Plant-mediated effects of drought on aphid population structure and parasitoid attack

The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid–plant inte...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied entomology (1986) Vol. 137; no. 1-2; pp. 136 - 145
Main Authors Aslam, T. J., Johnson, S. N., Karley, A. J.
Format Journal Article
LanguageEnglish
Published Berlin Blackwell Publishing Ltd 01.02.2013
Wiley-Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid–plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry–oat aphid, Rhopalosiphum padi L., and its natural enemy the parasitoid wasp Aphidius ervi. Drought and, to a greater extent, aphids reduced barley ( Hordeum vulgare) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought‐treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought‐stressed plants. Parasitism rates were significantly lower on drought‐stressed plants (9 attacks h−1 compared with 35 attacks h−1 on ambient‐irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought‐induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore–antagonist interactions.
AbstractList The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid–plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry–oat aphid, Rhopalosiphum padi L., and its natural enemy the parasitoid wasp Aphidius ervi. Drought and, to a greater extent, aphids reduced barley ( Hordeum vulgare) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought‐treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought‐stressed plants. Parasitism rates were significantly lower on drought‐stressed plants (9 attacks h−1 compared with 35 attacks h−1 on ambient‐irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought‐induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore–antagonist interactions.
The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in N orthern E urope, which could affect aphid–plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry–oat aphid, R hopalosiphum padi L ., and its natural enemy the parasitoid wasp A phidius ervi . Drought and, to a greater extent, aphids reduced barley ( H ordeum vulgare ) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought‐treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought‐stressed plants. Parasitism rates were significantly lower on drought‐stressed plants (9 attacks h −1 compared with 35 attacks h −1 on ambient‐irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought‐induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore–antagonist interactions.
The effects of predicted climate change on aphid-natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid-plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry-oat aphid, Rhopalosiphum padi L., and its natural enemy the parasitoid wasp Aphidius ervi. Drought and, to a greater extent, aphids reduced barley (Hordeum vulgare) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought-treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought-stressed plants. Parasitism rates were significantly lower on drought-stressed plants (9 attacks h-1 compared with 35 attacks h-1 on ambient-irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought-induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore-antagonist interactions. [PUBLICATION ABSTRACT]
The effects of predicted climate change on aphid-natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid-plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry-oat aphid, Rhopalosiphum padi L., and its natural enemy the parasitoid wasp Aphidius ervi. Drought and, to a greater extent, aphids reduced barley (Hordeum vulgare) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought-treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought-stressed plants. Parasitism rates were significantly lower on drought-stressed plants (9 attacks h-1 compared with 35 attacks h-1 on ambient-irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought-induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore-antagonist interactions.
Author Johnson, S. N.
Karley, A. J.
Aslam, T. J.
Author_xml – sequence: 1
  givenname: T. J.
  surname: Aslam
  fullname: Aslam, T. J.
  email: Tiffany Aslam (corresponding author), Institute of Integrative and Comparative Biology, Irene Manton 8.17, University of Leeds, Leeds LS2 9JT, UK. , bstja@leeds.ac.uk
  organization: School of Biology, University of St Andrews, Fife, UK
– sequence: 2
  givenname: S. N.
  surname: Johnson
  fullname: Johnson, S. N.
  organization: Hawkesbury Institute for the Environment, NSW, Penrith South, Australia
– sequence: 3
  givenname: A. J.
  surname: Karley
  fullname: Karley, A. J.
  organization: The James Hutton Institute, InvergowrieDundee, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26791600$$DView record in Pascal Francis
BookMark eNqNkUFv3CAQhVGVSt2k_Q-Wqkq92AWMwRxaqUqTTap0W0WNekSzgBs2XuMAVjf_vjgb7SGncAEx33sDb47R0eAHi1BBcEXy-rSpCKtliRlpK4oJrTARTFS7V2hxKByhBZY1KSlm7Rt0HOMGY8JZgxfo5lcPQyq31jhI1hS266xOsfBdYYKf_t6mwg8FjLfOFKMfpx6SyxcxhUmnKdgChlyAANElnxlICfTdW_S6gz7ad0_7Cbo5P_t9elFe_Vxenn69KjVjVJRcEskbthYN10ZyDG3D-RqvjYZ1Y7ARtsYdE0JoAbKpiTSWtrKVANQQC7Y-QR_3vmPw95ONSW1d1LbPf7J-iorQtiGYCi4z-v4ZuvFTGPLrMsVb3FKKaaY-PFEQNfRdgEG7qMbgthAeFOVCEo5x5to9p4OPMdjugBCs5rmojZrjV3P8ap6LepyL2mXpl2dS7dJjqimA619i8Hlv8M_19uHFjdX3s9V8yvpyr3cx2d1BD-FOcVGLRv1ZLRX5tjq__nG9VE39H4Eyt2k
CitedBy_id crossref_primary_10_1002_ps_7054
crossref_primary_10_3390_microorganisms8070997
crossref_primary_10_1146_annurev_phyto_020620_101848
crossref_primary_10_1007_s10340_023_01701_w
crossref_primary_10_1111_jen_12904
crossref_primary_10_1111_nph_19622
crossref_primary_10_1371_journal_pone_0069013
crossref_primary_10_3389_fevo_2022_983401
crossref_primary_10_1016_j_agee_2020_106981
crossref_primary_10_1111_een_12282
crossref_primary_10_3390_insects7040049
crossref_primary_10_1093_jxb_erac010
crossref_primary_10_1111_een_12120
crossref_primary_10_1002_ece3_2950
crossref_primary_10_1111_jen_12257
crossref_primary_10_1093_ee_nvab005
crossref_primary_10_1111_aab_12654
crossref_primary_10_1111_een_12439
crossref_primary_10_1111_1365_2435_12858
crossref_primary_10_1002_ece3_4183
crossref_primary_10_1071_CP20299
crossref_primary_10_1111_afe_12024
crossref_primary_10_1007_s10340_023_01630_8
crossref_primary_10_1093_aesa_saz050
crossref_primary_10_1111_een_13040
crossref_primary_10_1111_1365_2745_12620
crossref_primary_10_1111_jen_12159
crossref_primary_10_1111_jen_13204
crossref_primary_10_1111_1744_7917_12445
crossref_primary_10_1002_ece3_7957
crossref_primary_10_1890_13_0044_1
crossref_primary_10_1111_1744_7917_12464
crossref_primary_10_1007_s10343_014_0319_8
crossref_primary_10_1007_s10340_022_01514_3
crossref_primary_10_3390_agriculture11040344
Cites_doi 10.1111/j.1570-7458.2010.01059.x
10.1093/jxb/erp080
10.1046/j.1570-7458.2001.00805.x
10.1111/j.1365-2486.2006.01284.x
10.1111/j.1744-7917.2010.01328.x
10.1046/j.1365-294X.2003.01780.x
10.1603/EN11018
10.1111/j.1744-7348.1995.tb05000.x
10.1111/j.1365-2311.2003.00563.x
10.1093/ee/25.5.1032
10.1046/j.1466-822X.2002.00174.x
10.1046/j.1570-7458.2002.01000.x
10.1242/jeb.205.19.3009
10.1046/j.1570-7458.1998.00320.x
10.1111/j.1365-2745.2010.01748.x
10.2307/3546961
10.1111/j.1529-8817.2003.00796.x
10.1071/ZO9820337
10.1111/j.1365-2486.1995.tb00019.x
10.1080/09583150701211814
10.1111/j.1570-7458.2012.01248.x
10.1098/rsbl.2009.0642
10.1073/pnas.0508839102
10.1890/03-0352
10.1242/jeb.02148
10.1007/s11306-007-0057-3
10.1104/pp.99.3.996
10.2307/1310365
10.1007/s10681-011-0359-4
10.1007/s00442-008-1175-y
10.1073/pnas.0335320100
10.14411/eje.2003.080
10.1111/j.1744-7348.1987.tb01432.x
10.1093/ee/24.1.24
10.1046/j.1365-2486.2002.00451.x
10.1007/BF02979743
10.1046/j.1365-2311.2002.00393.x
10.1111/j.1365-2311.2004.00574.x
10.1007/s00442-009-1381-2
10.1046/j.1420-9101.1992.5040677.x
10.1111/j.1365-3032.2007.00577.x
10.1046/j.1365-2656.2003.00725.x
10.1111/j.0014-3820.2001.tb00829.x
10.1007/s10526-009-9257-2
10.1111/j.1365-2486.2007.01392.x
10.1023/A:1005307620024
10.1111/j.1365-2486.2007.01401.x
10.1104/pp.001941
10.1046/j.1365-2486.2002.00506.x
10.1111/j.1365-2435.2009.01550.x
10.1007/s004420050571
10.1007/s00442-003-1351-z
10.1603/0046-225X-34.1.37
10.1016/j.jinsphys.2009.06.006
10.1086/283666
10.1038/nature02300
10.1111/j.1365-2311.1994.tb00401.x
ContentType Journal Article
Copyright 2012 Blackwell Verlag, GmbH
2014 INIST-CNRS
Copyright © 2013 Blackwell Verlag GmbH
Copyright_xml – notice: 2012 Blackwell Verlag, GmbH
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Blackwell Verlag GmbH
DBID BSCLL
AAYXX
CITATION
IQODW
7QG
7QR
7SN
7SS
8FD
C1K
FR3
P64
7ST
7TG
7U6
KL.
DOI 10.1111/j.1439-0418.2012.01747.x
DatabaseName Istex
CrossRef
Pascal-Francis
Animal Behavior Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Technology Research Database
Animal Behavior Abstracts
Chemoreception Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Entomology Abstracts
Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Agriculture
EISSN 1439-0418
EndPage 145
ExternalDocumentID 2861475771
26791600
10_1111_j_1439_0418_2012_01747_x
JEN1747
ark_67375_WNG_1DNFRMRG_5
Genre article
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GrantInformation_xml – fundername: Rural and Environmental Research and Analysis Directorate (RERAD)
– fundername: Scottish Government
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7QG
7QR
7SN
7SS
8FD
C1K
FR3
P64
7ST
7TG
7U6
KL.
ID FETCH-LOGICAL-c4427-6919654b756cd960a8566b0bdcab5d0d7e30f4777c7a95319de28989aa2d1eae3
IEDL.DBID DR2
ISSN 0931-2048
IngestDate Fri Jul 11 05:10:25 EDT 2025
Wed Aug 13 10:49:34 EDT 2025
Mon Jul 21 09:16:13 EDT 2025
Tue Jul 01 02:25:48 EDT 2025
Thu Apr 24 22:50:53 EDT 2025
Wed Jan 22 16:34:49 EST 2025
Wed Oct 30 09:46:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Monocotyledones
Aphidoidea
Hordeum vulgare
summer drought
Insecta
Aphidius ervi
Summer
Population structure
Rhopalosiphum padi
Cereal crop
Dynamical climatology
Climate change
Pest
Parasitoid
Homoptera
Gramineae
Arthropoda
Angiospermae
Aphididae
Spermatophyta
Braconidae
Hymenoptera
Invertebrata
Drought
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4427-6919654b756cd960a8566b0bdcab5d0d7e30f4777c7a95319de28989aa2d1eae3
Notes istex:A13F9572C68C7681507907CE8DD5238F85486C73
ArticleID:JEN1747
ark:/67375/WNG-1DNFRMRG-5
Rural and Environmental Research and Analysis Directorate (RERAD)
Scottish Government
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
PQID 1268082202
PQPubID 1096350
PageCount 10
ParticipantIDs proquest_miscellaneous_1285102769
proquest_journals_1268082202
pascalfrancis_primary_26791600
crossref_primary_10_1111_j_1439_0418_2012_01747_x
crossref_citationtrail_10_1111_j_1439_0418_2012_01747_x
wiley_primary_10_1111_j_1439_0418_2012_01747_x_JEN1747
istex_primary_ark_67375_WNG_1DNFRMRG_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2013
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: February 2013
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of applied entomology (1986)
PublicationTitleAlternate J. Appl. Entomol
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
– name: Wiley Subscription Services, Inc
References Hoover JK , Newman JA , 2004. Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Global Change Biol. 10, 1197-1208.
Payne RW , Murray DA , Harding SA , Baird DB , Soutar DM , 2007. Genstat for windows, (11th edition) introduction. VSN International, Hemel Hempstead, UK.
Bailey SM , Irwin ME , Kampmeier GE , Eastman CE , Hewings AD , 1995. Physical and biological perturbations - their effect on the movement of apterous Rhopalosiphum padi (Homoptera, Aphididae) and localized spread of barley yellow dwarf virus. Environ. Entomol. 24, 24-33.
Stacey DA , Fellowes MDE , 2002. Influence of elevated CO2 on interspecific interactions at higher trophic levels. Global Change Biol. 8, 668-678.
Sun Y-C , Feng L , Gao F , Ge F , 2011. Effects of elevated CO2 and plant genotype on interactions among cotton, aphids and parasitoids. Insect Sci. 18, 451-461.
Stiling P , Cornelissen T , 2007. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biol. 13, 1823-1842.
Hale BK , Bale JS , Pritchard J , Masters GJ , Brown VK , 2003. Effects of host plant drought stress on the performance of the bird cherry-oat aphid, Rhopalosiphum padi (L.): a mechanistic analysis. Ecol. Entomol. 28, 666-677.
Gregory PJ , Johnson SN , Newton AC , Ingram JSI , 2009. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827-2838.
Johnson SN , Staley JT , McLeod FAL , Hartley SE , 2011. Plant-mediated effects of soil invertebrates and summer drought on above-ground multi-trophic interactions. J. Ecol. 99, 57-65.
Schär C , Vidale PL , Luthi D , Frei C , Haberli C , Liniger MA , Appenzeller C , 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332-336.
Valkama E , Koricheva J , Oksanen E , 2007. Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Global Change Biol. 13, 184-201.
Huberty AF , Denno RF , 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85, 1383-1398.
Pescod KV , Quick WP , Douglas AE , 2007. Aphid responses to plants with genetically manipulated phloem nutrient levels. Physiol. Entomol. 32, 253-258.
Douglas AE , Price DRG , Minto LB , Jones E , Pescod KV , François C , Pritchard J , Boonham N , 2006. Sweet problems: insect traits defining the limits to dietary sugar utilisation by the pea aphid, Acyrthosiphon pisum . J. Exp. Biol. 209, 1395-1403.
Ferrari J , Darby AC , Daniell TJ , Godfray HCJ , Douglas AE , 2004. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29, 60-65.
Mackay PA , Lamb RJ , 1996. Dispersal of five aphids (Homoptera: Aphididae) in relation to their impact on Hordeum vulgare . Environ. Entomol. 25, 1032-1044.
Wu GM , Barrette M , Boivin G , Brodeur J , Giraldeau LA , Hance T , 2011. Temperature influences the handling efficiency of an aphid parasitoid through body size-mediated effects. Environ. Entomol. 40, 737-742.
Kindlmann P , Dixon AFG , 1992. Optimum body size - effects of food quality and temperature, when reproductive growth-rate is restricted, with examples from aphids. J. Evol. Biol. 5, 677-690.
Chen FJ , Ge F , Parajulee MN , 2005. Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis . Environ. Entomol. 34, 37-46.
Karley AJ , Douglas AE , Parker WE , 2002. Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. J. Exp. Biol. 205, 3009-3018.
Griffiths D , 1980. Foraging costs and relative prey size. Am. Nat. 116, 743-752.
Zhang J , Xing GM , Liao JX , Hou ZD , Wang GX , Wang YF , 2003. Effects of different atmospheric CO2 concentrations and soil moistures on the populations of bird cherry-oat aphid (Rhopalosiphum padi) feeding on spring wheat. Eur. J. Entomol. 100, 521-530.
Russell JA , Latorre A , Sabater-Munoz B , Moya A , Moran NA , 2003. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol. Ecol. 12, 1061-1075.
Newton AC , Johnson SN , Gregory PJ , 2011. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3-18.
Henry LM , Ma BO , Roitberg BD , 2009. Size-mediated adaptive foraging: a host-selection strategy for insect parasitoids. Oecologia 161, 433-445.
Bezemer TM , Jones TH , 1998. Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82, 212-222.
Ferrari J , Muller CB , Kraaijeveld AR , Godfray HC , 2001. Clonal variation and covariation in aphid resistance to parasitoids and a pathogen. Evolution 55, 1805-1814.
Holopainen JK , 2002. Aphid response to elevated CO2 . Entomol. Exp. Appl. 104, 137-142.
Montllor CB , Maxmen A , Purcell AH , 2002. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189-195.
Guay JF , Boudreault S , Michaud D , Cloutier C , 2009. Impact of environmental stress on aphid clonal resistance to parasitoids: Role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J. Insect Physiol. 55, 919-926.
Vorburger C , Gehrer L , Rodriguez P , 2010. A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol. Lett. 6, 109-111.
Pons X , Tatchell GM , 1995. Drought stress and cereal aphid performance. Ann. Appl. Biol. 126, 19-31.
Hughes L , Bazzaz FA , 2001. Effects of elevated CO2 on five plant-aphid interactions. Entomol. Exp. Appl. 99, 87-96.
Barrette M , Wu G-M , Brodeur J , Giraldeau L-A , Boivin G , 2009. Testing competing measures of profitability for mobile resources. Oecologia 158, 757-764.
Bale JS , Masters GJ , Hodkinson ID , Awmack C , Bezemer TM , Brown VK , Butterfield J , Buse A , Coulson JC , Farrar J , Good JEG , Harrington R , Hartley S , Jones TH , Lindroth RL , Press MC , Symrnioudis I , Watt AD , Whittaker JB , 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol. 8, 1-16.
Gouinguené SP , Turlings TCJ , 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129, 1296-1307.
Sopp PI , Sunderland KD , Coombes DS , 1987. Observations on the number of cereal aphids on the soil in relation to aphid density in winter wheat. Ann. Appl. Biol. 111, 53-57.
Xing GM , Zhang J , Liu J , Zhang XY , Wang GX , Wang YF , 2003. Impacts of atmospheric CO2 concentrations and soil water on the population dynamics, fecundity and development of the bird cherry-oat aphid Rhopalosiphum padi . Phytoparasitica 31, 499-514.
Oliver KM , Russell JA , Moran NA , Hunter MS , 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. PNAS 100, 1803-1807.
Roth SK , Lindroth RL , 1995. Elevated atmospheric CO2 effects on phytochemistry, insect performance and insect parasitoid interactions. Global Change Biol. 1, 173-182.
McMenemy LS , Hartley SE , MacFarlane SA , Karley AJ , Shepherd T , Johnson SN , 2012. Raspberry viruses manipulate the behaviour of their insect vectors. Entomol. Exp. Appl. 144, 56-68.
Holton MK , Lindroth RL , Nordheim EV , 2003. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137, 233-244.
Honěk A , Jarošik V , Lapchin L , Rabasse JM , 1998. The effect of parasitism by Aphelinus abdominalis and drought on the walking movement of aphids. Entomol. Exp. Appl. 87, 191-200.
Mattson WJ , Haack RA , 1987. The role of drought in outbreaks of plant-eating insects. Bioscience 37, 110-118.
Johnson SN , Hawes C , Karley AJ , 2009. Reappraising the role of plant nutrients as mediators of interactions between root- and foliar-feeding insects. Funct. Ecol. 23, 699-706.
Blackman RL , Eastop VF , 2000. Aphids on the world's crops. John Wiley & Sons Ltd., Chichester, UK.
Bezemer TM , Jones TH , Knight KJ , 1998. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae . Oecologia 116, 128-135.
Morecroft MD , Bealey CE , Howells E , Rennie S , Woiwod IP , 2002. Effects of drought on contrasting insect and plant species in the UK in the mid-1990s. Glob. Ecol. Biogeogr. 11, 7-22.
Chen FJ , Wu G , Parajulee MN , Ge F , 2007. Impact of elevated CO2 on the third trophic level: a predator Harmonia axyridis and a parasitoid Aphidius picipes . Biocontrol Sci. Technol. 17, 313-324.
Pritchard J , Griffiths B , Hunt EJ , 2007. Can the plant-mediated impacts on aphids of elevated CO2 and drought be predicted? Global Change Biol. 13, 1616-1629.
Dixon AFG , Kindlmann P , 1994. Optimum body-size in aphids. Ecol. Entomol. 19, 121-126.
Noctor G , Bergot G , Mauve C , Thominet D , Lelarge-Trouverie C , Prioul J-L , 2007. A comparative study of amino acid measurement in leaf extracts by gas chromatography-time of flight - mass spectrometry and high performance liquid chromatography with fluorescence detection. Metabolomics 3, 161-174.
Dixon AFG , 1998. Aphid ecology. An optimization approach, 2nd edn. Chapman & Hall, London.
Mitchell C , Johnson SN , Gordon SC , Birch ANE , Hubbard SF , 2010. Combining plant resistance and a natural enemy to control Amphorophora idaei . Biocontrol 55, 321-327.
Newman JA , Gibson DJ , Parsons AJ , Thornley JHM , 2003. How predictable are aphid population responses to elevated CO2? J. Anim. Ecol. 72, 556-566.
Khan MAM , Ulrichs C , Mewis I , 2010. Influence of water stress on the glucosinolate profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and Myzus persicae . Entomol. Exp. Appl. 137, 229-236.
Winter H , Lohaus G , Heldt HW , 1992. Phloem
2010; 55
2004; 29
2002; 11
2011; 99
1998; 82
1998; 116
2007; 32
1998; 87
1992; 99
2011; 18
2009; 158
1987; 37
2003; 12
2009; 55
2006; 209
1987; 111
2000
2005; 102
1995; 24
2002; 104
1995; 126
2009; 161
2007; 3
2001; 55
2001; 99
1996; 25
2005; 34
2010; 6
1992; 5
2007; 17
2009; 23
1980; 116
2004; 85
2011; 179
2012; 144
2009; 60
1982; 30
2011; 40
2002; 8
1998
2009
2007
2002
2003; 137
2003; 72
1995; 1
2004; 427
2007; 13
2003; 31
2004; 10
2002; 27
1998; 39
1994; 19
2010; 137
2002; 205
2002; 129
2003; 28
2003; 100
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
Payne RW (e_1_2_7_46_1) 2007
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Blackman RL (e_1_2_7_7_1) 2000
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_39_1
Karley AJ (e_1_2_7_31_1) 2002; 205
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
Meehl GA (e_1_2_7_37_1) 2007
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Dixon AFG (e_1_2_7_11_1) 1998
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Haile FJ (e_1_2_7_20_1) 2002
References_xml – reference: Montllor CB , Maxmen A , Purcell AH , 2002. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189-195.
– reference: Barrette M , Wu G-M , Brodeur J , Giraldeau L-A , Boivin G , 2009. Testing competing measures of profitability for mobile resources. Oecologia 158, 757-764.
– reference: Gregory PJ , Johnson SN , Newton AC , Ingram JSI , 2009. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827-2838.
– reference: Karley AJ , Douglas AE , Parker WE , 2002. Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. J. Exp. Biol. 205, 3009-3018.
– reference: Mattson WJ , Haack RA , 1987. The role of drought in outbreaks of plant-eating insects. Bioscience 37, 110-118.
– reference: Payne RW , Murray DA , Harding SA , Baird DB , Soutar DM , 2007. Genstat for windows, (11th edition) introduction. VSN International, Hemel Hempstead, UK.
– reference: Newman JA , Gibson DJ , Parsons AJ , Thornley JHM , 2003. How predictable are aphid population responses to elevated CO2? J. Anim. Ecol. 72, 556-566.
– reference: Mackay PA , Lamb RJ , 1996. Dispersal of five aphids (Homoptera: Aphididae) in relation to their impact on Hordeum vulgare . Environ. Entomol. 25, 1032-1044.
– reference: Schär C , Vidale PL , Luthi D , Frei C , Haberli C , Liniger MA , Appenzeller C , 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332-336.
– reference: Johnson SN , Staley JT , McLeod FAL , Hartley SE , 2011. Plant-mediated effects of soil invertebrates and summer drought on above-ground multi-trophic interactions. J. Ecol. 99, 57-65.
– reference: Newton AC , Johnson SN , Gregory PJ , 2011. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3-18.
– reference: Douglas AE , Price DRG , Minto LB , Jones E , Pescod KV , François C , Pritchard J , Boonham N , 2006. Sweet problems: insect traits defining the limits to dietary sugar utilisation by the pea aphid, Acyrthosiphon pisum . J. Exp. Biol. 209, 1395-1403.
– reference: McMenemy LS , Hartley SE , MacFarlane SA , Karley AJ , Shepherd T , Johnson SN , 2012. Raspberry viruses manipulate the behaviour of their insect vectors. Entomol. Exp. Appl. 144, 56-68.
– reference: Hughes L , Bazzaz FA , 2001. Effects of elevated CO2 on five plant-aphid interactions. Entomol. Exp. Appl. 99, 87-96.
– reference: Dixon AFG , 1998. Aphid ecology. An optimization approach, 2nd edn. Chapman & Hall, London.
– reference: Sun Y-C , Feng L , Gao F , Ge F , 2011. Effects of elevated CO2 and plant genotype on interactions among cotton, aphids and parasitoids. Insect Sci. 18, 451-461.
– reference: Holopainen JK , 2002. Aphid response to elevated CO2 . Entomol. Exp. Appl. 104, 137-142.
– reference: Vorburger C , Gehrer L , Rodriguez P , 2010. A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol. Lett. 6, 109-111.
– reference: Holton MK , Lindroth RL , Nordheim EV , 2003. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137, 233-244.
– reference: Khan MAM , Ulrichs C , Mewis I , 2010. Influence of water stress on the glucosinolate profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and Myzus persicae . Entomol. Exp. Appl. 137, 229-236.
– reference: Hoover JK , Newman JA , 2004. Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Global Change Biol. 10, 1197-1208.
– reference: Pritchard J , Griffiths B , Hunt EJ , 2007. Can the plant-mediated impacts on aphids of elevated CO2 and drought be predicted? Global Change Biol. 13, 1616-1629.
– reference: Morecroft MD , Bealey CE , Howells E , Rennie S , Woiwod IP , 2002. Effects of drought on contrasting insect and plant species in the UK in the mid-1990s. Glob. Ecol. Biogeogr. 11, 7-22.
– reference: Hale BK , Bale JS , Pritchard J , Masters GJ , Brown VK , 2003. Effects of host plant drought stress on the performance of the bird cherry-oat aphid, Rhopalosiphum padi (L.): a mechanistic analysis. Ecol. Entomol. 28, 666-677.
– reference: Noctor G , Bergot G , Mauve C , Thominet D , Lelarge-Trouverie C , Prioul J-L , 2007. A comparative study of amino acid measurement in leaf extracts by gas chromatography-time of flight - mass spectrometry and high performance liquid chromatography with fluorescence detection. Metabolomics 3, 161-174.
– reference: Oliver KM , Russell JA , Moran NA , Hunter MS , 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. PNAS 100, 1803-1807.
– reference: Russell JA , Latorre A , Sabater-Munoz B , Moya A , Moran NA , 2003. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol. Ecol. 12, 1061-1075.
– reference: Stacey DA , Fellowes MDE , 2002. Influence of elevated CO2 on interspecific interactions at higher trophic levels. Global Change Biol. 8, 668-678.
– reference: Xing GM , Zhang J , Liu J , Zhang XY , Wang GX , Wang YF , 2003. Impacts of atmospheric CO2 concentrations and soil water on the population dynamics, fecundity and development of the bird cherry-oat aphid Rhopalosiphum padi . Phytoparasitica 31, 499-514.
– reference: Chen FJ , Ge F , Parajulee MN , 2005. Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis . Environ. Entomol. 34, 37-46.
– reference: Winter H , Lohaus G , Heldt HW , 1992. Phloem transport of amino-acids in relation to their cytosolic levels in barley leaves. Plant Physiol. 99, 996-1004.
– reference: Chen FJ , Wu G , Parajulee MN , Ge F , 2007. Impact of elevated CO2 on the third trophic level: a predator Harmonia axyridis and a parasitoid Aphidius picipes . Biocontrol Sci. Technol. 17, 313-324.
– reference: Roth SK , Lindroth RL , 1995. Elevated atmospheric CO2 effects on phytochemistry, insect performance and insect parasitoid interactions. Global Change Biol. 1, 173-182.
– reference: Griffiths D , 1980. Foraging costs and relative prey size. Am. Nat. 116, 743-752.
– reference: Coley PD , 1998. Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Clim. Change 39, 455-472.
– reference: Miles PW , Aspinall D , Rosenberg L , 1982. Performance of the cabbage aphid, Brevicoryne brassicae (L.), on water-stressed rape plants, in relation to changes in their chemical composition. Aust. J. Zool. 30, 337-345.
– reference: Bailey SM , Irwin ME , Kampmeier GE , Eastman CE , Hewings AD , 1995. Physical and biological perturbations - their effect on the movement of apterous Rhopalosiphum padi (Homoptera, Aphididae) and localized spread of barley yellow dwarf virus. Environ. Entomol. 24, 24-33.
– reference: Henry LM , Ma BO , Roitberg BD , 2009. Size-mediated adaptive foraging: a host-selection strategy for insect parasitoids. Oecologia 161, 433-445.
– reference: Ferrari J , Darby AC , Daniell TJ , Godfray HCJ , Douglas AE , 2004. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29, 60-65.
– reference: Blackman RL , Eastop VF , 2000. Aphids on the world's crops. John Wiley & Sons Ltd., Chichester, UK.
– reference: Kindlmann P , Dixon AFG , 1992. Optimum body size - effects of food quality and temperature, when reproductive growth-rate is restricted, with examples from aphids. J. Evol. Biol. 5, 677-690.
– reference: Sopp PI , Sunderland KD , Coombes DS , 1987. Observations on the number of cereal aphids on the soil in relation to aphid density in winter wheat. Ann. Appl. Biol. 111, 53-57.
– reference: Zhang J , Xing GM , Liao JX , Hou ZD , Wang GX , Wang YF , 2003. Effects of different atmospheric CO2 concentrations and soil moistures on the populations of bird cherry-oat aphid (Rhopalosiphum padi) feeding on spring wheat. Eur. J. Entomol. 100, 521-530.
– reference: Dixon AFG , Kindlmann P , 1994. Optimum body-size in aphids. Ecol. Entomol. 19, 121-126.
– reference: Honěk A , Jarošik V , Lapchin L , Rabasse JM , 1998. The effect of parasitism by Aphelinus abdominalis and drought on the walking movement of aphids. Entomol. Exp. Appl. 87, 191-200.
– reference: Stireman JO , Dyer LA , Janzen DH , Singer MS , Lill JT , Marquis RJ , Ricklefs RE , Gentry GL , Hallwachs W , Coley PD , Barone JA , Greeney HF , Connahs H , Barbosa P , Morais HC , Diniz IR , 2005. Climatic unpredictability and parasitism of caterpillars: implications of global warming. PNAS 102, 17384-17387.
– reference: Mitchell C , Johnson SN , Gordon SC , Birch ANE , Hubbard SF , 2010. Combining plant resistance and a natural enemy to control Amphorophora idaei . Biocontrol 55, 321-327.
– reference: Bale JS , Masters GJ , Hodkinson ID , Awmack C , Bezemer TM , Brown VK , Butterfield J , Buse A , Coulson JC , Farrar J , Good JEG , Harrington R , Hartley S , Jones TH , Lindroth RL , Press MC , Symrnioudis I , Watt AD , Whittaker JB , 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol. 8, 1-16.
– reference: Huberty AF , Denno RF , 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85, 1383-1398.
– reference: Stiling P , Cornelissen T , 2007. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biol. 13, 1823-1842.
– reference: Guay JF , Boudreault S , Michaud D , Cloutier C , 2009. Impact of environmental stress on aphid clonal resistance to parasitoids: Role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J. Insect Physiol. 55, 919-926.
– reference: Johnson SN , Hawes C , Karley AJ , 2009. Reappraising the role of plant nutrients as mediators of interactions between root- and foliar-feeding insects. Funct. Ecol. 23, 699-706.
– reference: Valkama E , Koricheva J , Oksanen E , 2007. Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Global Change Biol. 13, 184-201.
– reference: Bezemer TM , Jones TH , Knight KJ , 1998. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae . Oecologia 116, 128-135.
– reference: Gouinguené SP , Turlings TCJ , 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129, 1296-1307.
– reference: Bezemer TM , Jones TH , 1998. Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82, 212-222.
– reference: Pons X , Tatchell GM , 1995. Drought stress and cereal aphid performance. Ann. Appl. Biol. 126, 19-31.
– reference: Wu GM , Barrette M , Boivin G , Brodeur J , Giraldeau LA , Hance T , 2011. Temperature influences the handling efficiency of an aphid parasitoid through body size-mediated effects. Environ. Entomol. 40, 737-742.
– reference: Pescod KV , Quick WP , Douglas AE , 2007. Aphid responses to plants with genetically manipulated phloem nutrient levels. Physiol. Entomol. 32, 253-258.
– reference: Ferrari J , Muller CB , Kraaijeveld AR , Godfray HC , 2001. Clonal variation and covariation in aphid resistance to parasitoids and a pathogen. Evolution 55, 1805-1814.
– volume: 13
  start-page: 1823
  year: 2007
  end-page: 1842
  article-title: How does elevated carbon dioxide (CO ) affect plant–herbivore interactions? A field experiment and meta‐analysis of CO ‐mediated changes on plant chemistry and herbivore performance
  publication-title: Global Change Biol.
– volume: 99
  start-page: 87
  year: 2001
  end-page: 96
  article-title: Effects of elevated CO on five plant–aphid interactions
  publication-title: Entomol. Exp. Appl.
– year: 2009
– volume: 27
  start-page: 189
  year: 2002
  end-page: 195
  article-title: Facultative bacterial endosymbionts benefit pea aphids under heat stress
  publication-title: Ecol. Entomol.
– volume: 23
  start-page: 699
  year: 2009
  end-page: 706
  article-title: Reappraising the role of plant nutrients as mediators of interactions between root‐ and foliar‐feeding insects
  publication-title: Funct. Ecol.
– volume: 40
  start-page: 737
  year: 2011
  end-page: 742
  article-title: Temperature influences the handling efficiency of an aphid parasitoid through body size‐mediated effects
  publication-title: Environ. Entomol.
– volume: 137
  start-page: 229
  year: 2010
  end-page: 236
  article-title: Influence of water stress on the glucosinolate profile of var. italica and the performance of and
  publication-title: Entomol. Exp. Appl.
– volume: 39
  start-page: 455
  year: 1998
  end-page: 472
  article-title: Possible effects of climate change on plant/herbivore interactions in moist tropical forests
  publication-title: Clim. Change
– volume: 60
  start-page: 2827
  year: 2009
  end-page: 2838
  article-title: Integrating pests and pathogens into the climate change/food security debate
  publication-title: J. Exp. Bot.
– volume: 137
  start-page: 233
  year: 2003
  end-page: 244
  article-title: Foliar quality influences tree–herbivore–parasitoid interactions: effects of elevated CO , O , and plant genotype
  publication-title: Oecologia
– volume: 100
  start-page: 1803
  year: 2003
  end-page: 1807
  article-title: Facultative bacterial symbionts in aphids confer resistance to parasitic wasps
  publication-title: PNAS
– volume: 102
  start-page: 17384
  year: 2005
  end-page: 17387
  article-title: Climatic unpredictability and parasitism of caterpillars: implications of global warming
  publication-title: PNAS
– volume: 18
  start-page: 451
  year: 2011
  end-page: 461
  article-title: Effects of elevated CO and plant genotype on interactions among cotton, aphids and parasitoids
  publication-title: Insect Sci.
– volume: 111
  start-page: 53
  year: 1987
  end-page: 57
  article-title: Observations on the number of cereal aphids on the soil in relation to aphid density in winter wheat
  publication-title: Ann. Appl. Biol.
– volume: 55
  start-page: 1805
  year: 2001
  end-page: 1814
  article-title: Clonal variation and covariation in aphid resistance to parasitoids and a pathogen
  publication-title: Evolution
– volume: 10
  start-page: 1197
  year: 2004
  end-page: 1208
  article-title: Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids
  publication-title: Global Change Biol.
– volume: 99
  start-page: 57
  year: 2011
  end-page: 65
  article-title: Plant‐mediated effects of soil invertebrates and summer drought on above‐ground multi‐trophic interactions
  publication-title: J. Ecol.
– year: 1998
– volume: 104
  start-page: 137
  year: 2002
  end-page: 142
  article-title: Aphid response to elevated CO
  publication-title: Entomol. Exp. Appl.
– volume: 179
  start-page: 3
  year: 2011
  end-page: 18
  article-title: Implications of climate change for diseases, crop yields and food security
  publication-title: Euphytica
– volume: 205
  start-page: 3009
  year: 2002
  end-page: 3018
  article-title: Amino acid composition and nutritional quality of potato leaf phloem sap for aphids
  publication-title: J. Exp. Biol.
– volume: 30
  start-page: 337
  year: 1982
  end-page: 345
  article-title: Performance of the cabbage aphid, (L.), on water‐stressed rape plants, in relation to changes in their chemical composition
  publication-title: Aust. J. Zool.
– volume: 1
  start-page: 173
  year: 1995
  end-page: 182
  article-title: Elevated atmospheric CO effects on phytochemistry, insect performance and insect parasitoid interactions
  publication-title: Global Change Biol.
– volume: 209
  start-page: 1395
  year: 2006
  end-page: 1403
  article-title: Sweet problems: insect traits defining the limits to dietary sugar utilisation by the pea aphid,
  publication-title: J. Exp. Biol.
– volume: 126
  start-page: 19
  year: 1995
  end-page: 31
  article-title: Drought stress and cereal aphid performance
  publication-title: Ann. Appl. Biol.
– volume: 72
  start-page: 556
  year: 2003
  end-page: 566
  article-title: How predictable are aphid population responses to elevated CO ?
  publication-title: J. Anim. Ecol.
– volume: 82
  start-page: 212
  year: 1998
  end-page: 222
  article-title: Plant–insect herbivore interactions in elevated atmospheric CO : quantitative analyses and guild effects
  publication-title: Oikos
– volume: 29
  start-page: 60
  year: 2004
  end-page: 65
  article-title: Linking the bacterial community in pea aphids with host‐plant use and natural enemy resistance
  publication-title: Ecol. Entomol.
– volume: 24
  start-page: 24
  year: 1995
  end-page: 33
  article-title: Physical and biological perturbations – their effect on the movement of apterous (Homoptera, Aphididae) and localized spread of barley yellow dwarf virus
  publication-title: Environ. Entomol.
– volume: 85
  start-page: 1383
  year: 2004
  end-page: 1398
  article-title: Plant water stress and its consequences for herbivorous insects: a new synthesis
  publication-title: Ecology
– volume: 129
  start-page: 1296
  year: 2002
  end-page: 1307
  article-title: The effects of abiotic factors on induced volatile emissions in corn plants
  publication-title: Plant Physiol.
– volume: 55
  start-page: 321
  year: 2010
  end-page: 327
  article-title: Combining plant resistance and a natural enemy to control
  publication-title: Biocontrol
– volume: 87
  start-page: 191
  year: 1998
  end-page: 200
  article-title: The effect of parasitism by and drought on the walking movement of aphids
  publication-title: Entomol. Exp. Appl.
– volume: 13
  start-page: 184
  year: 2007
  end-page: 201
  article-title: Effects of elevated O , alone and in combination with elevated CO , on tree leaf chemistry and insect herbivore performance: a meta‐analysis
  publication-title: Global Change Biol.
– volume: 34
  start-page: 37
  year: 2005
  end-page: 46
  article-title: Impact of elevated CO on tri‐trophic interaction of , , and
  publication-title: Environ. Entomol.
– volume: 8
  start-page: 668
  year: 2002
  end-page: 678
  article-title: Influence of elevated CO on interspecific interactions at higher trophic levels
  publication-title: Global Change Biol.
– volume: 12
  start-page: 1061
  year: 2003
  end-page: 1075
  article-title: Side‐stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea
  publication-title: Mol. Ecol.
– volume: 28
  start-page: 666
  year: 2003
  end-page: 677
  article-title: Effects of host plant drought stress on the performance of the bird cherry–oat aphid, (L.): a mechanistic analysis
  publication-title: Ecol. Entomol.
– volume: 19
  start-page: 121
  year: 1994
  end-page: 126
  article-title: Optimum body‐size in aphids
  publication-title: Ecol. Entomol.
– volume: 100
  start-page: 521
  year: 2003
  end-page: 530
  article-title: Effects of different atmospheric CO concentrations and soil moistures on the populations of bird cherry–oat aphid ( ) feeding on spring wheat
  publication-title: Eur. J. Entomol.
– year: 2007
– volume: 13
  start-page: 1616
  year: 2007
  end-page: 1629
  article-title: Can the plant‐mediated impacts on aphids of elevated CO and drought be predicted?
  publication-title: Global Change Biol.
– volume: 32
  start-page: 253
  year: 2007
  end-page: 258
  article-title: Aphid responses to plants with genetically manipulated phloem nutrient levels
  publication-title: Physiol. Entomol.
– volume: 31
  start-page: 499
  year: 2003
  end-page: 514
  article-title: Impacts of atmospheric CO concentrations and soil water on the population dynamics, fecundity and development of the bird cherry–oat aphid
  publication-title: Phytoparasitica
– year: 2000
– volume: 427
  start-page: 332
  year: 2004
  end-page: 336
  article-title: The role of increasing temperature variability in European summer heatwaves
  publication-title: Nature
– volume: 158
  start-page: 757
  year: 2009
  end-page: 764
  article-title: Testing competing measures of profitability for mobile resources
  publication-title: Oecologia
– volume: 161
  start-page: 433
  year: 2009
  end-page: 445
  article-title: Size‐mediated adaptive foraging: a host‐selection strategy for insect parasitoids
  publication-title: Oecologia
– volume: 37
  start-page: 110
  year: 1987
  end-page: 118
  article-title: The role of drought in outbreaks of plant‐eating insects
  publication-title: Bioscience
– volume: 144
  start-page: 56
  year: 2012
  end-page: 68
  article-title: Raspberry viruses manipulate the behaviour of their insect vectors
  publication-title: Entomol. Exp. Appl.
– start-page: 747
  year: 2007
  end-page: 845
– volume: 8
  start-page: 1
  year: 2002
  end-page: 16
  article-title: Herbivory in global climate change research: direct effects of rising temperature on insect herbivores
  publication-title: Global Change Biol.
– volume: 6
  start-page: 109
  year: 2010
  end-page: 111
  article-title: A strain of the bacterial symbiont protects aphids against parasitoids
  publication-title: Biol. Lett.
– start-page: 117
  year: 2002
  end-page: 134
– volume: 11
  start-page: 7
  year: 2002
  end-page: 22
  article-title: Effects of drought on contrasting insect and plant species in the UK in the mid‐1990s
  publication-title: Glob. Ecol. Biogeogr.
– volume: 116
  start-page: 128
  year: 1998
  end-page: 135
  article-title: Long‐term effects of elevated CO and temperature on populations of the peach potato aphid and its parasitoid
  publication-title: Oecologia
– volume: 5
  start-page: 677
  year: 1992
  end-page: 690
  article-title: Optimum body size – effects of food quality and temperature, when reproductive growth‐rate is restricted, with examples from aphids
  publication-title: J. Evol. Biol.
– volume: 55
  start-page: 919
  year: 2009
  end-page: 926
  article-title: Impact of environmental stress on aphid clonal resistance to parasitoids: Role of bacterial symbiosis in association with a new facultative symbiont of the pea aphid
  publication-title: J. Insect Physiol.
– volume: 25
  start-page: 1032
  year: 1996
  end-page: 1044
  article-title: Dispersal of five aphids (Homoptera: Aphididae) in relation to their impact on
  publication-title: Environ. Entomol.
– volume: 17
  start-page: 313
  year: 2007
  end-page: 324
  article-title: Impact of elevated CO on the third trophic level: a predator and a parasitoid
  publication-title: Biocontrol Sci. Technol.
– volume: 99
  start-page: 996
  year: 1992
  end-page: 1004
  article-title: Phloem transport of amino‐acids in relation to their cytosolic levels in barley leaves
  publication-title: Plant Physiol.
– volume: 3
  start-page: 161
  year: 2007
  end-page: 174
  article-title: A comparative study of amino acid measurement in leaf extracts by gas chromatography‐time of flight – mass spectrometry and high performance liquid chromatography with fluorescence detection
  publication-title: Metabolomics
– volume: 116
  start-page: 743
  year: 1980
  end-page: 752
  article-title: Foraging costs and relative prey size
  publication-title: Am. Nat.
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1570-7458.2010.01059.x
– ident: e_1_2_7_17_1
  doi: 10.1093/jxb/erp080
– ident: e_1_2_7_28_1
  doi: 10.1046/j.1570-7458.2001.00805.x
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1365-2486.2006.01284.x
– start-page: 117
  volume-title: Biotic stress and yield loss
  year: 2002
  ident: e_1_2_7_20_1
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1744-7917.2010.01328.x
– ident: e_1_2_7_51_1
  doi: 10.1046/j.1365-294X.2003.01780.x
– ident: e_1_2_7_62_1
  doi: 10.1603/EN11018
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1744-7348.1995.tb05000.x
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1365-2311.2003.00563.x
– ident: e_1_2_7_34_1
  doi: 10.1093/ee/25.5.1032
– ident: e_1_2_7_41_1
  doi: 10.1046/j.1466-822X.2002.00174.x
– ident: e_1_2_7_23_1
  doi: 10.1046/j.1570-7458.2002.01000.x
– volume: 205
  start-page: 3009
  year: 2002
  ident: e_1_2_7_31_1
  article-title: Amino acid composition and nutritional quality of potato leaf phloem sap for aphids
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.205.19.3009
– ident: e_1_2_7_25_1
  doi: 10.1046/j.1570-7458.1998.00320.x
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1365-2745.2010.01748.x
– ident: e_1_2_7_5_1
  doi: 10.2307/3546961
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1529-8817.2003.00796.x
– ident: e_1_2_7_38_1
  doi: 10.1071/ZO9820337
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1365-2486.1995.tb00019.x
– ident: e_1_2_7_9_1
  doi: 10.1080/09583150701211814
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1570-7458.2012.01248.x
– ident: e_1_2_7_60_1
  doi: 10.1098/rsbl.2009.0642
– ident: e_1_2_7_56_1
  doi: 10.1073/pnas.0508839102
– ident: e_1_2_7_27_1
  doi: 10.1890/03-0352
– ident: e_1_2_7_13_1
  doi: 10.1242/jeb.02148
– ident: e_1_2_7_44_1
  doi: 10.1007/s11306-007-0057-3
– ident: e_1_2_7_61_1
  doi: 10.1104/pp.99.3.996
– ident: e_1_2_7_35_1
  doi: 10.2307/1310365
– volume-title: Aphid ecology. An optimization approach
  year: 1998
  ident: e_1_2_7_11_1
– ident: e_1_2_7_43_1
  doi: 10.1007/s10681-011-0359-4
– volume-title: Aphids on the world's crops
  year: 2000
  ident: e_1_2_7_7_1
– ident: e_1_2_7_4_1
  doi: 10.1007/s00442-008-1175-y
– ident: e_1_2_7_45_1
  doi: 10.1073/pnas.0335320100
– ident: e_1_2_7_64_1
  doi: 10.14411/eje.2003.080
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1744-7348.1987.tb01432.x
– ident: e_1_2_7_2_1
  doi: 10.1093/ee/24.1.24
– ident: e_1_2_7_3_1
  doi: 10.1046/j.1365-2486.2002.00451.x
– ident: e_1_2_7_63_1
  doi: 10.1007/BF02979743
– ident: e_1_2_7_40_1
  doi: 10.1046/j.1365-2311.2002.00393.x
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1365-2311.2004.00574.x
– ident: e_1_2_7_22_1
  doi: 10.1007/s00442-009-1381-2
– ident: e_1_2_7_33_1
  doi: 10.1046/j.1420-9101.1992.5040677.x
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1365-3032.2007.00577.x
– ident: e_1_2_7_42_1
  doi: 10.1046/j.1365-2656.2003.00725.x
– volume-title: Genstat for windows, (11th edition) introduction
  year: 2007
  ident: e_1_2_7_46_1
– ident: e_1_2_7_58_1
– ident: e_1_2_7_14_1
  doi: 10.1111/j.0014-3820.2001.tb00829.x
– ident: e_1_2_7_39_1
  doi: 10.1007/s10526-009-9257-2
– ident: e_1_2_7_55_1
  doi: 10.1111/j.1365-2486.2007.01392.x
– ident: e_1_2_7_10_1
  doi: 10.1023/A:1005307620024
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1365-2486.2007.01401.x
– ident: e_1_2_7_16_1
  doi: 10.1104/pp.001941
– ident: e_1_2_7_54_1
  doi: 10.1046/j.1365-2486.2002.00506.x
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1365-2435.2009.01550.x
– ident: e_1_2_7_6_1
  doi: 10.1007/s004420050571
– ident: e_1_2_7_24_1
  doi: 10.1007/s00442-003-1351-z
– ident: e_1_2_7_8_1
  doi: 10.1603/0046-225X-34.1.37
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jinsphys.2009.06.006
– start-page: 747
  volume-title: Climate change 2007: the physical basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change
  year: 2007
  ident: e_1_2_7_37_1
– ident: e_1_2_7_18_1
  doi: 10.1086/283666
– ident: e_1_2_7_52_1
  doi: 10.1038/nature02300
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1365-2311.1994.tb00401.x
SSID ssj0016450
Score 2.1901593
Snippet The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration...
The effects of predicted climate change on aphid-natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 136
SubjectTerms Air temperature
Amino acids
Aphididae
Aphidius ervi
Biological and medical sciences
Biological control
Carbon dioxide
Climate change
Control
Demography
Drought
Fundamental and applied biological sciences. Psychology
Hordeum vulgare
Hymenoptera
Parasitism
Phytopathology. Animal pests. Plant and forest protection
Population structure
Protozoa. Invertebrates
Rhopalosiphum padi
summer drought
Title Plant-mediated effects of drought on aphid population structure and parasitoid attack
URI https://api.istex.fr/ark:/67375/WNG-1DNFRMRG-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1439-0418.2012.01747.x
https://www.proquest.com/docview/1268082202
https://www.proquest.com/docview/1285102769
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BatwwEB1CSqA9tGnSUrdJUCHk5kWWZWv3GNpsQiB7WBoSchGyJLdhi73sOhB66if0G_slnZG9Jht6CKU3gz3Gnh2Nn7RP7wEcZkqRrLiLiyy3sUxdFhtfytg6nnorSFKKNjhfTPKzS3l-nV13_CfaC9PqQ_QLbjQyQr-mAW6K5aNBntLCfhIYWmKAtSXVgPAkUbcIH017JSmcFASzVpy_JzFp1a6Tev56o7Uv1TNK-j0xJ80Sk1e2rhdrsPQhuA1fp_ErmK3eqyWlzAZ3TTGwPx5JPv6fF9-Glx2IZcdt1b2GDV_twIvjr4tOyMPvwNZNHRbsd-GKfJGa3z9_hU0qCHBZxyFhdclccAlqWF0xM_9269i8NxRjrbQt3o2ZCk-YhVli-8FrTNMYO3sDl-OTL5_O4s7OIbZSChXnI1IvlIXCqnA4cTJDhJIFL5w1Rea4Uz7lpVRKWWVG1BqcF2RuaYxwiTc-fQubVV35d8AkyRrmSiE6E9JSE3JDKTOnSl4iHhpGoFY_nbad1jlZbnzXD-c86UhTEjUlUYck6vsIkj5y3up9PCHmKFRHH2AWM-LLqUxfTU518nkynl5MT3UWwcFa-fQBIlcI0zmPYG9VT7rrJUudCLJHEYKLCD72p7EL0F87pvL1HV2DyJkLlY8iyEPxPPnp9fnJhI7e_2vgB3gugkcIcXz2YBOLw-8jUmuKgzAG_wAbnyz6
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hVgg48FFABEoxEuKWVeI48e6xgm6X0s1h1aoVF8uxHUBbJavdVKo48RP4jfwSZpxs1K04VIhbJGeiZDKevHHG7wG8S6UkWnEbFmlmQpHYNNSuFKGxUeIMJ0op2uA8zbPJqTg6T887OSDaC9PyQ_QLbjQzfL6mCU4L0jdmeUIr-7Fv0eIDDC4hBwgot0ng29dXs55LCssCL9eKFXwcElvtZlvPX6-08a3aJrdfUe-kXqH7ylb3YgOYXoe3_vs0fgQX6ydr21Lmg8umGJgfN0gf_9OjP4aHHY5l-23gPYE7rtqBB_tflx2Xh9uBu19qv2b_FM5IGqn5_fOX36eCGJd1bSSsLpn1QkENqyumF9--W7boNcVYy26LV2O6wgG91CvMQHiObhpt5s_gdHxw8mESdooOoRGCyzAbEYGhKCQGhsXaSQ8RTRZRYY0uUhtZ6ZKoFFJKI_WIsoN1nPQtteY2dtolz2Grqiv3ApggZsNMSgRoXBjKQ3YoRGplGZUIiYYByPW7U6ajOyfVjQt1vexJRoqcqMiJyjtRXQUQ95aLlvLjFjbvfXj0Bno5p5Y5maqz_FDFH_PxbDo7VGkAexvx0xvwTCJSj6IAdtcBpbp0slIxJ4UUziMewNt-GBMB_d3Rlasv6RwEzxGX2SiAzEfPre9eHR3kdPTyXw3fwL3JyfRYHX_KP7-C-9xLhlDLzy5sYaC41wjcmmLPT8g_7j0xFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3RatRAFL1Ii6IPVqvFaK0jiG9Zkskks_tYut3WaoMslhZfhsnMRGUlWXZTKD75CX6jX-K9k2zoFh-K-BZIbkjunrk5M3vnHIA3qZQkK27DIs1MKBKbhtqVIjQ2SpzhJClFG5xP8-z4TJxcpBdd_xPthWn1IfoFNxoZvl7TAJ_b8sYgT2hhP_YdWnyA2BJygHxyU2TRkBA-nvZSUjgr8G6tOIGPQxKrXe_q-eud1j5Vm5T1K2qd1EvMXtnaXqzx0uvs1n-eJlswW71Y25UyG1w2xcD8uKH5-H_e_BE87Fgs229h9xjuuGobHux_WXRKHm4b7n6u_Yr9EzgnY6Tm989ffpcKMlzWNZGwumTW2wQ1rK6Ynn_9Ztm8dxRjrbYt3o3pCk_ohV5i_cFrdNNoM3sKZ5PDTwfHYefnEBohuAyzEckXikIiLCzOnPQQuWQRFdboIrWRlS6JSiGlNFKPqDZYx8ndUmtuY6ddsgMbVV25Z8AE6RpmUiI948JQFbJDIVIry6hEQjQMQK5-OmU6sXPy3Piurk96kpGiJCpKovJJVFcBxH3kvBX8uEXMW4-OPkAvZtQwJ1N1nh-peJxPpqfTI5UGsLcGnz6AZxJ5ehQFsLvCk-qKyVLFnPxROI94AK_701gG6L8dXbn6kq5B6hxxmY0CyDx4bv306uQwp6Pn_xr4Cu59HE_Uh3f5-xdwn3u_EOr32YUNxIl7iaytKfb8cPwDPQwvzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant%E2%80%90mediated+effects+of+drought+on+aphid+population+structure+and+parasitoid+attack&rft.jtitle=Journal+of+applied+entomology+%281986%29&rft.au=Aslam%2C+T.+J.&rft.au=Johnson%2C+S.+N.&rft.au=Karley%2C+A.+J.&rft.date=2013-02-01&rft.issn=0931-2048&rft.eissn=1439-0418&rft.volume=137&rft.issue=1-2&rft.spage=136&rft.epage=145&rft_id=info:doi/10.1111%2Fj.1439-0418.2012.01747.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1439_0418_2012_01747_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0931-2048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0931-2048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0931-2048&client=summon