
  ident: bib8
  article-title: Silver nanoparticle/PDMS nanocomposite catalytic membranes for H
  publication-title: J. Membr. Sci.
– volume: 197
  start-page: 75
  year: 2002
  end-page: 88
  ident: bib4
  article-title: Catalytic membrane reactors for the oxide hydrogenation of propane: experimental and modelling study
  publication-title: J. Membr. Sci.
– volume: 116
  start-page: 3722
  year: 2016
  end-page: 3811
  ident: bib31
  article-title: Cu and Cu-based nanoparticles: synthesis and applications in review catalysis
  publication-title: Chem. Rev.
– volume: 221
  start-page: 171
  year: 2001
  end-page: 185
  ident: bib5
  article-title: The membrane reactor in the fine chemicals industry
  publication-title: Appl. Catal. A-Gen.
– volume: 563
  start-page: 10
  year: 2018
  end-page: 21
  ident: bib6
  article-title: Fabrication of bilayer catalytic composite membrane PVA-SA/SPVA and application for ethyl acetate synthesis
  publication-title: J. Membr. Sci.
– volume: 492
  start-page: 331
  year: 2015
  end-page: 339
  ident: bib18
  article-title: High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki-Miyaura cross-coupling reaction
  publication-title: J. Membr. Sci.
– volume: 165
  start-page: 664
  year: 2009
  end-page: 669
  ident: bib30
  article-title: Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst
  publication-title: J. Hazard. Mater.
– volume: 53
  start-page: 4254
  year: 2017
  end-page: 4257
  ident: bib34
  article-title: High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets
  publication-title: Chem. Commun.
– volume: 8
  start-page: 568
  year: 2015
  end-page: 576
  ident: bib27
  article-title: A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 1753
  year: 2016
  end-page: 1759
  ident: bib16
  article-title: Visualizing under-coordinated surface atoms on 3D nanoporous gold catalysts
  publication-title: Adv. Mater.
– volume: 48
  start-page: 9731
  year: 2009
  end-page: 9734
  ident: bib21
  article-title: Hydrogels and aerogels from noble metal nanoparticles
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 5856
  year: 2017
  end-page: 5861
  ident: bib13
  article-title: Nanoporous metals as electrocatalysts: state-of-the-art, opportunities, and challenges
  publication-title: ACS Catal.
– volume: 24
  start-page: 2014
  year: 2012
  end-page: 2018
  ident: bib29
  article-title: Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production
  publication-title: Adv. Mater.
– volume: 148
  start-page: 525
  year: 2009
  end-page: 532
  ident: bib3
  article-title: Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors
  publication-title: Chem. Eng. J.
– volume: 298
  start-page: 183
  year: 2016
  end-page: 190
  ident: bib35
  article-title: Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 11577
  year: 2013
  end-page: 11583
  ident: bib7
  article-title: Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 5887
  year: 2016
  end-page: 5903
  ident: bib26
  article-title: Development of MOF-derived carbon-based nanomaterials for efficient catalysis
  publication-title: ACS Catal.
– volume: 50
  start-page: 11263
  year: 2016
  end-page: 11273
  ident: bib12
  article-title: Catalytic membrane reactor immobilized with alloy nanoparticle-loaded protein fibrils for continuous reduction of 4-nitrophenol
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 1101
  year: 2004
  end-page: 1102
  ident: bib1
  article-title: Membrane reactors
  publication-title: Chem. Eng. Process.
– volume: 48
  start-page: 17
  year: 2009
  end-page: 28
  ident: bib11
  article-title: Flow-through catalytic membrane reactors-Principles and applications
  publication-title: Chem. Eng. Process.
– volume: 53
  start-page: 12020
  year: 2014
  end-page: 12021
  ident: bib17
  article-title: A major advance in characterizing nanoporous solids using a complementary triad of existing techniques
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 1074
  year: 2014
  end-page: 1083
  ident: bib22
  article-title: Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt, and Pd nanoparticles
  publication-title: Chem. Mater.
– volume: 2
  start-page: 430
  year: 2009
  end-page: 438
  ident: bib9
  article-title: Modeling and performance assessment of Pd- and Pd/Au-based catalytic membrane reactors for hydrogen production
  publication-title: Energy Environ. Sci.
