Quantum chemical investigation of spectroscopic studies and hydrogen bonding interactions between water and methoxybenzeylidene-based humidity sensor

A quantum chemical investigation has been performed to spotlight the structure–property relationship among methoxybenzeylidene-based humidity sensor and water molecules. The chemical interactions among (E)-2-(4-(2-(3,4-dimethoxybenzeylidene)hydrazinyl)phenyl) ethane-1,1,2-tricarbonitrile (DMBHPET) s...

Full description

Saved in:
Bibliographic Details
Published inJournal of Theoretical and Computational Chemistry Vol. 14; no. 4; pp. 1550029 - 1-1550029-14
Main Authors Muhammad, Shabbir, Irfan, Ahmad, Al-Sehemi, Abdullah G., Al-Assiri, M. S., Kalam, Abul, Chaudhry, Aijaz R.
Format Journal Article
LanguageEnglish
Published World Scientific Pub Co Pte Ltd 01.06.2015
World Scientific Publishing Company
Subjects
Online AccessGet full text
ISSN0219-6336
1793-6888
DOI10.1142/s0219633615500297

Cover

Abstract A quantum chemical investigation has been performed to spotlight the structure–property relationship among methoxybenzeylidene-based humidity sensor and water molecules. The chemical interactions among (E)-2-(4-(2-(3,4-dimethoxybenzeylidene)hydrazinyl)phenyl) ethane-1,1,2-tricarbonitrile (DMBHPET) sensor and water molecules have been studied using density functional theory (DFT) methods. The molecular structural parameters, binding energies and Infrared (IR) spectroscopic analyses have been performed to assess the nature of intermolecular interactions. Three different positions have been identified for possible attachments of H2O molecules through hydrogen bonding interactions. These positions include NH (complex 1a), p-OCH3 (complex 1b) and N=N (complex 1c) group in sensor molecule (1) for the chemical adsorption of water molecules. While, the complex 1abc includes all three sites with simultaneously three H2O molecules attached to it through hydrogen bonding. The binding energies calculated for complex 1a(NH…H2O), complex 1b(CH3O…H2O), complex 1c(N=N…H2O) and complex 1abc are -30.97, -18.41, -13.80 and -65.36 kcal/mol, respectively. The counterpoise (CP) scheme has been used to correct the basis set superposition error (BSSE) in calculation of binding energies of sensor and H2O complexes. The higher binding energy of -65.36 kcal/mol for complex 1abc represents that the present methoxybenzeylidene-based sensor has significant potential through hydrogen bonding formation for sensing humidity as indicated in our previous experimental investigation. The evidence of hydrogen bonding interactions between sensor 1 and H2O molecules has been traced through structural parameters, red shift in IR spectra as well as molecular electrostatic maps. Thus the present investigation highlights the first computational framework for a molecular level structure-binding activity of a methoxybenzeylidene-based sensor and water molecules. Using state-of-art computational methods, we have presented a first theoretical framework to limelight the hydrogen bonding interactions among water and humidity sensing molecules. The sensing of humidity molecules has been simulated and efficiency of sensor has been investigated in terms of structural parameters, binding affinity and vibrational spectroscopic outcomes. The calculated binding energy of –65.36 kcal/mol among sensor and water molecules is relatively large enough to make it suitable as potential candidate for humidity sensing.
AbstractList A quantum chemical investigation has been performed to spotlight the structure–property relationship among methoxybenzeylidene-based humidity sensor and water molecules. The chemical interactions among (E)-2-(4-(2-(3,4-dimethoxybenzeylidene)hydrazinyl)phenyl) ethane-1,1,2-tricarbonitrile (DMBHPET) sensor and water molecules have been studied using density functional theory (DFT) methods. The molecular structural parameters, binding energies and Infrared (IR) spectroscopic analyses have been performed to assess the nature of intermolecular interactions. Three different positions have been identified for possible attachments of H2O molecules through hydrogen bonding interactions. These positions include NH (complex 1a), p-OCH3 (complex 1b) and N=N (complex 1c) group in sensor molecule (1) for the chemical adsorption of water molecules. While, the complex 1abc includes all three sites with simultaneously three H2O molecules attached to it through hydrogen bonding. The binding energies calculated for complex 1a(NH…H2O), complex 1b(CH3O…H2O), complex 1c(N=N…H2O) and complex 1abc are -30.97, -18.41, -13.80 and -65.36 kcal/mol, respectively. The counterpoise (CP) scheme has been used to correct the basis set superposition error (BSSE) in calculation of binding energies of sensor and H2O complexes. The higher binding energy of -65.36 kcal/mol for complex 1abc represents that the present methoxybenzeylidene-based sensor has significant potential through hydrogen bonding formation for sensing humidity as indicated in our previous experimental investigation. The evidence of hydrogen bonding interactions between sensor 1 and H2O molecules has been traced through structural parameters, red shift in IR spectra as well as molecular electrostatic maps. Thus the present investigation highlights the first computational framework for a molecular level structure-binding activity of a methoxybenzeylidene-based sensor and water molecules. Using state-of-art computational methods, we have presented a first theoretical framework to limelight the hydrogen bonding interactions among water and humidity sensing molecules. The sensing of humidity molecules has been simulated and efficiency of sensor has been investigated in terms of structural parameters, binding affinity and vibrational spectroscopic outcomes. The calculated binding energy of –65.36 kcal/mol among sensor and water molecules is relatively large enough to make it suitable as potential candidate for humidity sensing.
A quantum chemical investigation has been performed to spotlight the structure–property relationship among methoxybenzeylidene-based humidity sensor and water molecules. The chemical interactions among (E)-2-(4-(2-(3,4-dimethoxybenzeylidene)hydrazinyl)phenyl) ethane-1,1,2-tricarbonitrile (DMBHPET) sensor and water molecules have been studied using density functional theory (DFT) methods. The molecular structural parameters, binding energies and Infrared (IR) spectroscopic analyses have been performed to assess the nature of intermolecular interactions. Three different positions have been identified for possible attachments of H 2 O molecules through hydrogen bonding interactions. These positions include NH (complex 1a), p- OCH 3 (complex 1b) and N=N (complex 1c) group in sensor molecule (1) for the chemical adsorption of water molecules. While, the complex 1abc includes all three sites with simultaneously three H 2 O molecules attached to it through hydrogen bonding. The binding energies calculated for complex 1a( NH … H 2 O ), complex 1b( CH 3 O … H 2 O ), complex 1c( N=N … H 2 O ) and complex 1abc are -30.97, -18.41, -13.80 and -65.36 kcal/mol, respectively. The counterpoise (CP) scheme has been used to correct the basis set superposition error (BSSE) in calculation of binding energies of sensor and H 2 O complexes. The higher binding energy of -65.36 kcal/mol for complex 1abc represents that the present methoxybenzeylidene-based sensor has significant potential through hydrogen bonding formation for sensing humidity as indicated in our previous experimental investigation. The evidence of hydrogen bonding interactions between sensor 1 and H 2 O molecules has been traced through structural parameters, red shift in IR spectra as well as molecular electrostatic maps. Thus the present investigation highlights the first computational framework for a molecular level structure-binding activity of a methoxybenzeylidene-based sensor and water molecules.
A quantum chemical investigation has been performed to spotlight the structure-property relationship among methoxybenzeylidene-based humidity sensor and water molecules. The chemical interactions among (E)-2-(4-(2-(3,4-dimethoxybenzeylidene)hydrazinyl)phenyl) ethane-1,1,2-tricarbonitrile (DMBHPET) sensor and water molecules have been studied using density functional theory (DFT) methods. The molecular structural parameters, binding energies and Infrared (IR) spectroscopic analyses have been performed to assess the nature of intermolecular interactions. Three different positions have been identified for possible attachments of H sub(2)O molecules through hydrogen bonding interactions. These positions include NH (complex la), p-OCH sub(3) (complex 1b) and N=N (complex 1c) group in sensor molecule (1) for the chemical adsorption of water molecules. While, the complex labe includes all three sites with simultaneously three H sub(2)O molecules attached to it through hydrogen bonding. The binding energies calculated for complex la (NH...H sub(2)P), complex 1b(CH sub(3)O...H sub(2)O), complex 1c (N=N...H sub(2)O) and complex labe are -30.97, -18.41, -13.80 and -65.36 kcal/mol, respectively. The counterpoise (CP) scheme has been used to correct the basis set superposition error (ESSE) in calculation of binding energies of sensor and H sub(2)O complexes. The higher binding energy of -65.36keal/mol for complex labe represents that the present methoxybenzeylidene-based sensor has significant potential through hydrogen bonding formation for sensing humidity as indicated in our previous experimental investigation. The evidence of hydrogen bonding interactions between sensor 1 and H sub(2)O molecules has been traced through structural parameters, red shift in IR spectra as well as molecular electrostatic maps. Thus the present investigation highlights the first computational framework for a molecular level structure-binding activity of a methoxybenzeylidene-based sensor and water molecules.
Author Abdullah G. Al-Sehemi
Shabbir Muhammad
Aijaz Rasool Chaudhry
Mohammad S. Al-Assiri
Ahmad Irfan
Abul Kalam
Author_xml – sequence: 1
  givenname: Shabbir
  surname: Muhammad
  fullname: Muhammad, Shabbir
  organization: Department of Physics, College of Science, King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia
– sequence: 2
  givenname: Ahmad
  surname: Irfan
  fullname: Irfan, Ahmad
  organization: Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia, Department of Chemistry, College of Science, King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia
– sequence: 3
  givenname: Abdullah G.
  surname: Al-Sehemi
  fullname: Al-Sehemi, Abdullah G.
  organization: Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia, Department of Chemistry, College of Science, King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia
– sequence: 4
  givenname: M. S.
  surname: Al-Assiri
  fullname: Al-Assiri, M. S.
  organization: Department of Physics, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001, Saudi Arabia, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P. O. Box 1988, Najran 11001, Saudi Arabia
– sequence: 5
  givenname: Abul
  surname: Kalam
  fullname: Kalam, Abul
  organization: Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia, Department of Chemistry, College of Science, King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia
– sequence: 6
  givenname: Aijaz R.
  surname: Chaudhry
  fullname: Chaudhry, Aijaz R.
  organization: Department of Physics, College of Science, King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia
BackLink https://cir.nii.ac.jp/crid/1871428067796250752$$DView record in CiNii
BookMark eNp9kU-P1SAUxYkZE9-MfgB3LFy4qQO0hbI0E_8lk0yMum4o3L53TQtPoD7r9_D7SucZFxPjBhLO-Z0bzr0kFz54IOQ5Z684b8R1YoJrWdeSty1jQqtHZMeVrivZdd0F2W1ytelPyGVKX4uFN1LuyK-Pi_F5mak9wIzWTBT9d0gZ9yZj8DSMNB3B5hiSDUe0NOXFISRqvKOH1cWwB0-H4B36fWEzRGM3MtEB8gmKeDLl8d4_Qz6EH-sA_iesEzrwUA0mQUlaZnSYV5rApxCfksejmRI8-3NfkS9v33y-eV_d3r37cPP6trJNI1Q1sI4ZkKMQjRKatbplTmgp9AgNaweute5c22mw1g517YAZp5pRj0KbxnWiviIvz7nHGL4t5dv9jMnCNBkPYUk9V1KwTtVSFSs_W22pIkUY-2PE2cS156zfVtB_eriCwqgHjMV832uOBqf_kuxMnkKcXLIIPuOI9u_QfyEvzohHLHO2k3eqxHdMKlVaaZlqRf0bNMWqSA
CitedBy_id crossref_primary_10_3390_molecules28196808
crossref_primary_10_1016_j_jmgm_2020_107668
crossref_primary_10_1016_j_ijleo_2016_12_023
crossref_primary_10_1021_acsomega_2c01474
crossref_primary_10_1016_j_jscs_2021_101339
crossref_primary_10_2478_msp_2020_0041
crossref_primary_10_1007_s11164_016_2735_0
crossref_primary_10_1016_j_molliq_2020_112577
crossref_primary_10_1142_S0219633616500607
crossref_primary_10_1039_C9NJ01894H
crossref_primary_10_1002_slct_201901422
crossref_primary_10_1016_j_saa_2019_117995
crossref_primary_10_1016_j_molstruc_2016_04_031
crossref_primary_10_1016_j_ijleo_2016_08_007
Cites_doi 10.1016/j.snb.2005.10.051
10.1016/j.talanta.2003.09.011
10.1016/j.physe.2008.05.018
10.1093/oso/9780195090116.001.0001
10.1166/sl.2005.001
10.1103/PhysRev.46.618
10.1080/00268977000101561
10.1016/j.physe.2012.07.012
10.1021/jp0135095
10.1016/j.mssp.2013.09.019
10.1166/sl.2005.045
10.1139/v64-274
10.1016/j.compag.2005.09.003
10.1007/s00214-008-0486-8
10.1038/srep02714
10.1021/ct600185a
10.1021/jp994410p
10.1016/0925-4005(96)80017-7
10.1016/j.snb.2013.10.071
10.1016/j.saa.2012.01.016
10.1002/jcc.540040303
10.1063/1.3382344
10.1016/S0166-1280(99)00148-7
10.1016/j.snb.2009.01.016
10.1016/S0166-1280(00)00535-2
10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
10.1016/S0009-2614(99)00190-6
10.1016/j.comptc.2014.06.028
10.1016/j.snb.2013.12.067
10.1021/ja9032023
10.1016/j.measurement.2014.10.048
10.1007/s10853-008-3234-5
10.1016/j.matchemphys.2013.07.011
10.1108/02602280210444609
10.1016/S0925-4005(01)00966-2
10.1063/1.1527233
10.1146/annurev.physchem.48.1.511
10.1039/b924241d
10.1007/3-540-12785-2_2
ContentType Journal Article
Copyright 2015, World Scientific Publishing Company
Copyright_xml – notice: 2015, World Scientific Publishing Company
DBID RYH
AAYXX
CITATION
7SC
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOI 10.1142/s0219633615500297
DatabaseName CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1793-6888
EndPage 1-1550029-14
ExternalDocumentID 10_1142_S0219633615500297
S0219633615500297
GroupedDBID .DC
0R~
4.4
5GY
ADMLS
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
HZ~
O9-
P2P
P71
RWJ
RYH
CAG
COF
ESX
AAYXX
CITATION
7SC
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4427-b080ae6f22472905950d29629fe405b19998d589ecccb33de0ad74f9f29a4d823
ISSN 0219-6336
IngestDate Thu Jul 10 19:25:01 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Tue Jul 01 01:25:49 EDT 2025
Fri Aug 23 08:20:05 EDT 2024
Fri Jun 27 01:16:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Humidity sensor
hydrogen bonding
IR spectra
intermolecular interactions
binding energy
density functional theory
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4427-b080ae6f22472905950d29629fe405b19998d589ecccb33de0ad74f9f29a4d823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6941-6934
0000-0002-6793-3038
0000-0002-0781-0116
0000-0001-6261-5631
0000-0003-4908-3313
PQID 1762087367
PQPubID 23500
ParticipantIDs worldscientific_primary_S0219633615500297
crossref_citationtrail_10_1142_S0219633615500297
proquest_miscellaneous_1762087367
crossref_primary_10_1142_S0219633615500297
nii_cinii_1871428067796250752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150600
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150600
PublicationDecade 2010
PublicationTitle Journal of Theoretical and Computational Chemistry
PublicationYear 2015
Publisher World Scientific Pub Co Pte Ltd
World Scientific Publishing Company
Publisher_xml – name: World Scientific Pub Co Pte Ltd
– name: World Scientific Publishing Company
References rf5
rf23
rf4
rf7
rf25
rf6
rf24
rf9
rf41
rf8
rf40
rf21
rf20
rf27
rf26
rf29
rf28
Jeffrey G. A. (rf32) 1997; 12
Scheiner S. (rf33) 1997
rf12
rf34
rf11
rf14
rf36
rf13
rf35
rf30
rf10
rf31
rf19
rf16
rf38
rf15
rf37
rf18
rf17
rf39
rf1
rf3
rf2
References_xml – ident: rf12
  doi: 10.1016/j.snb.2005.10.051
– ident: rf6
  doi: 10.1016/j.talanta.2003.09.011
– ident: rf13
  doi: 10.1016/j.physe.2008.05.018
– volume-title: Hydrogen Bonding: A Theoretical Perspective (Topics in Physical Chemistry)
  year: 1997
  ident: rf33
  doi: 10.1093/oso/9780195090116.001.0001
– ident: rf1
  doi: 10.1166/sl.2005.001
– ident: rf23
  doi: 10.1103/PhysRev.46.618
– ident: rf31
  doi: 10.1080/00268977000101561
– ident: rf14
  doi: 10.1016/j.physe.2012.07.012
– ident: rf37
  doi: 10.1021/jp0135095
– ident: rf8
  doi: 10.1016/j.mssp.2013.09.019
– ident: rf2
  doi: 10.1166/sl.2005.045
– ident: rf40
  doi: 10.1139/v64-274
– ident: rf3
  doi: 10.1016/j.compag.2005.09.003
– ident: rf20
  doi: 10.1007/s00214-008-0486-8
– ident: rf18
  doi: 10.1038/srep02714
– ident: rf27
  doi: 10.1021/ct600185a
– ident: rf38
  doi: 10.1021/jp994410p
– ident: rf5
  doi: 10.1016/0925-4005(96)80017-7
– ident: rf9
  doi: 10.1016/j.snb.2013.10.071
– ident: rf30
  doi: 10.1016/j.saa.2012.01.016
– ident: rf35
  doi: 10.1002/jcc.540040303
– ident: rf24
  doi: 10.1063/1.3382344
– ident: rf28
  doi: 10.1016/S0166-1280(99)00148-7
– ident: rf15
  doi: 10.1016/j.snb.2009.01.016
– ident: rf29
  doi: 10.1016/S0166-1280(00)00535-2
– ident: rf36
  doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
– ident: rf39
  doi: 10.1016/S0009-2614(99)00190-6
– ident: rf25
  doi: 10.1016/j.comptc.2014.06.028
– ident: rf10
  doi: 10.1016/j.snb.2013.12.067
– ident: rf21
  doi: 10.1021/ja9032023
– ident: rf17
  doi: 10.1016/j.measurement.2014.10.048
– ident: rf16
  doi: 10.1007/s10853-008-3234-5
– ident: rf26
  doi: 10.1016/j.matchemphys.2013.07.011
– ident: rf4
  doi: 10.1108/02602280210444609
– ident: rf7
  doi: 10.1016/S0925-4005(01)00966-2
– ident: rf11
  doi: 10.1063/1.1527233
– volume: 12
  volume-title: An Introduction to Hydrogen Bonding
  year: 1997
  ident: rf32
– ident: rf34
  doi: 10.1146/annurev.physchem.48.1.511
– ident: rf19
  doi: 10.1039/b924241d
– ident: rf41
  doi: 10.1007/3-540-12785-2_2
SSID ssj0021466
Score 2.0669856
Snippet A quantum chemical investigation has been performed to spotlight the structure–property relationship among methoxybenzeylidene-based humidity sensor and water...
A quantum chemical investigation has been performed to spotlight the structure-property relationship among methoxybenzeylidene-based humidity sensor and water...
SourceID proquest
crossref
worldscientific
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1550029
SubjectTerms Binding energy
Humidity
Hydrogen bonding
Mathematical analysis
Quantum chemistry
Sensors
Spectroscopic analysis
Water chemistry
Title Quantum chemical investigation of spectroscopic studies and hydrogen bonding interactions between water and methoxybenzeylidene-based humidity sensor
URI https://cir.nii.ac.jp/crid/1871428067796250752
http://www.worldscientific.com/doi/abs/10.1142/S0219633615500297
https://www.proquest.com/docview/1762087367
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QFepnEThQ0ZiReoUhLHuT1W4zIQRULdpL1Vceyokdpk6lpB9z_4hfwRzontNF0pYrxEUeOeNPm-Hp9jnwshrwBirHriOgLo4vA8gLMsyR0WB4oJHnppXYlp-DU8u-CfL4PLTudXK2ppuRD97OaPeSX_gyp8BrhiluwdkG2EwgdwDvjCERCG4z9h_G0J72U562U2679YV83QdmCdSIkFK6urIqtryYJnXG8YTFZyXoHknqhsYgsmI2c6Ms6Gb31PsYgijq9bTf9YCVXeqNUUW5EqB6dAiW3-ConG_DW4xNV8h7nbzphEumV1Owm7FJnZvnNrAkzS2UzzbzRJhSiaKOJP81yv2g4mMKBh7NQZKZRSXxESXOt00vvYb10HKhY6sX7Y74367QUPL1gHZhm9CErWCX3fVNDWehvUjBPGukNgo9h5i8C8paXRLXP1Qsv2DMJZvYfNUDX5oRkaradLGyJwaxZtYht1pjcbb4nYIwcsijCW4GDwbvhl1KwLeGZL3T6X2XwHIW-3hGyYT3tlUWx4Rod1mV2dSouRZi1T6fyIHBrQ6UAT9gHpqPIhuXdqIX5EfhriUktcukFcWuV0g7jUEJcCEaklLjXEpW3iUkNcWhO3Hr-TuNQSl2riPiYXH96fn545pj-Ik3HOIkeAt5OqMAcrFFxE8BMCV7IkZEmuwA0RWGAjlkGcgJbKhO9L5aYy4nmSsyTlMmb-E7JfVqV6SmiADce4ihi2nZHKT3OpvCiTnOV-EuaqS1z72seZKZ6PPVym451wd8mb5itXunLM3wafAJYgGo9eHGEdRKztCE8DDlvAuuSlRXkMWOGmXlqqank99sCacePID0HG61vwN_fdut-zu_y45-T--n94TPYX86U6AVN8IV4YKv8G8wHd1Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+chemical+investigation+of+spectroscopic+studies+and+hydrogen+bonding+interactions+between+water+and+methoxybenzeylidene-based+humidity+sensor&rft.jtitle=Journal+of+theoretical+%26+computational+chemistry&rft.au=Muhammad%2C+Shabbir&rft.au=Irfan%2C+Ahmad&rft.au=Al-Sehemi%2C+Abdullah+G.&rft.au=Al-Assiri%2C+M.+S.&rft.date=2015-06-01&rft.issn=0219-6336&rft.eissn=1793-6888&rft.volume=14&rft.issue=4&rft.spage=1550029&rft_id=info:doi/10.1142%2FS0219633615500297&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S0219633615500297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-6336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-6336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-6336&client=summon