Wavelet filterbank‐based EEG rhythm‐specific spatial features for covert speech classification

The derivation of rhythm‐specific spatial patterns of electroencephalographic (EEG) signals for covert speech EEG classification task is dealt in this work. This study has been performed on a publicly accessible multi‐channel covert speech EEG database consisting of multi‐syllabic words. With the mo...

Full description

Saved in:
Bibliographic Details
Published inIET signal processing Vol. 16; no. 1; pp. 92 - 105
Main Authors Biswas, Sukanya, Sinha, Rohit
Format Journal Article
LanguageEnglish
Published John Wiley & Sons, Inc 01.02.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The derivation of rhythm‐specific spatial patterns of electroencephalographic (EEG) signals for covert speech EEG classification task is dealt in this work. This study has been performed on a publicly accessible multi‐channel covert speech EEG database consisting of multi‐syllabic words. With the motivation of deriving more discriminative features, each channel data has been decomposed into distinct bands focussing on the five basic EEG rhythms using the discrete wavelet transform (DWT)‐based signal decomposition algorithm. Following that, for each band, the multi‐class common spatial pattern (CSP) features are computed using joint approximate diagonalisation. The final feature vector is formed by retaining a few significant CSP components from all five bands. Radial basis function kernel‐based support vector machines are used for covert speech classification. After 5‐fold cross‐validation, the proposed DWT‐based bandwise‐CSP features are noted to yield an average classification accuracy of 94%. In contrast with the existing (non‐decomposed) CSP feature, a relative improvement of about 24% is achieved. For generalisation purposes, the proposed approach has also been evaluated for another covert speech database comprising more classes and subjects. The study highlights the discovery of more discriminative patterns with rhythm‐specific processing in the context of covert speech classification. The proposed approach has the potential to be useful in other brain‐computer interface paradigms that employ EEG signals.
AbstractList The derivation of rhythm‐specific spatial patterns of electroencephalographic (EEG) signals for covert speech EEG classification task is dealt in this work. This study has been performed on a publicly accessible multi‐channel covert speech EEG database consisting of multi‐syllabic words. With the motivation of deriving more discriminative features, each channel data has been decomposed into distinct bands focussing on the five basic EEG rhythms using the discrete wavelet transform (DWT)‐based signal decomposition algorithm. Following that, for each band, the multi‐class common spatial pattern (CSP) features are computed using joint approximate diagonalisation. The final feature vector is formed by retaining a few significant CSP components from all five bands. Radial basis function kernel‐based support vector machines are used for covert speech classification. After 5‐fold cross‐validation, the proposed DWT‐based bandwise‐CSP features are noted to yield an average classification accuracy of 94%. In contrast with the existing (non‐decomposed) CSP feature, a relative improvement of about 24% is achieved. For generalisation purposes, the proposed approach has also been evaluated for another covert speech database comprising more classes and subjects. The study highlights the discovery of more discriminative patterns with rhythm‐specific processing in the context of covert speech classification. The proposed approach has the potential to be useful in other brain‐computer interface paradigms that employ EEG signals.
Abstract The derivation of rhythm‐specific spatial patterns of electroencephalographic (EEG) signals for covert speech EEG classification task is dealt in this work. This study has been performed on a publicly accessible multi‐channel covert speech EEG database consisting of multi‐syllabic words. With the motivation of deriving more discriminative features, each channel data has been decomposed into distinct bands focussing on the five basic EEG rhythms using the discrete wavelet transform (DWT)‐based signal decomposition algorithm. Following that, for each band, the multi‐class common spatial pattern (CSP) features are computed using joint approximate diagonalisation. The final feature vector is formed by retaining a few significant CSP components from all five bands. Radial basis function kernel‐based support vector machines are used for covert speech classification. After 5‐fold cross‐validation, the proposed DWT‐based bandwise‐CSP features are noted to yield an average classification accuracy of 94%. In contrast with the existing (non‐decomposed) CSP feature, a relative improvement of about 24% is achieved. For generalisation purposes, the proposed approach has also been evaluated for another covert speech database comprising more classes and subjects. The study highlights the discovery of more discriminative patterns with rhythm‐specific processing in the context of covert speech classification. The proposed approach has the potential to be useful in other brain‐computer interface paradigms that employ EEG signals.
