VID: Human identification through vein patterns captured from commodity depth cameras
Herein, a human identification system for smart spaces called Vein‐ID (referred to as VID) is presented, which leverage the uniqueness of vein patterns embedded in dorsum of an individual's hand. VID extracts vein patterns using the depth information and infrared (IR) images, both obtained from...
Saved in:
Published in | IET biometrics Vol. 10; no. 2; pp. 142 - 162 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Stevenage
John Wiley & Sons, Inc
01.03.2021
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2047-4938 2047-4946 |
DOI | 10.1049/bme2.12009 |
Cover
Loading…
Abstract | Herein, a human identification system for smart spaces called Vein‐ID (referred to as VID) is presented, which leverage the uniqueness of vein patterns embedded in dorsum of an individual's hand. VID extracts vein patterns using the depth information and infrared (IR) images, both obtained from a commodity depth camera. Two deep learning models (CNN and Stacked‐Autoencoders) are presented for precisely identifying a target individual from a set of N enrolled users. VID also incorporates a strategy for identifying an intruder—that is a person whose vein patterns are not included in the set of enrolled individuals. The performance of VID by collecting a comprehensive data set of approximately 17,500 images from 35 subjects is evaluated. The tests reveal that VID can identify an individual with an average accuracy of over 99% from a group of up to 35 individuals. It is demonstrated that VID can detect intruders with an average accuracy of about 96%. The execution time for training and testing the two deep learning models on different hardware platforms is also investigated and the differences are reported. |
---|---|
AbstractList | Herein, a human identification system for smart spaces called Vein‐ID (referred to as VID) is presented, which leverage the uniqueness of vein patterns embedded in dorsum of an individual's hand. VID extracts vein patterns using the depth information and infrared (IR) images, both obtained from a commodity depth camera. Two deep learning models (CNN and Stacked‐Autoencoders) are presented for precisely identifying a target individual from a set of N enrolled users. VID also incorporates a strategy for identifying an intruder—that is a person whose vein patterns are not included in the set of enrolled individuals. The performance of VID by collecting a comprehensive data set of approximately 17,500 images from 35 subjects is evaluated. The tests reveal that VID can identify an individual with an average accuracy of over 99% from a group of up to 35 individuals. It is demonstrated that VID can detect intruders with an average accuracy of about 96%. The execution time for training and testing the two deep learning models on different hardware platforms is also investigated and the differences are reported. Abstract Herein, a human identification system for smart spaces called Vein‐ID (referred to as VID) is presented, which leverage the uniqueness of vein patterns embedded in dorsum of an individual's hand. VID extracts vein patterns using the depth information and infrared (IR) images, both obtained from a commodity depth camera. Two deep learning models (CNN and Stacked‐Autoencoders) are presented for precisely identifying a target individual from a set of N enrolled users. VID also incorporates a strategy for identifying an intruder—that is a person whose vein patterns are not included in the set of enrolled individuals. The performance of VID by collecting a comprehensive data set of approximately 17,500 images from 35 subjects is evaluated. The tests reveal that VID can identify an individual with an average accuracy of over 99% from a group of up to 35 individuals. It is demonstrated that VID can detect intruders with an average accuracy of about 96%. The execution time for training and testing the two deep learning models on different hardware platforms is also investigated and the differences are reported. |
Audience | Academic |
Author | Zhang, Jin Shah, Syed W. Kanhere, Salil S. Yao, Lina |
Author_xml | – sequence: 1 givenname: Syed W. surname: Shah fullname: Shah, Syed W. email: z5038389@zmail.unsw.edu.au organization: The University of New South Wales – sequence: 2 givenname: Salil S. orcidid: 0000-0002-1835-3475 surname: Kanhere fullname: Kanhere, Salil S. organization: The University of New South Wales – sequence: 3 givenname: Jin surname: Zhang fullname: Zhang, Jin organization: Chinese Academy of Sciences – sequence: 4 givenname: Lina surname: Yao fullname: Yao, Lina organization: The University of New South Wales |
BookMark | eNp9kUtvEzEUhS1UJErohl9giR1SUr_GY7MrpdBIRWzabi2PH4mjjD14PFT593UyVRcIYS98dX2-c6903oOzmKID4CNGK4yYvOx6R1aYICTfgHOCWLtkkvGz15qKd-BiHHeoHi5Yg_E5eHhcf_sCb6deRxisiyX4YHQJKcKyzWnabOEfFyIcdCkuxxEaPZQpOwt9Tj00qe-TDeUArRvKtv72LuvxA3jr9X50Fy_vAjx8v7m_vl3e_fqxvr66WxrGiFx2RArqScMF8cwRjrHVrGFWECsailvDG2akFx55Lx1vrCQMUVth2lIhCF2A9exrk96pIYde54NKOqhTI-WN0rkEs3eqa0knOmMlx4wJTzpPvOdcdNJ03lW_Bfg0ew05_Z7cWNQuTTnW9RVFkpCWEnZUrWbVRlfTEH0qWZt6reuDqXn4UPtXLcaIMylpBT7PgMlpHLPzr2tipI6xqWNs6hRbFaO_xCaUUxp1Stj_G8Ez8lQHH_5jrr7-vCEz8wwrV6n1 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3174679 |
Cites_doi | 10.1109/IPSN.2016.7460727 10.1145/362248.362272 10.1109/TIFS.2018.2850320 10.1145/3286978.3286994 10.1016/j.pmcj.2019.05.005 10.1109/TIFS.2011.2158423 10.1007/978-3-319-48308-5_54 10.1109/TSMCA.2011.2170416 10.1109/ACCESS.2019.2932400 10.1109/PERCOMW.2018.8480152 10.1109/TIFS.2017.2689724 10.1145/3084041.3084061 10.1007/978-3-642-01793-3_130 10.1109/ACCESS.2017.2694050 10.1109/TIP.2009.2023153 10.1109/BIBM.2017.8217830 10.1109/TSMC.2014.2329652 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. COPYRIGHT 2021 John Wiley & Sons, Inc. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG 8FH ABJCF AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V LK8 M7P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1049/bme2.12009 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 2047-4946 |
EndPage | 162 |
ExternalDocumentID | oai_doaj_org_article_b72b8bcd961448f2bf2ff668b9cbfe37 A711064993 10_1049_bme2_12009 BME212009 |
Genre | article |
GroupedDBID | 0R~ 1OC 24P 4.4 6IK 8FE 8FG AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BBNVY BENPR BGLVJ BHPHI CCPQU EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF K6V K7- L6V M43 M7P M7S MCNEO O9- OCL OK1 P62 PTHSS RIE RNS RUI AAYXX CITATION IDLOA IGS PHGZM PHGZT PMFND 8FH AZQEC DWQXO GNUQQ JQ2 LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS WIN PUEGO |
ID | FETCH-LOGICAL-c4429-b2983f25682f4e2611da454d82d85317c654c9f8f0ff9e65d92403dc443738823 |
IEDL.DBID | DOA |
ISSN | 2047-4938 |
IngestDate | Wed Aug 27 01:21:07 EDT 2025 Wed Aug 13 03:43:07 EDT 2025 Tue Jun 10 20:59:34 EDT 2025 Tue Jul 01 01:53:41 EDT 2025 Thu Apr 24 22:50:58 EDT 2025 Wed Jan 22 16:30:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4429-b2983f25682f4e2611da454d82d85317c654c9f8f0ff9e65d92403dc443738823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1835-3475 |
OpenAccessLink | https://doaj.org/article/b72b8bcd961448f2bf2ff668b9cbfe37 |
PQID | 3092273247 |
PQPubID | 1916338 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b72b8bcd961448f2bf2ff668b9cbfe37 proquest_journals_3092273247 gale_infotracacademiconefile_A711064993 crossref_primary_10_1049_bme2_12009 crossref_citationtrail_10_1049_bme2_12009 wiley_primary_10_1049_bme2_12009_BME212009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | Stevenage |
PublicationPlace_xml | – name: Stevenage |
PublicationTitle | IET biometrics |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_6_1_7_1 e_1_2_6_1_6_1 Comet Labs Research Team (e_1_2_6_1_10_1) 2019 (e_1_2_6_1_35_1) 2020 e_1_2_6_1_2_1 e_1_2_6_1_33_1 e_1_2_6_1_4_1 Intel (e_1_2_6_1_11_1) 2019 e_1_2_6_1_31_1 Zhang J. (e_1_2_6_1_5_1) 2016 OECD (e_1_2_6_1_41_1) 2015 Cheng J. (e_1_2_6_1_44_1) 2014 Radzi S. (e_1_2_6_1_22_1) 2016; 24 Bera A. (e_1_2_6_1_27_1) 2017 Stacy (e_1_2_6_1_25_1) 2017 Cox J. (e_1_2_6_1_32_1) 2019 Chandrasekhar S. (e_1_2_6_1_26_1) 2017 (e_1_2_6_1_34_1) 2018 e_1_2_6_1_24_1 Liou C. (e_1_2_6_1_12_1) 2014; 139 e_1_2_6_1_29_1 e_1_2_6_1_28_1 Intel (e_1_2_6_1_8_1) 2019 e_1_2_6_1_23_1 Intel (e_1_2_6_1_38_1) 2020 Amadeo R. (e_1_2_6_1_19_1) 2019 Newman L.H. (e_1_2_6_1_3_1) 2016 e_1_2_6_1_21_1 e_1_2_6_1_40_1 e_1_2_6_1_20_1 Bishop C. (e_1_2_6_1_36_1) 2006 WiKi for DrStrange (e_1_2_6_1_39_1) 2019 Wang L. (e_1_2_6_1_30_1) 2005 e_1_2_6_1_15_1 e_1_2_6_1_16_1 Ding Y. (e_1_2_6_1_17_1) 2005 e_1_2_6_1_37_1 e_1_2_6_1_13_1 (e_1_2_6_1_42_1) 2019 e_1_2_6_1_14_1 Cardinal D. (e_1_2_6_1_9_1) 2017 Guinea A.S. (e_1_2_6_1_43_1) 2018 e_1_2_6_1_18_1 |
References_xml | – ident: e_1_2_6_1_6_1 doi: 10.1109/IPSN.2016.7460727 – volume-title: Group GPU accelerated computing server year: 2019 ident: e_1_2_6_1_39_1 – volume-title: Will face id on iPhone x damage your retina? year: 2017 ident: e_1_2_6_1_26_1 – volume-title: Jkielty: The most used smartphone GPU‐2019 year: 2019 ident: e_1_2_6_1_42_1 – ident: e_1_2_6_1_33_1 doi: 10.1145/362248.362272 – ident: e_1_2_6_1_21_1 doi: 10.1109/TIFS.2018.2850320 – volume-title: Hackers make a fake hand to beat Vein Authentication year: 2019 ident: e_1_2_6_1_32_1 – ident: e_1_2_6_1_2_1 doi: 10.1145/3286978.3286994 – ident: e_1_2_6_1_40_1 doi: 10.1016/j.pmcj.2019.05.005 – start-page: 2106 year: 2005 ident: e_1_2_6_1_17_1 article-title: A study of hand vein recognition method publication-title: IEEE International Conference Mechatronics and Automation – volume-title: Intel RealSense depth cameras for mobile phones year: 2019 ident: e_1_2_6_1_8_1 – volume-title: Depth sensors are the key to unlocking next level computer vision applications year: 2019 ident: e_1_2_6_1_10_1 – ident: e_1_2_6_1_18_1 doi: 10.1109/TIFS.2011.2158423 – volume-title: How apple's iphone x truedepth camera works year: 2017 ident: e_1_2_6_1_9_1 – ident: e_1_2_6_1_16_1 – volume: 139 start-page: 372 issue: 84 year: 2014 ident: e_1_2_6_1_12_1 article-title: Autoencoder for word publication-title: Neurocomputing – ident: e_1_2_6_1_13_1 doi: 10.1007/978-3-319-48308-5_54 – start-page: 58 year: 2005 ident: e_1_2_6_1_30_1 article-title: A thermal hand vein pattern verification system publication-title: In: ICAPR – volume-title: Intel RealSense depth camera year: 2019 ident: e_1_2_6_1_11_1 – volume-title: CS231n convolutional neural networks for visual recognition year: 2020 ident: e_1_2_6_1_35_1 – volume: 24 start-page: 1863 year: 2016 ident: e_1_2_6_1_22_1 article-title: Finger‐vein biometric identification using convolutional neural network publication-title: Neurocomputing – year: 2017 ident: e_1_2_6_1_27_1 article-title: Human identification using selected features from finger geometric profiles publication-title: IEEE Trans. Syst. Man Cybern. Syst. – start-page: 148 year: 2014 ident: e_1_2_6_1_44_1 article-title: Recognizing subtle user activities and person identity with cheap resistive pressure sensing carpet publication-title: In: International Conference on Intelligent Environments – volume-title: MathWorks: Connected components in binary images year: 2018 ident: e_1_2_6_1_34_1 – ident: e_1_2_6_1_24_1 doi: 10.1109/TSMCA.2011.2170416 – ident: e_1_2_6_1_31_1 doi: 10.1109/ACCESS.2019.2932400 – ident: e_1_2_6_1_4_1 doi: 10.1109/PERCOMW.2018.8480152 – volume-title: Forget Face ID, the LG G8 comes with palm‐reading “Hand ID” biometrics year: 2019 ident: e_1_2_6_1_19_1 – ident: e_1_2_6_1_14_1 – volume-title: Is the galaxy s8 hazardous to your eyesight? Samsung users claim iris scanner is causing eye discomfort. year: 2017 ident: e_1_2_6_1_25_1 – ident: e_1_2_6_1_20_1 doi: 10.1109/TIFS.2017.2689724 – ident: e_1_2_6_1_37_1 doi: 10.1145/3084041.3084061 – volume-title: Intel RealSense D400 series product family year: 2020 ident: e_1_2_6_1_38_1 – ident: e_1_2_6_1_15_1 doi: 10.1007/978-3-642-01793-3_130 – year: 2016 ident: e_1_2_6_1_5_1 article-title: Wifi‐id: Human identification using wifi signal publication-title: In: DCOSS, Washington, DC., 26 ‐ 28 May – volume-title: Pattern recognition and machine learning, ISBN 978‐0‐387‐31073‐2 year: 2006 ident: e_1_2_6_1_36_1 – ident: e_1_2_6_1_28_1 doi: 10.1109/ACCESS.2017.2694050 – ident: e_1_2_6_1_7_1 doi: 10.1109/TIP.2009.2023153 – ident: e_1_2_6_1_23_1 doi: 10.1109/BIBM.2017.8217830 – start-page: 87 year: 2018 ident: e_1_2_6_1_43_1 article-title: Continuous identification in smart environments using wrist‐worn inertial sensors. publication-title: In: MobiQuitous 2018, ser. MobiQuitous '18 – volume-title: OECD Family Database year: 2015 ident: e_1_2_6_1_41_1 – volume-title: Hackers trick facial‐recognition logins with photos from facebook (what else?). year: 2016 ident: e_1_2_6_1_3_1 – ident: e_1_2_6_1_29_1 doi: 10.1109/TSMC.2014.2329652 |
SSID | ssj0000684511 |
Score | 2.202662 |
Snippet | Herein, a human identification system for smart spaces called Vein‐ID (referred to as VID) is presented, which leverage the uniqueness of vein patterns... Abstract Herein, a human identification system for smart spaces called Vein‐ID (referred to as VID) is presented, which leverage the uniqueness of vein... |
SourceID | doaj proquest gale crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 142 |
SubjectTerms | Accuracy Biometrics biometrics (access control) Cameras Commodities Deep learning feature extraction Identification image classification image recognition Infrared imagery Intrusion learning (artificial intelligence) Machine learning Smartphones Veins & arteries |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0ItgHqVUx2sqCgijEJpvNZtcXabVnFeqTJ31bsl-20OZi7xT8753Z2zstSt9CsgmbmZ3Pnf0NwPPKKtR5XVdG1YhSOJQ5a7UvvXYiiDpE7ykPefxZHk3Fp5P2JCfc5rmscqUTk6L2M0c58r2m0hxNLRfd2_F7SV2jaHc1t9C4CbdqtDS0wtXkwzrHUklF8FvUX44ACYRu1AqhVOg9NDf8dU27A1dsUoLu_1dBX3Vek_WZbMHd7Day_SWf78GNMGzD7WUjyV_bsPkXrOB9mH79-P4NS-l5duZzOVDiAMttedjPcDawMWFrDnPm-pE2EjyjwyYM6XEx8-idMx_GxSk-pcTV_AFMJ4df3h2VuX1C6QRamdJyrZqILo3iUQSMlGrfi1Z4xT3a6LpzshVORxWrGHWQrdeEzefxZUI7Urx5CBvDbAiPgPU62FhX2souUsjUW9HE3kqnWh9V7Qp4uSKgcRlbnFpcnJu0xy20IWKbROwCnq3HjktEjf-OOiA-rEcQCna6Mbv8ZrJQGdtxq6zzmqJaFbmNPEYpldXOxtB0BbwgLhqSVZyO6_ORA_wpQr0y-x06PxJjvqaAnRWjTRbiufmz5Ap4lZh_zYTNwfEhT1ePr__WE7jDqS4m1bHtwMbi8kfYRcdmYZ-m1fsbt4vz2A priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KRWgfilalV6ssKIhCNNlsNrviS6stVaj44JW-LdmP0YLmjt4p-N87s8mdFkXwLSSzIZnZ2fnYnd8APC69oTWvbQs0tSpUIJ3z3sYi2qCSqhLGyHnIs_f6dKreXTQXG_BqVQsz4EOsE26sGXm9ZgXv_NCFhJxaEiJZC_m8Gqr3bnBtLc9yqT6sMyylNgy-xd3lGI5A2dqs8EmVffFr-DWLlIH7_1yer7uu2fac3IKd0WkUh4OUb8NG6nfh5tBG8scubP8GKngHpudv37wUOTkvLuN4GCjzX4xNecT3dNmLeUbW7BcidHPeRoiCS00EseHrLJJvLmKaLz_TU05bLe7C9OT44-vTYmyeUARFNqbw0poayaExElWiOKmKnWpUNDKSha7aoBsVLBosEW3STbSMzBdpMGMdGVnfg81-1qc9EJ1NHqvSet0iB0ydVzV2XgfTRDRVmMDTFQNdGJHFucHFF5d3uJV1zGyXmT2BR2va-YCn8VeqI5bDmoIxsPON2dUnN6qU8630xodoOaY1KD1KRK2Nt8FjqtsJPGEpOtZU-pzQjQUH9FOMeeUOW3J9NEV89QQOVoJ2owovXF1aSb6dVPSiZ1n4__hgd3R2LPPV_v8Q34ctyWdk8pm2A9hcXn1LD8jJWfqHeS7_BDS19GU priority: 102 providerName: Wiley-Blackwell |
Title | VID: Human identification through vein patterns captured from commodity depth cameras |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fbme2.12009 https://www.proquest.com/docview/3092273247 https://doaj.org/article/b72b8bcd961448f2bf2ff668b9cbfe37 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9qi6APRaviaT0WKohC7GWzSXZ96-ldq9BSxJO-LdmPwUKbHt4p9L93ZpMrVxR98SWEZBNmZ2Z3ZnZnfwPwcuQ0zXl1naEuVKY8jTnnTMiC8SqqPGIIvA55fFIdzdSns_JsrdQX54R18MAd4_ZdLZ12PhiOXDRKhxKxqrQz3mEs0jlysnlrwVQ3B2sG3uLKcgxFoEyhV9ikyuyToZFvc94XuGWNEmj_71Pzbbc12Z3pA9juHUZx0BH6EDZiuwN3uxKS1ztwfw1Q8BHMvn788E6khXlxHvpEoMR70RfkET_jeSvmCVWzXQjfzHkLIQg-ZiJI-y6vAvnlIsT58hu95SWrxWOYTSdf3h9lfeGEzCuyL5mTRhdIzoyWqCLFSHloVKmCloGsc177qlTeoMYRoolVGQyj8gX6mHGOtCyewGZ71canIBoTHeYj46oaOVhqnCqwcZXXZUCd-wG8XjHQ-h5VnItbXNi0u62MZWbbxOwB7N20nXdYGn9sNWY53LRg_Ov0gLTC9lph_6UVA3jFUrQ8Sokc3_SHDahTjHdlD2pyeyqK9ooB7K4Ebfvhu7DFyEjy66SiH71Jwv8LwXZ8PJHp7tn_IP053JOcN5Py3HZhc_n9R3xBjs_SDeGOVKd01dPDIWyNJyenn4dJ738BmTcBJA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQwh4QDBAZAywBAiBFJY4bmIjIbSxlZate1rR3kz8BZNGG9YC2j_F38idmxQm0N72FiVO5Nyd73wf_h3A08xI1HlVlQZZiFRYXHPGKJc6ZYUXuQ_OURxydFAOxuLDUe9oBX51Z2GorLLTiVFRu6mlGPlmkSmOppaL6m3zLaWuUZRd7VpoLMRiz5_9RJdt9ma4g_x9xnl_9_DdIG27CqRWoPJNDVeyCGjpJQ_CowORu1r0hJPcoenKK1v2hFVBhiwE5cueUwRZ5_BlAgGSBHSAKv-KKApFJYSy_34Z08lKSXBf1M-OABCEKmSHiCrUJpo3_iqnbMQ5GxhbBfxrEM5vlqO169-Cm-02lW0t5Oo2rPjJGlxdNK48W4Mbf8EY3oHxx-HOaxbTAezYteVHkeOsbQPEfvjjCWsiludkxmzdUOLCMTrcwpD-X6cOvQHmfDP_gk8pUDa7C-NLIew9WJ1MJ_4-sFp5E_JMmbIK5KLVRhShNqWVPRdkbhN40RFQ2xbLnFpqnOiYUxdKE7F1JHYCT5ZjmwWCx39HbRMfliMIdTvemJ5-1u0i1qbiRhrrFHnRMnATeAhlKY2yJviiSuA5cVGTbsDp2Lo94oA_RShbeqvCzVaJPmaRwEbHaN0qjZn-I-IJvIzMv2DCenu0y-PV-sXfegzXBoejfb0_PNh7ANc51eTEGroNWJ2ffvcPcVM1N4-iJDP4dNlL5zd_3y4Z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQyB4QDBAFAZYAoRACk0cN7GRENroysrYxAOd9mbir20SpGEtoP1r_HXcuUlhAu1tb1biRInPvvN9-PcDeJIaiTqvLJMgc5EIi2vOGOUSp6zwIvPBOYpD7u4V2xPx_mBwsAK_urMwVFbZ6cSoqN3UUoy8n6eKo6nlouyHtizi43D0pvmWEIMUZVo7Oo3FFNnxpz_RfZu9Hg9R1k85H219erudtAwDiRWoiBPDlcwDWn3Jg_DoTGSuEgPhJHdoxrLSFgNhVZAhDUH5YuAUwdc5fJgAgSSBHqD6v4TtlNgT5OjdMr6TFpKgv4jbjsAQhMplh44qVB9NHX-ZUWbijD2MtAH_GoezG-do-UY34Hq7ZWUbizl2E1Z8vQaXFySWp2tw7S9Iw1sw2R8PX7GYGmDHri1FitJnLSUQ--GPa9ZEXM96xmzVUBLDMTrowlAWX6cOPQPmfDM_wrsUNJvdhsmFDOwdWK2ntb8LrFLehCxVpigDuWuVEXmoTGHlwAWZ2R487wZQ2xbXnOg1vuiYXxdK02DrONg9eLzs2yzQPP7ba5PksOxBCNzxwvTkULcLWpuSG2msU-RRy8BN4CEUhTTKmuDzsgfPSIqa9AR-jq3a4w74U4S4pTdK3HgV6G_mPVjvBK1bBTLTf6Z7D15E4Z_zwXpzd4vH1r3z3_UIruCi0R_Gezv34Sqn8pxYTrcOq_OT7_4B7q_m5mGcyAw-X_TK-Q2pVzJG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VID%3A+Human+identification+through+vein+patterns+captured+from+commodity+depth+cameras&rft.jtitle=IET+biometrics&rft.au=Syed+W.+Shah&rft.au=Salil+S.+Kanhere&rft.au=Jin+Zhang&rft.au=Lina+Yao&rft.date=2021-03-01&rft.pub=Wiley&rft.issn=2047-4938&rft.eissn=2047-4946&rft.volume=10&rft.issue=2&rft.spage=142&rft.epage=162&rft_id=info:doi/10.1049%2Fbme2.12009&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b72b8bcd961448f2bf2ff668b9cbfe37 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-4938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-4938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-4938&client=summon |