VID: Human identification through vein patterns captured from commodity depth cameras

Herein, a human identification system for smart spaces called Vein‐ID (referred to as VID) is presented, which leverage the uniqueness of vein patterns embedded in dorsum of an individual's hand. VID extracts vein patterns using the depth information and infrared (IR) images, both obtained from...

Full description

Saved in:
Bibliographic Details
Published inIET biometrics Vol. 10; no. 2; pp. 142 - 162
Main Authors Shah, Syed W., Kanhere, Salil S., Zhang, Jin, Yao, Lina
Format Journal Article
LanguageEnglish
Published Stevenage John Wiley & Sons, Inc 01.03.2021
Wiley
Subjects
Online AccessGet full text
ISSN2047-4938
2047-4946
DOI10.1049/bme2.12009

Cover

Loading…
Abstract Herein, a human identification system for smart spaces called Vein‐ID (referred to as VID) is presented, which leverage the uniqueness of vein patterns embedded in dorsum of an individual's hand. VID extracts vein patterns using the depth information and infrared (IR) images, both obtained from a commodity depth camera. Two deep learning models (CNN and Stacked‐Autoencoders) are presented for precisely identifying a target individual from a set of N enrolled users. VID also incorporates a strategy for identifying an intruder—that is a person whose vein patterns are not included in the set of enrolled individuals. The performance of VID by collecting a comprehensive data set of approximately 17,500 images from 35 subjects is evaluated. The tests reveal that VID can identify an individual with an average accuracy of over 99% from a group of up to 35 individuals. It is demonstrated that VID can detect intruders with an average accuracy of about 96%. The execution time for training and testing the two deep learning models on different hardware platforms is also investigated and the differences are reported.
AbstractList Herein, a human identification system for smart spaces called Vein‐ID (referred to as VID) is presented, which leverage the uniqueness of vein patterns embedded in dorsum of an individual's hand. VID extracts vein patterns using the depth information and infrared (IR) images, both obtained from a commodity depth camera. Two deep learning models (CNN and Stacked‐Autoencoders) are presented for precisely identifying a target individual from a set of N enrolled users. VID also incorporates a strategy for identifying an intruder—that is a person whose vein patterns are not included in the set of enrolled individuals. The performance of VID by collecting a comprehensive data set of approximately 17,500 images from 35 subjects is evaluated. The tests reveal that VID can identify an individual with an average accuracy of over 99% from a group of up to 35 individuals. It is demonstrated that VID can detect intruders with an average accuracy of about 96%. The execution time for training and testing the two deep learning models on different hardware platforms is also investigated and the differences are reported.
Abstract Herein, a human identification system for smart spaces called Vein‐ID (referred to as VID) is presented, which leverage the uniqueness of vein patterns embedded in dorsum of an individual's hand. VID extracts vein patterns using the depth information and infrared (IR) images, both obtained from a commodity depth camera. Two deep learning models (CNN and Stacked‐Autoencoders) are presented for precisely identifying a target individual from a set of N enrolled users. VID also incorporates a strategy for identifying an intruder—that is a person whose vein patterns are not included in the set of enrolled individuals. The performance of VID by collecting a comprehensive data set of approximately 17,500 images from 35 subjects is evaluated. The tests reveal that VID can identify an individual with an average accuracy of over 99% from a group of up to 35 individuals. It is demonstrated that VID can detect intruders with an average accuracy of about 96%. The execution time for training and testing the two deep learning models on different hardware platforms is also investigated and the differences are reported.
Audience Academic
Author Zhang, Jin
Shah, Syed W.
Kanhere, Salil S.
Yao, Lina
Author_xml – sequence: 1
  givenname: Syed W.
  surname: Shah
  fullname: Shah, Syed W.
  email: z5038389@zmail.unsw.edu.au
  organization: The University of New South Wales
– sequence: 2
  givenname: Salil S.
  orcidid: 0000-0002-1835-3475
  surname: Kanhere
  fullname: Kanhere, Salil S.
  organization: The University of New South Wales
– sequence: 3
  givenname: Jin
  surname: Zhang
  fullname: Zhang, Jin
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Lina
  surname: Yao
  fullname: Yao, Lina
  organization: The University of New South Wales
BookMark eNp9kUtvEzEUhS1UJErohl9giR1SUr_GY7MrpdBIRWzabi2PH4mjjD14PFT593UyVRcIYS98dX2-c6903oOzmKID4CNGK4yYvOx6R1aYICTfgHOCWLtkkvGz15qKd-BiHHeoHi5Yg_E5eHhcf_sCb6deRxisiyX4YHQJKcKyzWnabOEfFyIcdCkuxxEaPZQpOwt9Tj00qe-TDeUArRvKtv72LuvxA3jr9X50Fy_vAjx8v7m_vl3e_fqxvr66WxrGiFx2RArqScMF8cwRjrHVrGFWECsailvDG2akFx55Lx1vrCQMUVth2lIhCF2A9exrk96pIYde54NKOqhTI-WN0rkEs3eqa0knOmMlx4wJTzpPvOdcdNJ03lW_Bfg0ew05_Z7cWNQuTTnW9RVFkpCWEnZUrWbVRlfTEH0qWZt6reuDqXn4UPtXLcaIMylpBT7PgMlpHLPzr2tipI6xqWNs6hRbFaO_xCaUUxp1Stj_G8Ez8lQHH_5jrr7-vCEz8wwrV6n1
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3174679
Cites_doi 10.1109/IPSN.2016.7460727
10.1145/362248.362272
10.1109/TIFS.2018.2850320
10.1145/3286978.3286994
10.1016/j.pmcj.2019.05.005
10.1109/TIFS.2011.2158423
10.1007/978-3-319-48308-5_54
10.1109/TSMCA.2011.2170416
10.1109/ACCESS.2019.2932400
10.1109/PERCOMW.2018.8480152
10.1109/TIFS.2017.2689724
10.1145/3084041.3084061
10.1007/978-3-642-01793-3_130
10.1109/ACCESS.2017.2694050
10.1109/TIP.2009.2023153
10.1109/BIBM.2017.8217830
10.1109/TSMC.2014.2329652
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
COPYRIGHT 2021 John Wiley & Sons, Inc.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
8FH
ABJCF
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
LK8
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1049/bme2.12009
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList


Computer Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 2047-4946
EndPage 162
ExternalDocumentID oai_doaj_org_article_b72b8bcd961448f2bf2ff668b9cbfe37
A711064993
10_1049_bme2_12009
BME212009
Genre article
GroupedDBID 0R~
1OC
24P
4.4
6IK
8FE
8FG
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K6V
K7-
L6V
M43
M7P
M7S
MCNEO
O9-
OCL
OK1
P62
PTHSS
RIE
RNS
RUI
AAYXX
CITATION
IDLOA
IGS
PHGZM
PHGZT
PMFND
8FH
AZQEC
DWQXO
GNUQQ
JQ2
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
WIN
PUEGO
ID FETCH-LOGICAL-c4429-b2983f25682f4e2611da454d82d85317c654c9f8f0ff9e65d92403dc443738823
IEDL.DBID DOA
ISSN 2047-4938
IngestDate Wed Aug 27 01:21:07 EDT 2025
Wed Aug 13 03:43:07 EDT 2025
Tue Jun 10 20:59:34 EDT 2025
Tue Jul 01 01:53:41 EDT 2025
Thu Apr 24 22:50:58 EDT 2025
Wed Jan 22 16:30:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4429-b2983f25682f4e2611da454d82d85317c654c9f8f0ff9e65d92403dc443738823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1835-3475
OpenAccessLink https://doaj.org/article/b72b8bcd961448f2bf2ff668b9cbfe37
PQID 3092273247
PQPubID 1916338
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_b72b8bcd961448f2bf2ff668b9cbfe37
proquest_journals_3092273247
gale_infotracacademiconefile_A711064993
crossref_primary_10_1049_bme2_12009
crossref_citationtrail_10_1049_bme2_12009
wiley_primary_10_1049_bme2_12009_BME212009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET biometrics
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_6_1_7_1
e_1_2_6_1_6_1
Comet Labs Research Team (e_1_2_6_1_10_1) 2019
(e_1_2_6_1_35_1) 2020
e_1_2_6_1_2_1
e_1_2_6_1_33_1
e_1_2_6_1_4_1
Intel (e_1_2_6_1_11_1) 2019
e_1_2_6_1_31_1
Zhang J. (e_1_2_6_1_5_1) 2016
OECD (e_1_2_6_1_41_1) 2015
Cheng J. (e_1_2_6_1_44_1) 2014
Radzi S. (e_1_2_6_1_22_1) 2016; 24
Bera A. (e_1_2_6_1_27_1) 2017
Stacy (e_1_2_6_1_25_1) 2017
Cox J. (e_1_2_6_1_32_1) 2019
Chandrasekhar S. (e_1_2_6_1_26_1) 2017
(e_1_2_6_1_34_1) 2018
e_1_2_6_1_24_1
Liou C. (e_1_2_6_1_12_1) 2014; 139
e_1_2_6_1_29_1
e_1_2_6_1_28_1
Intel (e_1_2_6_1_8_1) 2019
e_1_2_6_1_23_1
Intel (e_1_2_6_1_38_1) 2020
Amadeo R. (e_1_2_6_1_19_1) 2019
Newman L.H. (e_1_2_6_1_3_1) 2016
e_1_2_6_1_21_1
e_1_2_6_1_40_1
e_1_2_6_1_20_1
Bishop C. (e_1_2_6_1_36_1) 2006
WiKi for DrStrange (e_1_2_6_1_39_1) 2019
Wang L. (e_1_2_6_1_30_1) 2005
e_1_2_6_1_15_1
e_1_2_6_1_16_1
Ding Y. (e_1_2_6_1_17_1) 2005
e_1_2_6_1_37_1
e_1_2_6_1_13_1
(e_1_2_6_1_42_1) 2019
e_1_2_6_1_14_1
Cardinal D. (e_1_2_6_1_9_1) 2017
Guinea A.S. (e_1_2_6_1_43_1) 2018
e_1_2_6_1_18_1
References_xml – ident: e_1_2_6_1_6_1
  doi: 10.1109/IPSN.2016.7460727
– volume-title: Group GPU accelerated computing server
  year: 2019
  ident: e_1_2_6_1_39_1
– volume-title: Will face id on iPhone x damage your retina?
  year: 2017
  ident: e_1_2_6_1_26_1
– volume-title: Jkielty: The most used smartphone GPU‐2019
  year: 2019
  ident: e_1_2_6_1_42_1
– ident: e_1_2_6_1_33_1
  doi: 10.1145/362248.362272
– ident: e_1_2_6_1_21_1
  doi: 10.1109/TIFS.2018.2850320
– volume-title: Hackers make a fake hand to beat Vein Authentication
  year: 2019
  ident: e_1_2_6_1_32_1
– ident: e_1_2_6_1_2_1
  doi: 10.1145/3286978.3286994
– ident: e_1_2_6_1_40_1
  doi: 10.1016/j.pmcj.2019.05.005
– start-page: 2106
  year: 2005
  ident: e_1_2_6_1_17_1
  article-title: A study of hand vein recognition method
  publication-title: IEEE International Conference Mechatronics and Automation
– volume-title: Intel RealSense depth cameras for mobile phones
  year: 2019
  ident: e_1_2_6_1_8_1
– volume-title: Depth sensors are the key to unlocking next level computer vision applications
  year: 2019
  ident: e_1_2_6_1_10_1
– ident: e_1_2_6_1_18_1
  doi: 10.1109/TIFS.2011.2158423
– volume-title: How apple's iphone x truedepth camera works
  year: 2017
  ident: e_1_2_6_1_9_1
– ident: e_1_2_6_1_16_1
– volume: 139
  start-page: 372
  issue: 84
  year: 2014
  ident: e_1_2_6_1_12_1
  article-title: Autoencoder for word
  publication-title: Neurocomputing
– ident: e_1_2_6_1_13_1
  doi: 10.1007/978-3-319-48308-5_54
– start-page: 58
  year: 2005
  ident: e_1_2_6_1_30_1
  article-title: A thermal hand vein pattern verification system
  publication-title: In: ICAPR
– volume-title: Intel RealSense depth camera
  year: 2019
  ident: e_1_2_6_1_11_1
– volume-title: CS231n convolutional neural networks for visual recognition
  year: 2020
  ident: e_1_2_6_1_35_1
– volume: 24
  start-page: 1863
  year: 2016
  ident: e_1_2_6_1_22_1
  article-title: Finger‐vein biometric identification using convolutional neural network
  publication-title: Neurocomputing
– year: 2017
  ident: e_1_2_6_1_27_1
  article-title: Human identification using selected features from finger geometric profiles
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– start-page: 148
  year: 2014
  ident: e_1_2_6_1_44_1
  article-title: Recognizing subtle user activities and person identity with cheap resistive pressure sensing carpet
  publication-title: In: International Conference on Intelligent Environments
– volume-title: MathWorks: Connected components in binary images
  year: 2018
  ident: e_1_2_6_1_34_1
– ident: e_1_2_6_1_24_1
  doi: 10.1109/TSMCA.2011.2170416
– ident: e_1_2_6_1_31_1
  doi: 10.1109/ACCESS.2019.2932400
– ident: e_1_2_6_1_4_1
  doi: 10.1109/PERCOMW.2018.8480152
– volume-title: Forget Face ID, the LG G8 comes with palm‐reading “Hand ID” biometrics
  year: 2019
  ident: e_1_2_6_1_19_1
– ident: e_1_2_6_1_14_1
– volume-title: Is the galaxy s8 hazardous to your eyesight? Samsung users claim iris scanner is causing eye discomfort.
  year: 2017
  ident: e_1_2_6_1_25_1
– ident: e_1_2_6_1_20_1
  doi: 10.1109/TIFS.2017.2689724
– ident: e_1_2_6_1_37_1
  doi: 10.1145/3084041.3084061
– volume-title: Intel RealSense D400 series product family
  year: 2020
  ident: e_1_2_6_1_38_1
– ident: e_1_2_6_1_15_1
  doi: 10.1007/978-3-642-01793-3_130
– year: 2016
  ident: e_1_2_6_1_5_1
  article-title: Wifi‐id: Human identification using wifi signal
  publication-title: In: DCOSS, Washington, DC., 26 ‐ 28 May
– volume-title: Pattern recognition and machine learning, ISBN 978‐0‐387‐31073‐2
  year: 2006
  ident: e_1_2_6_1_36_1
– ident: e_1_2_6_1_28_1
  doi: 10.1109/ACCESS.2017.2694050
– ident: e_1_2_6_1_7_1
  doi: 10.1109/TIP.2009.2023153
– ident: e_1_2_6_1_23_1
  doi: 10.1109/BIBM.2017.8217830
– start-page: 87
  year: 2018
  ident: e_1_2_6_1_43_1
  article-title: Continuous identification in smart environments using wrist‐worn inertial sensors.
  publication-title: In: MobiQuitous 2018, ser. MobiQuitous '18
– volume-title: OECD Family Database
  year: 2015
  ident: e_1_2_6_1_41_1
– volume-title: Hackers trick facial‐recognition logins with photos from facebook (what else?).
  year: 2016
  ident: e_1_2_6_1_3_1
– ident: e_1_2_6_1_29_1
  doi: 10.1109/TSMC.2014.2329652
SSID ssj0000684511
Score 2.202662
Snippet Herein, a human identification system for smart spaces called Vein‐ID (referred to as VID) is presented, which leverage the uniqueness of vein patterns...
Abstract Herein, a human identification system for smart spaces called Vein‐ID (referred to as VID) is presented, which leverage the uniqueness of vein...
SourceID doaj
proquest
gale
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 142
SubjectTerms Accuracy
Biometrics
biometrics (access control)
Cameras
Commodities
Deep learning
feature extraction
Identification
image classification
image recognition
Infrared imagery
Intrusion
learning (artificial intelligence)
Machine learning
Smartphones
Veins & arteries
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0ItgHqVUx2sqCgijEJpvNZtcXabVnFeqTJ31bsl-20OZi7xT8753Z2zstSt9CsgmbmZ3Pnf0NwPPKKtR5XVdG1YhSOJQ5a7UvvXYiiDpE7ykPefxZHk3Fp5P2JCfc5rmscqUTk6L2M0c58r2m0hxNLRfd2_F7SV2jaHc1t9C4CbdqtDS0wtXkwzrHUklF8FvUX44ACYRu1AqhVOg9NDf8dU27A1dsUoLu_1dBX3Vek_WZbMHd7Day_SWf78GNMGzD7WUjyV_bsPkXrOB9mH79-P4NS-l5duZzOVDiAMttedjPcDawMWFrDnPm-pE2EjyjwyYM6XEx8-idMx_GxSk-pcTV_AFMJ4df3h2VuX1C6QRamdJyrZqILo3iUQSMlGrfi1Z4xT3a6LpzshVORxWrGHWQrdeEzefxZUI7Urx5CBvDbAiPgPU62FhX2souUsjUW9HE3kqnWh9V7Qp4uSKgcRlbnFpcnJu0xy20IWKbROwCnq3HjktEjf-OOiA-rEcQCna6Mbv8ZrJQGdtxq6zzmqJaFbmNPEYpldXOxtB0BbwgLhqSVZyO6_ORA_wpQr0y-x06PxJjvqaAnRWjTRbiufmz5Ap4lZh_zYTNwfEhT1ePr__WE7jDqS4m1bHtwMbi8kfYRcdmYZ-m1fsbt4vz2A
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KRWgfilalV6ssKIhCNNlsNrviS6stVaj44JW-LdmP0YLmjt4p-N87s8mdFkXwLSSzIZnZ2fnYnd8APC69oTWvbQs0tSpUIJ3z3sYi2qCSqhLGyHnIs_f6dKreXTQXG_BqVQsz4EOsE26sGXm9ZgXv_NCFhJxaEiJZC_m8Gqr3bnBtLc9yqT6sMyylNgy-xd3lGI5A2dqs8EmVffFr-DWLlIH7_1yer7uu2fac3IKd0WkUh4OUb8NG6nfh5tBG8scubP8GKngHpudv37wUOTkvLuN4GCjzX4xNecT3dNmLeUbW7BcidHPeRoiCS00EseHrLJJvLmKaLz_TU05bLe7C9OT44-vTYmyeUARFNqbw0poayaExElWiOKmKnWpUNDKSha7aoBsVLBosEW3STbSMzBdpMGMdGVnfg81-1qc9EJ1NHqvSet0iB0ydVzV2XgfTRDRVmMDTFQNdGJHFucHFF5d3uJV1zGyXmT2BR2va-YCn8VeqI5bDmoIxsPON2dUnN6qU8630xodoOaY1KD1KRK2Nt8FjqtsJPGEpOtZU-pzQjQUH9FOMeeUOW3J9NEV89QQOVoJ2owovXF1aSb6dVPSiZ1n4__hgd3R2LPPV_v8Q34ctyWdk8pm2A9hcXn1LD8jJWfqHeS7_BDS19GU
  priority: 102
  providerName: Wiley-Blackwell
Title VID: Human identification through vein patterns captured from commodity depth cameras
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fbme2.12009
https://www.proquest.com/docview/3092273247
https://doaj.org/article/b72b8bcd961448f2bf2ff668b9cbfe37
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9qi6APRaviaT0WKohC7GWzSXZ96-ldq9BSxJO-LdmPwUKbHt4p9L93ZpMrVxR98SWEZBNmZ2Z3ZnZnfwPwcuQ0zXl1naEuVKY8jTnnTMiC8SqqPGIIvA55fFIdzdSns_JsrdQX54R18MAd4_ZdLZ12PhiOXDRKhxKxqrQz3mEs0jlysnlrwVQ3B2sG3uLKcgxFoEyhV9ikyuyToZFvc94XuGWNEmj_71Pzbbc12Z3pA9juHUZx0BH6EDZiuwN3uxKS1ztwfw1Q8BHMvn788E6khXlxHvpEoMR70RfkET_jeSvmCVWzXQjfzHkLIQg-ZiJI-y6vAvnlIsT58hu95SWrxWOYTSdf3h9lfeGEzCuyL5mTRhdIzoyWqCLFSHloVKmCloGsc177qlTeoMYRoolVGQyj8gX6mHGOtCyewGZ71canIBoTHeYj46oaOVhqnCqwcZXXZUCd-wG8XjHQ-h5VnItbXNi0u62MZWbbxOwB7N20nXdYGn9sNWY53LRg_Ov0gLTC9lph_6UVA3jFUrQ8Sokc3_SHDahTjHdlD2pyeyqK9ooB7K4Ebfvhu7DFyEjy66SiH71Jwv8LwXZ8PJHp7tn_IP053JOcN5Py3HZhc_n9R3xBjs_SDeGOVKd01dPDIWyNJyenn4dJ738BmTcBJA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQwh4QDBAZAywBAiBFJY4bmIjIbSxlZate1rR3kz8BZNGG9YC2j_F38idmxQm0N72FiVO5Nyd73wf_h3A08xI1HlVlQZZiFRYXHPGKJc6ZYUXuQ_OURxydFAOxuLDUe9oBX51Z2GorLLTiVFRu6mlGPlmkSmOppaL6m3zLaWuUZRd7VpoLMRiz5_9RJdt9ma4g_x9xnl_9_DdIG27CqRWoPJNDVeyCGjpJQ_CowORu1r0hJPcoenKK1v2hFVBhiwE5cueUwRZ5_BlAgGSBHSAKv-KKApFJYSy_34Z08lKSXBf1M-OABCEKmSHiCrUJpo3_iqnbMQ5GxhbBfxrEM5vlqO169-Cm-02lW0t5Oo2rPjJGlxdNK48W4Mbf8EY3oHxx-HOaxbTAezYteVHkeOsbQPEfvjjCWsiludkxmzdUOLCMTrcwpD-X6cOvQHmfDP_gk8pUDa7C-NLIew9WJ1MJ_4-sFp5E_JMmbIK5KLVRhShNqWVPRdkbhN40RFQ2xbLnFpqnOiYUxdKE7F1JHYCT5ZjmwWCx39HbRMfliMIdTvemJ5-1u0i1qbiRhrrFHnRMnATeAhlKY2yJviiSuA5cVGTbsDp2Lo94oA_RShbeqvCzVaJPmaRwEbHaN0qjZn-I-IJvIzMv2DCenu0y-PV-sXfegzXBoejfb0_PNh7ANc51eTEGroNWJ2ffvcPcVM1N4-iJDP4dNlL5zd_3y4Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQyB4QDBAFAZYAoRACk0cN7GRENroysrYxAOd9mbir20SpGEtoP1r_HXcuUlhAu1tb1biRInPvvN9-PcDeJIaiTqvLJMgc5EIi2vOGOUSp6zwIvPBOYpD7u4V2xPx_mBwsAK_urMwVFbZ6cSoqN3UUoy8n6eKo6nlouyHtizi43D0pvmWEIMUZVo7Oo3FFNnxpz_RfZu9Hg9R1k85H219erudtAwDiRWoiBPDlcwDWn3Jg_DoTGSuEgPhJHdoxrLSFgNhVZAhDUH5YuAUwdc5fJgAgSSBHqD6v4TtlNgT5OjdMr6TFpKgv4jbjsAQhMplh44qVB9NHX-ZUWbijD2MtAH_GoezG-do-UY34Hq7ZWUbizl2E1Z8vQaXFySWp2tw7S9Iw1sw2R8PX7GYGmDHri1FitJnLSUQ--GPa9ZEXM96xmzVUBLDMTrowlAWX6cOPQPmfDM_wrsUNJvdhsmFDOwdWK2ntb8LrFLehCxVpigDuWuVEXmoTGHlwAWZ2R487wZQ2xbXnOg1vuiYXxdK02DrONg9eLzs2yzQPP7ba5PksOxBCNzxwvTkULcLWpuSG2msU-RRy8BN4CEUhTTKmuDzsgfPSIqa9AR-jq3a4w74U4S4pTdK3HgV6G_mPVjvBK1bBTLTf6Z7D15E4Z_zwXpzd4vH1r3z3_UIruCi0R_Gezv34Sqn8pxYTrcOq_OT7_4B7q_m5mGcyAw-X_TK-Q2pVzJG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VID%3A+Human+identification+through+vein+patterns+captured+from+commodity+depth+cameras&rft.jtitle=IET+biometrics&rft.au=Syed+W.+Shah&rft.au=Salil+S.+Kanhere&rft.au=Jin+Zhang&rft.au=Lina+Yao&rft.date=2021-03-01&rft.pub=Wiley&rft.issn=2047-4938&rft.eissn=2047-4946&rft.volume=10&rft.issue=2&rft.spage=142&rft.epage=162&rft_id=info:doi/10.1049%2Fbme2.12009&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b72b8bcd961448f2bf2ff668b9cbfe37
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-4938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-4938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-4938&client=summon