– volume: 29
  year: 2017
  ident: bib19
  article-title: Direct fabrication of 3D metallic networks and their performance
  publication-title: Adv. Mater.
– volume: 219
  start-page: 48
  year: 2016
  end-page: 53
  ident: bib25
  article-title: MOF derived porous carbon supported Cu/Cu
  publication-title: Microporous Mesoporous Mater.
– volume: 470
  start-page: 346
  year: 2014
  ident: 10.1016/j.memsci.2019.03.055_bib8
  article-title: Silver nanoparticle/PDMS nanocomposite catalytic membranes for H2S gas removal
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.07.047
– volume: 48
  start-page: 9731
  year: 2009
  ident: 10.1016/j.memsci.2019.03.055_bib21
  article-title: Hydrogels and aerogels from noble metal nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200902543
– volume: 369
  start-page: 375
  year: 2011
  ident: 10.1016/j.memsci.2019.03.055_bib10
  article-title: Methanol steam reforming in single-fiber packed bed Pd-Ag membrane reactor: experiments and modeling
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.12.029
– volume: 33
  start-page: 1060
  year: 2017
  ident: 10.1016/j.memsci.2019.03.055_bib33
  article-title: Fabrication of metal-organic framework and infinite coordination polymer nanosheets by the spray technique
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b04353
– volume: 285
  start-page: 30
  year: 2006
  ident: 10.1016/j.memsci.2019.03.055_bib2
  article-title: Composition and operation of hydrogen-selective amorphous alloy membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.09.014
– volume: 148
  start-page: 525
  year: 2009
  ident: 10.1016/j.memsci.2019.03.055_bib3
  article-title: Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.01.008
– volume: 165
  start-page: 664
  year: 2009
  ident: 10.1016/j.memsci.2019.03.055_bib30
  article-title: Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.10.034
– volume: 219
  start-page: 48
  year: 2016
  ident: 10.1016/j.memsci.2019.03.055_bib25
  article-title: MOF derived porous carbon supported Cu/Cu2O composite as high performance non-noble catalyst
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2015.07.027
– volume: 116
  start-page: 3722
  year: 2016
  ident: 10.1016/j.memsci.2019.03.055_bib31
  article-title: Cu and Cu-based nanoparticles: synthesis and applications in review catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00482
– volume: 53
  start-page: 12020
  year: 2014
  ident: 10.1016/j.memsci.2019.03.055_bib17
  article-title: A major advance in characterizing nanoporous solids using a complementary triad of existing techniques
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201407857
– volume: 26
  start-page: 3268
  year: 2016
  ident: 10.1016/j.memsci.2019.03.055_bib28
  article-title: Synthesis and functionalization of oriented metal-organic-framework nanosheets: toward a series of 2D catalysts
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201505380
– volume: 16
  start-page: 1897
  year: 2004
  ident: 10.1016/j.memsci.2019.03.055_bib20
  article-title: Nanoporous gold leaf: “Ancient technology”/advanced material
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400792
– volume: 46
  start-page: 4774
  year: 2017
  ident: 10.1016/j.memsci.2019.03.055_bib24
  article-title: Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00724D
– volume: 492
  start-page: 331
  year: 2015
  ident: 10.1016/j.memsci.2019.03.055_bib18
  article-title: High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki-Miyaura cross-coupling reaction
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.05.051
– volume: 341
  start-page: 974
  year: 2013
  ident: 10.1016/j.memsci.2019.03.055_bib23
  article-title: The chemistry and applications of metal-organic frameworks
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 50
  start-page: 11263
  year: 2016
  ident: 10.1016/j.memsci.2019.03.055_bib12
  article-title: Catalytic membrane reactor immobilized with alloy nanoparticle-loaded protein fibrils for continuous reduction of 4-nitrophenol
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03431
– volume: 43
  start-page: 1101
  year: 2004
  ident: 10.1016/j.memsci.2019.03.055_bib1
  article-title: Membrane reactors
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2004.04.002
– volume: 29
  year: 2017
  ident: 10.1016/j.memsci.2019.03.055_bib19
  article-title: Direct fabrication of 3D metallic networks and their performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604018
– volume: 2
  start-page: 430
  year: 2009
  ident: 10.1016/j.memsci.2019.03.055_bib9
  article-title: Modeling and performance assessment of Pd- and Pd/Au-based catalytic membrane reactors for hydrogen production
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b821109b
– year: 2018
  ident: 10.1016/j.memsci.2019.03.055_bib14
  article-title: Nanoporous metallic networks: fabrication, optical properties, and applications
  publication-title: Adv. Mater.
– volume: 7
  start-page: 5856
  year: 2017
  ident: 10.1016/j.memsci.2019.03.055_bib13
  article-title: Nanoporous metals as electrocatalysts: state-of-the-art, opportunities, and challenges
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01803
– volume: 24
  start-page: 2014
  year: 2012
  ident: 10.1016/j.memsci.2019.03.055_bib29
  article-title: Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200330
– volume: 47
  start-page: 11577
  year: 2013
  ident: 10.1016/j.memsci.2019.03.055_bib7
  article-title: Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es402775z
– volume: 53
  start-page: 4254
  year: 2017
  ident: 10.1016/j.memsci.2019.03.055_bib34
  article-title: High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC00295E
– volume: 298
  start-page: 183
  year: 2016
  ident: 10.1016/j.memsci.2019.03.055_bib35
  article-title: Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.04.029
– volume: 182
  start-page: 541
  year: 2016
  ident: 10.1016/j.memsci.2019.03.055_bib36
  article-title: Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.10.006
– volume: 8
  start-page: 568
  year: 2015
  ident: 10.1016/j.memsci.2019.03.055_bib27
  article-title: A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02281E
– volume: 332
  start-page: 31
  year: 2015
  ident: 10.1016/j.memsci.2019.03.055_bib15
  article-title: Low-temperature CO oxidation over unsupported nanoporous gold catalysts with active or inert oxide residues
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.08.014
– volume: 48
  start-page: 17
  year: 2009
  ident: 10.1016/j.memsci.2019.03.055_bib11
  article-title: Flow-through catalytic membrane reactors-Principles and applications
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2008.07.001
– volume: 26
  start-page: 1074
  year: 2014
  ident: 10.1016/j.memsci.2019.03.055_bib22
  article-title: Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt, and Pd nanoparticles
  publication-title: Chem. Mater.
  doi: 10.1021/cm4033258
– volume: 221
  start-page: 171
  year: 2001
  ident: 10.1016/j.memsci.2019.03.055_bib5
  article-title: The membrane reactor in the fine chemicals industry
  publication-title: Appl. Catal. A-Gen.
  doi: 10.1016/S0926-860X(01)00812-2
– volume: 563
  start-page: 10
  year: 2018
  ident: 10.1016/j.memsci.2019.03.055_bib6
  article-title: Fabrication of bilayer catalytic composite membrane PVA-SA/SPVA and application for ethyl acetate synthesis
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.05.047
– volume: 28
  start-page: 1753
  year: 2016
  ident: 10.1016/j.memsci.2019.03.055_bib16
  article-title: Visualizing under-coordinated surface atoms on 3D nanoporous gold catalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504032
– volume: 455
  start-page: 55
  year: 2014
  ident: 10.1016/j.memsci.2019.03.055_bib32
  article-title: Influence of UV grafting conditions and gel formation on the loading and stabilization of palladium nanoparticles in photografted polyethersulfone membrane for catalytic reactions
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.12.049
– volume: 197
  start-page: 75
  year: 2002
  ident: 10.1016/j.memsci.2019.03.055_bib4
  article-title: Catalytic membrane reactors for the oxide hydrogenation of propane: experimental and modelling study
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(01)00631-7
– volume: 6
  start-page: 5887
  year: 2016
  ident: 10.1016/j.memsci.2019.03.055_bib26
  article-title: Development of MOF-derived carbon-based nanomaterials for efficient catalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01222
SSID ssj0017089
Score 2.5170538
Snippet A novel kind of Cu-based catalytic membrane reactor (CMR) has been developed for the efficient reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) in a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 30
SubjectTerms asymmetric membranes
catalytic activity
Catalytic membrane reactor
Cu/Cu2O
filtration
Liquid-phase reduction
liquids
nanopores
Nanoporous metallic networks
nylon
p-nitrophenol
porosity
sodium borohydride
Two-dimensional MOF
Title Two-dimensional MOF-derived nanoporous Cu/Cu2O networks as catalytic membrane reactor for the continuous reduction of p-nitrophenol
URI https://dx.doi.org/10.1016/j.memsci.2019.03.055
https://www.proquest.com/docview/2253201231
Volume 582
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-UwEA_iXvQg7rqy6ipZ8BpfPtqmPcrDx9Nl9aCCt5CmCbxF08f7ULx48R_fmX6ILoLgsW0ylJl0ZpL-5jeEHHInbZrqghXeSpYU3LNcOMcgNDmN1bqubFC-59n4Ojm7SW9WyLCvhUFYZef7W5_eeOvuzqDT5mA6mQwuORKRqBwijlKwyUDGzyTRuMqPnl5gHkLzpg0eDmY4ui-fazBed_4ORCPAq6U6xYK_98PTf466iT6jTbLRpY30uH2zr2TFx29k_RWZ4BZ5vnqoWYVk_S3RBv1zMWIVPLz3FY021pBpwzafDpeD4VJe0NgCwOfUzmlziPMIsim8K-yfo6eQTOJ5PoWklkKSSBHTPolLlDBDulc0KK0DnTJwCjNkJ4j17XdyPTq5Go5Z12KBuSSRCyYCbNdSkQfJXbC20IFL560oq5BLW-ROZV4WwfEyYE8OHpzWWmE1bYkt6oXaJquxjv4HoZ6HYCHYiZDZxBZZGcosk5Xl3ubgFdwOUb1mjev4x7ENxq3pgWZ_TWsPg_YwXBmwxw5hL7OmLf_GB-N1bzTzZh0ZCBEfzPzV29jAJ4b_TUDboFUDLk9JzD3F7qel75E1vMJTYZH-JKuL2dLvQzqzKA-a9XpAvhyf_h6f_wO0d_ej
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RcGh7qEofKpQWI_VqxWvv84giolAgHAgSN8vrtaVU4I1CAuLcP96ZfSCKkJC4ru2RNeOdhz3zDcAvYaVJkqzghTOSx4VwPI-s5WiabEbVurZssnyn6eQi_n2ZXG7AqK-FobTKTve3Or3R1t2XYcfN4WI-H54LAiJROVocpTDIUG9gk9CpkgFsHhwdT6YPjwmZaDrh0XxOC_oKuibN69pdI3XK8WrRTqnm73kL9URXNwZo_BE-dJ4jO2g3twUbLnyC94_wBD_D39ldzSvC62-xNtjp2ZhXOHjrKhZMqNHZxkifjdbD0VqesdDmgN8wc8Oae5x7pM1wrxhCB8fQn6QrfYZ-LUM_kVFa-zysicKSEF9Jpqz2bMFRLywJoCDUV1_gYnw4G01412WB2ziWKx55jNiSKPdSWG9MkXkhrTNRWflcmiK3KnWy8FaUntpyCG-zLFNUUFtSl_pIfYVBqIP7BswJ7w3au8inJjZFWvoyTWVlhDM5Kga7DarnrLYdBDl1wrjSfa7ZH93KQ5M8tFAa5bEN_GHVooXgeGF-1gtN_3eUNFqJF1bu9zLW-JfR0wlyG7mqUespSe5ntPNq6nvwdjI7PdEnR9Pj7_CORuiSOEp2YbBart0P9G5W5c_u9P4DJu76VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+MOF-derived+nanoporous+Cu%2FCu2O+networks+as+catalytic+membrane+reactor+for+the+continuous+reduction+of+p-nitrophenol&rft.jtitle=Journal+of+membrane+science&rft.au=Bai%2C+Xiao-Jue&rft.au=Chen%2C+Dan&rft.au=Li%2C+Yu-Nong&rft.au=Yang%2C+Xi-Man&rft.date=2019-07-15&rft.issn=0376-7388&rft.volume=582&rft.spage=30&rft.epage=36&rft_id=info:doi/10.1016%2Fj.memsci.2019.03.055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2019_03_055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon