Wavelet filterbank‐based EEG rhythm‐specific spatial features for covert speech classification
The derivation of rhythm‐specific spatial patterns of electroencephalographic (EEG) signals for covert speech EEG classification task is dealt in this work. This study has been performed on a publicly accessible multi‐channel covert speech EEG database consisting of multi‐syllabic words. With the mo...
Saved in:
Published in | IET signal processing Vol. 16; no. 1; pp. 92 - 105 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
John Wiley & Sons, Inc
01.02.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The derivation of rhythm‐specific spatial patterns of electroencephalographic (EEG) signals for covert speech EEG classification task is dealt in this work. This study has been performed on a publicly accessible multi‐channel covert speech EEG database consisting of multi‐syllabic words. With the motivation of deriving more discriminative features, each channel data has been decomposed into distinct bands focussing on the five basic EEG rhythms using the discrete wavelet transform (DWT)‐based signal decomposition algorithm. Following that, for each band, the multi‐class common spatial pattern (CSP) features are computed using joint approximate diagonalisation. The final feature vector is formed by retaining a few significant CSP components from all five bands. Radial basis function kernel‐based support vector machines are used for covert speech classification. After 5‐fold cross‐validation, the proposed DWT‐based bandwise‐CSP features are noted to yield an average classification accuracy of 94%. In contrast with the existing (non‐decomposed) CSP feature, a relative improvement of about 24% is achieved. For generalisation purposes, the proposed approach has also been evaluated for another covert speech database comprising more classes and subjects. The study highlights the discovery of more discriminative patterns with rhythm‐specific processing in the context of covert speech classification. The proposed approach has the potential to be useful in other brain‐computer interface paradigms that employ EEG signals. |
---|---|
AbstractList | The derivation of rhythm‐specific spatial patterns of electroencephalographic (EEG) signals for covert speech EEG classification task is dealt in this work. This study has been performed on a publicly accessible multi‐channel covert speech EEG database consisting of multi‐syllabic words. With the motivation of deriving more discriminative features, each channel data has been decomposed into distinct bands focussing on the five basic EEG rhythms using the discrete wavelet transform (DWT)‐based signal decomposition algorithm. Following that, for each band, the multi‐class common spatial pattern (CSP) features are computed using joint approximate diagonalisation. The final feature vector is formed by retaining a few significant CSP components from all five bands. Radial basis function kernel‐based support vector machines are used for covert speech classification. After 5‐fold cross‐validation, the proposed DWT‐based bandwise‐CSP features are noted to yield an average classification accuracy of 94%. In contrast with the existing (non‐decomposed) CSP feature, a relative improvement of about 24% is achieved. For generalisation purposes, the proposed approach has also been evaluated for another covert speech database comprising more classes and subjects. The study highlights the discovery of more discriminative patterns with rhythm‐specific processing in the context of covert speech classification. The proposed approach has the potential to be useful in other brain‐computer interface paradigms that employ EEG signals. Abstract The derivation of rhythm‐specific spatial patterns of electroencephalographic (EEG) signals for covert speech EEG classification task is dealt in this work. This study has been performed on a publicly accessible multi‐channel covert speech EEG database consisting of multi‐syllabic words. With the motivation of deriving more discriminative features, each channel data has been decomposed into distinct bands focussing on the five basic EEG rhythms using the discrete wavelet transform (DWT)‐based signal decomposition algorithm. Following that, for each band, the multi‐class common spatial pattern (CSP) features are computed using joint approximate diagonalisation. The final feature vector is formed by retaining a few significant CSP components from all five bands. Radial basis function kernel‐based support vector machines are used for covert speech classification. After 5‐fold cross‐validation, the proposed DWT‐based bandwise‐CSP features are noted to yield an average classification accuracy of 94%. In contrast with the existing (non‐decomposed) CSP feature, a relative improvement of about 24% is achieved. For generalisation purposes, the proposed approach has also been evaluated for another covert speech database comprising more classes and subjects. The study highlights the discovery of more discriminative patterns with rhythm‐specific processing in the context of covert speech classification. The proposed approach has the potential to be useful in other brain‐computer interface paradigms that employ EEG signals. |
Audience | Academic |
Author | Biswas, Sukanya Sinha, Rohit |
Author_xml | – sequence: 1 givenname: Sukanya orcidid: 0000-0003-2541-7235 surname: Biswas fullname: Biswas, Sukanya email: sukanya.biswas@iitg.ac.in organization: Indian Institute of Technology Guwahati – sequence: 2 givenname: Rohit orcidid: 0000-0002-0419-6501 surname: Sinha fullname: Sinha, Rohit organization: Indian Institute of Technology Guwahati |
BookMark | eNp9kcGKFDEQhoOs4O7qxSdo8CbMmKTT6c5xWcZ1YMCDisdQXV3ZydrTGZK4Mrd9BJ_RJzEzLQvKIjkkVL7_r6L-C3Y2hYkYey34UnBl3iU_yqWQvDHP2LloG7EwuqvPHt9t84JdpHTHeaMbIc9Z_xXuaaRcOT9mij1M3349_Owh0VCtVjdV3B7ydldKaU_onccq7SF7GCtHkL9HSpULscJwTzGXPyLcVjhCSke4kGF6yZ47GBO9-nNfsi_vV5-vPyw2H2_W11ebBSolzcI1tRp4DZ3jqMgJglZqo6AMjaBcYwYDqiaJg-u4lmRq06IW0INSVJ71JVvPvkOAO7uPfgfxYAN4eyqEeGshZo8jWehACic67bBRHbS9RAlC68Ep4frBFK83s9ctFNxPLuQIuPMJ7VWrOmWUFrpQyyeocgbaeSzJlKXS34K3swBjSCmSexxTcHsM0B4DtKcAC8z_gdHn00ZLFz8-LRGz5EdpfPiPuf203shZ8xssOLHu |
CitedBy_id | crossref_primary_10_1109_TIM_2024_3472830 crossref_primary_10_3389_fnhum_2024_1398065 crossref_primary_10_1007_s10772_024_10155_z crossref_primary_10_3390_s24248168 |
Cites_doi | 10.1016/j.neuroimage.2017.10.011 10.1109/EMBC.2017.8037000 10.1007/BF02344717 10.1016/j.asoc.2013.10.023 10.1016/j.neuroimage.2006.01.036 10.1016/j.neuroimage.2005.03.013 10.1007/s13534-020-00152-x 10.1109/TBME.2017.2786251 10.1109/86.895946 10.3390/s19050987 10.1007/BF00994018 10.1137/0907013 10.1049/iet-cps.2018.5059 10.3390/s120201211 10.1088/1741-2552/aa8235 10.1109/ICASSP.2015.7178118 10.1109/INDICON45594.2018.8986984 10.1016/j.eswa.2010.11.050 10.1145/1961189.1961199 10.1049/iet-spr.2020.0025 10.1007/BF01211171 10.1080/2326263X.2019.1698928 10.3390/brainsci9080201 10.1007/s10916-018-1137-9 10.1109/TASLP.2017.2758164 10.1016/j.neunet.2009.05.008 10.1109/INDICON47234.2019.9028925 10.1109/TNSRE.2020.3040289 10.1109/CCECE.2001.933649 10.1109/ICORR.2019.8779499 10.1137/S089547980035689X 10.1088/1741-2552/aae4b9 10.1016/j.measurement.2019.07.070 10.1016/S0926-6410(00)00025-2 10.1016/j.bspc.2013.07.011 10.1016/j.neures.2019.04.004 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. COPYRIGHT 2022 John Wiley & Sons, Inc. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/sil2.12059 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-9683 |
EndPage | 105 |
ExternalDocumentID | oai_doaj_org_article_a8a21f186fc548a7b2c2a166df41fbd9 A748494616 10_1049_sil2_12059 SIL212059 |
Genre | article |
GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 5GY 6IK 8FE 8FG AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AENEX AEQDE AFKRA AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 DU5 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IGS IPLJI ITC J9A JAVBF K6V K7- L6V LAI LXU M43 M7S MCNEO NADUK NXXTH O9- OCL OK1 P2P P62 PTHSS RIE RNS RUI S0W UNMZH ~ZZ AAYXX CITATION IDLOA PHGZM PHGZT WIN |
ID | FETCH-LOGICAL-c4429-f534d03a8f0c4ef1ea72694a967ca4f59d9a43e2cdf8062e9397c61aba44e97c3 |
IEDL.DBID | DOA |
ISSN | 1751-9675 |
IngestDate | Wed Aug 27 01:30:55 EDT 2025 Thu May 08 04:17:44 EDT 2025 Tue May 06 04:28:20 EDT 2025 Tue Jul 01 02:39:45 EDT 2025 Thu Apr 24 23:13:15 EDT 2025 Wed Jan 22 16:26:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://doi.wiley.com/10.1002/tdm_license_1.1 http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4429-f534d03a8f0c4ef1ea72694a967ca4f59d9a43e2cdf8062e9397c61aba44e97c3 |
ORCID | 0000-0003-2541-7235 0000-0002-0419-6501 |
OpenAccessLink | https://doaj.org/article/a8a21f186fc548a7b2c2a166df41fbd9 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a8a21f186fc548a7b2c2a166df41fbd9 gale_infotracmisc_A748494616 gale_infotracacademiconefile_A748494616 crossref_primary_10_1049_sil2_12059 crossref_citationtrail_10_1049_sil2_12059 wiley_primary_10_1049_sil2_12059_SIL212059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | IET signal processing |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2009; 22 2019; 9 2004; 42 2019; 4 2006; 31 2019; 6 2011; 2 2012 2017; 25 2010 2017; 65 2000; 8 2008 2019; 19 2020; 14 2019; 147 2004; 5 2020; 10 2001; 22 2005; 26 2013; 8 2011; 38 2012; 12 2014; 20 1999 2014; 1 1995; 20 2017; 15 1986; 7 2019; 43 2000; 10 2020; 28 2019 2018 2017 2016 2015 2001; 2 2018; 180 2018; 16 2009; 5610 2017; 10160 2019; 153 1994; 6 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_24_1 Hori G. (e_1_2_10_40_1) 1999 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_41_1 D’Zmura M. (e_1_2_10_14_1) 2009; 5610 Manca A.D. (e_1_2_10_19_1) 2016 Kamalakkannan R. (e_1_2_10_26_1) 2014; 1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 Coretto G.A.P. (e_1_2_10_21_1) 2017 e_1_2_10_31_1 e_1_2_10_30_1 Torres Garcia A.A. (e_1_2_10_20_1) 2012 Liyanage S.R. (e_1_2_10_42_1) 2010 Kang J.M. (e_1_2_10_9_1) 2020; 10 Ziehe A. (e_1_2_10_37_1) 2004; 5 Dash D. (e_1_2_10_4_1) 2020; 14 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 Ang K.K. (e_1_2_10_45_1) 2008 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_47_1 |
References_xml | – volume: 25 start-page: 2292 issue: 12 year: 2017 end-page: 2300 article-title: EEG classification of covert speech using regularized neural networks publication-title: IEEE/ACM Trans.Audio Speech Lang. Process. – volume: 22 start-page: 1334 issue: 9 year: 2009 end-page: 1339 article-title: Single‐trial classification of vowel speech imagery using common spatial patterns publication-title: Neural Networks – volume: 14 start-page: 1 issue: 290 year: 2020 end-page: 14 article-title: Decoding imagined and spoken phrases from non‐invasive neural (MEG) signals publication-title: Front. Neurosci. – volume: 10160 year: 2017 – volume: 26 start-page: 1119 issue: 4 year: 2005 end-page: 1127 article-title: Scanning silence: mental imagery of complex sounds publication-title: Neuroimage – volume: 8 start-page: 901 issue: 6 year: 2013 end-page: 908 article-title: Analysis and classification of speech imagery EEG for BCI publication-title: Biomed. Signal Process. Contr. – start-page: 1 year: 2019 end-page: 4 – volume: 4 start-page: 164 issue: 2 year: 2019 end-page: 172 article-title: Mind your thoughts: BCI using single EEG electrode publication-title: IET Cyber‐Physical Systems: Theory & Applications – volume: 10 start-page: 173 issue: 1 year: 2000 end-page: 176 article-title: Single‐sweep EEG analysis of neural processes underlying perception and production of vowels publication-title: Cognit. Brain Res. – volume: 6 start-page: 128 issue: 4 year: 2019 end-page: 140 article-title: Development of a ternary hybrid fNIRS‐EEG brain–computer interface based on imagined speech publication-title: Brain‐Computer Interfaces – volume: 14 start-page: 396 issue: 6 year: 2020 end-page: 405 article-title: Automatic EEG eyeblink artefact identification and removal technique using independent component analysis in combination with support vector machines and denoising autoencoder publication-title: IET Signal Process. – volume: 19 start-page: 987 issue: 5 year: 2019 article-title: Removal of artifacts from EEG signals: a review publication-title: Sensors – start-page: 305 year: 2016 end-page: 321 – volume: 16 issue: 1 year: 2018 article-title: Online classification of imagined speech using functional near‐infrared spectroscopy signals publication-title: J. Neural. Eng. – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 8 article-title: Difference in spectral power density of sleep EEG between patients with simple snoring and those with obstructive sleep apnoea publication-title: Sci. Rep. – volume: 153 start-page: 48 year: 2019 end-page: 55 article-title: Synchronization between overt speech envelope and EEG oscillations during imagined speech publication-title: Neurosci. Res. – start-page: 689 year: 2019 end-page: 693 – start-page: 1022 year: 2017 end-page: 1025 – start-page: 992 year: 2015 end-page: 996 – volume: 5 start-page: 777 year: 2004 end-page: 800 article-title: A fast algorithm for joint diagonalization with non‐orthogonal transformations and its application to blind source separation publication-title: J. Mach. Learn. Res. – year: 2012 – volume: 31 start-page: 1327 issue: 3 year: 2006 end-page: 1342 article-title: Song and speech: brain regions involved with perception and covert production publication-title: Neuroimage – volume: 9 start-page: 201 issue: 8 year: 2019 article-title: EEG signals feature extraction based on DWT and EMD combined with approximate entropy publication-title: Brain Sci. – volume: 28 start-page: 2647 issue: 12 year: 2020 end-page: 2659 article-title: Neural decoding of imagined speech and visual imagery as intuitive paradigms for BCI communication publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng. – volume: 1 start-page: 20 year: 2014 end-page: 32 article-title: Imagined speech classification using EEG publication-title: Advances in Biomedical Science and Engineering – volume: 147 year: 2019 article-title: Analysis and classification of hybrid BCI based on motor imagery and speech imagery publication-title: Measurement – volume: 65 start-page: 2168 issue: 10 year: 2017 end-page: 2177 article-title: Multiclass classification of word imagination speech with hybrid connectivity features publication-title: IEEE Trans. Biomed. Eng. – volume: 20 start-page: 95 year: 2014 end-page: 102 article-title: Classification of silent speech using support vector machine and relevance vector machine publication-title: Appl. Soft. Comput. – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 article-title: Support‐vector networks publication-title: Mach. Learn. – volume: 12 start-page: 1211 issue: 2 year: 2012 end-page: 1279 article-title: Brain computer interfaces: a review publication-title: Sensors – volume: 6 start-page: 259 issue: 4 year: 1994 end-page: 267 article-title: Event‐related potentials in silent speech publication-title: Brain Topogr. – volume: 22 start-page: 1136 issue: 4 year: 2001 end-page: 1152 article-title: Joint approximate diagonalization of positive definite Hermitian matrices publication-title: SIAM J. Matrix. Anal. Appl. – start-page: 2390 year: 2008 end-page: 2397 – volume: 8 start-page: 441 issue: 4 year: 2000 end-page: 446 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng. – volume: 2 start-page: 27 issue: 3 year: 2011 article-title: LIBSVM: a library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – start-page: 675 year: 1999 end-page: 678 article-title: Joint diagonalization and matrix differential equations publication-title: Proc of NOLTA – volume: 180 start-page: 301 year: 2018 end-page: 311 article-title: Decoding spoken phonemes from sensorimotor cortex with high‐density ECoG grids publication-title: Neuroimage – volume: 5610 start-page: 40 year: 2009 end-page: 48 article-title: Toward EEG sensing of imagined speech publication-title: Human‐Computer Interaction: New Trends – volume: 15 issue: 1 year: 2017 article-title: Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features publication-title: J. Neural. Eng. – start-page: 1 year: 2010 end-page: 6 article-title: EEG signal separation for multi‐class motor imagery using common spatial patterns based on joint approximate diagonalization – volume: 42 start-page: 407 issue: 3 year: 2004 end-page: 412 article-title: Removal of ocular artifacts from electro‐encephalogram by adaptive filtering publication-title: Med. Biol. Eng. Comput. – volume: 10 start-page: 217 issue: 2 year: 2020 end-page: 226 article-title: Multiclass covert speech classification using extreme learning machine publication-title: Biomed. Eng. Lett. – volume: 43 start-page: 20 issue: 2 year: 2019 article-title: The relative contribution of high‐gamma linguistic processing stages of word production, and motor imagery of articulation in class separability of covert speech tasks in EEG data publication-title: J. Med. Syst. – volume: 38 start-page: 6190 issue: 5 year: 2011 end-page: 6201 article-title: Wavelet basis functions in biomedical signal processing publication-title: Expert Syst. Appl. – volume: 2 start-page: 1363 year: 2001 end-page: 1366 – start-page: 1 year: 2018 end-page: 5 – volume: 7 start-page: 169 issue: 1 year: 1986 end-page: 184 article-title: An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form publication-title: SIAM J. Sci. Stat. Comput. – ident: e_1_2_10_3_1 doi: 10.1016/j.neuroimage.2017.10.011 – volume: 14 start-page: 1 issue: 290 year: 2020 ident: e_1_2_10_4_1 article-title: Decoding imagined and spoken phrases from non‐invasive neural (MEG) signals publication-title: Front. Neurosci. – ident: e_1_2_10_23_1 doi: 10.1109/EMBC.2017.8037000 – volume: 5610 start-page: 40 year: 2009 ident: e_1_2_10_14_1 article-title: Toward EEG sensing of imagined speech publication-title: Human‐Computer Interaction: New Trends – ident: e_1_2_10_35_1 doi: 10.1007/BF02344717 – start-page: 1 volume-title: International Joint Conference on Neural Networks (IJCNN) year: 2010 ident: e_1_2_10_42_1 – ident: e_1_2_10_18_1 doi: 10.1016/j.asoc.2013.10.023 – ident: e_1_2_10_46_1 doi: 10.1016/j.neuroimage.2006.01.036 – ident: e_1_2_10_47_1 doi: 10.1016/j.neuroimage.2005.03.013 – ident: e_1_2_10_16_1 doi: 10.1007/s13534-020-00152-x – ident: e_1_2_10_27_1 doi: 10.1109/TBME.2017.2786251 – ident: e_1_2_10_38_1 doi: 10.1109/86.895946 – start-page: 675 year: 1999 ident: e_1_2_10_40_1 article-title: Joint diagonalization and matrix differential equations publication-title: Proc of NOLTA – ident: e_1_2_10_7_1 doi: 10.3390/s19050987 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: e_1_2_10_9_1 article-title: Difference in spectral power density of sleep EEG between patients with simple snoring and those with obstructive sleep apnoea publication-title: Sci. Rep. – ident: e_1_2_10_43_1 doi: 10.1007/BF00994018 – ident: e_1_2_10_39_1 doi: 10.1137/0907013 – ident: e_1_2_10_10_1 doi: 10.1049/iet-cps.2018.5059 – ident: e_1_2_10_2_1 doi: 10.3390/s120201211 – start-page: 305 volume-title: EEG‐based recognition of silent and imagined vowels year: 2016 ident: e_1_2_10_19_1 – ident: e_1_2_10_28_1 doi: 10.1088/1741-2552/aa8235 – ident: e_1_2_10_24_1 doi: 10.1109/ICASSP.2015.7178118 – ident: e_1_2_10_48_1 doi: 10.1109/INDICON45594.2018.8986984 – ident: e_1_2_10_34_1 doi: 10.1016/j.eswa.2010.11.050 – volume: 5 start-page: 777 year: 2004 ident: e_1_2_10_37_1 article-title: A fast algorithm for joint diagonalization with non‐orthogonal transformations and its application to blind source separation publication-title: J. Mach. Learn. Res. – ident: e_1_2_10_44_1 doi: 10.1145/1961189.1961199 – start-page: 2390 year: 2008 ident: e_1_2_10_45_1 – ident: e_1_2_10_8_1 doi: 10.1049/iet-spr.2020.0025 – ident: e_1_2_10_11_1 doi: 10.1007/BF01211171 – ident: e_1_2_10_5_1 doi: 10.1080/2326263X.2019.1698928 – ident: e_1_2_10_32_1 doi: 10.3390/brainsci9080201 – start-page: 1016002 year: 2017 ident: e_1_2_10_21_1 – ident: e_1_2_10_31_1 doi: 10.1007/s10916-018-1137-9 – ident: e_1_2_10_22_1 doi: 10.1109/TASLP.2017.2758164 – ident: e_1_2_10_12_1 doi: 10.1016/j.neunet.2009.05.008 – ident: e_1_2_10_25_1 doi: 10.1109/INDICON47234.2019.9028925 – ident: e_1_2_10_33_1 doi: 10.1109/TNSRE.2020.3040289 – ident: e_1_2_10_36_1 doi: 10.1109/CCECE.2001.933649 – ident: e_1_2_10_15_1 doi: 10.1109/ICORR.2019.8779499 – year: 2012 ident: e_1_2_10_20_1 – ident: e_1_2_10_41_1 doi: 10.1137/S089547980035689X – volume: 1 start-page: 20 year: 2014 ident: e_1_2_10_26_1 article-title: Imagined speech classification using EEG publication-title: Advances in Biomedical Science and Engineering – ident: e_1_2_10_6_1 doi: 10.1088/1741-2552/aae4b9 – ident: e_1_2_10_29_1 doi: 10.1016/j.measurement.2019.07.070 – ident: e_1_2_10_13_1 doi: 10.1016/S0926-6410(00)00025-2 – ident: e_1_2_10_17_1 doi: 10.1016/j.bspc.2013.07.011 – ident: e_1_2_10_30_1 doi: 10.1016/j.neures.2019.04.004 |
SSID | ssj0056512 |
Score | 2.291376 |
Snippet | The derivation of rhythm‐specific spatial patterns of electroencephalographic (EEG) signals for covert speech EEG classification task is dealt in this work.... Abstract The derivation of rhythm‐specific spatial patterns of electroencephalographic (EEG) signals for covert speech EEG classification task is dealt in this... |
SourceID | doaj gale crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 92 |
SubjectTerms | Analysis Electroencephalography |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEA7retGD-MTRVQIKotDaSdekO-BllVlXERF0cW-h8tpZXGdltj148yf4G_0lVqV7xh0QwVtIV0IeXamvO1VfCfGwiV5PNZIi2QQV6KQri5ir1rYK26SwDsXL953ZP4A3h9PDLfF8FQsz8EOsf7ixZpTzmhUc_ZCFhEAtB70en-inShM8uCAucmwtM-dreL86hwmpDHedLSeSJ1y8IicF--xP2w1zVFj712fzebBarM3eVXFlhIlyd9jXa2IrLa6Ly-fIA28I_wk5aUQv8zHfeHtcfP714ydbpShns1dyOf_ez79QFQdTskOQPGPvaeo1p8LmeSYJsMrAPpw9PUspzGVgMM3CZcNuioO92ceX-9WYMaEKQIalytMGYt1gl-sAKauELUeqIk0_IOSpjRahSTrE3NVGJ0toJBiFHgESFZtbYntxuki3hUwJOm8jnX5kwKit1xZyl31o6xSNUhPxeLVwLox04pzV4sSVa22wjhfZlUWeiAdr2a8DicZfpV7w-q8lmPi6VJwuj9yoRw471CqrzuRA31rYeh00KmNiBpV9pE4e8e45Vk8aTsAxyoAmxURXbpe5Uy0YZSZiZ0OS1CpsPH5S9v8fA3YfXr_VpXTnf4TvikuaYyiK6_eO2O6X39I9Qja9v19e4N9yW_Yc priority: 102 providerName: Wiley-Blackwell |
Title | Wavelet filterbank‐based EEG rhythm‐specific spatial features for covert speech classification |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12059 https://doaj.org/article/a8a21f186fc548a7b2c2a166df41fbd9 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1faxQxEA_aJ30Q6x88bUtAQRTWbrJz2c1jK1eriAha7FuY_OOK9ZTe-uCbH8HP6CfpTHbvuILoi29LMrskk0nmt2TmN0I8aaLXU420kWyCCnTSlUXMVWtbhW1SWIcS5fvOHJ_Am9Pp6UapL44JG-iBB8XtY4daZdWZHAhcY-t10KiMiRlU9rGk7pHPW_1MDWcwoZThnrPlIvKEiVfEpGD3l2fn-oXShZ10wxUVxv71ubwJVIunObotbo0QUR4MQ9sW19Lijri5QRx4V_hPyAUjepnP-Lbb4-Lz75-_2CNFOZu9khfzH_38CzVxIiUHA8klR07TV3MqTJ5LSWBVBo7f7KkvpTCXgYE0C5fFuidOjmYfXx5XY7WEKgA5lSpPG4h1g12uA6SsEracpYo0_YCQpzZahCbpEHNXG50sIZFgFHoESPTY3Bdbi6-L9EDIlKDzNtLJR86L3vXaQu6yD22dolFqIp6tFOfCSCXOFS3OXbnSButYya4oeSIer2W_DQQaf5Q6ZP2vJZj0ujSQKbjRFNy_TGEinvLqOd6aNJyAY4YBTYpJrtwB86ZaMMpMxM4VSdpS4Ur387L-fxmw-_D6rS5PD__H0B-JG5rzKko4-I7Y6i--p11CO73fE9c1vN8r5n0J3db_dA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagHIAD4lcstBAJJARSaOzMOvGxoC1bWCokWtGbNXZstqJs0W449NZH4Bl5ks442aUrISRuljO2_JPxfLZnPgvxvGycGiokRTIBclBB5QYx5pWpJFZBYuGTl---Hh_C-6PhUe-bw7EwHT_E6sCNNSOt16zgfCDdbTiBSTIXxyfqtVSED66Ka6BVxXqp4NNyISao0l12VvySPAHjJTspmO0_ZdfsUaLtXy3Ol9FqMje7t8WtHidmO93E3hFXwuyuuHmJPfCecF-QX41os3jMV94OZ99-n_9is9Rko9G7bD49a6ffKYujKdkjKFuw-zTVGkOi81xkhFgzz06cLX0LwU8zz2iahdOM3ReHu6ODt-O8fzIh90CWJY_DEpqixDoWHkKUASsOVUXqvkeIQ9MYhDIo38S60CoYgiNeS3QIEChZPhAbs9NZeCiyEKB2pqHljywYlXXKQKyj81URGi3lQLxcDpz1PZ84P2txYtO9NhjLg2zTIA_Es5Xsj45F469Sb3j8VxLMfJ0yTudfba9IFmtUMspaR0-bLayc8gql1k0EGV1Dlbzg2bOsn9Qcj32YAXWKma7sDpOnGtBSD8TmmiTplV_7_CrN_z8abD_vTVRKPfof4afi-vjg48RO9vY_PBY3FAdUJD_wTbHRzn-GLYI5rXuSfuYLuUj5iA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA61BbEP4pVurTqgIAqjk0w2MwFfVt211VIEXS2-hJObW2y3ZXd88M2f4G_sL-k5mdm1CyL4FjInIbeT82VyzhfGHpfeir4AVCQdZC5FELkGiHmlKw5V4FC45OV7oHbH8t1h_3CNvVzEwrT8EMsfbqQZab8mBT_zsT1vSuLInB8di-dcIDy4wjaIJg_X9Mbg8_jreLETI1ZpbzsrekoekfGCnlTqF39KrxikxNu_3J0vw9Vkb0Y32PUOKGaDdmZvsrUwvcU2L9EH3mb2C9CzEU0Wj-jO28L0-_mv32SXfDYcvs1mk5_N5ASzKJySXIKyOflPY60xJD7PeYaQNXPkxdngtxDcJHMEp0k4TdkdNh4NP73ezbs3E3In0bTksV9KX5RQx8LJEHmAimJVAbvvQMa-9hpkGYTzsS6UCBrxiFMcLEgZMFneZevT02nYYlkIsrba4_6HJgzLWqFlrKN1VRG84rzHni4GzriOUJzetTg26WJbakODbNIg99ijpexZS6PxV6lXNP5LCaK-Thmns2-m0yQDNQgeea2iw9MWVFY4AVwpHyWP1mMlT2j2DCkoNsdBF2eAnSKqKzMg9lQtFVc9trMiiYrlVj4_S_P_jwabj3v7IqW2_0f4Ibv64c3I7O8dvL_HrgkKqEh-4DtsvZn9CPcR5jT2QbeaLwD5lfqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet+filterbank%E2%80%90based+EEG+rhythm%E2%80%90specific+spatial+features+for+covert+speech+classification&rft.jtitle=IET+signal+processing&rft.au=Biswas%2C+Sukanya&rft.au=Sinha%2C+Rohit&rft.date=2022-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1751-9675&rft.volume=16&rft.issue=1&rft.spage=92&rft_id=info:doi/10.1049%2Fsil2.12059&rft.externalDocID=A748494616 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon |