Thermally drawn multifunctional fibers: Toward the next generation of information technology
As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of modern information society. However, the conventional step‐index configured silica optical fibers have scarcely altered since their invention. In...
Saved in:
Published in | InfoMat Vol. 4; no. 7 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons, Inc
01.07.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of modern information society. However, the conventional step‐index configured silica optical fibers have scarcely altered since their invention. In recent years, thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology. By adopting the well‐developed preform‐to‐fiber manufacturing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions. Functions such as photodetection, imaging, acoustoelectric detection, chemical sensing, tactile sensing, biological probing, energy harvesting and storage, data storage, program operation, and information processing on fiber devices. In addition to the original light‐guiding function, these flexible fibers can be woven into fabrics to achieve large‐scale personal health monitoring and interpersonal communication. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications.
By adopting the well‐developed thermal drawing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to provide more application scenarios. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications. |
---|---|
AbstractList | As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of modern information society. However, the conventional step‐index configured silica optical fibers have scarcely altered since their invention. In recent years, thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology. By adopting the well‐developed preform‐to‐fiber manufacturing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions. Functions such as photodetection, imaging, acoustoelectric detection, chemical sensing, tactile sensing, biological probing, energy harvesting and storage, data storage, program operation, and information processing on fiber devices. In addition to the original light‐guiding function, these flexible fibers can be woven into fabrics to achieve large‐scale personal health monitoring and interpersonal communication. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications.
image As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of modern information society. However, the conventional step‐index configured silica optical fibers have scarcely altered since their invention. In recent years, thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology. By adopting the well‐developed preform‐to‐fiber manufacturing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions. Functions such as photodetection, imaging, acoustoelectric detection, chemical sensing, tactile sensing, biological probing, energy harvesting and storage, data storage, program operation, and information processing on fiber devices. In addition to the original light‐guiding function, these flexible fibers can be woven into fabrics to achieve large‐scale personal health monitoring and interpersonal communication. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications. By adopting the well‐developed thermal drawing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to provide more application scenarios. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications. Abstract As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of modern information society. However, the conventional step‐index configured silica optical fibers have scarcely altered since their invention. In recent years, thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology. By adopting the well‐developed preform‐to‐fiber manufacturing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions. Functions such as photodetection, imaging, acoustoelectric detection, chemical sensing, tactile sensing, biological probing, energy harvesting and storage, data storage, program operation, and information processing on fiber devices. In addition to the original light‐guiding function, these flexible fibers can be woven into fabrics to achieve large‐scale personal health monitoring and interpersonal communication. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications. As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of modern information society. However, the conventional step‐index configured silica optical fibers have scarcely altered since their invention. In recent years, thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology. By adopting the well‐developed preform‐to‐fiber manufacturing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions. Functions such as photodetection, imaging, acoustoelectric detection, chemical sensing, tactile sensing, biological probing, energy harvesting and storage, data storage, program operation, and information processing on fiber devices. In addition to the original light‐guiding function, these flexible fibers can be woven into fabrics to achieve large‐scale personal health monitoring and interpersonal communication. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications. |
Author | Wang, Zhe Wang, Jiajia Zhang, Ting Wang, Zhixun Zheng, Xinghua Wei, Lei Li, Kaiwei Chen, Haisheng Shen, Yanan Yang, Xiao |
Author_xml | – sequence: 1 givenname: Yanan surname: Shen fullname: Shen, Yanan organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Zhe surname: Wang fullname: Wang, Zhe organization: Nanyang Technological University – sequence: 3 givenname: Zhixun surname: Wang fullname: Wang, Zhixun organization: Nanyang Technological University – sequence: 4 givenname: Jiajia surname: Wang fullname: Wang, Jiajia organization: Henan University of Science and Technology – sequence: 5 givenname: Xiao surname: Yang fullname: Yang, Xiao organization: Nanjing Institute of Future Energy System – sequence: 6 givenname: Xinghua surname: Zheng fullname: Zheng, Xinghua organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Haisheng orcidid: 0000-0002-1383-9476 surname: Chen fullname: Chen, Haisheng organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Kaiwei orcidid: 0000-0001-5022-1897 surname: Li fullname: Li, Kaiwei email: kaiwei_li@jlu.edu.cn organization: Jilin University – sequence: 9 givenname: Lei orcidid: 0000-0003-0819-8325 surname: Wei fullname: Wei, Lei email: wei.lei@ntu.edu.sg organization: Nanyang Technological University – sequence: 10 givenname: Ting orcidid: 0000-0001-5967-0525 surname: Zhang fullname: Zhang, Ting email: zhangting@iet.cn organization: Chinese Academy of Sciences |
BookMark | eNp9kVFrFDEUhYNUsNa--AsCvgnbJplMZsY3KVYXir6sb0K4ydzsZskmNZNlu__e7I5CEfHpJuE75yQ5r8lFTBEJecvZDWdM3ProxA0XDe9fkEvRqm7RcNVePFu_ItfTtGUVbpkULb8kP1YbzDsI4UjHDIdId_tQvNtHW3yKEKjzBvP0ga7SAfJIywZpxKdC1xgxwwmiydEanarNeVvQbmIKaX18Q146CBNe_55X5Pv9p9Xdl8XDt8_Lu48PCyul6BfGDCMoNxh0jgsuGINuaM1gjOttC3WOEoUAw1vRCbSMDWZgjR1GORonRXNFlrPvmGCrH7PfQT7qBF6fD1Jea8jF24C6MabjnEH15FJijRhcj-BUDQejePV6N3s95vRzj1PR27TP9ScmLVTf9Uop2VWKzZTNaZoyOm19OT-_ZPBBc6ZPlehTJfpcSZW8_0vy56L_hPkMH3zA439Ivfx6L2bNL_SioE4 |
CitedBy_id | crossref_primary_10_1080_19475411_2024_2441323 crossref_primary_10_1021_acsnano_4c10111 crossref_primary_10_1016_j_nanoen_2023_108171 crossref_primary_10_1021_accountsmr_4c00343 crossref_primary_10_3390_s22134979 crossref_primary_10_1016_j_mtphys_2024_101334 crossref_primary_10_1016_j_colsurfa_2023_131273 crossref_primary_10_1002_adfm_202214479 crossref_primary_10_1007_s42765_023_00267_7 crossref_primary_10_1038_s41467_023_42355_7 crossref_primary_10_1016_j_pmatsci_2024_101288 crossref_primary_10_1364_OE_512379 crossref_primary_10_1088_1361_6528_ada9f1 crossref_primary_10_1007_s11431_024_2738_5 crossref_primary_10_1039_D4CS00286E crossref_primary_10_1360_nso_20240035 crossref_primary_10_1080_09243046_2023_2270379 crossref_primary_10_1134_S002247662403003X crossref_primary_10_1039_D4MH01429D crossref_primary_10_1002_admt_202301854 crossref_primary_10_1002_admt_202401003 crossref_primary_10_1002_adhm_202403235 crossref_primary_10_1177_20417314231191881 crossref_primary_10_1002_adfm_202308136 crossref_primary_10_34133_energymatadv_0124 crossref_primary_10_1002_lpor_202301125 crossref_primary_10_1093_nsr_nwae333 crossref_primary_10_1051_epjconf_202328710005 crossref_primary_10_1002_advs_202203808 crossref_primary_10_3390_nano13243165 crossref_primary_10_1007_s12200_023_00058_3 crossref_primary_10_1038_s41578_023_00573_x crossref_primary_10_1021_acsami_4c03885 crossref_primary_10_3788_LOP232686 crossref_primary_10_1016_j_nanoen_2024_109896 crossref_primary_10_34133_adi_0054 |
Cites_doi | 10.1126/science.1079280 10.1021/nl801979w 10.1038/ncomms12807 10.1038/nmat1512 10.1088/0957-4484/7/3/009 10.1002/adma.201700681 10.1038/s41467-019-11986-0 10.1016/j.nanoen.2017.09.019 10.1002/adfm.201802629 10.1002/anie.202103228 10.1021/nl300524j 10.1002/adom.202001815 10.1364/OME.7.002336 10.1002/smll.201803585 10.1021/acsami.1c11593 10.1038/nn.4510 10.1109/JLT.2020.3036739 10.1016/j.nanoen.2020.104805 10.1364/OME.4.002143 10.1002/adma.201203053 10.1002/adfm.201401266 10.1021/acscentsci.0c01188 10.1364/OME.7.001388 10.1038/s41467-021-23628-5 10.1002/adom.202100270 10.1364/OE.20.012407 10.1002/adfm.201804456 10.1002/adfm.202104857 10.1039/c4ta00203b 10.1002/adom.201500319 10.1038/s41928-020-0415-y 10.1002/adma.201707251 10.1002/adma.201902301 10.1109/JLT.2019.2895220 10.1002/adma.201800124 10.1038/s41586-018-0390-x 10.1016/j.biomaterials.2015.11.063 10.1002/advs.202001410 10.1002/adma.201802348 10.1002/adom.201700941 10.1038/s41467-021-25391-z 10.1109/JLT.2006.885258 10.1016/j.carbon.2017.04.002 10.1038/ncomms3216 10.1002/adma.201400152 10.1038/nmat2792 10.1038/nature02937 10.1364/OME.9.003432 10.1016/j.ensm.2019.10.023 10.1021/acsnano.6b08290 10.1021/acsami.0c09446 10.1038/nmat1674 10.1016/S0038-1098(00)00125-3 10.1016/j.matlet.2018.01.050 10.1021/ac201477j 10.1038/nphoton.2011.10 10.3390/app11020600 10.1021/acs.accounts.7b00558 10.1038/srep04864 10.1038/nbt.3093 10.1038/s41598-018-26561-8 10.1002/adma.201603033 10.1016/j.nanoen.2020.105361 10.1002/adfm.201703245 10.1039/c4ee00242c 10.1021/ac4008013 10.1002/adfm.201604378 10.1016/j.jallcom.2017.07.150 10.1111/ijag.12007 10.1002/adma.201004052 10.1016/j.enconman.2019.01.021 10.1002/adfm.201908915 10.1364/OE.18.024264 10.1021/acs.nanolett.9b01403 10.1038/s41467-021-21729-9 10.1088/1361-6463/aa5bf7 10.1038/s41565-020-0701-x 10.1002/adma.202002702 10.1038/s41467-020-19946-9 10.1002/adfm.201600580 10.1002/adma.202004971 10.1002/adma.201503558 10.1002/adma.201500072 10.1111/jace.17827 10.1073/pnas.1101160108 10.1002/adma.201904911 10.1073/pnas.1707778114 10.1039/C8CS00710A 10.1002/lpor.201900075 10.1126/sciadv.1600955 10.1016/j.mattod.2019.11.006 10.1038/s41467-021-23802-9 10.1038/s41467-020-17345-8 10.1088/0957-4484/21/39/395303 10.1002/adfm.201605935 10.1117/12.2555433 10.1021/acsami.8b20307 10.1038/nmat1889 10.1002/adma.200700177 10.1063/1.3653247 10.1021/nl9009606 10.1021/nl801495p 10.1002/admt.202101066 10.1002/adma.201901958 10.1038/s41467-020-17674-8 10.1002/aelm.201600449 10.1021/nl300597c 10.1117/1.OE.60.4.045101 10.1002/adma.200502106 10.1002/adma.201201355 10.1109/JSTQE.2006.882666 10.1109/JLT.2019.2959945 10.3390/ma14216306 10.1039/C7LC01247K 10.1002/adma.201800051 10.1038/s41565-020-0747-9 10.1039/c3ee41116h 10.1364/AO.55.010247 10.1038/ncomms7248 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1002/inf2.12318 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3165 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_3bb7110abbd144ebbf9f8eaf6befab61 10_1002_inf2_12318 INF212318 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Singapore Ministry of Education Academic Research Fund Tier 1 funderid: MOE2019‐T1‐001‐103 (RG 73/19); MOE2019‐T1‐001‐111 (RG 90/19) – fundername: Funding of Innovation Academy for Light‐duty Gas Turbine, Chinese Academy of Sciences funderid: CXYJJ21‐ZD‐02 – fundername: National Natural Science Foundation of China funderid: 51976215; 52172249; 62005101 – fundername: Schaeffler Hub for Advanced Research at NTU, under the ASTAR IAF‐ICP Programme funderid: ICP1900093 – fundername: Scientific Instrument Developing Project of the Chinese Academy of Sciences funderid: YJKYYQ20200017 – fundername: Singapore Ministry of Education Academic Research Fund Tier 2 funderid: MOE‐T2EP50120‐0002; MOE2019‐T2‐2‐127 – fundername: A*STAR under AME IRG funderid: A2083c0062 – fundername: Singapore National Research Foundation Competitive Research Program funderid: NRF‐CRP18‐2017‐02 – fundername: Nanyang Technological University |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC KB. M7S OK1 PDBOC PIMPY PTHSS WIN AAYXX ADMLS CITATION PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c4428-bb9da6f9beff121200a795b9bbf8c5a9bbd4e22ab15272ec009b903c9d4dbf423 |
IEDL.DBID | 24P |
ISSN | 2567-3165 |
IngestDate | Wed Aug 27 01:29:53 EDT 2025 Wed Aug 13 09:31:43 EDT 2025 Tue Jul 01 01:33:44 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Wed Jan 22 16:23:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4428-bb9da6f9beff121200a795b9bbf8c5a9bbd4e22ab15272ec009b903c9d4dbf423 |
Notes | Funding information A*STAR under AME IRG, Grant/Award Number: A2083c0062; Funding of Innovation Academy for Light‐duty Gas Turbine, Chinese Academy of Sciences, Grant/Award Number: CXYJJ21‐ZD‐02; National Natural Science Foundation of China, Grant/Award Numbers: 51976215, 52172249, 62005101; Schaeffler Hub for Advanced Research at NTU, under the ASTAR IAF‐ICP Programme, Grant/Award Number: ICP1900093; Scientific Instrument Developing Project of the Chinese Academy of Sciences, Grant/Award Number: YJKYYQ20200017; Singapore Ministry of Education Academic Research Fund Tier 1, Grant/Award Numbers: MOE2019‐T1‐001‐103 (RG 73/19), MOE2019‐T1‐001‐111 (RG 90/19); Singapore Ministry of Education Academic Research Fund Tier 2, Grant/Award Numbers: MOE‐T2EP50120‐0002, MOE2019‐T2‐2‐127; Singapore National Research Foundation Competitive Research Program, Grant/Award Number: NRF‐CRP18‐2017‐02; Nanyang Technological University ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5967-0525 0000-0003-0819-8325 0000-0002-1383-9476 0000-0001-5022-1897 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12318 |
PQID | 2687866647 |
PQPubID | 5068510 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3bb7110abbd144ebbf9f8eaf6befab61 proquest_journals_2687866647 crossref_citationtrail_10_1002_inf2_12318 crossref_primary_10_1002_inf2_12318 wiley_primary_10_1002_inf2_12318_INF212318 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 20220701 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: Beijing |
PublicationTitle | InfoMat |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2018; 560 2017; 7 2017; 41 2013; 4 2017; 3 2019; 11 2010; 18 2019; 10 2019; 13 2015; 33 2014; 26 2020; 15 2019; 19 2011; 99 2008; 8 2014; 24 2020; 12 2020; 11 2012; 12 2013; 6 2017; 114 2017; 118 2017; 725 2020; 7 2018; 6 2020; 6 2010; 21 2018; 8 2021; 31 2014; 4 2020; 3 2014; 2 2006; 24 2018; 217 2021; 39 2007; 6 2019; 29 2018; 30 2011; 23 2016; 81 2012; 24 2014; 7 2012; 20 2010; 9 1996; 7 2021; 9 2015; 1 2007; 19 2017; 20 2018; 28 2019; 9 2015; 6 2006; 12 2019; 31 2000; 115 2021; 104 2017; 27 2019; 37 2013; 85 2020; 38 2006; 18 2006; 5 2020; 35 2017; 29 2020; 78 2020; 32 2003; 299 2011; 5 2019; 183 2016; 55 2016; 4 2004; 431 2021; 14 2021; 13 2017; 50 2018; 18 2016; 7 2012; 3 2015; 27 2011; 108 2021; 12 2021; 11 2020; 30 2020; 74 2021 2017; 11 2019; 48 2005; 4 2009; 9 2020; 25 2018; 51 2021; 60 2016; 26 2018; 14 2012; 84 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_117_1 e_1_2_11_59_1 e_1_2_11_113_1 Li H (e_1_2_11_32_1) 2015; 1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_116_1 e_1_2_11_37_1 e_1_2_11_112_1 |
References_xml | – volume: 18 start-page: 845 issue: 7 year: 2006 end-page: 849 article-title: Thermal‐sensing fiber devices by multimaterial codrawing publication-title: Adv Mater – volume: 9 start-page: 2630 issue: 7 year: 2009 end-page: 2635 article-title: Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber publication-title: Nano Lett – volume: 32 issue: 49 year: 2020 article-title: 100 m Long thermally drawn supercapacitor fibers with applications to 3D printing and textiles publication-title: Adv Mater – volume: 6 issue: 3 year: 2018 article-title: Implantable and biodegradable poly(L‐lactic acid) fibers for optical neural interfaces publication-title: Adv Opt Mater – volume: 29 issue: 27 year: 2017 article-title: Semiconducting nanowire‐based optoelectronic fibers publication-title: Adv Mater – volume: 12 start-page: 2140 issue: 4 year: 2012 end-page: 2145 article-title: Flexible nanocrystal‐coated glass fibers for high‐performance thermoelectric energy harvesting publication-title: Nano Lett – volume: 12 start-page: 5138 issue: 1 year: 2021 article-title: Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement publication-title: Nat Commun – volume: 114 start-page: 7240 issue: 28 year: 2017 end-page: 7245 article-title: Confined in‐fiber solidification and structural control of silicon and silicon‐germanium microparticles publication-title: Proc Natl Acad Sci U S A – volume: 31 issue: 43 year: 2021 article-title: Customizing MRI‐compatible multifunctional neural interfaces through fiber drawing publication-title: Adv Funct Mater – volume: 15 start-page: 875 issue: 10 year: 2020 end-page: 882 article-title: Structured nanoscale metallic glass fibres with extreme aspect ratios publication-title: Nat Nanotechnol – volume: 4 start-page: 2143 issue: 10 year: 2014 end-page: 2149 article-title: Multimaterial disc‐to‐fiber approach to efficiently produce robust infrared fibers publication-title: Opt Mater Express – volume: 3 issue: 3 year: 2017 article-title: Flexible and stretchable nanowire‐coated fibers for optoelectronic probing of spinal cord circuits publication-title: Sci Adv – volume: 24 start-page: 6594 issue: 42 year: 2014 end-page: 6600 article-title: Polymer fiber probes enable optical control of spinal cord and muscle function in vivo publication-title: Adv Funct Mater – volume: 11 start-page: 600 issue: 2 year: 2021 article-title: Thermal stability of type II modifications inscribed by femtosecond laser in a fiber drawn from a 3D printed preform publication-title: Appl Sci – volume: 32 issue: 5 year: 2020 article-title: A route toward smart system integration: from fiber design to device construction publication-title: Adv Mater – volume: 18 start-page: 24264 issue: 23 year: 2010 end-page: 24275 article-title: Resolving optical illumination distributions along an axially symmetric photodetecting fiber publication-title: Opt Express – volume: 12 start-page: 3317 issue: 1 year: 2021 article-title: Digital electronics in fibres enable fabric‐based machine‐learning inference publication-title: Nat Commun – volume: 2 start-page: 10776 issue: 28 year: 2014 end-page: 10787 article-title: Textile energy storage in perspective publication-title: J Mater Chem A – volume: 725 start-page: 242 year: 2017 end-page: 247 article-title: Sn‐Se alloy core fibers publication-title: J Alloys Compd – volume: 33 start-page: 277 issue: 3 year: 2015 end-page: 284 article-title: Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo publication-title: Nat Biotechnol – volume: 11 start-page: 3842 issue: 1 year: 2020 article-title: Designer patterned functional fibers via direct imprinting in thermal drawing publication-title: Nat Commun – volume: 99 issue: 16 year: 2011 article-title: Observation of the Plateau‐Rayleigh capillary instability in multi‐material optical fibers publication-title: Appl Phys Lett – volume: 12 start-page: 2483 issue: 5 year: 2012 end-page: 2487 article-title: Macroscopic assembly of indefinitely long and parallel nanowires into large area photodetection circuitry publication-title: Nano Lett – volume: 3 issue: 3 year: 2017 article-title: Flexible piezoelectric fibers for acoustic sensing and positioning publication-title: Adv Electron Mater – volume: 21 issue: 39 year: 2010 article-title: The fabrication of thermoelectric La Sr CoO nanofibers and Seebeck coefficient measurement publication-title: Nanotechnol – volume: 32 issue: 36 year: 2020 article-title: Single‐crystal SnSe thermoelectric fibers via laser‐induced directional crystallization: from 1D fibers to multidimensional fabrics publication-title: Adv Mater – volume: 431 start-page: 826 issue: 7010 year: 2004 end-page: 829 article-title: Metal‐insulator‐semiconductor optoelectronic fibres publication-title: Nature – volume: 84 start-page: 83 issue: 1 year: 2012 end-page: 90 article-title: High selectivity Boolean olfaction using Hollow‐Core wavelength‐scalable Bragg fibers publication-title: Anal Chem – volume: 27 issue: 43 year: 2017 article-title: Laser‐induced in‐fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles publication-title: Adv Funct Mater – volume: 11 start-page: 2103 issue: 2 year: 2017 end-page: 2114 article-title: Piezoelectric micro‐and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications publication-title: ACS Nano – volume: 11 start-page: 2441 issue: 2 year: 2019 end-page: 2447 article-title: Ultraflexible glassy semiconductor fibers for thermal sensing and positioning publication-title: ACS Appl Mater Interfaces – volume: 30 issue: 9 year: 2020 article-title: Flexible multi‐material fibers for distributed pressure and temperature sensing publication-title: Adv Funct Mater – volume: 14 start-page: 6306 issue: 21 year: 2021 article-title: New progress on fiber‐based thermoelectric materials: performance, device structures and applications publication-title: Materials – volume: 14 issue: 50 year: 2018 article-title: Designable 3D microshapes fabricated at the intersection of structured flow and optical fields publication-title: Small – volume: 28 issue: 42 year: 2018 article-title: Weaving sensing fibers into electrochemical fabric for real‐time health monitoring publication-title: Adv Funct Mater – volume: 19 start-page: 3872 issue: 22 year: 2007 end-page: 3877 article-title: Multimaterial photodetecting fibers: a geometric and structural study publication-title: Adv Mater – volume: 19 start-page: 4035 issue: 6 year: 2019 end-page: 4042 article-title: Flexible and high‐voltage coaxial‐fiber aqueous rechargeable zinc‐ion battery publication-title: Nano Lett – volume: 24 start-page: 4729 issue: 12 year: 2006 end-page: 4749 article-title: Photonic‐crystal fibers publication-title: Journal of Lightwave Technology – volume: 7 start-page: 1959 issue: 6 year: 2014 end-page: 1965 article-title: A wearable thermoelectric generator fabricated on a glass fabric publication-title: Energ Environ Sci – volume: 183 start-page: 633 year: 2019 end-page: 644 article-title: Emerging mineral‐coupled composite phase change materials for thermal energy storage publication-title: Energ Conver Manage – volume: 81 start-page: 27 year: 2016 end-page: 35 article-title: Thermally drawn fibers as nerve guidance scaffolds publication-title: Biomaterials – volume: 115 start-page: 51 issue: 1 year: 2000 end-page: 55 article-title: Coating of carbon nanotubes with tungsten by physical vapor deposition publication-title: Solid State Commun – volume: 30 issue: 23 year: 2018 article-title: Fabric organic electrochemical transistors for biosensors publication-title: Adv Mater – volume: 1 start-page: 399 issue: 6 year: 2015 end-page: 402 article-title: Stable hydrophobic ionic liquid gel electrolyte for stretchable fiber‐shaped dye‐sensitized solar cell publication-title: Chem – volume: 48 start-page: 1826 issue: 6 year: 2019 end-page: 1852 article-title: Flexible fiber‐based optoelectronics for neural interfaces publication-title: Chem Soc Rev – volume: 12 start-page: 3435 issue: 1 year: 2021 article-title: Adaptive and multifunctional hydrogel hybrid probes for long‐term sensing and modulation of neural activity publication-title: Nat Commun – volume: 55 start-page: 10247 issue: 36 year: 2016 end-page: 10254 article-title: Binary coded identification of industrial chemical vapors with an optofluidic nose publication-title: Appl Optics – volume: 23 start-page: 1263 issue: 10 year: 2011 end-page: 1267 article-title: Bioinspired optoelectronic nose with nanostructured wavelength‐scalable hollow‐Core infrared fibers publication-title: Adv Mater – volume: 3 start-page: 349 issue: 4 year: 2012 end-page: 368 article-title: Multimaterial fibers publication-title: Int J Appl Glass Sci – volume: 27 issue: 10 year: 2017 article-title: Controlled sub‐micrometer hierarchical textures engineered in polymeric fibers and microchannels via thermal drawing publication-title: Adv Funct Mater – volume: 10 start-page: 4010 issue: 1 year: 2019 article-title: Structured multimaterial filaments for 3D printing of optoelectronics publication-title: Nat Commun – volume: 20 start-page: 12407 issue: 11 year: 2012 end-page: 12415 article-title: Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically‐tuned hollow core photonic bandgap fibers publication-title: Opt Express – volume: 12 start-page: 1416 issue: 1 year: 2021 article-title: Self‐powered multifunctional sensing based on super‐elastic fibers by soluble‐core thermal drawing publication-title: Nat Commun – volume: 31 issue: 1 year: 2019 article-title: Advanced multimaterial electronic and optoelectronic fibers and textiles publication-title: Adv Mater – volume: 12 start-page: 33297 issue: 29 year: 2020 end-page: 33304 article-title: Highly integrable thermoelectric fiber publication-title: ACS Appl Mater Interfaces – volume: 8 start-page: 4151 issue: 12 year: 2008 end-page: 4157 article-title: Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes publication-title: Nano Lett – volume: 32 issue: 1 year: 2020 article-title: Recent progress and perspectives of thermally drawn multimaterial fiber electronics publication-title: Adv Mater – volume: 30 issue: 27 year: 2018 article-title: Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing publication-title: Adv Mater – volume: 7 start-page: 2336 issue: 7 year: 2017 end-page: 2345 article-title: Robust multimaterial chalcogenide fibers produced by a hybrid fiber‐fabrication process publication-title: Opt Mater Express – volume: 51 start-page: 829 issue: 4 year: 2018 end-page: 838 article-title: Multifunctional fibers as tools for neuroscience and neuroengineering publication-title: Acc Chem Res – volume: 12 start-page: 1202 issue: 6 year: 2006 end-page: 1213 article-title: Kilometer‐long ordered nanophotonic devices by preform‐to‐fiber fabrication publication-title: IEEE J Sel Top Quantum Electron – volume: 4 start-page: 13 issue: 1 year: 2016 end-page: 36 article-title: Hybrid optical fibers—an innovative platform for in‐fiber photonic devices publication-title: Adv Opt Mater – volume: 9 start-page: 3432 issue: 8 year: 2019 end-page: 3438 article-title: Fabrication and measurement of 3D printed retroreflective fibers publication-title: Opt Mater Express – volume: 108 start-page: 4743 issue: 12 year: 2011 end-page: 4747 article-title: Fiber draw synthesis publication-title: Proc Natl Acad Sci U S A – volume: 13 issue: 7 year: 2019 article-title: Distributed quantum fiber magnetometry publication-title: Laser Photonics Rev – volume: 560 start-page: 214 issue: 7717 year: 2018 end-page: 218 article-title: Diode fibres for fabric‐based optical communications publication-title: Nature – volume: 27 issue: 4 year: 2017 article-title: A highly stretchable fiber‐based triboelectric nanogenerator for self‐powered wearable electronics publication-title: Adv Funct Mater – volume: 85 start-page: 6384 issue: 13 year: 2013 end-page: 6391 article-title: Smelling in chemically complex environments: an optofluidic Bragg fiber array for differentiation of methanol adulterated beverages publication-title: Anal Chem – volume: 6 start-page: 2319 issue: 12 year: 2020 end-page: 2325 article-title: Selectively micro‐patternable fibers via in‐fiber photolithography publication-title: ACS Cent Sci – volume: 11 start-page: 3537 issue: 1 year: 2020 article-title: High‐efficiency super‐elastic liquid metal based triboelectric fibers and textiles publication-title: Nat Commun – volume: 4 start-page: 2216 issue: 1 year: 2013 article-title: Silicon‐in‐silica spheres via axial thermal gradient in‐fibre capillary instabilities publication-title: Nat Commun – volume: 18 start-page: 655 issue: 4 year: 2018 end-page: 661 article-title: Ultra‐sensitive chemical and biological analysis via specialty fibers with built‐in microstructured optofluidic channels publication-title: Lab Chip – volume: 299 start-page: 358 issue: 5605 year: 2003 end-page: 362 article-title: Photonic crystal fibers publication-title: Science – volume: 30 issue: 18 year: 2018 article-title: Stretchable all‐gel‐state fiber‐shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels publication-title: Adv Mater – volume: 24 start-page: 6005 issue: 45 year: 2012 end-page: 6009 article-title: All‐in‐fiber chemical sensing publication-title: Adv Mater – volume: 3 start-page: 316 issue: 6 year: 2020 end-page: 326 article-title: Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations publication-title: Nat Electron – volume: 26 start-page: 5078 issue: 28 year: 2016 end-page: 5085 article-title: Multiscale wrinkled microstructures for piezoresistive fibers publication-title: Adv Funct Mater – volume: 7 start-page: 216 issue: 3 year: 1996 end-page: 223 article-title: Nanometre diameter fibres of polymer, produced by electrospinning publication-title: Nanotechnology – volume: 6 start-page: 3339 issue: 11 year: 2013 end-page: 3345 article-title: Hybrid Li‐air battery cathodes with sparse carbon nanotube arrays directly grown on carbon fiber papers publication-title: Energ Environ Sci – volume: 25 start-page: 124 year: 2020 end-page: 130 article-title: All‐in‐one stretchable coaxial‐fiber strain sensor integrated with high‐performing supercapacitor publication-title: Energy Storage Materials – volume: 27 start-page: 7365 issue: 45 year: 2015 end-page: 7371 article-title: A stretchable and highly sensitive graphene‐based fiber for sensing tensile strain, bending, and torsion publication-title: Adv Mater – volume: 8 start-page: 8113 issue: 1 year: 2018 article-title: Mid‐IR hollow‐core microstructured fiber drawn from a 3D printed PETG preform publication-title: Sci Rep – year: 2021 article-title: Thermally‐drawn multi‐electrode fibers for bipolar electrochemistry and magnified electrochemical imaging publication-title: Adv Mater Technol – volume: 20 start-page: 612 issue: 4 year: 2017 end-page: 619 article-title: One‐step optogenetics with multifunctional flexible polymer fibers publication-title: Nat Neurosci – volume: 27 start-page: 2440 issue: 15 year: 2015 end-page: 2446 article-title: Capacitive soft strain sensors via multicore‐shell fiber printing publication-title: Adv Mater – volume: 104 start-page: 4058 issue: 8 year: 2021 end-page: 4064 article-title: Microstructured multimaterial fibers for efficient optical detection publication-title: J Am Ceram Soc – volume: 37 start-page: 1916 issue: 9 year: 2019 end-page: 1923 article-title: Poly (D, L‐lactic acid)(PDLLA) biodegradable and biocompatible polymer optical fiber publication-title: J Light Technol – volume: 118 start-page: 686 year: 2017 end-page: 698 article-title: Electromechanical properties of a yarn strain sensor with graphene‐sheath/polyurethane‐core publication-title: Carbon – volume: 6 start-page: 6248 issue: 1 year: 2015 article-title: Crystalline silicon core fibres from aluminium core preforms publication-title: Nat Commun – volume: 15 start-page: 690 issue: 8 year: 2020 end-page: 697 article-title: In situ electrochemical generation of nitric oxide for neuronal modulation publication-title: Nat Nanotechnol – volume: 4 start-page: 820 issue: 11 year: 2005 end-page: 825 article-title: Integrated fibres for self‐monitored optical transport publication-title: Nat Mater – volume: 13 start-page: 43356 issue: 36 year: 2021 end-page: 43363 article-title: All‐in‐fiber electrochemical sensing publication-title: ACS Appl Mater Interfaces – volume: 11 start-page: 6115 issue: 1 year: 2020 article-title: Spatially expandable fiber‐based probes as a multifunctional deep brain interface publication-title: Nat Commun – volume: 6 start-page: 336 issue: 5 year: 2007 end-page: 347 article-title: Towards multimaterial multifunctional fibres that see, hear, sense and communicate publication-title: Nat Mater – volume: 4 start-page: 4864 issue: 1 year: 2014 article-title: Tailoring self‐organized nanostructured morphologies in kilometer‐long polymer fiber publication-title: Sci Rep – volume: 7 issue: 15 year: 2020 article-title: Flexible fiber probe for efficient neural stimulation and detection publication-title: Adv Sci – volume: 9 issue: 6 year: 2021 article-title: Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing publication-title: Adv Opt Mater – volume: 78 year: 2020 article-title: Highly conductive, ultra‐flexible and continuously processable PEDOT:PSS fibers with high thermoelectric properties for wearable energy harvesting publication-title: Nano Energy – volume: 5 start-page: 66 issue: 2 year: 2011 end-page: 67 article-title: Fibres get functional publication-title: Nat Photon – volume: 217 start-page: 13 year: 2018 end-page: 15 article-title: In Se alloy core thermoelectric fibers publication-title: Mater Lett – volume: 7 issue: 1 year: 2016 article-title: Self‐assembled fibre optoelectronics with discrete translational symmetry publication-title: Nat Commun – volume: 35 start-page: 168 year: 2020 end-page: 194 article-title: Thermally drawn advanced functional fibers: new frontier of flexible electronics publication-title: Mater Today – volume: 41 start-page: 35 year: 2017 end-page: 42 article-title: High‐performance, flexible, and ultralong crystalline thermoelectric fibers publication-title: Nano Energy – volume: 7 start-page: 1388 issue: 4 year: 2017 end-page: 1397 article-title: Microstructure tailoring of selenium‐core multimaterial optoelectronic fibers publication-title: Opt Mater Express – volume: 60 issue: 4 year: 2021 article-title: Manufacturing of GLS‐Se glass rods and structured preforms by extrusion for optical fiber drawing for the IR region publication-title: Opt Eng – volume: 5 start-page: 532 issue: 7 year: 2006 end-page: 536 article-title: Large‐scale optical‐field measurements with geometric fibre constructs publication-title: Nat Mater – volume: 32 issue: 5 year: 2020 article-title: Smart textile‐integrated microelectronic systems for wearable applications publication-title: Adv Mater – volume: 50 issue: 14 year: 2017 article-title: Multi‐material micro‐electromechanical fibers with bendable functional domains publication-title: J Phys D Appl Phys – volume: 60 start-page: 20325 issue: 37 year: 2021 end-page: 20330 article-title: Electrochemical modulation of carbon monoxide‐mediated cell signaling publication-title: Angew Chem Int Ed – volume: 8 start-page: 4265 issue: 12 year: 2008 end-page: 4269 article-title: In‐fiber semiconductor filament arrays publication-title: Nano Lett – volume: 74 year: 2020 article-title: Scalable, washable and lightweight triboelectric‐energy‐generating fibers by the thermal drawing process for industrial loom weaving publication-title: Nano Energy – volume: 38 start-page: 1905 issue: 7 year: 2020 end-page: 1914 article-title: On the characterization of novel step‐index biocompatible and biodegradable poly (D, L‐lactic acid) based optical fiber publication-title: J Light Technol – volume: 39 start-page: 3836 issue: 12 year: 2021 end-page: 3845 article-title: Advanced multi‐material optoelectronic fibers: a review publication-title: J Light Technol – volume: 29 issue: 1 year: 2017 article-title: Optoelectronic fibers via selective amplification of in‐fiber capillary instabilities publication-title: Adv Mater – volume: 29 issue: 5 year: 2019 article-title: Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations publication-title: Adv Funct Mater – volume: 26 start-page: 2643 issue: 17 year: 2014 end-page: 2647 article-title: Stretchable, wearable dye‐sensitized solar cells publication-title: Adv Mater – volume: 24 start-page: 5327 issue: 39 year: 2012 end-page: 5332 article-title: Piezoelectric fibers for conformal acoustics publication-title: Adv Mater – volume: 9 issue: 12 year: 2021 article-title: Single‐mode, 700%‐stretchable, elastic optical fibers made of thermoplastic elastomers publication-title: Adv Opt Mater – volume: 9 start-page: 643 issue: 8 year: 2010 end-page: 648 article-title: Multimaterial piezoelectric fibres publication-title: Nat Mater – ident: e_1_2_11_8_1 doi: 10.1126/science.1079280 – ident: e_1_2_11_77_1 doi: 10.1021/nl801979w – ident: e_1_2_11_82_1 doi: 10.1038/ncomms12807 – ident: e_1_2_11_89_1 doi: 10.1038/nmat1512 – ident: e_1_2_11_47_1 doi: 10.1088/0957-4484/7/3/009 – ident: e_1_2_11_36_1 doi: 10.1002/adma.201700681 – ident: e_1_2_11_55_1 doi: 10.1038/s41467-019-11986-0 – ident: e_1_2_11_118_1 doi: 10.1016/j.nanoen.2017.09.019 – ident: e_1_2_11_13_1 doi: 10.1002/adfm.201802629 – ident: e_1_2_11_26_1 doi: 10.1002/anie.202103228 – ident: e_1_2_11_42_1 doi: 10.1021/nl300524j – ident: e_1_2_11_14_1 doi: 10.1002/adom.202001815 – ident: e_1_2_11_76_1 doi: 10.1364/OME.7.002336 – ident: e_1_2_11_60_1 doi: 10.1002/smll.201803585 – ident: e_1_2_11_99_1 doi: 10.1021/acsami.1c11593 – ident: e_1_2_11_110_1 doi: 10.1038/nn.4510 – ident: e_1_2_11_37_1 doi: 10.1109/JLT.2020.3036739 – ident: e_1_2_11_121_1 doi: 10.1016/j.nanoen.2020.104805 – ident: e_1_2_11_71_1 doi: 10.1364/OME.4.002143 – volume: 1 start-page: 399 issue: 6 year: 2015 ident: e_1_2_11_32_1 article-title: Stable hydrophobic ionic liquid gel electrolyte for stretchable fiber‐shaped dye‐sensitized solar cell publication-title: Chem – ident: e_1_2_11_102_1 doi: 10.1002/adma.201203053 – ident: e_1_2_11_108_1 doi: 10.1002/adfm.201401266 – ident: e_1_2_11_15_1 doi: 10.1021/acscentsci.0c01188 – ident: e_1_2_11_58_1 doi: 10.1364/OME.7.001388 – ident: e_1_2_11_64_1 doi: 10.1038/s41467-021-23628-5 – ident: e_1_2_11_35_1 doi: 10.1002/adom.202100270 – ident: e_1_2_11_97_1 doi: 10.1364/OE.20.012407 – ident: e_1_2_11_27_1 doi: 10.1002/adfm.201804456 – ident: e_1_2_11_66_1 doi: 10.1002/adfm.202104857 – ident: e_1_2_11_28_1 doi: 10.1039/c4ta00203b – ident: e_1_2_11_5_1 doi: 10.1002/adom.201500319 – ident: e_1_2_11_105_1 doi: 10.1038/s41928-020-0415-y – ident: e_1_2_11_104_1 doi: 10.1002/adma.201707251 – ident: e_1_2_11_78_1 doi: 10.1002/adma.201902301 – ident: e_1_2_11_75_1 doi: 10.1109/JLT.2019.2895220 – ident: e_1_2_11_29_1 doi: 10.1002/adma.201800124 – ident: e_1_2_11_117_1 doi: 10.1038/s41586-018-0390-x – ident: e_1_2_11_19_1 doi: 10.1016/j.biomaterials.2015.11.063 – ident: e_1_2_11_106_1 doi: 10.1002/advs.202001410 – ident: e_1_2_11_67_1 doi: 10.1002/adma.201802348 – ident: e_1_2_11_111_1 doi: 10.1002/adom.201700941 – ident: e_1_2_11_65_1 doi: 10.1038/s41467-021-25391-z – ident: e_1_2_11_10_1 doi: 10.1109/JLT.2006.885258 – ident: e_1_2_11_43_1 doi: 10.1016/j.carbon.2017.04.002 – ident: e_1_2_11_81_1 doi: 10.1038/ncomms3216 – ident: e_1_2_11_31_1 doi: 10.1002/adma.201400152 – ident: e_1_2_11_94_1 doi: 10.1038/nmat2792 – ident: e_1_2_11_86_1 doi: 10.1038/nature02937 – ident: e_1_2_11_72_1 doi: 10.1364/OME.9.003432 – ident: e_1_2_11_11_1 doi: 10.1016/j.ensm.2019.10.023 – ident: e_1_2_11_96_1 doi: 10.1021/acsnano.6b08290 – ident: e_1_2_11_49_1 doi: 10.1021/acsami.0c09446 – ident: e_1_2_11_90_1 doi: 10.1038/nmat1674 – ident: e_1_2_11_39_1 doi: 10.1016/S0038-1098(00)00125-3 – ident: e_1_2_11_50_1 doi: 10.1016/j.matlet.2018.01.050 – ident: e_1_2_11_100_1 doi: 10.1021/ac201477j – ident: e_1_2_11_9_1 doi: 10.1038/nphoton.2011.10 – ident: e_1_2_11_74_1 doi: 10.3390/app11020600 – ident: e_1_2_11_107_1 doi: 10.1021/acs.accounts.7b00558 – ident: e_1_2_11_83_1 doi: 10.1038/srep04864 – ident: e_1_2_11_109_1 doi: 10.1038/nbt.3093 – ident: e_1_2_11_73_1 doi: 10.1038/s41598-018-26561-8 – ident: e_1_2_11_92_1 doi: 10.1002/adma.201603033 – ident: e_1_2_11_48_1 doi: 10.1016/j.nanoen.2020.105361 – ident: e_1_2_11_79_1 doi: 10.1002/adfm.201703245 – ident: e_1_2_11_45_1 doi: 10.1039/c4ee00242c – ident: e_1_2_11_62_1 doi: 10.1021/ac4008013 – ident: e_1_2_11_33_1 doi: 10.1002/adfm.201604378 – ident: e_1_2_11_51_1 doi: 10.1016/j.jallcom.2017.07.150 – ident: e_1_2_11_2_1 doi: 10.1111/ijag.12007 – ident: e_1_2_11_101_1 doi: 10.1002/adma.201004052 – ident: e_1_2_11_40_1 doi: 10.1016/j.enconman.2019.01.021 – ident: e_1_2_11_16_1 doi: 10.1002/adfm.201908915 – ident: e_1_2_11_91_1 doi: 10.1364/OE.18.024264 – ident: e_1_2_11_30_1 doi: 10.1021/acs.nanolett.9b01403 – ident: e_1_2_11_6_1 doi: 10.1038/s41467-021-21729-9 – ident: e_1_2_11_103_1 doi: 10.1088/1361-6463/aa5bf7 – ident: e_1_2_11_25_1 doi: 10.1038/s41565-020-0701-x – ident: e_1_2_11_54_1 doi: 10.1002/adma.202002702 – ident: e_1_2_11_112_1 doi: 10.1038/s41467-020-19946-9 – ident: e_1_2_11_22_1 doi: 10.1002/adfm.201600580 – ident: e_1_2_11_59_1 doi: 10.1002/adma.202004971 – ident: e_1_2_11_21_1 doi: 10.1002/adma.201503558 – ident: e_1_2_11_44_1 doi: 10.1002/adma.201500072 – ident: e_1_2_11_57_1 doi: 10.1111/jace.17827 – ident: e_1_2_11_84_1 doi: 10.1073/pnas.1101160108 – ident: e_1_2_11_3_1 doi: 10.1002/adma.201904911 – ident: e_1_2_11_56_1 doi: 10.1073/pnas.1707778114 – ident: e_1_2_11_114_1 doi: 10.1039/C8CS00710A – ident: e_1_2_11_119_1 doi: 10.1002/lpor.201900075 – ident: e_1_2_11_113_1 doi: 10.1126/sciadv.1600955 – ident: e_1_2_11_12_1 doi: 10.1016/j.mattod.2019.11.006 – ident: e_1_2_11_115_1 doi: 10.1038/s41467-021-23802-9 – ident: e_1_2_11_34_1 doi: 10.1038/s41467-020-17345-8 – ident: e_1_2_11_46_1 doi: 10.1088/0957-4484/21/39/395303 – ident: e_1_2_11_53_1 doi: 10.1002/adfm.201605935 – ident: e_1_2_11_69_1 doi: 10.1117/12.2555433 – ident: e_1_2_11_20_1 doi: 10.1021/acsami.8b20307 – ident: e_1_2_11_4_1 doi: 10.1038/nmat1889 – ident: e_1_2_11_88_1 doi: 10.1002/adma.200700177 – ident: e_1_2_11_80_1 doi: 10.1063/1.3653247 – ident: e_1_2_11_7_1 doi: 10.1021/nl9009606 – ident: e_1_2_11_23_1 doi: 10.1021/nl801495p – ident: e_1_2_11_98_1 doi: 10.1002/admt.202101066 – ident: e_1_2_11_38_1 doi: 10.1002/adma.201901958 – ident: e_1_2_11_52_1 doi: 10.1038/s41467-020-17674-8 – ident: e_1_2_11_61_1 doi: 10.1002/aelm.201600449 – ident: e_1_2_11_93_1 doi: 10.1021/nl300597c – ident: e_1_2_11_70_1 doi: 10.1117/1.OE.60.4.045101 – ident: e_1_2_11_87_1 doi: 10.1002/adma.200502106 – ident: e_1_2_11_95_1 doi: 10.1002/adma.201201355 – ident: e_1_2_11_18_1 doi: 10.1109/JSTQE.2006.882666 – ident: e_1_2_11_68_1 doi: 10.1109/JLT.2019.2959945 – ident: e_1_2_11_120_1 doi: 10.3390/ma14216306 – ident: e_1_2_11_116_1 doi: 10.1039/C7LC01247K – ident: e_1_2_11_24_1 doi: 10.1002/adma.201800051 – ident: e_1_2_11_17_1 doi: 10.1038/s41565-020-0747-9 – ident: e_1_2_11_41_1 doi: 10.1039/c3ee41116h – ident: e_1_2_11_63_1 doi: 10.1364/AO.55.010247 – ident: e_1_2_11_85_1 doi: 10.1038/ncomms7248 |
SSID | ssj0002504251 |
Score | 2.3856053 |
SecondaryResourceType | review_article |
Snippet | As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of... Abstract As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | acoustoelectric fiber Artificial intelligence biological probe Copyright Data processing Data storage energy fiber Energy harvesting Energy storage Functional materials Human-computer interaction Information technology integrated circuit fiber Integrated circuits Internet of Things Lasers Methods multifunctional fiber Optical communication Optical fibers optoelectronic fiber Personal communication |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1itsqAXhdhks8lmvalYqmBPLfQgLDvJrpeSSlsR_72zmzREEL14ygdDWGaSeW-WyRtCLhAREqOt--0jjQMusjgAbmSQWGGzMDEy9rMBn0fpcMKfpsm0NerL9YRV8sCV4_oxgECI0gAFcn8DYKXN8OkpGKuhKnwQ81rFlMvBTpgLkbvRI2V9jBe7xjTtpnu0EMgL9X9jl22O6kFmsEO2a3ZIb6tV7ZINU-6RrZZm4D55wcBiMp3NPmmx0B8l9S2BDp6qXT1qXQ_I8oaOfUMsRYJHS8zA9NULTDsjOre0Fkz1l6tme_2ATAYP4_thUI9ICHKOhUMAIAudWonOsBGiUBhqIROQ6KYsTzQeC24Y0-Cm1zKTI6MCGca5LHgBFqnUIemU89IcEWp1GBUiy3MkdBzLLh0VkWZcmDi0hkveJZdrt6m81g93YyxmqlI-Zsq5WHkXd8l5Y_tWqWb8aHXnvN9YOKVrfwPjr-r4q7_i3yW9dexU_fktFUszkWFhxkWXXPl4_rIM9TgaMH92_B8LOiGbzP0i4Vt6e6SzWrybUyQuKzjz7-gX6Yvu3A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6veiD-InVKQF9Uai2afoRX8TJxhQcIhvsQQhJm-xldHObiP-9lyyrE2RP_SCU5i69-9318juELsEjxEpos-0jiXyaZpEvqWJ-rFOdBbFike0N-NJNOn36PIgHLuE2c2WVS5toDXUxzk2O_JYkWZoB1qbp_eTDN12jzN9V10JjE9XBBGcQfNWbre7rW5VlMQRd4MErXlJyC3ojN2CuTZePFU9kCfv_oMxVrGqdTXsX7TiUiB8Wat1DG6rcR9sr3IEH6B0UDEZ1NPrGxVR8ldiWBho3tcjuYW1qQWZ3uGcLYzEAPVyCJcZDSzRtBuGxxo441V7OqzT7Ieq3W73Hju9aJfg5hQDCl5IVItFMKq1DEEUQiJTFkkmpszwWcCyoIkRI08WWqByQlWRBlLOCFlIDpDpCtXJcqmOEtQjCIs3yHIAdhfBLhEUoCE1VFGhFGfXQ1VJsPHc84qadxYgvGJAJNyLmVsQeuqjGThbsGf-OahrpVyMM47W9MZ4OufuAeCRlClBFwEwgBlQwMaYzWGUJTFnIJPRQY6k77j7DGf9dNB66tvpc8xr8qdsm9uxk_bNO0RYxmyBs0W4D1ebTT3UG0GQuz936-wGpM-VP priority: 102 providerName: ProQuest |
Title | Thermally drawn multifunctional fibers: Toward the next generation of information technology |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12318 https://www.proquest.com/docview/2687866647 https://doaj.org/article/3bb7110abbd144ebbf9f8eaf6befab61 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPQgPnF9LAG9KFTbNG0T8eKK6wNcRBQ8CCFpk70sXdldEf-9k7TbVRDBS19Mocl0Mt8Mk28ADtEjJEZZt-0jjQOW8TjQzIggsZnlYWJE7HsD3vfSm2d295K8zMH5dC9MxQ_RJNycZfj12hm40uPTGWkoKoCe4Lob8XlYdHtrHXM-ZQ9NhsWRc1HffxHdukvGpUnDT0pPZ6__8EieuP8H2vyOWb3T6a7CSo0WyUWl3jWYM-U6LH_jENyAV1Q0Lq6DwScpRuqjJL5E0LmrKstHrKsJGZ-RJ18gSxDwkRJXZNL3hNNOiAwtqQlU_e2kSbdvwnP36unyJqhbJgQ5w0Ai0FoUKrVCG2sj9EphqDKRaKG15Xmi8FwwQ6nSrpstNTkiLC3COBcFK7RFaLUFC-WwNNtArAqjIuN5jgCPYRimoiJSlGUmDq1hgrXgaDptMq_5xF1bi4GsmJCpdFMs_RS34KCRfatYNH6V6rjZbyQc87V_MBz1ZW1IMtY6Q8iicCQYCxocmLAc_7YUh6x0GrVgb6o7WZvjWNKUZxwDNZa14Njr84_PkLe9LvVXO_8R3oUl6rZG-FLePViYjN7NPgKWiW77_xKPvHvdhsXOVe_hse2D_y90JOmu |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOLQ9VKW06rY8LBUOrZSSOM7DSAjRx3a3wJ4WiUMl105sLqss3V2E-FP8RmacB1up4sZps9Eoisfjmc-T8TcAuxgREqsdHftI40BkeRwYYWWQuMzlYWJl7HsDno3Swbn4dZFcrMBdexaGyipbn-gddTktKEe-z9M8yxFri-zo6m9AXaPo62rbQqM2ixN7e4Nbtvnh8DvO7x7n_R_jb4Og6SoQFAKxdmCMLHXqpLHORei4w1BnMjHSGJcXicbfUljOtaGGr9wWCEKMDONClqI0ThDRAbr8NRHHklZU3v_Z5XSIDgzxQseCyvfRSvgXDA7UU2Qp7vn2AP9g2mVk7ENb_xW8bDApO66NaB1WbPUaXiwxFW7AbzQndOGTyS0rZ_qmYr4QkYJinUtkjipP5gds7MtwGcJKVqHfZ5ee1pqE2NSxhqbV_110Sf03cP4kKnwLq9W0su-AOR1GZZYXBcJIgZs9HZWR5iKzceiskKIHn1q1qaJhLafmGRNV8y1zRSpWXsU9-NjJXtVcHf-V-kra7ySIX9vfmM4uVbNcVWxMhsBI40hwx2lxYNLlaNMpDlmbNOrBZjt3qln0c_Vgoj347OfzkddQw1Gf-6v3jz9rB54Nxmen6nQ4OvkAzzkdv_Dlwpuwuphd2y0ERQuz7S2RwZ-nNv17c5oiRA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD6ULYg-iFdcrRpQHxTGnclkJpNCKa3t0rW6FGmhD0JMZpK-LLN1d6X0r_nrPCdzcQXpW5_mQhgmJ9-c8yVz8h2AtxgRMmc8bfvI00jIIo2scCrKvPRFnDmVhtqAX6f50Zn4fJ6db8Dvbi8MpVV2PjE46mpe0hr5iOeFLJBrCznybVrEycF49_JnRBWk6E9rV06jgcixu77C6dtyZ3KAY_2O8_Hh6aejqK0wEJUCeXdkrapM7pV13ifoxOPYSJVZZa0vyszgsRKOc2Op-Ct3JRISq-K0VJWorBckeoDuf1PirCgewOb-4fTkW7_CQ-JgyB56TVQ-QszwjxgqqMLIWhQMxQL-YbjrPDkEuvEDuN8yVLbXQOohbLj6Edxb0y18DN8RXOjQZ7NrVi3MVc1CWiKFyGZlkXnKQ1lus9OQlMuQZLIaTckugsg1NWJzz1rR1nC56pf4n8DZrRjxKQzqee2eAfMmTipZlCWSSoFTP5NUieFCujT2TigxhPed2XTZaphTKY2ZbtSXuSYT62DiIbzp2142yh3_bbVP1u9bkNp2uDFfXOj249WptRJpksGe4PzTYceULxDhOXbZ2DwZwlY3drp1AUv9F7BD-BDG84bX0JPpmIez5zc_6zXcQdjrL5Pp8Qu4y2kvRsgd3oLBavHLvUSGtLKvWigy-HHb6P8Dd8In1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+drawn+multifunctional+fibers%3A+Toward+the+next+generation+of+information+technology&rft.jtitle=InfoMat&rft.au=Shen%2C+Yanan&rft.au=Wang%2C+Zhe&rft.au=Wang%2C+Zhixun&rft.au=Wang%2C+Jiajia&rft.date=2022-07-01&rft.issn=2567-3165&rft.eissn=2567-3165&rft.volume=4&rft.issue=7&rft_id=info:doi/10.1002%2Finf2.12318&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_inf2_12318 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon |