Plant-mediated effects of drought on aphid population structure and parasitoid attack
The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid–plant inte...
Saved in:
Published in | Journal of applied entomology (1986) Vol. 137; no. 1-2; pp. 136 - 145 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Blackwell Publishing Ltd
01.02.2013
Wiley-Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid–plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry–oat aphid,
Rhopalosiphum padi
L., and its natural enemy the parasitoid wasp
Aphidius ervi. Drought and, to a greater extent, aphids reduced barley (
Hordeum vulgare) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought‐treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought‐stressed plants. Parasitism rates were significantly lower on drought‐stressed plants (9 attacks h−1 compared with 35 attacks h−1 on ambient‐irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought‐induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore–antagonist interactions. |
---|---|
AbstractList | The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid–plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry–oat aphid,
Rhopalosiphum padi
L., and its natural enemy the parasitoid wasp
Aphidius ervi. Drought and, to a greater extent, aphids reduced barley (
Hordeum vulgare) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought‐treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought‐stressed plants. Parasitism rates were significantly lower on drought‐stressed plants (9 attacks h−1 compared with 35 attacks h−1 on ambient‐irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought‐induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore–antagonist interactions. The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in N orthern E urope, which could affect aphid–plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry–oat aphid, R hopalosiphum padi L ., and its natural enemy the parasitoid wasp A phidius ervi . Drought and, to a greater extent, aphids reduced barley ( H ordeum vulgare ) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought‐treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought‐stressed plants. Parasitism rates were significantly lower on drought‐stressed plants (9 attacks h −1 compared with 35 attacks h −1 on ambient‐irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought‐induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore–antagonist interactions. The effects of predicted climate change on aphid-natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid-plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry-oat aphid, Rhopalosiphum padi L., and its natural enemy the parasitoid wasp Aphidius ervi. Drought and, to a greater extent, aphids reduced barley (Hordeum vulgare) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought-treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought-stressed plants. Parasitism rates were significantly lower on drought-stressed plants (9 attacks h-1 compared with 35 attacks h-1 on ambient-irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought-induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore-antagonist interactions. [PUBLICATION ABSTRACT] The effects of predicted climate change on aphid-natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid-plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry-oat aphid, Rhopalosiphum padi L., and its natural enemy the parasitoid wasp Aphidius ervi. Drought and, to a greater extent, aphids reduced barley (Hordeum vulgare) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought-treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought-stressed plants. Parasitism rates were significantly lower on drought-stressed plants (9 attacks h-1 compared with 35 attacks h-1 on ambient-irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought-induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore-antagonist interactions. |
Author | Johnson, S. N. Karley, A. J. Aslam, T. J. |
Author_xml | – sequence: 1 givenname: T. J. surname: Aslam fullname: Aslam, T. J. email: Tiffany Aslam (corresponding author), Institute of Integrative and Comparative Biology, Irene Manton 8.17, University of Leeds, Leeds LS2 9JT, UK. , bstja@leeds.ac.uk organization: School of Biology, University of St Andrews, Fife, UK – sequence: 2 givenname: S. N. surname: Johnson fullname: Johnson, S. N. organization: Hawkesbury Institute for the Environment, NSW, Penrith South, Australia – sequence: 3 givenname: A. J. surname: Karley fullname: Karley, A. J. organization: The James Hutton Institute, InvergowrieDundee, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26791600$$DView record in Pascal Francis |
BookMark | eNqNkUFv3CAQhVGVSt2k_Q-Wqkq92AWMwRxaqUqTTap0W0WNekSzgBs2XuMAVjf_vjgb7SGncAEx33sDb47R0eAHi1BBcEXy-rSpCKtliRlpK4oJrTARTFS7V2hxKByhBZY1KSlm7Rt0HOMGY8JZgxfo5lcPQyq31jhI1hS266xOsfBdYYKf_t6mwg8FjLfOFKMfpx6SyxcxhUmnKdgChlyAANElnxlICfTdW_S6gz7ad0_7Cbo5P_t9elFe_Vxenn69KjVjVJRcEskbthYN10ZyDG3D-RqvjYZ1Y7ARtsYdE0JoAbKpiTSWtrKVANQQC7Y-QR_3vmPw95ONSW1d1LbPf7J-iorQtiGYCi4z-v4ZuvFTGPLrMsVb3FKKaaY-PFEQNfRdgEG7qMbgthAeFOVCEo5x5to9p4OPMdjugBCs5rmojZrjV3P8ap6LepyL2mXpl2dS7dJjqimA619i8Hlv8M_19uHFjdX3s9V8yvpyr3cx2d1BD-FOcVGLRv1ZLRX5tjq__nG9VE39H4Eyt2k |
CitedBy_id | crossref_primary_10_1002_ps_7054 crossref_primary_10_3390_microorganisms8070997 crossref_primary_10_1146_annurev_phyto_020620_101848 crossref_primary_10_1007_s10340_023_01701_w crossref_primary_10_1111_jen_12904 crossref_primary_10_1111_nph_19622 crossref_primary_10_1371_journal_pone_0069013 crossref_primary_10_3389_fevo_2022_983401 crossref_primary_10_1016_j_agee_2020_106981 crossref_primary_10_1111_een_12282 crossref_primary_10_3390_insects7040049 crossref_primary_10_1093_jxb_erac010 crossref_primary_10_1111_een_12120 crossref_primary_10_1002_ece3_2950 crossref_primary_10_1111_jen_12257 crossref_primary_10_1093_ee_nvab005 crossref_primary_10_1111_aab_12654 crossref_primary_10_1111_een_12439 crossref_primary_10_1111_1365_2435_12858 crossref_primary_10_1002_ece3_4183 crossref_primary_10_1071_CP20299 crossref_primary_10_1111_afe_12024 crossref_primary_10_1007_s10340_023_01630_8 crossref_primary_10_1093_aesa_saz050 crossref_primary_10_1111_een_13040 crossref_primary_10_1111_1365_2745_12620 crossref_primary_10_1111_jen_12159 crossref_primary_10_1111_jen_13204 crossref_primary_10_1111_1744_7917_12445 crossref_primary_10_1002_ece3_7957 crossref_primary_10_1890_13_0044_1 crossref_primary_10_1111_1744_7917_12464 crossref_primary_10_1007_s10343_014_0319_8 crossref_primary_10_1007_s10340_022_01514_3 crossref_primary_10_3390_agriculture11040344 |
Cites_doi | 10.1111/j.1570-7458.2010.01059.x 10.1093/jxb/erp080 10.1046/j.1570-7458.2001.00805.x 10.1111/j.1365-2486.2006.01284.x 10.1111/j.1744-7917.2010.01328.x 10.1046/j.1365-294X.2003.01780.x 10.1603/EN11018 10.1111/j.1744-7348.1995.tb05000.x 10.1111/j.1365-2311.2003.00563.x 10.1093/ee/25.5.1032 10.1046/j.1466-822X.2002.00174.x 10.1046/j.1570-7458.2002.01000.x 10.1242/jeb.205.19.3009 10.1046/j.1570-7458.1998.00320.x 10.1111/j.1365-2745.2010.01748.x 10.2307/3546961 10.1111/j.1529-8817.2003.00796.x 10.1071/ZO9820337 10.1111/j.1365-2486.1995.tb00019.x 10.1080/09583150701211814 10.1111/j.1570-7458.2012.01248.x 10.1098/rsbl.2009.0642 10.1073/pnas.0508839102 10.1890/03-0352 10.1242/jeb.02148 10.1007/s11306-007-0057-3 10.1104/pp.99.3.996 10.2307/1310365 10.1007/s10681-011-0359-4 10.1007/s00442-008-1175-y 10.1073/pnas.0335320100 10.14411/eje.2003.080 10.1111/j.1744-7348.1987.tb01432.x 10.1093/ee/24.1.24 10.1046/j.1365-2486.2002.00451.x 10.1007/BF02979743 10.1046/j.1365-2311.2002.00393.x 10.1111/j.1365-2311.2004.00574.x 10.1007/s00442-009-1381-2 10.1046/j.1420-9101.1992.5040677.x 10.1111/j.1365-3032.2007.00577.x 10.1046/j.1365-2656.2003.00725.x 10.1111/j.0014-3820.2001.tb00829.x 10.1007/s10526-009-9257-2 10.1111/j.1365-2486.2007.01392.x 10.1023/A:1005307620024 10.1111/j.1365-2486.2007.01401.x 10.1104/pp.001941 10.1046/j.1365-2486.2002.00506.x 10.1111/j.1365-2435.2009.01550.x 10.1007/s004420050571 10.1007/s00442-003-1351-z 10.1603/0046-225X-34.1.37 10.1016/j.jinsphys.2009.06.006 10.1086/283666 10.1038/nature02300 10.1111/j.1365-2311.1994.tb00401.x |
ContentType | Journal Article |
Copyright | 2012 Blackwell Verlag, GmbH 2014 INIST-CNRS Copyright © 2013 Blackwell Verlag GmbH |
Copyright_xml | – notice: 2012 Blackwell Verlag, GmbH – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Blackwell Verlag GmbH |
DBID | BSCLL AAYXX CITATION IQODW 7QG 7QR 7SN 7SS 8FD C1K FR3 P64 7ST 7TG 7U6 KL. |
DOI | 10.1111/j.1439-0418.2012.01747.x |
DatabaseName | Istex CrossRef Pascal-Francis Animal Behavior Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Technology Research Database Animal Behavior Abstracts Chemoreception Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Entomology Abstracts Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Agriculture |
EISSN | 1439-0418 |
EndPage | 145 |
ExternalDocumentID | 2861475771 26791600 10_1111_j_1439_0418_2012_01747_x JEN1747 ark_67375_WNG_1DNFRMRG_5 |
Genre | article |
GeographicLocations | Europe |
GeographicLocations_xml | – name: Europe |
GrantInformation_xml | – fundername: Rural and Environmental Research and Analysis Directorate (RERAD) – fundername: Scottish Government |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WWD WXSBR WYISQ XG1 ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7QG 7QR 7SN 7SS 8FD C1K FR3 P64 7ST 7TG 7U6 KL. |
ID | FETCH-LOGICAL-c4427-6919654b756cd960a8566b0bdcab5d0d7e30f4777c7a95319de28989aa2d1eae3 |
IEDL.DBID | DR2 |
ISSN | 0931-2048 |
IngestDate | Fri Jul 11 05:10:25 EDT 2025 Wed Aug 13 10:49:34 EDT 2025 Mon Jul 21 09:16:13 EDT 2025 Tue Jul 01 02:25:48 EDT 2025 Thu Apr 24 22:50:53 EDT 2025 Wed Jan 22 16:34:49 EST 2025 Wed Oct 30 09:46:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Monocotyledones Aphidoidea Hordeum vulgare summer drought Insecta Aphidius ervi Summer Population structure Rhopalosiphum padi Cereal crop Dynamical climatology Climate change Pest Parasitoid Homoptera Gramineae Arthropoda Angiospermae Aphididae Spermatophyta Braconidae Hymenoptera Invertebrata Drought |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4427-6919654b756cd960a8566b0bdcab5d0d7e30f4777c7a95319de28989aa2d1eae3 |
Notes | istex:A13F9572C68C7681507907CE8DD5238F85486C73 ArticleID:JEN1747 ark:/67375/WNG-1DNFRMRG-5 Rural and Environmental Research and Analysis Directorate (RERAD) Scottish Government ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
PQID | 1268082202 |
PQPubID | 1096350 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1285102769 proquest_journals_1268082202 pascalfrancis_primary_26791600 crossref_primary_10_1111_j_1439_0418_2012_01747_x crossref_citationtrail_10_1111_j_1439_0418_2012_01747_x wiley_primary_10_1111_j_1439_0418_2012_01747_x_JEN1747 istex_primary_ark_67375_WNG_1DNFRMRG_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2013 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: February 2013 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Journal of applied entomology (1986) |
PublicationTitleAlternate | J. Appl. Entomol |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell – name: Wiley Subscription Services, Inc |
References | Hoover JK , Newman JA , 2004. Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Global Change Biol. 10, 1197-1208. Payne RW , Murray DA , Harding SA , Baird DB , Soutar DM , 2007. Genstat for windows, (11th edition) introduction. VSN International, Hemel Hempstead, UK. Bailey SM , Irwin ME , Kampmeier GE , Eastman CE , Hewings AD , 1995. Physical and biological perturbations - their effect on the movement of apterous Rhopalosiphum padi (Homoptera, Aphididae) and localized spread of barley yellow dwarf virus. Environ. Entomol. 24, 24-33. Stacey DA , Fellowes MDE , 2002. Influence of elevated CO2 on interspecific interactions at higher trophic levels. Global Change Biol. 8, 668-678. Sun Y-C , Feng L , Gao F , Ge F , 2011. Effects of elevated CO2 and plant genotype on interactions among cotton, aphids and parasitoids. Insect Sci. 18, 451-461. Stiling P , Cornelissen T , 2007. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biol. 13, 1823-1842. Hale BK , Bale JS , Pritchard J , Masters GJ , Brown VK , 2003. Effects of host plant drought stress on the performance of the bird cherry-oat aphid, Rhopalosiphum padi (L.): a mechanistic analysis. Ecol. Entomol. 28, 666-677. Gregory PJ , Johnson SN , Newton AC , Ingram JSI , 2009. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827-2838. Johnson SN , Staley JT , McLeod FAL , Hartley SE , 2011. Plant-mediated effects of soil invertebrates and summer drought on above-ground multi-trophic interactions. J. Ecol. 99, 57-65. Schär C , Vidale PL , Luthi D , Frei C , Haberli C , Liniger MA , Appenzeller C , 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332-336. Valkama E , Koricheva J , Oksanen E , 2007. Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Global Change Biol. 13, 184-201. Huberty AF , Denno RF , 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85, 1383-1398. Pescod KV , Quick WP , Douglas AE , 2007. Aphid responses to plants with genetically manipulated phloem nutrient levels. Physiol. Entomol. 32, 253-258. Douglas AE , Price DRG , Minto LB , Jones E , Pescod KV , François C , Pritchard J , Boonham N , 2006. Sweet problems: insect traits defining the limits to dietary sugar utilisation by the pea aphid, Acyrthosiphon pisum . J. Exp. Biol. 209, 1395-1403. Ferrari J , Darby AC , Daniell TJ , Godfray HCJ , Douglas AE , 2004. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29, 60-65. Mackay PA , Lamb RJ , 1996. Dispersal of five aphids (Homoptera: Aphididae) in relation to their impact on Hordeum vulgare . Environ. Entomol. 25, 1032-1044. Wu GM , Barrette M , Boivin G , Brodeur J , Giraldeau LA , Hance T , 2011. Temperature influences the handling efficiency of an aphid parasitoid through body size-mediated effects. Environ. Entomol. 40, 737-742. Kindlmann P , Dixon AFG , 1992. Optimum body size - effects of food quality and temperature, when reproductive growth-rate is restricted, with examples from aphids. J. Evol. Biol. 5, 677-690. Chen FJ , Ge F , Parajulee MN , 2005. Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis . Environ. Entomol. 34, 37-46. Karley AJ , Douglas AE , Parker WE , 2002. Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. J. Exp. Biol. 205, 3009-3018. Griffiths D , 1980. Foraging costs and relative prey size. Am. Nat. 116, 743-752. Zhang J , Xing GM , Liao JX , Hou ZD , Wang GX , Wang YF , 2003. Effects of different atmospheric CO2 concentrations and soil moistures on the populations of bird cherry-oat aphid (Rhopalosiphum padi) feeding on spring wheat. Eur. J. Entomol. 100, 521-530. Russell JA , Latorre A , Sabater-Munoz B , Moya A , Moran NA , 2003. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol. Ecol. 12, 1061-1075. Newton AC , Johnson SN , Gregory PJ , 2011. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3-18. Henry LM , Ma BO , Roitberg BD , 2009. Size-mediated adaptive foraging: a host-selection strategy for insect parasitoids. Oecologia 161, 433-445. Bezemer TM , Jones TH , 1998. Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82, 212-222. Ferrari J , Muller CB , Kraaijeveld AR , Godfray HC , 2001. Clonal variation and covariation in aphid resistance to parasitoids and a pathogen. Evolution 55, 1805-1814. Holopainen JK , 2002. Aphid response to elevated CO2 . Entomol. Exp. Appl. 104, 137-142. Montllor CB , Maxmen A , Purcell AH , 2002. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189-195. Guay JF , Boudreault S , Michaud D , Cloutier C , 2009. Impact of environmental stress on aphid clonal resistance to parasitoids: Role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J. Insect Physiol. 55, 919-926. Vorburger C , Gehrer L , Rodriguez P , 2010. A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol. Lett. 6, 109-111. Pons X , Tatchell GM , 1995. Drought stress and cereal aphid performance. Ann. Appl. Biol. 126, 19-31. Hughes L , Bazzaz FA , 2001. Effects of elevated CO2 on five plant-aphid interactions. Entomol. Exp. Appl. 99, 87-96. Barrette M , Wu G-M , Brodeur J , Giraldeau L-A , Boivin G , 2009. Testing competing measures of profitability for mobile resources. Oecologia 158, 757-764. Bale JS , Masters GJ , Hodkinson ID , Awmack C , Bezemer TM , Brown VK , Butterfield J , Buse A , Coulson JC , Farrar J , Good JEG , Harrington R , Hartley S , Jones TH , Lindroth RL , Press MC , Symrnioudis I , Watt AD , Whittaker JB , 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol. 8, 1-16. Gouinguené SP , Turlings TCJ , 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129, 1296-1307. Sopp PI , Sunderland KD , Coombes DS , 1987. Observations on the number of cereal aphids on the soil in relation to aphid density in winter wheat. Ann. Appl. Biol. 111, 53-57. Xing GM , Zhang J , Liu J , Zhang XY , Wang GX , Wang YF , 2003. Impacts of atmospheric CO2 concentrations and soil water on the population dynamics, fecundity and development of the bird cherry-oat aphid Rhopalosiphum padi . Phytoparasitica 31, 499-514. Oliver KM , Russell JA , Moran NA , Hunter MS , 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. PNAS 100, 1803-1807. Roth SK , Lindroth RL , 1995. Elevated atmospheric CO2 effects on phytochemistry, insect performance and insect parasitoid interactions. Global Change Biol. 1, 173-182. McMenemy LS , Hartley SE , MacFarlane SA , Karley AJ , Shepherd T , Johnson SN , 2012. Raspberry viruses manipulate the behaviour of their insect vectors. Entomol. Exp. Appl. 144, 56-68. Holton MK , Lindroth RL , Nordheim EV , 2003. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137, 233-244. Honěk A , Jarošik V , Lapchin L , Rabasse JM , 1998. The effect of parasitism by Aphelinus abdominalis and drought on the walking movement of aphids. Entomol. Exp. Appl. 87, 191-200. Mattson WJ , Haack RA , 1987. The role of drought in outbreaks of plant-eating insects. Bioscience 37, 110-118. Johnson SN , Hawes C , Karley AJ , 2009. Reappraising the role of plant nutrients as mediators of interactions between root- and foliar-feeding insects. Funct. Ecol. 23, 699-706. Blackman RL , Eastop VF , 2000. Aphids on the world's crops. John Wiley & Sons Ltd., Chichester, UK. Bezemer TM , Jones TH , Knight KJ , 1998. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae . Oecologia 116, 128-135. Morecroft MD , Bealey CE , Howells E , Rennie S , Woiwod IP , 2002. Effects of drought on contrasting insect and plant species in the UK in the mid-1990s. Glob. Ecol. Biogeogr. 11, 7-22. Chen FJ , Wu G , Parajulee MN , Ge F , 2007. Impact of elevated CO2 on the third trophic level: a predator Harmonia axyridis and a parasitoid Aphidius picipes . Biocontrol Sci. Technol. 17, 313-324. Pritchard J , Griffiths B , Hunt EJ , 2007. Can the plant-mediated impacts on aphids of elevated CO2 and drought be predicted? Global Change Biol. 13, 1616-1629. Dixon AFG , Kindlmann P , 1994. Optimum body-size in aphids. Ecol. Entomol. 19, 121-126. Noctor G , Bergot G , Mauve C , Thominet D , Lelarge-Trouverie C , Prioul J-L , 2007. A comparative study of amino acid measurement in leaf extracts by gas chromatography-time of flight - mass spectrometry and high performance liquid chromatography with fluorescence detection. Metabolomics 3, 161-174. Dixon AFG , 1998. Aphid ecology. An optimization approach, 2nd edn. Chapman & Hall, London. Mitchell C , Johnson SN , Gordon SC , Birch ANE , Hubbard SF , 2010. Combining plant resistance and a natural enemy to control Amphorophora idaei . Biocontrol 55, 321-327. Newman JA , Gibson DJ , Parsons AJ , Thornley JHM , 2003. How predictable are aphid population responses to elevated CO2? J. Anim. Ecol. 72, 556-566. Khan MAM , Ulrichs C , Mewis I , 2010. Influence of water stress on the glucosinolate profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and Myzus persicae . Entomol. Exp. Appl. 137, 229-236. Winter H , Lohaus G , Heldt HW , 1992. Phloem 2010; 55 2004; 29 2002; 11 2011; 99 1998; 82 1998; 116 2007; 32 1998; 87 1992; 99 2011; 18 2009; 158 1987; 37 2003; 12 2009; 55 2006; 209 1987; 111 2000 2005; 102 1995; 24 2002; 104 1995; 126 2009; 161 2007; 3 2001; 55 2001; 99 1996; 25 2005; 34 2010; 6 1992; 5 2007; 17 2009; 23 1980; 116 2004; 85 2011; 179 2012; 144 2009; 60 1982; 30 2011; 40 2002; 8 1998 2009 2007 2002 2003; 137 2003; 72 1995; 1 2004; 427 2007; 13 2003; 31 2004; 10 2002; 27 1998; 39 1994; 19 2010; 137 2002; 205 2002; 129 2003; 28 2003; 100 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 Payne RW (e_1_2_7_46_1) 2007 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Blackman RL (e_1_2_7_7_1) 2000 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_1 e_1_2_7_39_1 Karley AJ (e_1_2_7_31_1) 2002; 205 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 Meehl GA (e_1_2_7_37_1) 2007 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Dixon AFG (e_1_2_7_11_1) 1998 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Haile FJ (e_1_2_7_20_1) 2002 |
References_xml | – reference: Montllor CB , Maxmen A , Purcell AH , 2002. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189-195. – reference: Barrette M , Wu G-M , Brodeur J , Giraldeau L-A , Boivin G , 2009. Testing competing measures of profitability for mobile resources. Oecologia 158, 757-764. – reference: Gregory PJ , Johnson SN , Newton AC , Ingram JSI , 2009. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827-2838. – reference: Karley AJ , Douglas AE , Parker WE , 2002. Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. J. Exp. Biol. 205, 3009-3018. – reference: Mattson WJ , Haack RA , 1987. The role of drought in outbreaks of plant-eating insects. Bioscience 37, 110-118. – reference: Payne RW , Murray DA , Harding SA , Baird DB , Soutar DM , 2007. Genstat for windows, (11th edition) introduction. VSN International, Hemel Hempstead, UK. – reference: Newman JA , Gibson DJ , Parsons AJ , Thornley JHM , 2003. How predictable are aphid population responses to elevated CO2? J. Anim. Ecol. 72, 556-566. – reference: Mackay PA , Lamb RJ , 1996. Dispersal of five aphids (Homoptera: Aphididae) in relation to their impact on Hordeum vulgare . Environ. Entomol. 25, 1032-1044. – reference: Schär C , Vidale PL , Luthi D , Frei C , Haberli C , Liniger MA , Appenzeller C , 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332-336. – reference: Johnson SN , Staley JT , McLeod FAL , Hartley SE , 2011. Plant-mediated effects of soil invertebrates and summer drought on above-ground multi-trophic interactions. J. Ecol. 99, 57-65. – reference: Newton AC , Johnson SN , Gregory PJ , 2011. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3-18. – reference: Douglas AE , Price DRG , Minto LB , Jones E , Pescod KV , François C , Pritchard J , Boonham N , 2006. Sweet problems: insect traits defining the limits to dietary sugar utilisation by the pea aphid, Acyrthosiphon pisum . J. Exp. Biol. 209, 1395-1403. – reference: McMenemy LS , Hartley SE , MacFarlane SA , Karley AJ , Shepherd T , Johnson SN , 2012. Raspberry viruses manipulate the behaviour of their insect vectors. Entomol. Exp. Appl. 144, 56-68. – reference: Hughes L , Bazzaz FA , 2001. Effects of elevated CO2 on five plant-aphid interactions. Entomol. Exp. Appl. 99, 87-96. – reference: Dixon AFG , 1998. Aphid ecology. An optimization approach, 2nd edn. Chapman & Hall, London. – reference: Sun Y-C , Feng L , Gao F , Ge F , 2011. Effects of elevated CO2 and plant genotype on interactions among cotton, aphids and parasitoids. Insect Sci. 18, 451-461. – reference: Holopainen JK , 2002. Aphid response to elevated CO2 . Entomol. Exp. Appl. 104, 137-142. – reference: Vorburger C , Gehrer L , Rodriguez P , 2010. A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol. Lett. 6, 109-111. – reference: Holton MK , Lindroth RL , Nordheim EV , 2003. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137, 233-244. – reference: Khan MAM , Ulrichs C , Mewis I , 2010. Influence of water stress on the glucosinolate profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and Myzus persicae . Entomol. Exp. Appl. 137, 229-236. – reference: Hoover JK , Newman JA , 2004. Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Global Change Biol. 10, 1197-1208. – reference: Pritchard J , Griffiths B , Hunt EJ , 2007. Can the plant-mediated impacts on aphids of elevated CO2 and drought be predicted? Global Change Biol. 13, 1616-1629. – reference: Morecroft MD , Bealey CE , Howells E , Rennie S , Woiwod IP , 2002. Effects of drought on contrasting insect and plant species in the UK in the mid-1990s. Glob. Ecol. Biogeogr. 11, 7-22. – reference: Hale BK , Bale JS , Pritchard J , Masters GJ , Brown VK , 2003. Effects of host plant drought stress on the performance of the bird cherry-oat aphid, Rhopalosiphum padi (L.): a mechanistic analysis. Ecol. Entomol. 28, 666-677. – reference: Noctor G , Bergot G , Mauve C , Thominet D , Lelarge-Trouverie C , Prioul J-L , 2007. A comparative study of amino acid measurement in leaf extracts by gas chromatography-time of flight - mass spectrometry and high performance liquid chromatography with fluorescence detection. Metabolomics 3, 161-174. – reference: Oliver KM , Russell JA , Moran NA , Hunter MS , 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. PNAS 100, 1803-1807. – reference: Russell JA , Latorre A , Sabater-Munoz B , Moya A , Moran NA , 2003. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol. Ecol. 12, 1061-1075. – reference: Stacey DA , Fellowes MDE , 2002. Influence of elevated CO2 on interspecific interactions at higher trophic levels. Global Change Biol. 8, 668-678. – reference: Xing GM , Zhang J , Liu J , Zhang XY , Wang GX , Wang YF , 2003. Impacts of atmospheric CO2 concentrations and soil water on the population dynamics, fecundity and development of the bird cherry-oat aphid Rhopalosiphum padi . Phytoparasitica 31, 499-514. – reference: Chen FJ , Ge F , Parajulee MN , 2005. Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis . Environ. Entomol. 34, 37-46. – reference: Winter H , Lohaus G , Heldt HW , 1992. Phloem transport of amino-acids in relation to their cytosolic levels in barley leaves. Plant Physiol. 99, 996-1004. – reference: Chen FJ , Wu G , Parajulee MN , Ge F , 2007. Impact of elevated CO2 on the third trophic level: a predator Harmonia axyridis and a parasitoid Aphidius picipes . Biocontrol Sci. Technol. 17, 313-324. – reference: Roth SK , Lindroth RL , 1995. Elevated atmospheric CO2 effects on phytochemistry, insect performance and insect parasitoid interactions. Global Change Biol. 1, 173-182. – reference: Griffiths D , 1980. Foraging costs and relative prey size. Am. Nat. 116, 743-752. – reference: Coley PD , 1998. Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Clim. Change 39, 455-472. – reference: Miles PW , Aspinall D , Rosenberg L , 1982. Performance of the cabbage aphid, Brevicoryne brassicae (L.), on water-stressed rape plants, in relation to changes in their chemical composition. Aust. J. Zool. 30, 337-345. – reference: Bailey SM , Irwin ME , Kampmeier GE , Eastman CE , Hewings AD , 1995. Physical and biological perturbations - their effect on the movement of apterous Rhopalosiphum padi (Homoptera, Aphididae) and localized spread of barley yellow dwarf virus. Environ. Entomol. 24, 24-33. – reference: Henry LM , Ma BO , Roitberg BD , 2009. Size-mediated adaptive foraging: a host-selection strategy for insect parasitoids. Oecologia 161, 433-445. – reference: Ferrari J , Darby AC , Daniell TJ , Godfray HCJ , Douglas AE , 2004. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29, 60-65. – reference: Blackman RL , Eastop VF , 2000. Aphids on the world's crops. John Wiley & Sons Ltd., Chichester, UK. – reference: Kindlmann P , Dixon AFG , 1992. Optimum body size - effects of food quality and temperature, when reproductive growth-rate is restricted, with examples from aphids. J. Evol. Biol. 5, 677-690. – reference: Sopp PI , Sunderland KD , Coombes DS , 1987. Observations on the number of cereal aphids on the soil in relation to aphid density in winter wheat. Ann. Appl. Biol. 111, 53-57. – reference: Zhang J , Xing GM , Liao JX , Hou ZD , Wang GX , Wang YF , 2003. Effects of different atmospheric CO2 concentrations and soil moistures on the populations of bird cherry-oat aphid (Rhopalosiphum padi) feeding on spring wheat. Eur. J. Entomol. 100, 521-530. – reference: Dixon AFG , Kindlmann P , 1994. Optimum body-size in aphids. Ecol. Entomol. 19, 121-126. – reference: Honěk A , Jarošik V , Lapchin L , Rabasse JM , 1998. The effect of parasitism by Aphelinus abdominalis and drought on the walking movement of aphids. Entomol. Exp. Appl. 87, 191-200. – reference: Stireman JO , Dyer LA , Janzen DH , Singer MS , Lill JT , Marquis RJ , Ricklefs RE , Gentry GL , Hallwachs W , Coley PD , Barone JA , Greeney HF , Connahs H , Barbosa P , Morais HC , Diniz IR , 2005. Climatic unpredictability and parasitism of caterpillars: implications of global warming. PNAS 102, 17384-17387. – reference: Mitchell C , Johnson SN , Gordon SC , Birch ANE , Hubbard SF , 2010. Combining plant resistance and a natural enemy to control Amphorophora idaei . Biocontrol 55, 321-327. – reference: Bale JS , Masters GJ , Hodkinson ID , Awmack C , Bezemer TM , Brown VK , Butterfield J , Buse A , Coulson JC , Farrar J , Good JEG , Harrington R , Hartley S , Jones TH , Lindroth RL , Press MC , Symrnioudis I , Watt AD , Whittaker JB , 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol. 8, 1-16. – reference: Huberty AF , Denno RF , 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85, 1383-1398. – reference: Stiling P , Cornelissen T , 2007. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biol. 13, 1823-1842. – reference: Guay JF , Boudreault S , Michaud D , Cloutier C , 2009. Impact of environmental stress on aphid clonal resistance to parasitoids: Role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J. Insect Physiol. 55, 919-926. – reference: Johnson SN , Hawes C , Karley AJ , 2009. Reappraising the role of plant nutrients as mediators of interactions between root- and foliar-feeding insects. Funct. Ecol. 23, 699-706. – reference: Valkama E , Koricheva J , Oksanen E , 2007. Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Global Change Biol. 13, 184-201. – reference: Bezemer TM , Jones TH , Knight KJ , 1998. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae . Oecologia 116, 128-135. – reference: Gouinguené SP , Turlings TCJ , 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129, 1296-1307. – reference: Bezemer TM , Jones TH , 1998. Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82, 212-222. – reference: Pons X , Tatchell GM , 1995. Drought stress and cereal aphid performance. Ann. Appl. Biol. 126, 19-31. – reference: Wu GM , Barrette M , Boivin G , Brodeur J , Giraldeau LA , Hance T , 2011. Temperature influences the handling efficiency of an aphid parasitoid through body size-mediated effects. Environ. Entomol. 40, 737-742. – reference: Pescod KV , Quick WP , Douglas AE , 2007. Aphid responses to plants with genetically manipulated phloem nutrient levels. Physiol. Entomol. 32, 253-258. – reference: Ferrari J , Muller CB , Kraaijeveld AR , Godfray HC , 2001. Clonal variation and covariation in aphid resistance to parasitoids and a pathogen. Evolution 55, 1805-1814. – volume: 13 start-page: 1823 year: 2007 end-page: 1842 article-title: How does elevated carbon dioxide (CO ) affect plant–herbivore interactions? A field experiment and meta‐analysis of CO ‐mediated changes on plant chemistry and herbivore performance publication-title: Global Change Biol. – volume: 99 start-page: 87 year: 2001 end-page: 96 article-title: Effects of elevated CO on five plant–aphid interactions publication-title: Entomol. Exp. Appl. – year: 2009 – volume: 27 start-page: 189 year: 2002 end-page: 195 article-title: Facultative bacterial endosymbionts benefit pea aphids under heat stress publication-title: Ecol. Entomol. – volume: 23 start-page: 699 year: 2009 end-page: 706 article-title: Reappraising the role of plant nutrients as mediators of interactions between root‐ and foliar‐feeding insects publication-title: Funct. Ecol. – volume: 40 start-page: 737 year: 2011 end-page: 742 article-title: Temperature influences the handling efficiency of an aphid parasitoid through body size‐mediated effects publication-title: Environ. Entomol. – volume: 137 start-page: 229 year: 2010 end-page: 236 article-title: Influence of water stress on the glucosinolate profile of var. italica and the performance of and publication-title: Entomol. Exp. Appl. – volume: 39 start-page: 455 year: 1998 end-page: 472 article-title: Possible effects of climate change on plant/herbivore interactions in moist tropical forests publication-title: Clim. Change – volume: 60 start-page: 2827 year: 2009 end-page: 2838 article-title: Integrating pests and pathogens into the climate change/food security debate publication-title: J. Exp. Bot. – volume: 137 start-page: 233 year: 2003 end-page: 244 article-title: Foliar quality influences tree–herbivore–parasitoid interactions: effects of elevated CO , O , and plant genotype publication-title: Oecologia – volume: 100 start-page: 1803 year: 2003 end-page: 1807 article-title: Facultative bacterial symbionts in aphids confer resistance to parasitic wasps publication-title: PNAS – volume: 102 start-page: 17384 year: 2005 end-page: 17387 article-title: Climatic unpredictability and parasitism of caterpillars: implications of global warming publication-title: PNAS – volume: 18 start-page: 451 year: 2011 end-page: 461 article-title: Effects of elevated CO and plant genotype on interactions among cotton, aphids and parasitoids publication-title: Insect Sci. – volume: 111 start-page: 53 year: 1987 end-page: 57 article-title: Observations on the number of cereal aphids on the soil in relation to aphid density in winter wheat publication-title: Ann. Appl. Biol. – volume: 55 start-page: 1805 year: 2001 end-page: 1814 article-title: Clonal variation and covariation in aphid resistance to parasitoids and a pathogen publication-title: Evolution – volume: 10 start-page: 1197 year: 2004 end-page: 1208 article-title: Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids publication-title: Global Change Biol. – volume: 99 start-page: 57 year: 2011 end-page: 65 article-title: Plant‐mediated effects of soil invertebrates and summer drought on above‐ground multi‐trophic interactions publication-title: J. Ecol. – year: 1998 – volume: 104 start-page: 137 year: 2002 end-page: 142 article-title: Aphid response to elevated CO publication-title: Entomol. Exp. Appl. – volume: 179 start-page: 3 year: 2011 end-page: 18 article-title: Implications of climate change for diseases, crop yields and food security publication-title: Euphytica – volume: 205 start-page: 3009 year: 2002 end-page: 3018 article-title: Amino acid composition and nutritional quality of potato leaf phloem sap for aphids publication-title: J. Exp. Biol. – volume: 30 start-page: 337 year: 1982 end-page: 345 article-title: Performance of the cabbage aphid, (L.), on water‐stressed rape plants, in relation to changes in their chemical composition publication-title: Aust. J. Zool. – volume: 1 start-page: 173 year: 1995 end-page: 182 article-title: Elevated atmospheric CO effects on phytochemistry, insect performance and insect parasitoid interactions publication-title: Global Change Biol. – volume: 209 start-page: 1395 year: 2006 end-page: 1403 article-title: Sweet problems: insect traits defining the limits to dietary sugar utilisation by the pea aphid, publication-title: J. Exp. Biol. – volume: 126 start-page: 19 year: 1995 end-page: 31 article-title: Drought stress and cereal aphid performance publication-title: Ann. Appl. Biol. – volume: 72 start-page: 556 year: 2003 end-page: 566 article-title: How predictable are aphid population responses to elevated CO ? publication-title: J. Anim. Ecol. – volume: 82 start-page: 212 year: 1998 end-page: 222 article-title: Plant–insect herbivore interactions in elevated atmospheric CO : quantitative analyses and guild effects publication-title: Oikos – volume: 29 start-page: 60 year: 2004 end-page: 65 article-title: Linking the bacterial community in pea aphids with host‐plant use and natural enemy resistance publication-title: Ecol. Entomol. – volume: 24 start-page: 24 year: 1995 end-page: 33 article-title: Physical and biological perturbations – their effect on the movement of apterous (Homoptera, Aphididae) and localized spread of barley yellow dwarf virus publication-title: Environ. Entomol. – volume: 85 start-page: 1383 year: 2004 end-page: 1398 article-title: Plant water stress and its consequences for herbivorous insects: a new synthesis publication-title: Ecology – volume: 129 start-page: 1296 year: 2002 end-page: 1307 article-title: The effects of abiotic factors on induced volatile emissions in corn plants publication-title: Plant Physiol. – volume: 55 start-page: 321 year: 2010 end-page: 327 article-title: Combining plant resistance and a natural enemy to control publication-title: Biocontrol – volume: 87 start-page: 191 year: 1998 end-page: 200 article-title: The effect of parasitism by and drought on the walking movement of aphids publication-title: Entomol. Exp. Appl. – volume: 13 start-page: 184 year: 2007 end-page: 201 article-title: Effects of elevated O , alone and in combination with elevated CO , on tree leaf chemistry and insect herbivore performance: a meta‐analysis publication-title: Global Change Biol. – volume: 34 start-page: 37 year: 2005 end-page: 46 article-title: Impact of elevated CO on tri‐trophic interaction of , , and publication-title: Environ. Entomol. – volume: 8 start-page: 668 year: 2002 end-page: 678 article-title: Influence of elevated CO on interspecific interactions at higher trophic levels publication-title: Global Change Biol. – volume: 12 start-page: 1061 year: 2003 end-page: 1075 article-title: Side‐stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea publication-title: Mol. Ecol. – volume: 28 start-page: 666 year: 2003 end-page: 677 article-title: Effects of host plant drought stress on the performance of the bird cherry–oat aphid, (L.): a mechanistic analysis publication-title: Ecol. Entomol. – volume: 19 start-page: 121 year: 1994 end-page: 126 article-title: Optimum body‐size in aphids publication-title: Ecol. Entomol. – volume: 100 start-page: 521 year: 2003 end-page: 530 article-title: Effects of different atmospheric CO concentrations and soil moistures on the populations of bird cherry–oat aphid ( ) feeding on spring wheat publication-title: Eur. J. Entomol. – year: 2007 – volume: 13 start-page: 1616 year: 2007 end-page: 1629 article-title: Can the plant‐mediated impacts on aphids of elevated CO and drought be predicted? publication-title: Global Change Biol. – volume: 32 start-page: 253 year: 2007 end-page: 258 article-title: Aphid responses to plants with genetically manipulated phloem nutrient levels publication-title: Physiol. Entomol. – volume: 31 start-page: 499 year: 2003 end-page: 514 article-title: Impacts of atmospheric CO concentrations and soil water on the population dynamics, fecundity and development of the bird cherry–oat aphid publication-title: Phytoparasitica – year: 2000 – volume: 427 start-page: 332 year: 2004 end-page: 336 article-title: The role of increasing temperature variability in European summer heatwaves publication-title: Nature – volume: 158 start-page: 757 year: 2009 end-page: 764 article-title: Testing competing measures of profitability for mobile resources publication-title: Oecologia – volume: 161 start-page: 433 year: 2009 end-page: 445 article-title: Size‐mediated adaptive foraging: a host‐selection strategy for insect parasitoids publication-title: Oecologia – volume: 37 start-page: 110 year: 1987 end-page: 118 article-title: The role of drought in outbreaks of plant‐eating insects publication-title: Bioscience – volume: 144 start-page: 56 year: 2012 end-page: 68 article-title: Raspberry viruses manipulate the behaviour of their insect vectors publication-title: Entomol. Exp. Appl. – start-page: 747 year: 2007 end-page: 845 – volume: 8 start-page: 1 year: 2002 end-page: 16 article-title: Herbivory in global climate change research: direct effects of rising temperature on insect herbivores publication-title: Global Change Biol. – volume: 6 start-page: 109 year: 2010 end-page: 111 article-title: A strain of the bacterial symbiont protects aphids against parasitoids publication-title: Biol. Lett. – start-page: 117 year: 2002 end-page: 134 – volume: 11 start-page: 7 year: 2002 end-page: 22 article-title: Effects of drought on contrasting insect and plant species in the UK in the mid‐1990s publication-title: Glob. Ecol. Biogeogr. – volume: 116 start-page: 128 year: 1998 end-page: 135 article-title: Long‐term effects of elevated CO and temperature on populations of the peach potato aphid and its parasitoid publication-title: Oecologia – volume: 5 start-page: 677 year: 1992 end-page: 690 article-title: Optimum body size – effects of food quality and temperature, when reproductive growth‐rate is restricted, with examples from aphids publication-title: J. Evol. Biol. – volume: 55 start-page: 919 year: 2009 end-page: 926 article-title: Impact of environmental stress on aphid clonal resistance to parasitoids: Role of bacterial symbiosis in association with a new facultative symbiont of the pea aphid publication-title: J. Insect Physiol. – volume: 25 start-page: 1032 year: 1996 end-page: 1044 article-title: Dispersal of five aphids (Homoptera: Aphididae) in relation to their impact on publication-title: Environ. Entomol. – volume: 17 start-page: 313 year: 2007 end-page: 324 article-title: Impact of elevated CO on the third trophic level: a predator and a parasitoid publication-title: Biocontrol Sci. Technol. – volume: 99 start-page: 996 year: 1992 end-page: 1004 article-title: Phloem transport of amino‐acids in relation to their cytosolic levels in barley leaves publication-title: Plant Physiol. – volume: 3 start-page: 161 year: 2007 end-page: 174 article-title: A comparative study of amino acid measurement in leaf extracts by gas chromatography‐time of flight – mass spectrometry and high performance liquid chromatography with fluorescence detection publication-title: Metabolomics – volume: 116 start-page: 743 year: 1980 end-page: 752 article-title: Foraging costs and relative prey size publication-title: Am. Nat. – ident: e_1_2_7_32_1 doi: 10.1111/j.1570-7458.2010.01059.x – ident: e_1_2_7_17_1 doi: 10.1093/jxb/erp080 – ident: e_1_2_7_28_1 doi: 10.1046/j.1570-7458.2001.00805.x – ident: e_1_2_7_59_1 doi: 10.1111/j.1365-2486.2006.01284.x – start-page: 117 volume-title: Biotic stress and yield loss year: 2002 ident: e_1_2_7_20_1 – ident: e_1_2_7_57_1 doi: 10.1111/j.1744-7917.2010.01328.x – ident: e_1_2_7_51_1 doi: 10.1046/j.1365-294X.2003.01780.x – ident: e_1_2_7_62_1 doi: 10.1603/EN11018 – ident: e_1_2_7_48_1 doi: 10.1111/j.1744-7348.1995.tb05000.x – ident: e_1_2_7_21_1 doi: 10.1111/j.1365-2311.2003.00563.x – ident: e_1_2_7_34_1 doi: 10.1093/ee/25.5.1032 – ident: e_1_2_7_41_1 doi: 10.1046/j.1466-822X.2002.00174.x – ident: e_1_2_7_23_1 doi: 10.1046/j.1570-7458.2002.01000.x – volume: 205 start-page: 3009 year: 2002 ident: e_1_2_7_31_1 article-title: Amino acid composition and nutritional quality of potato leaf phloem sap for aphids publication-title: J. Exp. Biol. doi: 10.1242/jeb.205.19.3009 – ident: e_1_2_7_25_1 doi: 10.1046/j.1570-7458.1998.00320.x – ident: e_1_2_7_30_1 doi: 10.1111/j.1365-2745.2010.01748.x – ident: e_1_2_7_5_1 doi: 10.2307/3546961 – ident: e_1_2_7_26_1 doi: 10.1111/j.1529-8817.2003.00796.x – ident: e_1_2_7_38_1 doi: 10.1071/ZO9820337 – ident: e_1_2_7_50_1 doi: 10.1111/j.1365-2486.1995.tb00019.x – ident: e_1_2_7_9_1 doi: 10.1080/09583150701211814 – ident: e_1_2_7_36_1 doi: 10.1111/j.1570-7458.2012.01248.x – ident: e_1_2_7_60_1 doi: 10.1098/rsbl.2009.0642 – ident: e_1_2_7_56_1 doi: 10.1073/pnas.0508839102 – ident: e_1_2_7_27_1 doi: 10.1890/03-0352 – ident: e_1_2_7_13_1 doi: 10.1242/jeb.02148 – ident: e_1_2_7_44_1 doi: 10.1007/s11306-007-0057-3 – ident: e_1_2_7_61_1 doi: 10.1104/pp.99.3.996 – ident: e_1_2_7_35_1 doi: 10.2307/1310365 – volume-title: Aphid ecology. An optimization approach year: 1998 ident: e_1_2_7_11_1 – ident: e_1_2_7_43_1 doi: 10.1007/s10681-011-0359-4 – volume-title: Aphids on the world's crops year: 2000 ident: e_1_2_7_7_1 – ident: e_1_2_7_4_1 doi: 10.1007/s00442-008-1175-y – ident: e_1_2_7_45_1 doi: 10.1073/pnas.0335320100 – ident: e_1_2_7_64_1 doi: 10.14411/eje.2003.080 – ident: e_1_2_7_53_1 doi: 10.1111/j.1744-7348.1987.tb01432.x – ident: e_1_2_7_2_1 doi: 10.1093/ee/24.1.24 – ident: e_1_2_7_3_1 doi: 10.1046/j.1365-2486.2002.00451.x – ident: e_1_2_7_63_1 doi: 10.1007/BF02979743 – ident: e_1_2_7_40_1 doi: 10.1046/j.1365-2311.2002.00393.x – ident: e_1_2_7_15_1 doi: 10.1111/j.1365-2311.2004.00574.x – ident: e_1_2_7_22_1 doi: 10.1007/s00442-009-1381-2 – ident: e_1_2_7_33_1 doi: 10.1046/j.1420-9101.1992.5040677.x – ident: e_1_2_7_47_1 doi: 10.1111/j.1365-3032.2007.00577.x – ident: e_1_2_7_42_1 doi: 10.1046/j.1365-2656.2003.00725.x – volume-title: Genstat for windows, (11th edition) introduction year: 2007 ident: e_1_2_7_46_1 – ident: e_1_2_7_58_1 – ident: e_1_2_7_14_1 doi: 10.1111/j.0014-3820.2001.tb00829.x – ident: e_1_2_7_39_1 doi: 10.1007/s10526-009-9257-2 – ident: e_1_2_7_55_1 doi: 10.1111/j.1365-2486.2007.01392.x – ident: e_1_2_7_10_1 doi: 10.1023/A:1005307620024 – ident: e_1_2_7_49_1 doi: 10.1111/j.1365-2486.2007.01401.x – ident: e_1_2_7_16_1 doi: 10.1104/pp.001941 – ident: e_1_2_7_54_1 doi: 10.1046/j.1365-2486.2002.00506.x – ident: e_1_2_7_29_1 doi: 10.1111/j.1365-2435.2009.01550.x – ident: e_1_2_7_6_1 doi: 10.1007/s004420050571 – ident: e_1_2_7_24_1 doi: 10.1007/s00442-003-1351-z – ident: e_1_2_7_8_1 doi: 10.1603/0046-225X-34.1.37 – ident: e_1_2_7_19_1 doi: 10.1016/j.jinsphys.2009.06.006 – start-page: 747 volume-title: Climate change 2007: the physical basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change year: 2007 ident: e_1_2_7_37_1 – ident: e_1_2_7_18_1 doi: 10.1086/283666 – ident: e_1_2_7_52_1 doi: 10.1038/nature02300 – ident: e_1_2_7_12_1 doi: 10.1111/j.1365-2311.1994.tb00401.x |
SSID | ssj0016450 |
Score | 2.1901593 |
Snippet | The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration... The effects of predicted climate change on aphid-natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 136 |
SubjectTerms | Air temperature Amino acids Aphididae Aphidius ervi Biological and medical sciences Biological control Carbon dioxide Climate change Control Demography Drought Fundamental and applied biological sciences. Psychology Hordeum vulgare Hymenoptera Parasitism Phytopathology. Animal pests. Plant and forest protection Population structure Protozoa. Invertebrates Rhopalosiphum padi summer drought |
Title | Plant-mediated effects of drought on aphid population structure and parasitoid attack |
URI | https://api.istex.fr/ark:/67375/WNG-1DNFRMRG-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1439-0418.2012.01747.x https://www.proquest.com/docview/1268082202 https://www.proquest.com/docview/1285102769 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BatwwEB1CSqA9tGnSUrdJUCHk5kWWZWv3GNpsQiB7WBoSchGyJLdhi73sOhB66if0G_slnZG9Jht6CKU3gz3Gnh2Nn7RP7wEcZkqRrLiLiyy3sUxdFhtfytg6nnorSFKKNjhfTPKzS3l-nV13_CfaC9PqQ_QLbjQyQr-mAW6K5aNBntLCfhIYWmKAtSXVgPAkUbcIH017JSmcFASzVpy_JzFp1a6Tev56o7Uv1TNK-j0xJ80Sk1e2rhdrsPQhuA1fp_ErmK3eqyWlzAZ3TTGwPx5JPv6fF9-Glx2IZcdt1b2GDV_twIvjr4tOyMPvwNZNHRbsd-GKfJGa3z9_hU0qCHBZxyFhdclccAlqWF0xM_9269i8NxRjrbQt3o2ZCk-YhVli-8FrTNMYO3sDl-OTL5_O4s7OIbZSChXnI1IvlIXCqnA4cTJDhJIFL5w1Rea4Uz7lpVRKWWVG1BqcF2RuaYxwiTc-fQubVV35d8AkyRrmSiE6E9JSE3JDKTOnSl4iHhpGoFY_nbad1jlZbnzXD-c86UhTEjUlUYck6vsIkj5y3up9PCHmKFRHH2AWM-LLqUxfTU518nkynl5MT3UWwcFa-fQBIlcI0zmPYG9VT7rrJUudCLJHEYKLCD72p7EL0F87pvL1HV2DyJkLlY8iyEPxPPnp9fnJhI7e_2vgB3gugkcIcXz2YBOLw-8jUmuKgzAG_wAbnyz6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hVgg48FFABEoxEuKWVeI48e6xgm6X0s1h1aoVF8uxHUBbJavdVKo48RP4jfwSZpxs1K04VIhbJGeiZDKevHHG7wG8S6UkWnEbFmlmQpHYNNSuFKGxUeIMJ0op2uA8zbPJqTg6T887OSDaC9PyQ_QLbjQzfL6mCU4L0jdmeUIr-7Fv0eIDDC4hBwgot0ng29dXs55LCssCL9eKFXwcElvtZlvPX6-08a3aJrdfUe-kXqH7ylb3YgOYXoe3_vs0fgQX6ydr21Lmg8umGJgfN0gf_9OjP4aHHY5l-23gPYE7rtqBB_tflx2Xh9uBu19qv2b_FM5IGqn5_fOX36eCGJd1bSSsLpn1QkENqyumF9--W7boNcVYy26LV2O6wgG91CvMQHiObhpt5s_gdHxw8mESdooOoRGCyzAbEYGhKCQGhsXaSQ8RTRZRYY0uUhtZ6ZKoFFJKI_WIsoN1nPQtteY2dtolz2Grqiv3ApggZsNMSgRoXBjKQ3YoRGplGZUIiYYByPW7U6ajOyfVjQt1vexJRoqcqMiJyjtRXQUQ95aLlvLjFjbvfXj0Bno5p5Y5maqz_FDFH_PxbDo7VGkAexvx0xvwTCJSj6IAdtcBpbp0slIxJ4UUziMewNt-GBMB_d3Rlasv6RwEzxGX2SiAzEfPre9eHR3kdPTyXw3fwL3JyfRYHX_KP7-C-9xLhlDLzy5sYaC41wjcmmLPT8g_7j0xFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3RatRAFL1Ii6IPVqvFaK0jiG9Zkskks_tYut3WaoMslhZfhsnMRGUlWXZTKD75CX6jX-K9k2zoFh-K-BZIbkjunrk5M3vnHIA3qZQkK27DIs1MKBKbhtqVIjQ2SpzhJClFG5xP8-z4TJxcpBdd_xPthWn1IfoFNxoZvl7TAJ_b8sYgT2hhP_YdWnyA2BJygHxyU2TRkBA-nvZSUjgr8G6tOIGPQxKrXe_q-eud1j5Vm5T1K2qd1EvMXtnaXqzx0uvs1n-eJlswW71Y25UyG1w2xcD8uKH5-H_e_BE87Fgs229h9xjuuGobHux_WXRKHm4b7n6u_Yr9EzgnY6Tm989ffpcKMlzWNZGwumTW2wQ1rK6Ynn_9Ztm8dxRjrbYt3o3pCk_ohV5i_cFrdNNoM3sKZ5PDTwfHYefnEBohuAyzEckXikIiLCzOnPQQuWQRFdboIrWRlS6JSiGlNFKPqDZYx8ndUmtuY6ddsgMbVV25Z8AE6RpmUiI948JQFbJDIVIry6hEQjQMQK5-OmU6sXPy3Piurk96kpGiJCpKovJJVFcBxH3kvBX8uEXMW4-OPkAvZtQwJ1N1nh-peJxPpqfTI5UGsLcGnz6AZxJ5ehQFsLvCk-qKyVLFnPxROI94AK_701gG6L8dXbn6kq5B6hxxmY0CyDx4bv306uQwp6Pn_xr4Cu59HE_Uh3f5-xdwn3u_EOr32YUNxIl7iaytKfb8cPwDPQwvzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant%E2%80%90mediated+effects+of+drought+on+aphid+population+structure+and+parasitoid+attack&rft.jtitle=Journal+of+applied+entomology+%281986%29&rft.au=Aslam%2C+T.+J.&rft.au=Johnson%2C+S.+N.&rft.au=Karley%2C+A.+J.&rft.date=2013-02-01&rft.issn=0931-2048&rft.eissn=1439-0418&rft.volume=137&rft.issue=1-2&rft.spage=136&rft.epage=145&rft_id=info:doi/10.1111%2Fj.1439-0418.2012.01747.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1439_0418_2012_01747_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0931-2048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0931-2048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0931-2048&client=summon |