Distributed robust operation strategy of multi‐microgrid based on peer‐to‐peer multi‐energy trading

In microgrid (MG) systems, traditional centralised energy trading models can lead to issues such as low energy efficiency due to unstable energy supply and lack of flexibility. Peer‐to‐peer (P2P) trading models have been widely used due to their advantages in promoting the sustainable development of...

Full description

Saved in:
Bibliographic Details
Published inEnergy systems integration Vol. 5; no. 4; pp. 376 - 392
Main Authors Gao, Jin, Shao, Zhenguo, Chen, Feixiong, Chen, Yuchao, Lin, Yongqi, Deng, Hongjie
Format Journal Article
LanguageEnglish
Published Tianjin John Wiley & Sons, Inc 01.12.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In microgrid (MG) systems, traditional centralised energy trading models can lead to issues such as low energy efficiency due to unstable energy supply and lack of flexibility. Peer‐to‐peer (P2P) trading models have been widely used due to their advantages in promoting the sustainable development of renewable energy and reducing energy trading costs. However, P2P multi‐energy trading requires mutual agreements between two microgrids (MGs), and the uncertainties of renewable energy and load affects energy supply security. To address these issues, this article proposed a distributed robust operation strategy based on P2P multi‐energy trading for multi‐microgrid (MMG) systems. Firstly, a two‐stage robust optimisation (TRO) method was adopted to consider the uncertainties of P2P multi‐energy trading between MGs, which reduced the conservatism of robust optimisation (RO). Secondly, a TRO model for P2P multi‐energy trading among MGs was established based on the Nash bargaining theory, where each MG negotiates with others based on their energy contributions in the cooperation. Additionally, a distributed algorithm was used to protect the privacy of each MG. Finally, the simulation results based on three MGs showed that the proposed approach can achieve a fair distribution of cooperative interests and effectively promote cooperation among MGs.
AbstractList In microgrid (MG) systems, traditional centralised energy trading models can lead to issues such as low energy efficiency due to unstable energy supply and lack of flexibility. Peer‐to‐peer (P2P) trading models have been widely used due to their advantages in promoting the sustainable development of renewable energy and reducing energy trading costs. However, P2P multi‐energy trading requires mutual agreements between two microgrids (MGs), and the uncertainties of renewable energy and load affects energy supply security. To address these issues, this article proposed a distributed robust operation strategy based on P2P multi‐energy trading for multi‐microgrid (MMG) systems. Firstly, a two‐stage robust optimisation (TRO) method was adopted to consider the uncertainties of P2P multi‐energy trading between MGs, which reduced the conservatism of robust optimisation (RO). Secondly, a TRO model for P2P multi‐energy trading among MGs was established based on the Nash bargaining theory, where each MG negotiates with others based on their energy contributions in the cooperation. Additionally, a distributed algorithm was used to protect the privacy of each MG. Finally, the simulation results based on three MGs showed that the proposed approach can achieve a fair distribution of cooperative interests and effectively promote cooperation among MGs.
In microgrid (MG) systems, traditional centralised energy trading models can lead to issues such as low energy efficiency due to unstable energy supply and lack of flexibility. Peer‐to‐peer (P2P) trading models have been widely used due to their advantages in promoting the sustainable development of renewable energy and reducing energy trading costs. However, P2P multi‐energy trading requires mutual agreements between two microgrids (MGs), and the uncertainties of renewable energy and load affects energy supply security. To address these issues, this article proposed a distributed robust operation strategy based on P2P multi‐energy trading for multi‐microgrid (MMG) systems. Firstly, a two‐stage robust optimisation (TRO) method was adopted to consider the uncertainties of P2P multi‐energy trading between MGs, which reduced the conservatism of robust optimisation (RO). Secondly, a TRO model for P2P multi‐energy trading among MGs was established based on the Nash bargaining theory, where each MG negotiates with others based on their energy contributions in the cooperation. Additionally, a distributed algorithm was used to protect the privacy of each MG. Finally, the simulation results based on three MGs showed that the proposed approach can achieve a fair distribution of cooperative interests and effectively promote cooperation among MGs.
Abstract In microgrid (MG) systems, traditional centralised energy trading models can lead to issues such as low energy efficiency due to unstable energy supply and lack of flexibility. Peer‐to‐peer (P2P) trading models have been widely used due to their advantages in promoting the sustainable development of renewable energy and reducing energy trading costs. However, P2P multi‐energy trading requires mutual agreements between two microgrids (MGs), and the uncertainties of renewable energy and load affects energy supply security. To address these issues, this article proposed a distributed robust operation strategy based on P2P multi‐energy trading for multi‐microgrid (MMG) systems. Firstly, a two‐stage robust optimisation (TRO) method was adopted to consider the uncertainties of P2P multi‐energy trading between MGs, which reduced the conservatism of robust optimisation (RO). Secondly, a TRO model for P2P multi‐energy trading among MGs was established based on the Nash bargaining theory, where each MG negotiates with others based on their energy contributions in the cooperation. Additionally, a distributed algorithm was used to protect the privacy of each MG. Finally, the simulation results based on three MGs showed that the proposed approach can achieve a fair distribution of cooperative interests and effectively promote cooperation among MGs.
Abstract In microgrid (MG) systems, traditional centralised energy trading models can lead to issues such as low energy efficiency due to unstable energy supply and lack of flexibility. Peer‐to‐peer (P2P) trading models have been widely used due to their advantages in promoting the sustainable development of renewable energy and reducing energy trading costs. However, P2P multi‐energy trading requires mutual agreements between two microgrids (MGs), and the uncertainties of renewable energy and load affects energy supply security. To address these issues, this article proposed a distributed robust operation strategy based on P2P multi‐energy trading for multi‐microgrid (MMG) systems. Firstly, a two‐stage robust optimisation (TRO) method was adopted to consider the uncertainties of P2P multi‐energy trading between MGs, which reduced the conservatism of robust optimisation (RO). Secondly, a TRO model for P2P multi‐energy trading among MGs was established based on the Nash bargaining theory, where each MG negotiates with others based on their energy contributions in the cooperation. Additionally, a distributed algorithm was used to protect the privacy of each MG. Finally, the simulation results based on three MGs showed that the proposed approach can achieve a fair distribution of cooperative interests and effectively promote cooperation among MGs.
Author Chen, Feixiong
Chen, Yuchao
Shao, Zhenguo
Lin, Yongqi
Gao, Jin
Deng, Hongjie
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0009-0005-6840-3695
  surname: Gao
  fullname: Gao, Jin
  organization: Fuzhou University
– sequence: 2
  givenname: Zhenguo
  surname: Shao
  fullname: Shao, Zhenguo
  organization: Fuzhou University
– sequence: 3
  givenname: Feixiong
  orcidid: 0000-0002-0220-2306
  surname: Chen
  fullname: Chen, Feixiong
  email: feixiongchen@yeah.net
  organization: Fuzhou University
– sequence: 4
  givenname: Yuchao
  surname: Chen
  fullname: Chen, Yuchao
  organization: Fuzhou University
– sequence: 5
  givenname: Yongqi
  surname: Lin
  fullname: Lin, Yongqi
  organization: Fuzhou University
– sequence: 6
  givenname: Hongjie
  surname: Deng
  fullname: Deng, Hongjie
  organization: Guangzhou Power Supply Bureau Co., Ltd
BookMark eNp9kU1uFDEQha0oSISQDSdoiR3ShPJP291LFEIYKRILsrf8Ux55MtMebLfQ7DgCZ-Qk8aRRxIqNXXJ975Xt94acT2lCQt5RuKYgxo9YIrumjII6Ixesp3I1CKDn_9SvyVUpWwBgPQgu2QV5_BxLzdHOFX2Xk51L7dIBs6kxTV1rmYqbY5dCt593Nf759XsfXU6bHH1nTWmihh0Qc-vU1JZT_cLihLmpm4uP0-YteRXMruDV3_2SPHy5fbj5urr_dre--XS_ckIwtRqlGqTvAZRzDHuwTnJhwaFjDMVogx3GHtuDlbF-DG4YQBkTGHKhBg78kqwXW5_MVh9y3Jt81MlE_XyQ8kabXKPbofaWojSBK9mcxYiGew8qBNaPUgrLmtf7xeuQ048ZS9XbNOep3V5zGBlnTPZDoz4sVPuZUjKGl6kU9CkafYpGP0fTYLrAP-MOj_8h9e33NVs0T1MIlzo
CitedBy_id crossref_primary_10_1016_j_apenergy_2024_123282
crossref_primary_10_1049_esi2_12127
crossref_primary_10_1016_j_isci_2024_109549
crossref_primary_10_1016_j_seta_2023_103600
Cites_doi 10.1016/j.epsr.2020.106262
10.1109/TII.2019.2907380
10.1109/TII.2020.3000906
10.1016/j.ijepes.2022.108403
10.3390/en14113059
10.1016/j.apenergy.2022.119280
10.1016/j.energy.2018.04.021
10.35833/MPCE.2022.000044
10.1002/etep.2680
10.1016/j.energy.2022.123124
10.1016/j.ijepes.2021.107642
10.1016/j.apenergy.2022.119106
10.1016/j.apenergy.2022.120318
10.1016/j.ijepes.2020.106134
10.1109/TPWRS.2019.2926305
10.1016/j.energy.2021.120043
10.1016/j.apenergy.2022.119544
10.1109/TII.2021.3094274
10.1109/TSG.2018.2846732
10.1016/j.apenergy.2022.120221
10.1016/j.energy.2022.123428
10.1109/TSTE.2022.3180842
10.1016/j.apenergy.2022.120193
10.1016/j.apenergy.2019.114335
10.1109/TSG.2022.3214202
10.1016/j.renene.2020.09.131
10.1049/esi2.12096
10.1109/TPWRS.2020.3025113
10.1002/etep.2167
10.1002/2050‐7038.12144
10.1016/j.apenergy.2021.117024
10.1109/TSG.2016.2580575
10.1049/esi2.12055
10.1016/j.energy.2021.119894
10.1016/j.energy.2021.122830
10.1016/j.apenergy.2022.118630
10.1049/esi2.12089
10.1016/j.energy.2022.124796
10.1109/ACCESS.2020.3007154
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Tianjin University.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Tianjin University.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1049/esi2.12107
DatabaseName Wiley-Blackwell Titles (Open access)
Wiley Online Library Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2516-8401
EndPage 392
ExternalDocumentID oai_doaj_org_article_db1e6af3762e449ea3dd07ff259664b2
10_1049_esi2_12107
ESI212107
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52107080
– fundername: Natural Science Foundation of Fujian Province
  funderid: 2021J05135
GroupedDBID 0R~
1OC
24P
AAHHS
AAHJG
AAJGR
ABQXS
ACCFJ
ACESK
ACXQS
ADBBV
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
EBS
GROUPED_DOAJ
IAO
IDLOA
IEP
M~E
OCL
OK1
RIE
ROL
RUI
WIN
AAYXX
CITATION
ITC
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c4427-96786d5007cc2e50bc634b0cec22e49bfb895e0497abd9fc8807aaf2e3478303
IEDL.DBID 24P
ISSN 2516-8401
IngestDate Tue Oct 22 15:16:15 EDT 2024
Thu Oct 10 22:19:01 EDT 2024
Thu Sep 26 18:45:55 EDT 2024
Sat Aug 24 00:44:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4427-96786d5007cc2e50bc634b0cec22e49bfb895e0497abd9fc8807aaf2e3478303
ORCID 0000-0002-0220-2306
0009-0005-6840-3695
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fesi2.12107
PQID 3092322658
PQPubID 6853485
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_db1e6af3762e449ea3dd07ff259664b2
proquest_journals_3092322658
crossref_primary_10_1049_esi2_12107
wiley_primary_10_1049_esi2_12107_ESI212107
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
20231201
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace Tianjin
PublicationPlace_xml – name: Tianjin
PublicationTitle Energy systems integration
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2020; 162
2021; 223
2020; 261
2021; 222
2020; 121
2019; 35
2019; 15
2020; 183
2020; 17
2020; 36
2023; 329
2022; 316
2022; 311
2022; 136
2020; 8
2018; 153
2021; 14
2022; 320
2022; 244
2018; 9
2022; 143
2022; 240
2022; 260
2023
2020; 30
2022; 4
2022; 5
2021; 18
2023; 330
2022; 13
2022; 14
2019; 29
2021; 295
2022; 10
2022; 328
2016; 26
2016; 9
2022; 322
2022; 246
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – volume: 15
  start-page: 4721
  issue: 8
  year: 2019
  end-page: 4730
  article-title: A distributed and resilient bargaining game for weather‐predictive microgrid energy cooperation
  publication-title: IEEE Trans. Ind. Inf.
– volume: 18
  start-page: 1447
  issue: 3
  year: 2021
  end-page: 1457
  article-title: Stochastic cooperative bidding strategy for multiple microgrids with peer‐to‐peer energy trading
  publication-title: IEEE Trans. Ind. Inf.
– volume: 320
  year: 2022
  article-title: A novel all‐electric‐ship‐integrated energy cooperation coalition for multi‐island microgrids
  publication-title: Appl. Energy
– volume: 4
  start-page: 206
  issue: 2
  year: 2022
  end-page: 219
  article-title: Hierarchical energy management for community microgrids with integration of second‐life battery energy storage systems and photovoltaic solar energy
  publication-title: IET Energy Syst. Integrat.
– volume: 26
  start-page: 1570
  issue: 7
  year: 2016
  end-page: 1584
  article-title: Smart energy‐consumption management system considering consumers’ spending goals (sems‐ccsg)
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 17
  start-page: 2522
  issue: 4
  year: 2020
  end-page: 2533
  article-title: Peer‐to‐peer multienergy and communication resource trading for interconnected microgrids
  publication-title: IEEE Trans. Ind. Inf.
– volume: 36
  start-page: 1546
  issue: 2
  year: 2020
  end-page: 1562
  article-title: Energy management of grid interconnected multi‐microgrids based on p2p energy exchange: a data driven approach
  publication-title: IEEE Trans. Power Syst.
– volume: 9
  start-page: 6986
  issue: 6
  year: 2018
  end-page: 6997
  article-title: Game theoretic non‐cooperative distributed coordination control for multi‐microgrids
  publication-title: IEEE Trans. Smart Grid
– volume: 9
  start-page: 1161
  issue: 2
  year: 2016
  end-page: 1174
  article-title: Toward optimal energy management of microgrids via robust two‐stage optimization
  publication-title: IEEE Trans. Smart Grid
– volume: 183
  year: 2020
  article-title: Optimal planning of clustered microgrid using a technique of cooperative game theory
  publication-title: Elec. Power Syst. Res.
– volume: 162
  start-page: 2075
  year: 2020
  end-page: 2095
  article-title: Feasibility study of on/off grid large‐scale pv/wt/wec hybrid energy system in coastal cities: a case‐based research
  publication-title: Renew. Energy
– volume: 244
  year: 2022
  article-title: An efficient and economical storage and energy sharing model for multiple multi‐energy microgrids
  publication-title: Energy
– volume: 8
  start-page: 123334
  year: 2020
  end-page: 123346
  article-title: Joint energy management and energy trading in residential microgrid system
  publication-title: IEEE Access
– volume: 35
  start-page: 639
  issue: 1
  year: 2019
  end-page: 651
  article-title: Direct energy trading of microgrids in distribution energy market
  publication-title: IEEE Trans. Power Syst.
– volume: 322
  year: 2022
  article-title: Blockchain‐based decentralized energy intra‐trading with battery storage flexibility in a community microgrid system
  publication-title: Appl. Energy
– volume: 5
  start-page: 152
  issue: 2
  year: 2022
  end-page: 179
  article-title: Distributed optimal dispatching method of smart distribution network considering integrated energy microgrid with multiple gird‐connected points
  publication-title: IET Energy Syst. Integrat.
– volume: 260
  year: 2022
  article-title: A two‐stage distributionally robust optimization model for p2g‐cchp microgrid considering uncertainty and carbon emission
  publication-title: Energy
– volume: 240
  year: 2022
  article-title: Economy‐environment‐energy performance evaluation of cchp microgrid system: a hybrid multi‐criteria decision‐making method
  publication-title: Energy
– volume: 295
  year: 2021
  article-title: An optimal scheduling strategy for peer‐to‐peer trading in interconnected microgrids based on ro and nash bargaining
  publication-title: Appl. Energy
– volume: 328
  year: 2022
  article-title: Design of an optimal p2p energy trading market model using bilevel stochastic optimization
  publication-title: Appl. Energy
– volume: 143
  year: 2022
  article-title: General nash bargaining based direct p2p energy trading among prosumers under multiple uncertainties
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 261
  year: 2020
  article-title: Determining the peer‐to‐peer electricity trading price and strategy for energy prosumers and consumers within a microgrid
  publication-title: Appl. Energy
– volume: 311
  year: 2022
  article-title: Learning based cost optimal energy management model for campus microgrid systems
  publication-title: Appl. Energy
– volume: 222
  year: 2021
  article-title: Adjustable robust optimization approach for two‐stage operation of energy hub‐based microgrids
  publication-title: Energy
– volume: 329
  year: 2023
  article-title: A communication‐efficient coalition graph game‐based framework for electricity and carbon trading in networked energy hubs
  publication-title: Appl. Energy
– volume: 30
  issue: 4
  year: 2020
  article-title: Unified optimization model for energy management in sustainable smart power systems
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 10
  start-page: 1445
  issue: 6
  year: 2022
  end-page: 1458
  article-title: Community integrated energy system trading: a comprehensive review
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 136
  year: 2022
  article-title: A strategy‐based coalition formation model for hybrid wind/pv/fc/mt/dg/battery multi‐microgrid systems considering demand response programs
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 153
  start-page: 479
  year: 2018
  end-page: 489
  article-title: Autonomous optimized economic dispatch of active distribution system with multi‐microgrids
  publication-title: Energy
– volume: 121
  year: 2020
  article-title: A hierarchical energy management system for islanded multi‐microgrid clusters considering frequency security constraints
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 29
  issue: 1
  year: 2019
  article-title: Low complexity approach for energy management in residential buildings
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 14
  issue: 11
  year: 2021
  article-title: A wind energy supplier bidding strategy using combined ega‐inspired hpsoifa optimizer and deep learning predictor
  publication-title: Energies
– volume: 223
  year: 2021
  article-title: Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty
  publication-title: Energy
– volume: 330
  year: 2023
  article-title: On‐grid joint energy management and trading in uncertain environment
  publication-title: Appl. Energy
– volume: 13
  start-page: 2064
  issue: 4
  year: 2022
  end-page: 2078
  article-title: A noncooperative game‐based approach for microgrid planning considering existing interconnected and clustered microgrids on an island
  publication-title: IEEE Trans. Sustain. Energy
– volume: 246
  year: 2022
  article-title: Optimal energy management for multi‐energy multi‐microgrid networks considering carbon emission limitations
  publication-title: Energy
– year: 2023
  article-title: Coordinated voltage control of active distribution networks with photovoltaic and power to hydrogen
  publication-title: IET Energy Syst. Integrat.
– volume: 14
  start-page: 2047
  issue: 3
  year: 2022
  end-page: 2059
  article-title: Reinforcement learning based energy trading and management of regional interconnected microgrids
  publication-title: IEEE Trans. Smart Grid
– volume: 316
  year: 2022
  article-title: Research on day‐ahead transactions between multi‐microgrid based on cooperative game model
  publication-title: Appl. Energy
– ident: e_1_2_11_27_1
  doi: 10.1016/j.epsr.2020.106262
– ident: e_1_2_11_30_1
  doi: 10.1109/TII.2019.2907380
– ident: e_1_2_11_28_1
  doi: 10.1109/TII.2020.3000906
– ident: e_1_2_11_39_1
  doi: 10.1016/j.ijepes.2022.108403
– ident: e_1_2_11_22_1
  doi: 10.3390/en14113059
– ident: e_1_2_11_29_1
  doi: 10.1016/j.apenergy.2022.119280
– ident: e_1_2_11_18_1
  doi: 10.1016/j.energy.2018.04.021
– ident: e_1_2_11_31_1
  doi: 10.35833/MPCE.2022.000044
– ident: e_1_2_11_4_1
  doi: 10.1002/etep.2680
– ident: e_1_2_11_26_1
  doi: 10.1016/j.energy.2022.123124
– ident: e_1_2_11_21_1
  doi: 10.1016/j.ijepes.2021.107642
– ident: e_1_2_11_25_1
  doi: 10.1016/j.apenergy.2022.119106
– ident: e_1_2_11_35_1
  doi: 10.1016/j.apenergy.2022.120318
– ident: e_1_2_11_17_1
  doi: 10.1016/j.ijepes.2020.106134
– ident: e_1_2_11_24_1
  doi: 10.1109/TPWRS.2019.2926305
– ident: e_1_2_11_37_1
  doi: 10.1016/j.energy.2021.120043
– ident: e_1_2_11_11_1
  doi: 10.1016/j.apenergy.2022.119544
– ident: e_1_2_11_32_1
  doi: 10.1109/TII.2021.3094274
– ident: e_1_2_11_20_1
  doi: 10.1109/TSG.2018.2846732
– ident: e_1_2_11_23_1
  doi: 10.1016/j.apenergy.2022.120221
– ident: e_1_2_11_3_1
  doi: 10.1016/j.energy.2022.123428
– ident: e_1_2_11_19_1
  doi: 10.1109/TSTE.2022.3180842
– ident: e_1_2_11_33_1
  doi: 10.1016/j.apenergy.2022.120193
– ident: e_1_2_11_12_1
  doi: 10.1016/j.apenergy.2019.114335
– ident: e_1_2_11_13_1
  doi: 10.1109/TSG.2022.3214202
– ident: e_1_2_11_6_1
  doi: 10.1016/j.renene.2020.09.131
– ident: e_1_2_11_40_1
  doi: 10.1049/esi2.12096
– ident: e_1_2_11_16_1
  doi: 10.1109/TPWRS.2020.3025113
– ident: e_1_2_11_14_1
  doi: 10.1002/etep.2167
– ident: e_1_2_11_2_1
  doi: 10.1002/2050‐7038.12144
– ident: e_1_2_11_34_1
  doi: 10.1016/j.apenergy.2021.117024
– ident: e_1_2_11_15_1
  doi: 10.1109/TSG.2016.2580575
– ident: e_1_2_11_5_1
  doi: 10.1049/esi2.12055
– ident: e_1_2_11_38_1
  doi: 10.1016/j.energy.2021.119894
– ident: e_1_2_11_9_1
  doi: 10.1016/j.energy.2021.122830
– ident: e_1_2_11_10_1
  doi: 10.1016/j.apenergy.2022.118630
– ident: e_1_2_11_7_1
  doi: 10.1049/esi2.12089
– ident: e_1_2_11_36_1
  doi: 10.1016/j.energy.2022.124796
– ident: e_1_2_11_8_1
  doi: 10.1109/ACCESS.2020.3007154
SSID ssj0002504362
Score 2.3384092
Snippet In microgrid (MG) systems, traditional centralised energy trading models can lead to issues such as low energy efficiency due to unstable energy supply and...
Abstract In microgrid (MG) systems, traditional centralised energy trading models can lead to issues such as low energy efficiency due to unstable energy...
Abstract In microgrid (MG) systems, traditional centralised energy trading models can lead to issues such as low energy efficiency due to unstable energy...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 376
SubjectTerms Algorithms
Alternative energy sources
Bargaining
Cooperation
Cost reduction
Distributed generation
Energy consumption
Energy costs
Energy industry
energy management systems
Game theory
Optimization
Privacy
Renewable energy
Renewable resources
Robustness
Strategy
Sustainable development
Uncertainty
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0yK12ITxwdJaAroUxN07RZ-hpU0I0K7kIeNzKI02Gms3DnJ_iNfok36YzUjW7clNCGEO5pck7pzbmEHJXB1MozSHJgIuHcZokxTiaZdxbphTsdD4Xd3omrR37zlD-1Sn2FnLDGHrgJXN-ZExDa4zpgwLkEnTmXFt6jbBeCm2b3TWXrYyrswdGYS7CFHymXfZgOWbBSCHVjWwwUjfp_qMu2Ro0kM1gjq3N1SE-bWa2TJRhtkJWWZ-AmebkIVrehShU4OqnMbFrTagwNkHTamM2-0crTmCv4-f7xGnLunidDRwNlOYrdxjgaPqkrvIT2d1-IRwEpjhI4bYs8DC4fzq-SecWExHLOikQi9QiXI-9byyBPjRUZN6kFyzB60nhTyhwwHIVGQLzFxVtojVBlvCiRzLZJZ1SNYIdQxzwKLYf6Q2cccivLVPhUQzB70UZkXXK4CKIaN74YKv7P5lKFUKsY6i45C_H97hG8rOMNRFjNEVZ_IdwlvQU6ar7ApipLUZmidMzLLjmOiP0yDXV5f81ia_c_JrRHlkPR-SappUc69WQG-yhNanMQ38Ivu9TmSg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHVL7EQosswQnJauo4TnJCbdmqIFEhKFJvlj_GVYXYLJvtgRs_gd_IL2HGyS7LpZfISiwrmrH9nu3xG4DXDYtaJYWyQmWk1qGU3sdWlikGghcdXb4U9vHcnH3VHy6ry3HDrR_DKtdzYp6oYxd4j_ygLIiKEFeomreLH5KzRvHp6phC4y7sKFopFBPYOZ6df_q82WXJAl05qyjhuJG0mjlca5Tq9gD7a8XyCpxLdguVsnj_f4xzm7dm4DndhQcjYxRHg4sfwh2cP4L7WzqCj-HbO5a_5cxVGMWy8zf9SnQLHJwr-kGA9qfoksjxg39-_f7OcXhXy-soGMaioGoLao2-rDp6cHlTF_P1QEGtMM49gYvT2cXJmRyzKMigtaplS3BkYkVcIASFVeGDKbUvAgalULc--aatkMxRO3JSCjSga-fIfaWuGwK4pzCZd3N8BiKqROQrEidxpcYqtE1hUuGQBWCcN-UUXq2NaBeDVobNZ9y6tWxqm009hWO276YG61vnF93yyo7DxUZ_iMYlmv3oH3WLroyxqFOixZox2qsp7K29Y8dB19t_XWQKb7LHbvkNO_vyXuXS89vbegH3OMX8EMKyB5PV8gb3iYis_Muxt_0FqTbgbw
  priority: 102
  providerName: ProQuest
Title Distributed robust operation strategy of multi‐microgrid based on peer‐to‐peer multi‐energy trading
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fesi2.12107
https://www.proquest.com/docview/3092322658
https://doaj.org/article/db1e6af3762e449ea3dd07ff259664b2
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4huNBDVR4VoSGyBCekVRev17sr9RIg4SGBECUV4mL5GSHUbJSEQ2_9Cf2N_SXMeJMULki9eK1dr2XN7Hg-ez3fAByURGoVuE9yz2UihM0SY1yVZMFZdC_C6RgUdnUtzwfi8j6_X4Fvi1iYhh9iueFGlhHnazJwbZosJAhqSYnTR07cCBRKvkaUMcScz8XNcoclknPFjKLow2WCK5mjBT-pqL7-e_2NR4rE_W_Q5mvMGp1O_xN8nKNF1m3UuwErfrQJH15xCG7B0ylR31LWKu_YpDbP0xmrx75RLJs25LO_WB1YPDv49_efn3QGbzh5dIxcmGPYbIy94ZNZjQXVl219DA1k2Av5uG246_fuTs6TeQaFxArBi6RCVyRdjjjAWu7z1FiZCZNabzn3ojLBlFXuURyFRgUFi8ZcaI2qy0RRonP7DKujeuR3gDkeEHg5xCM6Ez63VZnKkGpP5C_ayKwF-wshqnHDk6Hi_21RKRK1iqJuwTHJd9mCuK3jjXoyVHNTUc4ceakDznw4RlF5nTmXFiHgQk1KYXgL2gvtqLnBTVWWIlJFKJmXLTiMGntnGKr3_YLH2u7_NP4C65RsvjnM0obV2eTZ7yEkmZlO_PKwLPtnHVjr_hg8DPB63Lu-ue3EZf4LLfDk-g
link.rule.ids 315,783,787,867,2109,11574,12777,21400,27936,27937,33385,33756,43612,43817,46064,46488,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOUAPiKfYUsASnJCsprbjJKeKR5cttL2wSL1ZflYV6ma72R648RP6G_klzDjZZbn0ElmJZUUztr_P9vgbgHc1iVolEXkZheZKecmdCw2XKXiEFxVsvhR2cqonP9TXs_Js2HDrhrDK1ZyYJ-rQetoj35MFUhHkCmV9ML_ilDWKTleHFBp34Z6SiNV0U3z8Zb3HkuW5ck5RRHHNcS2zv1IoVc1e7C4EiStQJtkNTMrS_f_xzU3WmmFn_AgeDnyRfegd_BjuxNkT2N5QEXwKPz-T-C3lrYqBLVp33S1ZO4-9a1nXy8_-Ym1iOXrwz--bS4rCO19cBEYgFhhWm2Nr-GXZ4oPK67oxXw5k2Aqh3DOYjg-nnyZ8yKHAvVKi4g2CkQ4lMgHvRSwL57VUrvDRCxFV45KrmzKiOSqLLkoeh3NlLTpPqqpGeHsOW7N2Fl8ACyIh9QrISKxUsfRNXehU2EjyL9ZpOYK3KyOaea-UYfIJt2oMmdpkU4_gI9l3XYPUrfOLdnFuhsFigtuP2iac-_AfVROtDKGoUsKlmtbKiRHsrrxjhiHXmX8dZATvs8du-Q1z-P1I5NLO7W29gfuT6cmxOT46_fYSHlCy-T6YZRe2lovr-AopydK9zv3uL5c94fo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5CCqU9lPRFt01bQXsqmDryWLYhl6TJkvQRAk0hN6HHKITQ9bK7OfTWn9Df2F_SGXl3m1wKvRhhj4WY8Wg-yZpvAN62QmqVNBU1aVMghqrwPnZFlWLg8ILR5aSwLyfm6Bt-PK_PN2B3lQsz8EOsN9zEM_J8LQ4-jWlYb6JwZNL8Ugs3gqSS30HG4cKcr_F0vcOSyblyRVGO4abglczOip8Uu_d_X78VkTJx_y20eROz5qAz3oIHS7So9gbzPoQNmjyC-zc4BB_D1YFQ30rVKopq1vvr-UL1UxoMq-YD-ewP1SeVzw7-_vnru5zBu5hdRiUhLCoWm3Jv_GTR80Xaa1nKqYGKe5EY9wTOxodnH46KZQWFIiDqpug4FJlYMw4IQVNd-mAq9GWgoDVh55Nvu5pYHY1jA6XAztw4x6arsGk5uD2FzUk_oWegok4MvCLjEVch1aFrS5NKR0L-4rypRvBmpUQ7HXgybP6_jZ0VVdus6hHsi37XEsJtnW_0swu7dBUb_Q4Zl3jm4zFiR66KsWxS4oWaMej1CLZX1rFLh5vbqmSkylCybkfwLlvsH8Owh1-PdW49_x_h13D39GBsPx-ffHoB96Tu_HCuZRs2F7NresnoZOFf5Y_wDzWl4ls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+robust+operation+strategy+of+multi%E2%80%90microgrid+based+on+peer%E2%80%90to%E2%80%90peer+multi%E2%80%90energy+trading&rft.jtitle=Energy+systems+integration&rft.au=Gao%2C+Jin&rft.au=Shao%2C+Zhenguo&rft.au=Chen%2C+Feixiong&rft.au=Chen%2C+Yuchao&rft.date=2023-12-01&rft.issn=2516-8401&rft.eissn=2516-8401&rft.volume=5&rft.issue=4&rft.spage=376&rft.epage=392&rft_id=info:doi/10.1049%2Fesi2.12107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_esi2_12107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-8401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-8401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-8401&client=summon