Audience Academic
Author Biswas, Sukanya
Sinha, Rohit
Author_xml – sequence: 1
  givenname: Sukanya
  orcidid: 0000-0003-2541-7235
  surname: Biswas
  fullname: Biswas, Sukanya
  email: sukanya.biswas@iitg.ac.in
  organization: Indian Institute of Technology Guwahati
– sequence: 2
  givenname: Rohit
  orcidid: 0000-0002-0419-6501
  surname: Sinha
  fullname: Sinha, Rohit
  organization: Indian Institute of Technology Guwahati
BookMark eNp9kcGKFDEQhoOs4O7qxSdo8CbMmKTT6c5xWcZ1YMCDisdQXV3ZydrTGZK4Mrd9BJ_RJzEzLQvKIjkkVL7_r6L-C3Y2hYkYey34UnBl3iU_yqWQvDHP2LloG7EwuqvPHt9t84JdpHTHeaMbIc9Z_xXuaaRcOT9mij1M3349_Owh0VCtVjdV3B7ydldKaU_onccq7SF7GCtHkL9HSpULscJwTzGXPyLcVjhCSke4kGF6yZ47GBO9-nNfsi_vV5-vPyw2H2_W11ebBSolzcI1tRp4DZ3jqMgJglZqo6AMjaBcYwYDqiaJg-u4lmRq06IW0INSVJ71JVvPvkOAO7uPfgfxYAN4eyqEeGshZo8jWehACic67bBRHbS9RAlC68Ep4frBFK83s9ctFNxPLuQIuPMJ7VWrOmWUFrpQyyeocgbaeSzJlKXS34K3swBjSCmSexxTcHsM0B4DtKcAC8z_gdHn00ZLFz8-LRGz5EdpfPiPuf203shZ8xssOLHu
CitedBy_id crossref_primary_10_1109_TIM_2024_3472830
crossref_primary_10_3389_fnhum_2024_1398065
crossref_primary_10_1007_s10772_024_10155_z
crossref_primary_10_3390_s24248168
Cites_doi 10.1016/j.neuroimage.2017.10.011
10.1109/EMBC.2017.8037000
10.1007/BF02344717
10.1016/j.asoc.2013.10.023
10.1016/j.neuroimage.2006.01.036
10.1016/j.neuroimage.2005.03.013
10.1007/s13534-020-00152-x
10.1109/TBME.2017.2786251
10.1109/86.895946
10.3390/s19050987
10.1007/BF00994018
10.1137/0907013
10.1049/iet-cps.2018.5059
10.3390/s120201211
10.1088/1741-2552/aa8235
10.1109/ICASSP.2015.7178118
10.1109/INDICON45594.2018.8986984
10.1016/j.eswa.2010.11.050
10.1145/1961189.1961199
10.1049/iet-spr.2020.0025
10.1007/BF01211171
10.1080/2326263X.2019.1698928
10.3390/brainsci9080201
10.1007/s10916-018-1137-9
10.1109/TASLP.2017.2758164
10.1016/j.neunet.2009.05.008
10.1109/INDICON47234.2019.9028925
10.1109/TNSRE.2020.3040289
10.1109/CCECE.2001.933649
10.1109/ICORR.2019.8779499
10.1137/S089547980035689X
10.1088/1741-2552/aae4b9
10.1016/j.measurement.2019.07.070
10.1016/S0926-6410(00)00025-2
10.1016/j.bspc.2013.07.011
10.1016/j.neures.2019.04.004
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/sil2.12059
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9683
EndPage 105
ExternalDocumentID oai_doaj_org_article_a8a21f186fc548a7b2c2a166df41fbd9
A748494616
10_1049_sil2_12059
SIL212059
Genre article
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
J9A
JAVBF
K6V
K7-
L6V
LAI
LXU
M43
M7S
MCNEO
NADUK
NXXTH
O9-
OCL
OK1
P2P
P62
PTHSS
RIE
RNS
RUI
S0W
UNMZH
~ZZ
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
WIN
ID FETCH-LOGICAL-c4429-f534d03a8f0c4ef1ea72694a967ca4f59d9a43e2cdf8062e9397c61aba44e97c3
IEDL.DBID DOA
ISSN 1751-9675
IngestDate Wed Aug 27 01:30:55 EDT 2025
Thu May 08 04:17:44 EDT 2025
Tue May 06 04:28:20 EDT 2025
Tue Jul 01 02:39:45 EDT 2025
Thu Apr 24 23:13:15 EDT 2025
Wed Jan 22 16:26:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial-NoDerivs
http://doi.wiley.com/10.1002/tdm_license_1.1
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4429-f534d03a8f0c4ef1ea72694a967ca4f59d9a43e2cdf8062e9397c61aba44e97c3
ORCID 0000-0003-2541-7235
0000-0002-0419-6501
OpenAccessLink https://doaj.org/article/a8a21f186fc548a7b2c2a166df41fbd9
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_a8a21f186fc548a7b2c2a166df41fbd9
gale_infotracmisc_A748494616
gale_infotracacademiconefile_A748494616
crossref_primary_10_1049_sil2_12059
crossref_citationtrail_10_1049_sil2_12059
wiley_primary_10_1049_sil2_12059_SIL212059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle IET signal processing
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2009; 22
2019; 9
2004; 42
2019; 4
2006; 31
2019; 6
2011; 2
2012
2017; 25
2010
2017; 65
2000; 8
2008
2019; 19
2020; 14
2019; 147
2004; 5
2020; 10
2001; 22
2005; 26
2013; 8
2011; 38
2012; 12
2014; 20
1999
2014; 1
1995; 20
2017; 15
1986; 7
2019; 43
2000; 10
2020; 28
2019
2018
2017
2016
2015
2001; 2
2018; 180
2018; 16
2009; 5610
2017; 10160
2019; 153
1994; 6
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
Hori G. (e_1_2_10_40_1) 1999
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_41_1
D’Zmura M. (e_1_2_10_14_1) 2009; 5610
Manca A.D. (e_1_2_10_19_1) 2016
Kamalakkannan R. (e_1_2_10_26_1) 2014; 1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
Coretto G.A.P. (e_1_2_10_21_1) 2017
e_1_2_10_31_1
e_1_2_10_30_1
Torres Garcia A.A. (e_1_2_10_20_1) 2012
Liyanage S.R. (e_1_2_10_42_1) 2010
Kang J.M. (e_1_2_10_9_1) 2020; 10
Ziehe A. (e_1_2_10_37_1) 2004; 5
Dash D. (e_1_2_10_4_1) 2020; 14
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
Ang K.K. (e_1_2_10_45_1) 2008
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_47_1
References_xml – volume: 25
  start-page: 2292
  issue: 12
  year: 2017
  end-page: 2300
  article-title: EEG classification of covert speech using regularized neural networks
  publication-title: IEEE/ACM Trans.Audio Speech Lang. Process.
– volume: 22
  start-page: 1334
  issue: 9
  year: 2009
  end-page: 1339
  article-title: Single‐trial classification of vowel speech imagery using common spatial patterns
  publication-title: Neural Networks
– volume: 14
  start-page: 1
  issue: 290
  year: 2020
  end-page: 14
  article-title: Decoding imagined and spoken phrases from non‐invasive neural (MEG) signals
  publication-title: Front. Neurosci.
– volume: 10160
  year: 2017
– volume: 26
  start-page: 1119
  issue: 4
  year: 2005
  end-page: 1127
  article-title: Scanning silence: mental imagery of complex sounds
  publication-title: Neuroimage
– volume: 8
  start-page: 901
  issue: 6
  year: 2013
  end-page: 908
  article-title: Analysis and classification of speech imagery EEG for BCI
  publication-title: Biomed. Signal Process. Contr.
– start-page: 1
  year: 2019
  end-page: 4
– volume: 4
  start-page: 164
  issue: 2
  year: 2019
  end-page: 172
  article-title: Mind your thoughts: BCI using single EEG electrode
  publication-title: IET Cyber‐Physical Systems: Theory & Applications
– volume: 10
  start-page: 173
  issue: 1
  year: 2000
  end-page: 176
  article-title: Single‐sweep EEG analysis of neural processes underlying perception and production of vowels
  publication-title: Cognit. Brain Res.
– volume: 6
  start-page: 128
  issue: 4
  year: 2019
  end-page: 140
  article-title: Development of a ternary hybrid fNIRS‐EEG brain–computer interface based on imagined speech
  publication-title: Brain‐Computer Interfaces
– volume: 14
  start-page: 396
  issue: 6
  year: 2020
  end-page: 405
  article-title: Automatic EEG eyeblink artefact identification and removal technique using independent component analysis in combination with support vector machines and denoising autoencoder
  publication-title: IET Signal Process.
– volume: 19
  start-page: 987
  issue: 5
  year: 2019
  article-title: Removal of artifacts from EEG signals: a review
  publication-title: Sensors
– start-page: 305
  year: 2016
  end-page: 321
– volume: 16
  issue: 1
  year: 2018
  article-title: Online classification of imagined speech using functional near‐infrared spectroscopy signals
  publication-title: J. Neural. Eng.
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 8
  article-title: Difference in spectral power density of sleep EEG between patients with simple snoring and those with obstructive sleep apnoea
  publication-title: Sci. Rep.
– volume: 153
  start-page: 48
  year: 2019
  end-page: 55
  article-title: Synchronization between overt speech envelope and EEG oscillations during imagined speech
  publication-title: Neurosci. Res.
– start-page: 689
  year: 2019
  end-page: 693
– start-page: 1022
  year: 2017
  end-page: 1025
– start-page: 992
  year: 2015
  end-page: 996
– volume: 5
  start-page: 777
  year: 2004
  end-page: 800
  article-title: A fast algorithm for joint diagonalization with non‐orthogonal transformations and its application to blind source separation
  publication-title: J. Mach. Learn. Res.
– year: 2012
– volume: 31
  start-page: 1327
  issue: 3
  year: 2006
  end-page: 1342
  article-title: Song and speech: brain regions involved with perception and covert production
  publication-title: Neuroimage
– volume: 9
  start-page: 201
  issue: 8
  year: 2019
  article-title: EEG signals feature extraction based on DWT and EMD combined with approximate entropy
  publication-title: Brain Sci.
– volume: 28
  start-page: 2647
  issue: 12
  year: 2020
  end-page: 2659
  article-title: Neural decoding of imagined speech and visual imagery as intuitive paradigms for BCI communication
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
– volume: 1
  start-page: 20
  year: 2014
  end-page: 32
  article-title: Imagined speech classification using EEG
  publication-title: Advances in Biomedical Science and Engineering
– volume: 147
  year: 2019
  article-title: Analysis and classification of hybrid BCI based on motor imagery and speech imagery
  publication-title: Measurement
– volume: 65
  start-page: 2168
  issue: 10
  year: 2017
  end-page: 2177
  article-title: Multiclass classification of word imagination speech with hybrid connectivity features
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 20
  start-page: 95
  year: 2014
  end-page: 102
  article-title: Classification of silent speech using support vector machine and relevance vector machine
  publication-title: Appl. Soft. Comput.
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Mach. Learn.
– volume: 12
  start-page: 1211
  issue: 2
  year: 2012
  end-page: 1279
  article-title: Brain computer interfaces: a review
  publication-title: Sensors
– volume: 6
  start-page: 259
  issue: 4
  year: 1994
  end-page: 267
  article-title: Event‐related potentials in silent speech
  publication-title: Brain Topogr.
– volume: 22
  start-page: 1136
  issue: 4
  year: 2001
  end-page: 1152
  article-title: Joint approximate diagonalization of positive definite Hermitian matrices
  publication-title: SIAM J. Matrix. Anal. Appl.
– start-page: 2390
  year: 2008
  end-page: 2397
– volume: 8
  start-page: 441
  issue: 4
  year: 2000
  end-page: 446
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– start-page: 675
  year: 1999
  end-page: 678
  article-title: Joint diagonalization and matrix differential equations
  publication-title: Proc of NOLTA
– volume: 180
  start-page: 301
  year: 2018
  end-page: 311
  article-title: Decoding spoken phonemes from sensorimotor cortex with high‐density ECoG grids
  publication-title: Neuroimage
– volume: 5610
  start-page: 40
  year: 2009
  end-page: 48
  article-title: Toward EEG sensing of imagined speech
  publication-title: Human‐Computer Interaction: New Trends
– volume: 15
  issue: 1
  year: 2017
  article-title: Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features
  publication-title: J. Neural. Eng.
– start-page: 1
  year: 2010
  end-page: 6
  article-title: EEG signal separation for multi‐class motor imagery using common spatial patterns based on joint approximate diagonalization
– volume: 42
  start-page: 407
  issue: 3
  year: 2004
  end-page: 412
  article-title: Removal of ocular artifacts from electro‐encephalogram by adaptive filtering
  publication-title: Med. Biol. Eng. Comput.
– volume: 10
  start-page: 217
  issue: 2
  year: 2020
  end-page: 226
  article-title: Multiclass covert speech classification using extreme learning machine
  publication-title: Biomed. Eng. Lett.
– volume: 43
  start-page: 20
  issue: 2
  year: 2019
  article-title: The relative contribution of high‐gamma linguistic processing stages of word production, and motor imagery of articulation in class separability of covert speech tasks in EEG data
  publication-title: J. Med. Syst.
– volume: 38
  start-page: 6190
  issue: 5
  year: 2011
  end-page: 6201
  article-title: Wavelet basis functions in biomedical signal processing
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 1363
  year: 2001
  end-page: 1366
– start-page: 1
  year: 2018
  end-page: 5
– volume: 7
  start-page: 169
  issue: 1
  year: 1986
  end-page: 184
  article-title: An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form
  publication-title: SIAM J. Sci. Stat. Comput.
– ident: e_1_2_10_3_1
  doi: 10.1016/j.neuroimage.2017.10.011
– volume: 14
  start-page: 1
  issue: 290
  year: 2020
  ident: e_1_2_10_4_1
  article-title: Decoding imagined and spoken phrases from non‐invasive neural (MEG) signals
  publication-title: Front. Neurosci.
– ident: e_1_2_10_23_1
  doi: 10.1109/EMBC.2017.8037000
– volume: 5610
  start-page: 40
  year: 2009
  ident: e_1_2_10_14_1
  article-title: Toward EEG sensing of imagined speech
  publication-title: Human‐Computer Interaction: New Trends
– ident: e_1_2_10_35_1
  doi: 10.1007/BF02344717
– start-page: 1
  volume-title: International Joint Conference on Neural Networks (IJCNN)
  year: 2010
  ident: e_1_2_10_42_1
– ident: e_1_2_10_18_1
  doi: 10.1016/j.asoc.2013.10.023
– ident: e_1_2_10_46_1
  doi: 10.1016/j.neuroimage.2006.01.036
– ident: e_1_2_10_47_1
  doi: 10.1016/j.neuroimage.2005.03.013
– ident: e_1_2_10_16_1
  doi: 10.1007/s13534-020-00152-x
– ident: e_1_2_10_27_1
  doi: 10.1109/TBME.2017.2786251
– ident: e_1_2_10_38_1
  doi: 10.1109/86.895946
– start-page: 675
  year: 1999
  ident: e_1_2_10_40_1
  article-title: Joint diagonalization and matrix differential equations
  publication-title: Proc of NOLTA
– ident: e_1_2_10_7_1
  doi: 10.3390/s19050987
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: e_1_2_10_9_1
  article-title: Difference in spectral power density of sleep EEG between patients with simple snoring and those with obstructive sleep apnoea
  publication-title: Sci. Rep.
– ident: e_1_2_10_43_1
  doi: 10.1007/BF00994018
– ident: e_1_2_10_39_1
  doi: 10.1137/0907013
– ident: e_1_2_10_10_1
  doi: 10.1049/iet-cps.2018.5059
– ident: e_1_2_10_2_1
  doi: 10.3390/s120201211
– start-page: 305
  volume-title: EEG‐based recognition of silent and imagined vowels
  year: 2016
  ident: e_1_2_10_19_1
– ident: e_1_2_10_28_1
  doi: 10.1088/1741-2552/aa8235
– ident: e_1_2_10_24_1
  doi: 10.1109/ICASSP.2015.7178118
– ident: e_1_2_10_48_1
  doi: 10.1109/INDICON45594.2018.8986984
– ident: e_1_2_10_34_1
  doi: 10.1016/j.eswa.2010.11.050
– volume: 5
  start-page: 777
  year: 2004
  ident: e_1_2_10_37_1
  article-title: A fast algorithm for joint diagonalization with non‐orthogonal transformations and its application to blind source separation
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_10_44_1
  doi: 10.1145/1961189.1961199
– start-page: 2390
  year: 2008
  ident: e_1_2_10_45_1
– ident: e_1_2_10_8_1
  doi: 10.1049/iet-spr.2020.0025
– ident: e_1_2_10_11_1
  doi: 10.1007/BF01211171
– ident: e_1_2_10_5_1
  doi: 10.1080/2326263X.2019.1698928
– ident: e_1_2_10_32_1
  doi: 10.3390/brainsci9080201
– start-page: 1016002
  year: 2017
  ident: e_1_2_10_21_1
– ident: e_1_2_10_31_1
  doi: 10.1007/s10916-018-1137-9
– ident: e_1_2_10_22_1
  doi: 10.1109/TASLP.2017.2758164
– ident: e_1_2_10_12_1
  doi: 10.1016/j.neunet.2009.05.008
– ident: e_1_2_10_25_1
  doi: 10.1109/INDICON47234.2019.9028925
– ident: e_1_2_10_33_1
  doi: 10.1109/TNSRE.2020.3040289
– ident: e_1_2_10_36_1
  doi: 10.1109/CCECE.2001.933649
– ident: e_1_2_10_15_1
  doi: 10.1109/ICORR.2019.8779499
– year: 2012
  ident: e_1_2_10_20_1
– ident: e_1_2_10_41_1
  doi: 10.1137/S089547980035689X
– volume: 1
  start-page: 20
  year: 2014
  ident: e_1_2_10_26_1
  article-title: Imagined speech classification using EEG
  publication-title: Advances in Biomedical Science and Engineering
– ident: e_1_2_10_6_1
  doi: 10.1088/1741-2552/aae4b9
– ident: e_1_2_10_29_1
  doi: 10.1016/j.measurement.2019.07.070
– ident: e_1_2_10_13_1
  doi: 10.1016/S0926-6410(00)00025-2
– ident: e_1_2_10_17_1
  doi: 10.1016/j.bspc.2013.07.011
– ident: e_1_2_10_30_1
  doi: 10.1016/j.neures.2019.04.004
SSID ssj0056512
Score 2.291376
Snippet The derivation of rhythm‐specific spatial patterns of electroencephalographic (EEG) signals for covert speech EEG classification task is dealt in this work....
Abstract The derivation of rhythm‐specific spatial patterns of electroencephalographic (EEG) signals for covert speech EEG classification task is dealt in this...
SourceID doaj
gale
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 92
SubjectTerms Analysis
Electroencephalography
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEA7retGD-MTRVQIKotDaSdekO-BllVlXERF0cW-h8tpZXGdltj148yf4G_0lVqV7xh0QwVtIV0IeXamvO1VfCfGwiV5PNZIi2QQV6KQri5ir1rYK26SwDsXL953ZP4A3h9PDLfF8FQsz8EOsf7ixZpTzmhUc_ZCFhEAtB70en-inShM8uCAucmwtM-dreL86hwmpDHedLSeSJ1y8IicF--xP2w1zVFj712fzebBarM3eVXFlhIlyd9jXa2IrLa6Ly-fIA28I_wk5aUQv8zHfeHtcfP714ydbpShns1dyOf_ez79QFQdTskOQPGPvaeo1p8LmeSYJsMrAPpw9PUspzGVgMM3CZcNuioO92ceX-9WYMaEKQIalytMGYt1gl-sAKauELUeqIk0_IOSpjRahSTrE3NVGJ0toJBiFHgESFZtbYntxuki3hUwJOm8jnX5kwKit1xZyl31o6xSNUhPxeLVwLox04pzV4sSVa22wjhfZlUWeiAdr2a8DicZfpV7w-q8lmPi6VJwuj9yoRw471CqrzuRA31rYeh00KmNiBpV9pE4e8e45Vk8aTsAxyoAmxURXbpe5Uy0YZSZiZ0OS1CpsPH5S9v8fA3YfXr_VpXTnf4TvikuaYyiK6_eO2O6X39I9Qja9v19e4N9yW_Yc
  priority: 102
  providerName: Wiley-Blackwell
Title Wavelet filterbank‐based EEG rhythm‐specific spatial features for covert speech classification
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12059
https://doaj.org/article/a8a21f186fc548a7b2c2a166df41fbd9
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1faxQxEA_aJ30Q6x88bUtAQRTWbrJz2c1jK1eriAha7FuY_OOK9ZTe-uCbH8HP6CfpTHbvuILoi29LMrskk0nmt2TmN0I8aaLXU420kWyCCnTSlUXMVWtbhW1SWIcS5fvOHJ_Am9Pp6UapL44JG-iBB8XtY4daZdWZHAhcY-t10KiMiRlU9rGk7pHPW_1MDWcwoZThnrPlIvKEiVfEpGD3l2fn-oXShZ10wxUVxv71ubwJVIunObotbo0QUR4MQ9sW19Lijri5QRx4V_hPyAUjepnP-Lbb4-Lz75-_2CNFOZu9khfzH_38CzVxIiUHA8klR07TV3MqTJ5LSWBVBo7f7KkvpTCXgYE0C5fFuidOjmYfXx5XY7WEKgA5lSpPG4h1g12uA6SsEracpYo0_YCQpzZahCbpEHNXG50sIZFgFHoESPTY3Bdbi6-L9EDIlKDzNtLJR86L3vXaQu6yD22dolFqIp6tFOfCSCXOFS3OXbnSButYya4oeSIer2W_DQQaf5Q6ZP2vJZj0ujSQKbjRFNy_TGEinvLqOd6aNJyAY4YBTYpJrtwB86ZaMMpMxM4VSdpS4Ur387L-fxmw-_D6rS5PD__H0B-JG5rzKko4-I7Y6i--p11CO73fE9c1vN8r5n0J3db_dA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagHIAD4lcstBAJJARSaOzMOvGxoC1bWCokWtGbNXZstqJs0W449NZH4Bl5ks442aUrISRuljO2_JPxfLZnPgvxvGycGiokRTIBclBB5QYx5pWpJFZBYuGTl---Hh_C-6PhUe-bw7EwHT_E6sCNNSOt16zgfCDdbTiBSTIXxyfqtVSED66Ka6BVxXqp4NNyISao0l12VvySPAHjJTspmO0_ZdfsUaLtXy3Ol9FqMje7t8WtHidmO93E3hFXwuyuuHmJPfCecF-QX41os3jMV94OZ99-n_9is9Rko9G7bD49a6ffKYujKdkjKFuw-zTVGkOi81xkhFgzz06cLX0LwU8zz2iahdOM3ReHu6ODt-O8fzIh90CWJY_DEpqixDoWHkKUASsOVUXqvkeIQ9MYhDIo38S60CoYgiNeS3QIEChZPhAbs9NZeCiyEKB2pqHljywYlXXKQKyj81URGi3lQLxcDpz1PZ84P2txYtO9NhjLg2zTIA_Es5Xsj45F469Sb3j8VxLMfJ0yTudfba9IFmtUMspaR0-bLayc8gql1k0EGV1Dlbzg2bOsn9Qcj32YAXWKma7sDpOnGtBSD8TmmiTplV_7_CrN_z8abD_vTVRKPfof4afi-vjg48RO9vY_PBY3FAdUJD_wTbHRzn-GLYI5rXuSfuYLuUj5iA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA61BbEP4pVurTqgIAqjk0w2MwFfVt211VIEXS2-hJObW2y3ZXd88M2f4G_sL-k5mdm1CyL4FjInIbeT82VyzhfGHpfeir4AVCQdZC5FELkGiHmlKw5V4FC45OV7oHbH8t1h_3CNvVzEwrT8EMsfbqQZab8mBT_zsT1vSuLInB8di-dcIDy4wjaIJg_X9Mbg8_jreLETI1ZpbzsrekoekfGCnlTqF39KrxikxNu_3J0vw9Vkb0Y32PUOKGaDdmZvsrUwvcU2L9EH3mb2C9CzEU0Wj-jO28L0-_mv32SXfDYcvs1mk5_N5ASzKJySXIKyOflPY60xJD7PeYaQNXPkxdngtxDcJHMEp0k4TdkdNh4NP73ezbs3E3In0bTksV9KX5RQx8LJEHmAimJVAbvvQMa-9hpkGYTzsS6UCBrxiFMcLEgZMFneZevT02nYYlkIsrba4_6HJgzLWqFlrKN1VRG84rzHni4GzriOUJzetTg26WJbakODbNIg99ijpexZS6PxV6lXNP5LCaK-Thmns2-m0yQDNQgeea2iw9MWVFY4AVwpHyWP1mMlT2j2DCkoNsdBF2eAnSKqKzMg9lQtFVc9trMiiYrlVj4_S_P_jwabj3v7IqW2_0f4Ibv64c3I7O8dvL_HrgkKqEh-4DtsvZn9CPcR5jT2QbeaLwD5lfqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet+filterbank%E2%80%90based+EEG+rhythm%E2%80%90specific+spatial+features+for+covert+speech+classification&rft.jtitle=IET+signal+processing&rft.au=Biswas%2C+Sukanya&rft.au=Sinha%2C+Rohit&rft.date=2022-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1751-9675&rft.volume=16&rft.issue=1&rft.spage=92&rft_id=info:doi/10.1049%2Fsil2.12059&rft.externalDocID=A748494616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon