Thermally drawn multifunctional fibers: Toward the next generation of information technology

As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of modern information society. However, the conventional step‐index configured silica optical fibers have scarcely altered since their invention. In...

Full description

Saved in:
Bibliographic Details
Published inInfoMat Vol. 4; no. 7
Main Authors Shen, Yanan, Wang, Zhe, Wang, Zhixun, Wang, Jiajia, Yang, Xiao, Zheng, Xinghua, Chen, Haisheng, Li, Kaiwei, Wei, Lei, Zhang, Ting
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons, Inc 01.07.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of modern information society. However, the conventional step‐index configured silica optical fibers have scarcely altered since their invention. In recent years, thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology. By adopting the well‐developed preform‐to‐fiber manufacturing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions. Functions such as photodetection, imaging, acoustoelectric detection, chemical sensing, tactile sensing, biological probing, energy harvesting and storage, data storage, program operation, and information processing on fiber devices. In addition to the original light‐guiding function, these flexible fibers can be woven into fabrics to achieve large‐scale personal health monitoring and interpersonal communication. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications. By adopting the well‐developed thermal drawing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to provide more application scenarios. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications.
AbstractList As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of modern information society. However, the conventional step‐index configured silica optical fibers have scarcely altered since their invention. In recent years, thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology. By adopting the well‐developed preform‐to‐fiber manufacturing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions. Functions such as photodetection, imaging, acoustoelectric detection, chemical sensing, tactile sensing, biological probing, energy harvesting and storage, data storage, program operation, and information processing on fiber devices. In addition to the original light‐guiding function, these flexible fibers can be woven into fabrics to achieve large‐scale personal health monitoring and interpersonal communication. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications. image
As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of modern information society. However, the conventional step‐index configured silica optical fibers have scarcely altered since their invention. In recent years, thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology. By adopting the well‐developed preform‐to‐fiber manufacturing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions. Functions such as photodetection, imaging, acoustoelectric detection, chemical sensing, tactile sensing, biological probing, energy harvesting and storage, data storage, program operation, and information processing on fiber devices. In addition to the original light‐guiding function, these flexible fibers can be woven into fabrics to achieve large‐scale personal health monitoring and interpersonal communication. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications. By adopting the well‐developed thermal drawing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to provide more application scenarios. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications.
Abstract As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of modern information society. However, the conventional step‐index configured silica optical fibers have scarcely altered since their invention. In recent years, thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology. By adopting the well‐developed preform‐to‐fiber manufacturing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions. Functions such as photodetection, imaging, acoustoelectric detection, chemical sensing, tactile sensing, biological probing, energy harvesting and storage, data storage, program operation, and information processing on fiber devices. In addition to the original light‐guiding function, these flexible fibers can be woven into fabrics to achieve large‐scale personal health monitoring and interpersonal communication. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications.
As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of modern information society. However, the conventional step‐index configured silica optical fibers have scarcely altered since their invention. In recent years, thermally drawn multifunctional fibers have emerged as a new yet promising route to enable unprecedented development in information technology. By adopting the well‐developed preform‐to‐fiber manufacturing technique, a broad range of functional materials can be seamlessly integrated into a single fiber on a kilometer length scale to deliver sophisticated functions. Functions such as photodetection, imaging, acoustoelectric detection, chemical sensing, tactile sensing, biological probing, energy harvesting and storage, data storage, program operation, and information processing on fiber devices. In addition to the original light‐guiding function, these flexible fibers can be woven into fabrics to achieve large‐scale personal health monitoring and interpersonal communication. Thermally drawn multifunctional fibers have opened up a new stage for the next generation of information technology. This review article summarizes an overview of the basic concepts, fabrication processes, and developments of multifunctional fibers. It also highlights the significant progress and future development in information applications.
Author Wang, Zhe
Wang, Jiajia
Zhang, Ting
Wang, Zhixun
Zheng, Xinghua
Wei, Lei
Li, Kaiwei
Chen, Haisheng
Shen, Yanan
Yang, Xiao
Author_xml – sequence: 1
  givenname: Yanan
  surname: Shen
  fullname: Shen, Yanan
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  organization: Nanyang Technological University
– sequence: 3
  givenname: Zhixun
  surname: Wang
  fullname: Wang, Zhixun
  organization: Nanyang Technological University
– sequence: 4
  givenname: Jiajia
  surname: Wang
  fullname: Wang, Jiajia
  organization: Henan University of Science and Technology
– sequence: 5
  givenname: Xiao
  surname: Yang
  fullname: Yang, Xiao
  organization: Nanjing Institute of Future Energy System
– sequence: 6
  givenname: Xinghua
  surname: Zheng
  fullname: Zheng, Xinghua
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Haisheng
  orcidid: 0000-0002-1383-9476
  surname: Chen
  fullname: Chen, Haisheng
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Kaiwei
  orcidid: 0000-0001-5022-1897
  surname: Li
  fullname: Li, Kaiwei
  email: kaiwei_li@jlu.edu.cn
  organization: Jilin University
– sequence: 9
  givenname: Lei
  orcidid: 0000-0003-0819-8325
  surname: Wei
  fullname: Wei, Lei
  email: wei.lei@ntu.edu.sg
  organization: Nanyang Technological University
– sequence: 10
  givenname: Ting
  orcidid: 0000-0001-5967-0525
  surname: Zhang
  fullname: Zhang, Ting
  email: zhangting@iet.cn
  organization: Chinese Academy of Sciences
BookMark eNp9kVFrFDEUhYNUsNa--AsCvgnbJplMZsY3KVYXir6sb0K4ydzsZskmNZNlu__e7I5CEfHpJuE75yQ5r8lFTBEJecvZDWdM3ProxA0XDe9fkEvRqm7RcNVePFu_ItfTtGUVbpkULb8kP1YbzDsI4UjHDIdId_tQvNtHW3yKEKjzBvP0ga7SAfJIywZpxKdC1xgxwwmiydEanarNeVvQbmIKaX18Q146CBNe_55X5Pv9p9Xdl8XDt8_Lu48PCyul6BfGDCMoNxh0jgsuGINuaM1gjOttC3WOEoUAw1vRCbSMDWZgjR1GORonRXNFlrPvmGCrH7PfQT7qBF6fD1Jea8jF24C6MabjnEH15FJijRhcj-BUDQejePV6N3s95vRzj1PR27TP9ScmLVTf9Uop2VWKzZTNaZoyOm19OT-_ZPBBc6ZPlehTJfpcSZW8_0vy56L_hPkMH3zA439Ivfx6L2bNL_SioE4
CitedBy_id crossref_primary_10_1080_19475411_2024_2441323
crossref_primary_10_1021_acsnano_4c10111
crossref_primary_10_1016_j_nanoen_2023_108171
crossref_primary_10_1021_accountsmr_4c00343
crossref_primary_10_3390_s22134979
crossref_primary_10_1016_j_mtphys_2024_101334
crossref_primary_10_1016_j_colsurfa_2023_131273
crossref_primary_10_1002_adfm_202214479
crossref_primary_10_1007_s42765_023_00267_7
crossref_primary_10_1038_s41467_023_42355_7
crossref_primary_10_1016_j_pmatsci_2024_101288
crossref_primary_10_1364_OE_512379
crossref_primary_10_1088_1361_6528_ada9f1
crossref_primary_10_1007_s11431_024_2738_5
crossref_primary_10_1039_D4CS00286E
crossref_primary_10_1360_nso_20240035
crossref_primary_10_1080_09243046_2023_2270379
crossref_primary_10_1134_S002247662403003X
crossref_primary_10_1039_D4MH01429D
crossref_primary_10_1002_admt_202301854
crossref_primary_10_1002_admt_202401003
crossref_primary_10_1002_adhm_202403235
crossref_primary_10_1177_20417314231191881
crossref_primary_10_1002_adfm_202308136
crossref_primary_10_34133_energymatadv_0124
crossref_primary_10_1002_lpor_202301125
crossref_primary_10_1093_nsr_nwae333
crossref_primary_10_1051_epjconf_202328710005
crossref_primary_10_1002_advs_202203808
crossref_primary_10_3390_nano13243165
crossref_primary_10_1007_s12200_023_00058_3
crossref_primary_10_1038_s41578_023_00573_x
crossref_primary_10_1021_acsami_4c03885
crossref_primary_10_3788_LOP232686
crossref_primary_10_1016_j_nanoen_2024_109896
crossref_primary_10_34133_adi_0054
Cites_doi 10.1126/science.1079280
10.1021/nl801979w
10.1038/ncomms12807
10.1038/nmat1512
10.1088/0957-4484/7/3/009
10.1002/adma.201700681
10.1038/s41467-019-11986-0
10.1016/j.nanoen.2017.09.019
10.1002/adfm.201802629
10.1002/anie.202103228
10.1021/nl300524j
10.1002/adom.202001815
10.1364/OME.7.002336
10.1002/smll.201803585
10.1021/acsami.1c11593
10.1038/nn.4510
10.1109/JLT.2020.3036739
10.1016/j.nanoen.2020.104805
10.1364/OME.4.002143
10.1002/adma.201203053
10.1002/adfm.201401266
10.1021/acscentsci.0c01188
10.1364/OME.7.001388
10.1038/s41467-021-23628-5
10.1002/adom.202100270
10.1364/OE.20.012407
10.1002/adfm.201804456
10.1002/adfm.202104857
10.1039/c4ta00203b
10.1002/adom.201500319
10.1038/s41928-020-0415-y
10.1002/adma.201707251
10.1002/adma.201902301
10.1109/JLT.2019.2895220
10.1002/adma.201800124
10.1038/s41586-018-0390-x
10.1016/j.biomaterials.2015.11.063
10.1002/advs.202001410
10.1002/adma.201802348
10.1002/adom.201700941
10.1038/s41467-021-25391-z
10.1109/JLT.2006.885258
10.1016/j.carbon.2017.04.002
10.1038/ncomms3216
10.1002/adma.201400152
10.1038/nmat2792
10.1038/nature02937
10.1364/OME.9.003432
10.1016/j.ensm.2019.10.023
10.1021/acsnano.6b08290
10.1021/acsami.0c09446
10.1038/nmat1674
10.1016/S0038-1098(00)00125-3
10.1016/j.matlet.2018.01.050
10.1021/ac201477j
10.1038/nphoton.2011.10
10.3390/app11020600
10.1021/acs.accounts.7b00558
10.1038/srep04864
10.1038/nbt.3093
10.1038/s41598-018-26561-8
10.1002/adma.201603033
10.1016/j.nanoen.2020.105361
10.1002/adfm.201703245
10.1039/c4ee00242c
10.1021/ac4008013
10.1002/adfm.201604378
10.1016/j.jallcom.2017.07.150
10.1111/ijag.12007
10.1002/adma.201004052
10.1016/j.enconman.2019.01.021
10.1002/adfm.201908915
10.1364/OE.18.024264
10.1021/acs.nanolett.9b01403
10.1038/s41467-021-21729-9
10.1088/1361-6463/aa5bf7
10.1038/s41565-020-0701-x
10.1002/adma.202002702
10.1038/s41467-020-19946-9
10.1002/adfm.201600580
10.1002/adma.202004971
10.1002/adma.201503558
10.1002/adma.201500072
10.1111/jace.17827
10.1073/pnas.1101160108
10.1002/adma.201904911
10.1073/pnas.1707778114
10.1039/C8CS00710A
10.1002/lpor.201900075
10.1126/sciadv.1600955
10.1016/j.mattod.2019.11.006
10.1038/s41467-021-23802-9
10.1038/s41467-020-17345-8
10.1088/0957-4484/21/39/395303
10.1002/adfm.201605935
10.1117/12.2555433
10.1021/acsami.8b20307
10.1038/nmat1889
10.1002/adma.200700177
10.1063/1.3653247
10.1021/nl9009606
10.1021/nl801495p
10.1002/admt.202101066
10.1002/adma.201901958
10.1038/s41467-020-17674-8
10.1002/aelm.201600449
10.1021/nl300597c
10.1117/1.OE.60.4.045101
10.1002/adma.200502106
10.1002/adma.201201355
10.1109/JSTQE.2006.882666
10.1109/JLT.2019.2959945
10.3390/ma14216306
10.1039/C7LC01247K
10.1002/adma.201800051
10.1038/s41565-020-0747-9
10.1039/c3ee41116h
10.1364/AO.55.010247
10.1038/ncomms7248
ContentType Journal Article
Copyright 2022 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/inf2.12318
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3165
EndPage n/a
ExternalDocumentID oai_doaj_org_article_3bb7110abbd144ebbf9f8eaf6befab61
10_1002_inf2_12318
INF212318
Genre reviewArticle
GrantInformation_xml – fundername: Singapore Ministry of Education Academic Research Fund Tier 1
  funderid: MOE2019‐T1‐001‐103 (RG 73/19); MOE2019‐T1‐001‐111 (RG 90/19)
– fundername: Funding of Innovation Academy for Light‐duty Gas Turbine, Chinese Academy of Sciences
  funderid: CXYJJ21‐ZD‐02
– fundername: National Natural Science Foundation of China
  funderid: 51976215; 52172249; 62005101
– fundername: Schaeffler Hub for Advanced Research at NTU, under the ASTAR IAF‐ICP Programme
  funderid: ICP1900093
– fundername: Scientific Instrument Developing Project of the Chinese Academy of Sciences
  funderid: YJKYYQ20200017
– fundername: Singapore Ministry of Education Academic Research Fund Tier 2
  funderid: MOE‐T2EP50120‐0002; MOE2019‐T2‐2‐127
– fundername: A*STAR under AME IRG
  funderid: A2083c0062
– fundername: Singapore National Research Foundation Competitive Research Program
  funderid: NRF‐CRP18‐2017‐02
– fundername: Nanyang Technological University
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KB.
M7S
OK1
PDBOC
PIMPY
PTHSS
WIN
AAYXX
ADMLS
CITATION
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c4428-bb9da6f9beff121200a795b9bbf8c5a9bbd4e22ab15272ec009b903c9d4dbf423
IEDL.DBID 24P
ISSN 2567-3165
IngestDate Wed Aug 27 01:29:53 EDT 2025
Wed Aug 13 09:31:43 EDT 2025
Tue Jul 01 01:33:44 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Wed Jan 22 16:23:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4428-bb9da6f9beff121200a795b9bbf8c5a9bbd4e22ab15272ec009b903c9d4dbf423
Notes Funding information
A*STAR under AME IRG, Grant/Award Number: A2083c0062; Funding of Innovation Academy for Light‐duty Gas Turbine, Chinese Academy of Sciences, Grant/Award Number: CXYJJ21‐ZD‐02; National Natural Science Foundation of China, Grant/Award Numbers: 51976215, 52172249, 62005101; Schaeffler Hub for Advanced Research at NTU, under the ASTAR IAF‐ICP Programme, Grant/Award Number: ICP1900093; Scientific Instrument Developing Project of the Chinese Academy of Sciences, Grant/Award Number: YJKYYQ20200017; Singapore Ministry of Education Academic Research Fund Tier 1, Grant/Award Numbers: MOE2019‐T1‐001‐103 (RG 73/19), MOE2019‐T1‐001‐111 (RG 90/19); Singapore Ministry of Education Academic Research Fund Tier 2, Grant/Award Numbers: MOE‐T2EP50120‐0002, MOE2019‐T2‐2‐127; Singapore National Research Foundation Competitive Research Program, Grant/Award Number: NRF‐CRP18‐2017‐02; Nanyang Technological University
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5967-0525
0000-0003-0819-8325
0000-0002-1383-9476
0000-0001-5022-1897
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12318
PQID 2687866647
PQPubID 5068510
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_3bb7110abbd144ebbf9f8eaf6befab61
proquest_journals_2687866647
crossref_citationtrail_10_1002_inf2_12318
crossref_primary_10_1002_inf2_12318
wiley_primary_10_1002_inf2_12318_INF212318
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: Beijing
PublicationTitle InfoMat
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2018; 560
2017; 7
2017; 41
2013; 4
2017; 3
2019; 11
2010; 18
2019; 10
2019; 13
2015; 33
2014; 26
2020; 15
2019; 19
2011; 99
2008; 8
2014; 24
2020; 12
2020; 11
2012; 12
2013; 6
2017; 114
2017; 118
2017; 725
2020; 7
2018; 6
2020; 6
2010; 21
2018; 8
2021; 31
2014; 4
2020; 3
2014; 2
2006; 24
2018; 217
2021; 39
2007; 6
2019; 29
2018; 30
2011; 23
2016; 81
2012; 24
2014; 7
2012; 20
2010; 9
1996; 7
2021; 9
2015; 1
2007; 19
2017; 20
2018; 28
2019; 9
2015; 6
2006; 12
2019; 31
2000; 115
2021; 104
2017; 27
2019; 37
2013; 85
2020; 38
2006; 18
2006; 5
2020; 35
2017; 29
2020; 78
2020; 32
2003; 299
2011; 5
2019; 183
2016; 55
2016; 4
2004; 431
2021; 14
2021; 13
2017; 50
2018; 18
2016; 7
2012; 3
2015; 27
2011; 108
2021; 12
2021; 11
2020; 30
2020; 74
2021
2017; 11
2019; 48
2005; 4
2009; 9
2020; 25
2018; 51
2021; 60
2016; 26
2018; 14
2012; 84
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_117_1
e_1_2_11_59_1
e_1_2_11_113_1
Li H (e_1_2_11_32_1) 2015; 1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_116_1
e_1_2_11_37_1
e_1_2_11_112_1
References_xml – volume: 18
  start-page: 845
  issue: 7
  year: 2006
  end-page: 849
  article-title: Thermal‐sensing fiber devices by multimaterial codrawing
  publication-title: Adv Mater
– volume: 9
  start-page: 2630
  issue: 7
  year: 2009
  end-page: 2635
  article-title: Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber
  publication-title: Nano Lett
– volume: 32
  issue: 49
  year: 2020
  article-title: 100 m Long thermally drawn supercapacitor fibers with applications to 3D printing and textiles
  publication-title: Adv Mater
– volume: 6
  issue: 3
  year: 2018
  article-title: Implantable and biodegradable poly(L‐lactic acid) fibers for optical neural interfaces
  publication-title: Adv Opt Mater
– volume: 29
  issue: 27
  year: 2017
  article-title: Semiconducting nanowire‐based optoelectronic fibers
  publication-title: Adv Mater
– volume: 12
  start-page: 2140
  issue: 4
  year: 2012
  end-page: 2145
  article-title: Flexible nanocrystal‐coated glass fibers for high‐performance thermoelectric energy harvesting
  publication-title: Nano Lett
– volume: 12
  start-page: 5138
  issue: 1
  year: 2021
  article-title: Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement
  publication-title: Nat Commun
– volume: 114
  start-page: 7240
  issue: 28
  year: 2017
  end-page: 7245
  article-title: Confined in‐fiber solidification and structural control of silicon and silicon‐germanium microparticles
  publication-title: Proc Natl Acad Sci U S A
– volume: 31
  issue: 43
  year: 2021
  article-title: Customizing MRI‐compatible multifunctional neural interfaces through fiber drawing
  publication-title: Adv Funct Mater
– volume: 15
  start-page: 875
  issue: 10
  year: 2020
  end-page: 882
  article-title: Structured nanoscale metallic glass fibres with extreme aspect ratios
  publication-title: Nat Nanotechnol
– volume: 4
  start-page: 2143
  issue: 10
  year: 2014
  end-page: 2149
  article-title: Multimaterial disc‐to‐fiber approach to efficiently produce robust infrared fibers
  publication-title: Opt Mater Express
– volume: 3
  issue: 3
  year: 2017
  article-title: Flexible and stretchable nanowire‐coated fibers for optoelectronic probing of spinal cord circuits
  publication-title: Sci Adv
– volume: 24
  start-page: 6594
  issue: 42
  year: 2014
  end-page: 6600
  article-title: Polymer fiber probes enable optical control of spinal cord and muscle function in vivo
  publication-title: Adv Funct Mater
– volume: 11
  start-page: 600
  issue: 2
  year: 2021
  article-title: Thermal stability of type II modifications inscribed by femtosecond laser in a fiber drawn from a 3D printed preform
  publication-title: Appl Sci
– volume: 32
  issue: 5
  year: 2020
  article-title: A route toward smart system integration: from fiber design to device construction
  publication-title: Adv Mater
– volume: 18
  start-page: 24264
  issue: 23
  year: 2010
  end-page: 24275
  article-title: Resolving optical illumination distributions along an axially symmetric photodetecting fiber
  publication-title: Opt Express
– volume: 12
  start-page: 3317
  issue: 1
  year: 2021
  article-title: Digital electronics in fibres enable fabric‐based machine‐learning inference
  publication-title: Nat Commun
– volume: 2
  start-page: 10776
  issue: 28
  year: 2014
  end-page: 10787
  article-title: Textile energy storage in perspective
  publication-title: J Mater Chem A
– volume: 725
  start-page: 242
  year: 2017
  end-page: 247
  article-title: Sn‐Se alloy core fibers
  publication-title: J Alloys Compd
– volume: 33
  start-page: 277
  issue: 3
  year: 2015
  end-page: 284
  article-title: Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo
  publication-title: Nat Biotechnol
– volume: 11
  start-page: 3842
  issue: 1
  year: 2020
  article-title: Designer patterned functional fibers via direct imprinting in thermal drawing
  publication-title: Nat Commun
– volume: 99
  issue: 16
  year: 2011
  article-title: Observation of the Plateau‐Rayleigh capillary instability in multi‐material optical fibers
  publication-title: Appl Phys Lett
– volume: 12
  start-page: 2483
  issue: 5
  year: 2012
  end-page: 2487
  article-title: Macroscopic assembly of indefinitely long and parallel nanowires into large area photodetection circuitry
  publication-title: Nano Lett
– volume: 3
  issue: 3
  year: 2017
  article-title: Flexible piezoelectric fibers for acoustic sensing and positioning
  publication-title: Adv Electron Mater
– volume: 21
  issue: 39
  year: 2010
  article-title: The fabrication of thermoelectric La Sr CoO nanofibers and Seebeck coefficient measurement
  publication-title: Nanotechnol
– volume: 32
  issue: 36
  year: 2020
  article-title: Single‐crystal SnSe thermoelectric fibers via laser‐induced directional crystallization: from 1D fibers to multidimensional fabrics
  publication-title: Adv Mater
– volume: 431
  start-page: 826
  issue: 7010
  year: 2004
  end-page: 829
  article-title: Metal‐insulator‐semiconductor optoelectronic fibres
  publication-title: Nature
– volume: 84
  start-page: 83
  issue: 1
  year: 2012
  end-page: 90
  article-title: High selectivity Boolean olfaction using Hollow‐Core wavelength‐scalable Bragg fibers
  publication-title: Anal Chem
– volume: 27
  issue: 43
  year: 2017
  article-title: Laser‐induced in‐fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles
  publication-title: Adv Funct Mater
– volume: 11
  start-page: 2103
  issue: 2
  year: 2017
  end-page: 2114
  article-title: Piezoelectric micro‐and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications
  publication-title: ACS Nano
– volume: 11
  start-page: 2441
  issue: 2
  year: 2019
  end-page: 2447
  article-title: Ultraflexible glassy semiconductor fibers for thermal sensing and positioning
  publication-title: ACS Appl Mater Interfaces
– volume: 30
  issue: 9
  year: 2020
  article-title: Flexible multi‐material fibers for distributed pressure and temperature sensing
  publication-title: Adv Funct Mater
– volume: 14
  start-page: 6306
  issue: 21
  year: 2021
  article-title: New progress on fiber‐based thermoelectric materials: performance, device structures and applications
  publication-title: Materials
– volume: 14
  issue: 50
  year: 2018
  article-title: Designable 3D microshapes fabricated at the intersection of structured flow and optical fields
  publication-title: Small
– volume: 28
  issue: 42
  year: 2018
  article-title: Weaving sensing fibers into electrochemical fabric for real‐time health monitoring
  publication-title: Adv Funct Mater
– volume: 19
  start-page: 3872
  issue: 22
  year: 2007
  end-page: 3877
  article-title: Multimaterial photodetecting fibers: a geometric and structural study
  publication-title: Adv Mater
– volume: 19
  start-page: 4035
  issue: 6
  year: 2019
  end-page: 4042
  article-title: Flexible and high‐voltage coaxial‐fiber aqueous rechargeable zinc‐ion battery
  publication-title: Nano Lett
– volume: 24
  start-page: 4729
  issue: 12
  year: 2006
  end-page: 4749
  article-title: Photonic‐crystal fibers
  publication-title: Journal of Lightwave Technology
– volume: 7
  start-page: 1959
  issue: 6
  year: 2014
  end-page: 1965
  article-title: A wearable thermoelectric generator fabricated on a glass fabric
  publication-title: Energ Environ Sci
– volume: 183
  start-page: 633
  year: 2019
  end-page: 644
  article-title: Emerging mineral‐coupled composite phase change materials for thermal energy storage
  publication-title: Energ Conver Manage
– volume: 81
  start-page: 27
  year: 2016
  end-page: 35
  article-title: Thermally drawn fibers as nerve guidance scaffolds
  publication-title: Biomaterials
– volume: 115
  start-page: 51
  issue: 1
  year: 2000
  end-page: 55
  article-title: Coating of carbon nanotubes with tungsten by physical vapor deposition
  publication-title: Solid State Commun
– volume: 30
  issue: 23
  year: 2018
  article-title: Fabric organic electrochemical transistors for biosensors
  publication-title: Adv Mater
– volume: 1
  start-page: 399
  issue: 6
  year: 2015
  end-page: 402
  article-title: Stable hydrophobic ionic liquid gel electrolyte for stretchable fiber‐shaped dye‐sensitized solar cell
  publication-title: Chem
– volume: 48
  start-page: 1826
  issue: 6
  year: 2019
  end-page: 1852
  article-title: Flexible fiber‐based optoelectronics for neural interfaces
  publication-title: Chem Soc Rev
– volume: 12
  start-page: 3435
  issue: 1
  year: 2021
  article-title: Adaptive and multifunctional hydrogel hybrid probes for long‐term sensing and modulation of neural activity
  publication-title: Nat Commun
– volume: 55
  start-page: 10247
  issue: 36
  year: 2016
  end-page: 10254
  article-title: Binary coded identification of industrial chemical vapors with an optofluidic nose
  publication-title: Appl Optics
– volume: 23
  start-page: 1263
  issue: 10
  year: 2011
  end-page: 1267
  article-title: Bioinspired optoelectronic nose with nanostructured wavelength‐scalable hollow‐Core infrared fibers
  publication-title: Adv Mater
– volume: 3
  start-page: 349
  issue: 4
  year: 2012
  end-page: 368
  article-title: Multimaterial fibers
  publication-title: Int J Appl Glass Sci
– volume: 27
  issue: 10
  year: 2017
  article-title: Controlled sub‐micrometer hierarchical textures engineered in polymeric fibers and microchannels via thermal drawing
  publication-title: Adv Funct Mater
– volume: 10
  start-page: 4010
  issue: 1
  year: 2019
  article-title: Structured multimaterial filaments for 3D printing of optoelectronics
  publication-title: Nat Commun
– volume: 20
  start-page: 12407
  issue: 11
  year: 2012
  end-page: 12415
  article-title: Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically‐tuned hollow core photonic bandgap fibers
  publication-title: Opt Express
– volume: 12
  start-page: 1416
  issue: 1
  year: 2021
  article-title: Self‐powered multifunctional sensing based on super‐elastic fibers by soluble‐core thermal drawing
  publication-title: Nat Commun
– volume: 31
  issue: 1
  year: 2019
  article-title: Advanced multimaterial electronic and optoelectronic fibers and textiles
  publication-title: Adv Mater
– volume: 12
  start-page: 33297
  issue: 29
  year: 2020
  end-page: 33304
  article-title: Highly integrable thermoelectric fiber
  publication-title: ACS Appl Mater Interfaces
– volume: 8
  start-page: 4151
  issue: 12
  year: 2008
  end-page: 4157
  article-title: Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes
  publication-title: Nano Lett
– volume: 32
  issue: 1
  year: 2020
  article-title: Recent progress and perspectives of thermally drawn multimaterial fiber electronics
  publication-title: Adv Mater
– volume: 30
  issue: 27
  year: 2018
  article-title: Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing
  publication-title: Adv Mater
– volume: 7
  start-page: 2336
  issue: 7
  year: 2017
  end-page: 2345
  article-title: Robust multimaterial chalcogenide fibers produced by a hybrid fiber‐fabrication process
  publication-title: Opt Mater Express
– volume: 51
  start-page: 829
  issue: 4
  year: 2018
  end-page: 838
  article-title: Multifunctional fibers as tools for neuroscience and neuroengineering
  publication-title: Acc Chem Res
– volume: 12
  start-page: 1202
  issue: 6
  year: 2006
  end-page: 1213
  article-title: Kilometer‐long ordered nanophotonic devices by preform‐to‐fiber fabrication
  publication-title: IEEE J Sel Top Quantum Electron
– volume: 4
  start-page: 13
  issue: 1
  year: 2016
  end-page: 36
  article-title: Hybrid optical fibers—an innovative platform for in‐fiber photonic devices
  publication-title: Adv Opt Mater
– volume: 9
  start-page: 3432
  issue: 8
  year: 2019
  end-page: 3438
  article-title: Fabrication and measurement of 3D printed retroreflective fibers
  publication-title: Opt Mater Express
– volume: 108
  start-page: 4743
  issue: 12
  year: 2011
  end-page: 4747
  article-title: Fiber draw synthesis
  publication-title: Proc Natl Acad Sci U S A
– volume: 13
  issue: 7
  year: 2019
  article-title: Distributed quantum fiber magnetometry
  publication-title: Laser Photonics Rev
– volume: 560
  start-page: 214
  issue: 7717
  year: 2018
  end-page: 218
  article-title: Diode fibres for fabric‐based optical communications
  publication-title: Nature
– volume: 27
  issue: 4
  year: 2017
  article-title: A highly stretchable fiber‐based triboelectric nanogenerator for self‐powered wearable electronics
  publication-title: Adv Funct Mater
– volume: 85
  start-page: 6384
  issue: 13
  year: 2013
  end-page: 6391
  article-title: Smelling in chemically complex environments: an optofluidic Bragg fiber array for differentiation of methanol adulterated beverages
  publication-title: Anal Chem
– volume: 6
  start-page: 2319
  issue: 12
  year: 2020
  end-page: 2325
  article-title: Selectively micro‐patternable fibers via in‐fiber photolithography
  publication-title: ACS Cent Sci
– volume: 11
  start-page: 3537
  issue: 1
  year: 2020
  article-title: High‐efficiency super‐elastic liquid metal based triboelectric fibers and textiles
  publication-title: Nat Commun
– volume: 4
  start-page: 2216
  issue: 1
  year: 2013
  article-title: Silicon‐in‐silica spheres via axial thermal gradient in‐fibre capillary instabilities
  publication-title: Nat Commun
– volume: 18
  start-page: 655
  issue: 4
  year: 2018
  end-page: 661
  article-title: Ultra‐sensitive chemical and biological analysis via specialty fibers with built‐in microstructured optofluidic channels
  publication-title: Lab Chip
– volume: 299
  start-page: 358
  issue: 5605
  year: 2003
  end-page: 362
  article-title: Photonic crystal fibers
  publication-title: Science
– volume: 30
  issue: 18
  year: 2018
  article-title: Stretchable all‐gel‐state fiber‐shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels
  publication-title: Adv Mater
– volume: 24
  start-page: 6005
  issue: 45
  year: 2012
  end-page: 6009
  article-title: All‐in‐fiber chemical sensing
  publication-title: Adv Mater
– volume: 3
  start-page: 316
  issue: 6
  year: 2020
  end-page: 326
  article-title: Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations
  publication-title: Nat Electron
– volume: 26
  start-page: 5078
  issue: 28
  year: 2016
  end-page: 5085
  article-title: Multiscale wrinkled microstructures for piezoresistive fibers
  publication-title: Adv Funct Mater
– volume: 7
  start-page: 216
  issue: 3
  year: 1996
  end-page: 223
  article-title: Nanometre diameter fibres of polymer, produced by electrospinning
  publication-title: Nanotechnology
– volume: 6
  start-page: 3339
  issue: 11
  year: 2013
  end-page: 3345
  article-title: Hybrid Li‐air battery cathodes with sparse carbon nanotube arrays directly grown on carbon fiber papers
  publication-title: Energ Environ Sci
– volume: 25
  start-page: 124
  year: 2020
  end-page: 130
  article-title: All‐in‐one stretchable coaxial‐fiber strain sensor integrated with high‐performing supercapacitor
  publication-title: Energy Storage Materials
– volume: 27
  start-page: 7365
  issue: 45
  year: 2015
  end-page: 7371
  article-title: A stretchable and highly sensitive graphene‐based fiber for sensing tensile strain, bending, and torsion
  publication-title: Adv Mater
– volume: 8
  start-page: 8113
  issue: 1
  year: 2018
  article-title: Mid‐IR hollow‐core microstructured fiber drawn from a 3D printed PETG preform
  publication-title: Sci Rep
– year: 2021
  article-title: Thermally‐drawn multi‐electrode fibers for bipolar electrochemistry and magnified electrochemical imaging
  publication-title: Adv Mater Technol
– volume: 20
  start-page: 612
  issue: 4
  year: 2017
  end-page: 619
  article-title: One‐step optogenetics with multifunctional flexible polymer fibers
  publication-title: Nat Neurosci
– volume: 27
  start-page: 2440
  issue: 15
  year: 2015
  end-page: 2446
  article-title: Capacitive soft strain sensors via multicore‐shell fiber printing
  publication-title: Adv Mater
– volume: 104
  start-page: 4058
  issue: 8
  year: 2021
  end-page: 4064
  article-title: Microstructured multimaterial fibers for efficient optical detection
  publication-title: J Am Ceram Soc
– volume: 37
  start-page: 1916
  issue: 9
  year: 2019
  end-page: 1923
  article-title: Poly (D, L‐lactic acid)(PDLLA) biodegradable and biocompatible polymer optical fiber
  publication-title: J Light Technol
– volume: 118
  start-page: 686
  year: 2017
  end-page: 698
  article-title: Electromechanical properties of a yarn strain sensor with graphene‐sheath/polyurethane‐core
  publication-title: Carbon
– volume: 6
  start-page: 6248
  issue: 1
  year: 2015
  article-title: Crystalline silicon core fibres from aluminium core preforms
  publication-title: Nat Commun
– volume: 15
  start-page: 690
  issue: 8
  year: 2020
  end-page: 697
  article-title: In situ electrochemical generation of nitric oxide for neuronal modulation
  publication-title: Nat Nanotechnol
– volume: 4
  start-page: 820
  issue: 11
  year: 2005
  end-page: 825
  article-title: Integrated fibres for self‐monitored optical transport
  publication-title: Nat Mater
– volume: 13
  start-page: 43356
  issue: 36
  year: 2021
  end-page: 43363
  article-title: All‐in‐fiber electrochemical sensing
  publication-title: ACS Appl Mater Interfaces
– volume: 11
  start-page: 6115
  issue: 1
  year: 2020
  article-title: Spatially expandable fiber‐based probes as a multifunctional deep brain interface
  publication-title: Nat Commun
– volume: 6
  start-page: 336
  issue: 5
  year: 2007
  end-page: 347
  article-title: Towards multimaterial multifunctional fibres that see, hear, sense and communicate
  publication-title: Nat Mater
– volume: 4
  start-page: 4864
  issue: 1
  year: 2014
  article-title: Tailoring self‐organized nanostructured morphologies in kilometer‐long polymer fiber
  publication-title: Sci Rep
– volume: 7
  issue: 15
  year: 2020
  article-title: Flexible fiber probe for efficient neural stimulation and detection
  publication-title: Adv Sci
– volume: 9
  issue: 6
  year: 2021
  article-title: Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing
  publication-title: Adv Opt Mater
– volume: 78
  year: 2020
  article-title: Highly conductive, ultra‐flexible and continuously processable PEDOT:PSS fibers with high thermoelectric properties for wearable energy harvesting
  publication-title: Nano Energy
– volume: 5
  start-page: 66
  issue: 2
  year: 2011
  end-page: 67
  article-title: Fibres get functional
  publication-title: Nat Photon
– volume: 217
  start-page: 13
  year: 2018
  end-page: 15
  article-title: In Se alloy core thermoelectric fibers
  publication-title: Mater Lett
– volume: 7
  issue: 1
  year: 2016
  article-title: Self‐assembled fibre optoelectronics with discrete translational symmetry
  publication-title: Nat Commun
– volume: 35
  start-page: 168
  year: 2020
  end-page: 194
  article-title: Thermally drawn advanced functional fibers: new frontier of flexible electronics
  publication-title: Mater Today
– volume: 41
  start-page: 35
  year: 2017
  end-page: 42
  article-title: High‐performance, flexible, and ultralong crystalline thermoelectric fibers
  publication-title: Nano Energy
– volume: 7
  start-page: 1388
  issue: 4
  year: 2017
  end-page: 1397
  article-title: Microstructure tailoring of selenium‐core multimaterial optoelectronic fibers
  publication-title: Opt Mater Express
– volume: 60
  issue: 4
  year: 2021
  article-title: Manufacturing of GLS‐Se glass rods and structured preforms by extrusion for optical fiber drawing for the IR region
  publication-title: Opt Eng
– volume: 5
  start-page: 532
  issue: 7
  year: 2006
  end-page: 536
  article-title: Large‐scale optical‐field measurements with geometric fibre constructs
  publication-title: Nat Mater
– volume: 32
  issue: 5
  year: 2020
  article-title: Smart textile‐integrated microelectronic systems for wearable applications
  publication-title: Adv Mater
– volume: 50
  issue: 14
  year: 2017
  article-title: Multi‐material micro‐electromechanical fibers with bendable functional domains
  publication-title: J Phys D Appl Phys
– volume: 60
  start-page: 20325
  issue: 37
  year: 2021
  end-page: 20330
  article-title: Electrochemical modulation of carbon monoxide‐mediated cell signaling
  publication-title: Angew Chem Int Ed
– volume: 8
  start-page: 4265
  issue: 12
  year: 2008
  end-page: 4269
  article-title: In‐fiber semiconductor filament arrays
  publication-title: Nano Lett
– volume: 74
  year: 2020
  article-title: Scalable, washable and lightweight triboelectric‐energy‐generating fibers by the thermal drawing process for industrial loom weaving
  publication-title: Nano Energy
– volume: 38
  start-page: 1905
  issue: 7
  year: 2020
  end-page: 1914
  article-title: On the characterization of novel step‐index biocompatible and biodegradable poly (D, L‐lactic acid) based optical fiber
  publication-title: J Light Technol
– volume: 39
  start-page: 3836
  issue: 12
  year: 2021
  end-page: 3845
  article-title: Advanced multi‐material optoelectronic fibers: a review
  publication-title: J Light Technol
– volume: 29
  issue: 1
  year: 2017
  article-title: Optoelectronic fibers via selective amplification of in‐fiber capillary instabilities
  publication-title: Adv Mater
– volume: 29
  issue: 5
  year: 2019
  article-title: Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations
  publication-title: Adv Funct Mater
– volume: 26
  start-page: 2643
  issue: 17
  year: 2014
  end-page: 2647
  article-title: Stretchable, wearable dye‐sensitized solar cells
  publication-title: Adv Mater
– volume: 24
  start-page: 5327
  issue: 39
  year: 2012
  end-page: 5332
  article-title: Piezoelectric fibers for conformal acoustics
  publication-title: Adv Mater
– volume: 9
  issue: 12
  year: 2021
  article-title: Single‐mode, 700%‐stretchable, elastic optical fibers made of thermoplastic elastomers
  publication-title: Adv Opt Mater
– volume: 9
  start-page: 643
  issue: 8
  year: 2010
  end-page: 648
  article-title: Multimaterial piezoelectric fibres
  publication-title: Nat Mater
– ident: e_1_2_11_8_1
  doi: 10.1126/science.1079280
– ident: e_1_2_11_77_1
  doi: 10.1021/nl801979w
– ident: e_1_2_11_82_1
  doi: 10.1038/ncomms12807
– ident: e_1_2_11_89_1
  doi: 10.1038/nmat1512
– ident: e_1_2_11_47_1
  doi: 10.1088/0957-4484/7/3/009
– ident: e_1_2_11_36_1
  doi: 10.1002/adma.201700681
– ident: e_1_2_11_55_1
  doi: 10.1038/s41467-019-11986-0
– ident: e_1_2_11_118_1
  doi: 10.1016/j.nanoen.2017.09.019
– ident: e_1_2_11_13_1
  doi: 10.1002/adfm.201802629
– ident: e_1_2_11_26_1
  doi: 10.1002/anie.202103228
– ident: e_1_2_11_42_1
  doi: 10.1021/nl300524j
– ident: e_1_2_11_14_1
  doi: 10.1002/adom.202001815
– ident: e_1_2_11_76_1
  doi: 10.1364/OME.7.002336
– ident: e_1_2_11_60_1
  doi: 10.1002/smll.201803585
– ident: e_1_2_11_99_1
  doi: 10.1021/acsami.1c11593
– ident: e_1_2_11_110_1
  doi: 10.1038/nn.4510
– ident: e_1_2_11_37_1
  doi: 10.1109/JLT.2020.3036739
– ident: e_1_2_11_121_1
  doi: 10.1016/j.nanoen.2020.104805
– ident: e_1_2_11_71_1
  doi: 10.1364/OME.4.002143
– volume: 1
  start-page: 399
  issue: 6
  year: 2015
  ident: e_1_2_11_32_1
  article-title: Stable hydrophobic ionic liquid gel electrolyte for stretchable fiber‐shaped dye‐sensitized solar cell
  publication-title: Chem
– ident: e_1_2_11_102_1
  doi: 10.1002/adma.201203053
– ident: e_1_2_11_108_1
  doi: 10.1002/adfm.201401266
– ident: e_1_2_11_15_1
  doi: 10.1021/acscentsci.0c01188
– ident: e_1_2_11_58_1
  doi: 10.1364/OME.7.001388
– ident: e_1_2_11_64_1
  doi: 10.1038/s41467-021-23628-5
– ident: e_1_2_11_35_1
  doi: 10.1002/adom.202100270
– ident: e_1_2_11_97_1
  doi: 10.1364/OE.20.012407
– ident: e_1_2_11_27_1
  doi: 10.1002/adfm.201804456
– ident: e_1_2_11_66_1
  doi: 10.1002/adfm.202104857
– ident: e_1_2_11_28_1
  doi: 10.1039/c4ta00203b
– ident: e_1_2_11_5_1
  doi: 10.1002/adom.201500319
– ident: e_1_2_11_105_1
  doi: 10.1038/s41928-020-0415-y
– ident: e_1_2_11_104_1
  doi: 10.1002/adma.201707251
– ident: e_1_2_11_78_1
  doi: 10.1002/adma.201902301
– ident: e_1_2_11_75_1
  doi: 10.1109/JLT.2019.2895220
– ident: e_1_2_11_29_1
  doi: 10.1002/adma.201800124
– ident: e_1_2_11_117_1
  doi: 10.1038/s41586-018-0390-x
– ident: e_1_2_11_19_1
  doi: 10.1016/j.biomaterials.2015.11.063
– ident: e_1_2_11_106_1
  doi: 10.1002/advs.202001410
– ident: e_1_2_11_67_1
  doi: 10.1002/adma.201802348
– ident: e_1_2_11_111_1
  doi: 10.1002/adom.201700941
– ident: e_1_2_11_65_1
  doi: 10.1038/s41467-021-25391-z
– ident: e_1_2_11_10_1
  doi: 10.1109/JLT.2006.885258
– ident: e_1_2_11_43_1
  doi: 10.1016/j.carbon.2017.04.002
– ident: e_1_2_11_81_1
  doi: 10.1038/ncomms3216
– ident: e_1_2_11_31_1
  doi: 10.1002/adma.201400152
– ident: e_1_2_11_94_1
  doi: 10.1038/nmat2792
– ident: e_1_2_11_86_1
  doi: 10.1038/nature02937
– ident: e_1_2_11_72_1
  doi: 10.1364/OME.9.003432
– ident: e_1_2_11_11_1
  doi: 10.1016/j.ensm.2019.10.023
– ident: e_1_2_11_96_1
  doi: 10.1021/acsnano.6b08290
– ident: e_1_2_11_49_1
  doi: 10.1021/acsami.0c09446
– ident: e_1_2_11_90_1
  doi: 10.1038/nmat1674
– ident: e_1_2_11_39_1
  doi: 10.1016/S0038-1098(00)00125-3
– ident: e_1_2_11_50_1
  doi: 10.1016/j.matlet.2018.01.050
– ident: e_1_2_11_100_1
  doi: 10.1021/ac201477j
– ident: e_1_2_11_9_1
  doi: 10.1038/nphoton.2011.10
– ident: e_1_2_11_74_1
  doi: 10.3390/app11020600
– ident: e_1_2_11_107_1
  doi: 10.1021/acs.accounts.7b00558
– ident: e_1_2_11_83_1
  doi: 10.1038/srep04864
– ident: e_1_2_11_109_1
  doi: 10.1038/nbt.3093
– ident: e_1_2_11_73_1
  doi: 10.1038/s41598-018-26561-8
– ident: e_1_2_11_92_1
  doi: 10.1002/adma.201603033
– ident: e_1_2_11_48_1
  doi: 10.1016/j.nanoen.2020.105361
– ident: e_1_2_11_79_1
  doi: 10.1002/adfm.201703245
– ident: e_1_2_11_45_1
  doi: 10.1039/c4ee00242c
– ident: e_1_2_11_62_1
  doi: 10.1021/ac4008013
– ident: e_1_2_11_33_1
  doi: 10.1002/adfm.201604378
– ident: e_1_2_11_51_1
  doi: 10.1016/j.jallcom.2017.07.150
– ident: e_1_2_11_2_1
  doi: 10.1111/ijag.12007
– ident: e_1_2_11_101_1
  doi: 10.1002/adma.201004052
– ident: e_1_2_11_40_1
  doi: 10.1016/j.enconman.2019.01.021
– ident: e_1_2_11_16_1
  doi: 10.1002/adfm.201908915
– ident: e_1_2_11_91_1
  doi: 10.1364/OE.18.024264
– ident: e_1_2_11_30_1
  doi: 10.1021/acs.nanolett.9b01403
– ident: e_1_2_11_6_1
  doi: 10.1038/s41467-021-21729-9
– ident: e_1_2_11_103_1
  doi: 10.1088/1361-6463/aa5bf7
– ident: e_1_2_11_25_1
  doi: 10.1038/s41565-020-0701-x
– ident: e_1_2_11_54_1
  doi: 10.1002/adma.202002702
– ident: e_1_2_11_112_1
  doi: 10.1038/s41467-020-19946-9
– ident: e_1_2_11_22_1
  doi: 10.1002/adfm.201600580
– ident: e_1_2_11_59_1
  doi: 10.1002/adma.202004971
– ident: e_1_2_11_21_1
  doi: 10.1002/adma.201503558
– ident: e_1_2_11_44_1
  doi: 10.1002/adma.201500072
– ident: e_1_2_11_57_1
  doi: 10.1111/jace.17827
– ident: e_1_2_11_84_1
  doi: 10.1073/pnas.1101160108
– ident: e_1_2_11_3_1
  doi: 10.1002/adma.201904911
– ident: e_1_2_11_56_1
  doi: 10.1073/pnas.1707778114
– ident: e_1_2_11_114_1
  doi: 10.1039/C8CS00710A
– ident: e_1_2_11_119_1
  doi: 10.1002/lpor.201900075
– ident: e_1_2_11_113_1
  doi: 10.1126/sciadv.1600955
– ident: e_1_2_11_12_1
  doi: 10.1016/j.mattod.2019.11.006
– ident: e_1_2_11_115_1
  doi: 10.1038/s41467-021-23802-9
– ident: e_1_2_11_34_1
  doi: 10.1038/s41467-020-17345-8
– ident: e_1_2_11_46_1
  doi: 10.1088/0957-4484/21/39/395303
– ident: e_1_2_11_53_1
  doi: 10.1002/adfm.201605935
– ident: e_1_2_11_69_1
  doi: 10.1117/12.2555433
– ident: e_1_2_11_20_1
  doi: 10.1021/acsami.8b20307
– ident: e_1_2_11_4_1
  doi: 10.1038/nmat1889
– ident: e_1_2_11_88_1
  doi: 10.1002/adma.200700177
– ident: e_1_2_11_80_1
  doi: 10.1063/1.3653247
– ident: e_1_2_11_7_1
  doi: 10.1021/nl9009606
– ident: e_1_2_11_23_1
  doi: 10.1021/nl801495p
– ident: e_1_2_11_98_1
  doi: 10.1002/admt.202101066
– ident: e_1_2_11_38_1
  doi: 10.1002/adma.201901958
– ident: e_1_2_11_52_1
  doi: 10.1038/s41467-020-17674-8
– ident: e_1_2_11_61_1
  doi: 10.1002/aelm.201600449
– ident: e_1_2_11_93_1
  doi: 10.1021/nl300597c
– ident: e_1_2_11_70_1
  doi: 10.1117/1.OE.60.4.045101
– ident: e_1_2_11_87_1
  doi: 10.1002/adma.200502106
– ident: e_1_2_11_95_1
  doi: 10.1002/adma.201201355
– ident: e_1_2_11_18_1
  doi: 10.1109/JSTQE.2006.882666
– ident: e_1_2_11_68_1
  doi: 10.1109/JLT.2019.2959945
– ident: e_1_2_11_120_1
  doi: 10.3390/ma14216306
– ident: e_1_2_11_116_1
  doi: 10.1039/C7LC01247K
– ident: e_1_2_11_24_1
  doi: 10.1002/adma.201800051
– ident: e_1_2_11_17_1
  doi: 10.1038/s41565-020-0747-9
– ident: e_1_2_11_41_1
  doi: 10.1039/c3ee41116h
– ident: e_1_2_11_63_1
  doi: 10.1364/AO.55.010247
– ident: e_1_2_11_85_1
  doi: 10.1038/ncomms7248
SSID ssj0002504251
Score 2.3856053
SecondaryResourceType review_article
Snippet As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity of...
Abstract As the fundamental building block of optical fiber communication technology, thermally drawn optical fibers have fueled the development and prosperity...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms acoustoelectric fiber
Artificial intelligence
biological probe
Copyright
Data processing
Data storage
energy fiber
Energy harvesting
Energy storage
Functional materials
Human-computer interaction
Information technology
integrated circuit fiber
Integrated circuits
Internet of Things
Lasers
Methods
multifunctional fiber
Optical communication
Optical fibers
optoelectronic fiber
Personal communication
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1itsqAXhdhks8lmvalYqmBPLfQgLDvJrpeSSlsR_72zmzREEL14ygdDWGaSeW-WyRtCLhAREqOt--0jjQMusjgAbmSQWGGzMDEy9rMBn0fpcMKfpsm0NerL9YRV8sCV4_oxgECI0gAFcn8DYKXN8OkpGKuhKnwQ81rFlMvBTpgLkbvRI2V9jBe7xjTtpnu0EMgL9X9jl22O6kFmsEO2a3ZIb6tV7ZINU-6RrZZm4D55wcBiMp3NPmmx0B8l9S2BDp6qXT1qXQ_I8oaOfUMsRYJHS8zA9NULTDsjOre0Fkz1l6tme_2ATAYP4_thUI9ICHKOhUMAIAudWonOsBGiUBhqIROQ6KYsTzQeC24Y0-Cm1zKTI6MCGca5LHgBFqnUIemU89IcEWp1GBUiy3MkdBzLLh0VkWZcmDi0hkveJZdrt6m81g93YyxmqlI-Zsq5WHkXd8l5Y_tWqWb8aHXnvN9YOKVrfwPjr-r4q7_i3yW9dexU_fktFUszkWFhxkWXXPl4_rIM9TgaMH92_B8LOiGbzP0i4Vt6e6SzWrybUyQuKzjz7-gX6Yvu3A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6veiD-InVKQF9Uai2afoRX8TJxhQcIhvsQQhJm-xldHObiP-9lyyrE2RP_SCU5i69-9318juELsEjxEpos-0jiXyaZpEvqWJ-rFOdBbFike0N-NJNOn36PIgHLuE2c2WVS5toDXUxzk2O_JYkWZoB1qbp_eTDN12jzN9V10JjE9XBBGcQfNWbre7rW5VlMQRd4MErXlJyC3ojN2CuTZePFU9kCfv_oMxVrGqdTXsX7TiUiB8Wat1DG6rcR9sr3IEH6B0UDEZ1NPrGxVR8ldiWBho3tcjuYW1qQWZ3uGcLYzEAPVyCJcZDSzRtBuGxxo441V7OqzT7Ieq3W73Hju9aJfg5hQDCl5IVItFMKq1DEEUQiJTFkkmpszwWcCyoIkRI08WWqByQlWRBlLOCFlIDpDpCtXJcqmOEtQjCIs3yHIAdhfBLhEUoCE1VFGhFGfXQ1VJsPHc84qadxYgvGJAJNyLmVsQeuqjGThbsGf-OahrpVyMM47W9MZ4OufuAeCRlClBFwEwgBlQwMaYzWGUJTFnIJPRQY6k77j7DGf9dNB66tvpc8xr8qdsm9uxk_bNO0RYxmyBs0W4D1ebTT3UG0GQuz936-wGpM-VP
  priority: 102
  providerName: ProQuest
Title Thermally drawn multifunctional fibers: Toward the next generation of information technology
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12318
https://www.proquest.com/docview/2687866647
https://doaj.org/article/3bb7110abbd144ebbf9f8eaf6befab61
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPQgPnF9LAG9KFTbNG0T8eKK6wNcRBQ8CCFpk70sXdldEf-9k7TbVRDBS19Mocl0Mt8Mk28ADtEjJEZZt-0jjQOW8TjQzIggsZnlYWJE7HsD3vfSm2d295K8zMH5dC9MxQ_RJNycZfj12hm40uPTGWkoKoCe4Lob8XlYdHtrHXM-ZQ9NhsWRc1HffxHdukvGpUnDT0pPZ6__8EieuP8H2vyOWb3T6a7CSo0WyUWl3jWYM-U6LH_jENyAV1Q0Lq6DwScpRuqjJL5E0LmrKstHrKsJGZ-RJ18gSxDwkRJXZNL3hNNOiAwtqQlU_e2kSbdvwnP36unyJqhbJgQ5w0Ai0FoUKrVCG2sj9EphqDKRaKG15Xmi8FwwQ6nSrpstNTkiLC3COBcFK7RFaLUFC-WwNNtArAqjIuN5jgCPYRimoiJSlGUmDq1hgrXgaDptMq_5xF1bi4GsmJCpdFMs_RS34KCRfatYNH6V6rjZbyQc87V_MBz1ZW1IMtY6Q8iicCQYCxocmLAc_7YUh6x0GrVgb6o7WZvjWNKUZxwDNZa14Njr84_PkLe9LvVXO_8R3oUl6rZG-FLePViYjN7NPgKWiW77_xKPvHvdhsXOVe_hse2D_y90JOmu
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOLQ9VKW06rY8LBUOrZSSOM7DSAjRx3a3wJ4WiUMl105sLqss3V2E-FP8RmacB1up4sZps9Eoisfjmc-T8TcAuxgREqsdHftI40BkeRwYYWWQuMzlYWJl7HsDno3Swbn4dZFcrMBdexaGyipbn-gddTktKEe-z9M8yxFri-zo6m9AXaPo62rbQqM2ixN7e4Nbtvnh8DvO7x7n_R_jb4Og6SoQFAKxdmCMLHXqpLHORei4w1BnMjHSGJcXicbfUljOtaGGr9wWCEKMDONClqI0ThDRAbr8NRHHklZU3v_Z5XSIDgzxQseCyvfRSvgXDA7UU2Qp7vn2AP9g2mVk7ENb_xW8bDApO66NaB1WbPUaXiwxFW7AbzQndOGTyS0rZ_qmYr4QkYJinUtkjipP5gds7MtwGcJKVqHfZ5ee1pqE2NSxhqbV_110Sf03cP4kKnwLq9W0su-AOR1GZZYXBcJIgZs9HZWR5iKzceiskKIHn1q1qaJhLafmGRNV8y1zRSpWXsU9-NjJXtVcHf-V-kra7ySIX9vfmM4uVbNcVWxMhsBI40hwx2lxYNLlaNMpDlmbNOrBZjt3qln0c_Vgoj347OfzkddQw1Gf-6v3jz9rB54Nxmen6nQ4OvkAzzkdv_Dlwpuwuphd2y0ERQuz7S2RwZ-nNv17c5oiRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD6ULYg-iFdcrRpQHxTGnclkJpNCKa3t0rW6FGmhD0JMZpK-LLN1d6X0r_nrPCdzcQXpW5_mQhgmJ9-c8yVz8h2AtxgRMmc8bfvI00jIIo2scCrKvPRFnDmVhtqAX6f50Zn4fJ6db8Dvbi8MpVV2PjE46mpe0hr5iOeFLJBrCznybVrEycF49_JnRBWk6E9rV06jgcixu77C6dtyZ3KAY_2O8_Hh6aejqK0wEJUCeXdkrapM7pV13ifoxOPYSJVZZa0vyszgsRKOc2Op-Ct3JRISq-K0VJWorBckeoDuf1PirCgewOb-4fTkW7_CQ-JgyB56TVQ-QszwjxgqqMLIWhQMxQL-YbjrPDkEuvEDuN8yVLbXQOohbLj6Edxb0y18DN8RXOjQZ7NrVi3MVc1CWiKFyGZlkXnKQ1lus9OQlMuQZLIaTckugsg1NWJzz1rR1nC56pf4n8DZrRjxKQzqee2eAfMmTipZlCWSSoFTP5NUieFCujT2TigxhPed2XTZaphTKY2ZbtSXuSYT62DiIbzp2142yh3_bbVP1u9bkNp2uDFfXOj249WptRJpksGe4PzTYceULxDhOXbZ2DwZwlY3drp1AUv9F7BD-BDG84bX0JPpmIez5zc_6zXcQdjrL5Pp8Qu4y2kvRsgd3oLBavHLvUSGtLKvWigy-HHb6P8Dd8In1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+drawn+multifunctional+fibers%3A+Toward+the+next+generation+of+information+technology&rft.jtitle=InfoMat&rft.au=Shen%2C+Yanan&rft.au=Wang%2C+Zhe&rft.au=Wang%2C+Zhixun&rft.au=Wang%2C+Jiajia&rft.date=2022-07-01&rft.issn=2567-3165&rft.eissn=2567-3165&rft.volume=4&rft.issue=7&rft_id=info:doi/10.1002%2Finf2.12318&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_inf2_12318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon