Recent progress in cathode interlayer materials for non‐fullerene organic solar cells

Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion efficiency (PCE) of non‐fullerene organic solar cells (NF‐OSCs) with single and multiple‐junction has surpassed 18% and 19%, respectively. The...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 4; no. 1
Main Authors Ahmad, Nafees, Zhou, Huiqiong, Fan, Ping, Liang, Guangxing
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion efficiency (PCE) of non‐fullerene organic solar cells (NF‐OSCs) with single and multiple‐junction has surpassed 18% and 19%, respectively. The cathode interlayer (CIL) plays a significant role in the improvement of PCE and the stability of OSCs. Recently, a large number of CIL materials have been employed in OSCs. This review summarizes the recent progress of CIL materials and systematically describes their impact on the device efficiency and stability in single‐junction NF‐OSCs. Firstly, the functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are summarized. Afterward, some big families of materials including metal oxides, metal salts/complexes, small molecules, polymers, composites/hybrids are presented as CIL for NF‐OSCs. Finally, the scale‐up techniques, conclusion, and future challenges regarding CIL in NF‐OSCs are elucidated. This review summarizes the recent advances of cathode interlayer (CIL) materials and systematically describes their impact on the device efficiency and stability in single‐junction non‐fullerene‐based organic solar cells (NF‐OSCs). The functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are discussed, along with the scale‐up techniques and future challenges in this area of research.
AbstractList Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion efficiency (PCE) of non‐fullerene organic solar cells (NF‐OSCs) with single and multiple‐junction has surpassed 18% and 19%, respectively. The cathode interlayer (CIL) plays a significant role in the improvement of PCE and the stability of OSCs. Recently, a large number of CIL materials have been employed in OSCs. This review summarizes the recent progress of CIL materials and systematically describes their impact on the device efficiency and stability in single‐junction NF‐OSCs. Firstly, the functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are summarized. Afterward, some big families of materials including metal oxides, metal salts/complexes, small molecules, polymers, composites/hybrids are presented as CIL for NF‐OSCs. Finally, the scale‐up techniques, conclusion, and future challenges regarding CIL in NF‐OSCs are elucidated.
Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion efficiency (PCE) of non‐fullerene organic solar cells (NF‐OSCs) with single and multiple‐junction has surpassed 18% and 19%, respectively. The cathode interlayer (CIL) plays a significant role in the improvement of PCE and the stability of OSCs. Recently, a large number of CIL materials have been employed in OSCs. This review summarizes the recent progress of CIL materials and systematically describes their impact on the device efficiency and stability in single‐junction NF‐OSCs. Firstly, the functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are summarized. Afterward, some big families of materials including metal oxides, metal salts/complexes, small molecules, polymers, composites/hybrids are presented as CIL for NF‐OSCs. Finally, the scale‐up techniques, conclusion, and future challenges regarding CIL in NF‐OSCs are elucidated. This review summarizes the recent advances of cathode interlayer (CIL) materials and systematically describes their impact on the device efficiency and stability in single‐junction non‐fullerene‐based organic solar cells (NF‐OSCs). The functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are discussed, along with the scale‐up techniques and future challenges in this area of research.
Abstract Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion efficiency (PCE) of non‐fullerene organic solar cells (NF‐OSCs) with single and multiple‐junction has surpassed 18% and 19%, respectively. The cathode interlayer (CIL) plays a significant role in the improvement of PCE and the stability of OSCs. Recently, a large number of CIL materials have been employed in OSCs. This review summarizes the recent progress of CIL materials and systematically describes their impact on the device efficiency and stability in single‐junction NF‐OSCs. Firstly, the functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are summarized. Afterward, some big families of materials including metal oxides, metal salts/complexes, small molecules, polymers, composites/hybrids are presented as CIL for NF‐OSCs. Finally, the scale‐up techniques, conclusion, and future challenges regarding CIL in NF‐OSCs are elucidated.
Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion efficiency (PCE) of non‐fullerene organic solar cells (NF‐OSCs) with single and multiple‐junction has surpassed 18% and 19%, respectively. The cathode interlayer (CIL) plays a significant role in the improvement of PCE and the stability of OSCs. Recently, a large number of CIL materials have been employed in OSCs. This review summarizes the recent progress of CIL materials and systematically describes their impact on the device efficiency and stability in single‐junction NF‐OSCs. Firstly, the functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are summarized. Afterward, some big families of materials including metal oxides, metal salts/complexes, small molecules, polymers, composites/hybrids are presented as CIL for NF‐OSCs. Finally, the scale‐up techniques, conclusion, and future challenges regarding CIL in NF‐OSCs are elucidated. image
Author Fan, Ping
Zhou, Huiqiong
Ahmad, Nafees
Liang, Guangxing
Author_xml – sequence: 1
  givenname: Nafees
  orcidid: 0000-0003-2120-4750
  surname: Ahmad
  fullname: Ahmad, Nafees
  organization: CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
– sequence: 2
  givenname: Huiqiong
  surname: Zhou
  fullname: Zhou, Huiqiong
  organization: CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
– sequence: 3
  givenname: Ping
  surname: Fan
  fullname: Fan, Ping
  organization: Shenzhen University
– sequence: 4
  givenname: Guangxing
  orcidid: 0000-0002-9033-4885
  surname: Liang
  fullname: Liang, Guangxing
  email: lgx@szu.edu.cn
  organization: Shenzhen University
BookMark eNp9kc1KJTEQhYMo-DNufIKAO-FqJZ1Ody9FdBQUYRBchrrpipNLbkeTvsjd-QjzjPMkE20ZRMRVDuE75xRVu2xziAMxdiDgWADIE4pLeSykqPUG25G1bmaVaKrND3qb7ee8gALXoKQSO-z-F1kaRv6Y4kOinLkfuMXxd-ypyJFSwDUlvsQiPYbMXUy89P59-eNWIVCigXhMDzh4y3MMmLilEPIPtuUKTvvv7x67uzi_O7ucXd_-vDo7vZ5ZpaSeibnrdYtKzqF2tSYnWqmg7hxY6EjNnbatmwM0DnoF1AjprJKyUyC1Raz22NUU20dcmMfkl5jWJqI3bx9lMINp9DaQadGRRhTOiV65qkGhoMG-VHW2r7q6ZB1OWWUXTyvKo1nEVRrK9EZqIdqmaTUU6miibIo5J3L_WwWY1zOY1zOYtzMUGD7B1o84-jiMCX342iImy7MPtP4m3Jzf3sjJ8w-zapz0
CitedBy_id crossref_primary_10_1002_slct_202400163
crossref_primary_10_1002_adts_202300624
crossref_primary_10_1016_j_dyepig_2024_112382
crossref_primary_10_1002_smll_202311715
crossref_primary_10_1002_qua_27510
crossref_primary_10_1016_j_solener_2024_113169
crossref_primary_10_1002_solr_202200486
crossref_primary_10_1016_j_nantod_2024_102600
crossref_primary_10_1021_acs_macromol_4c01285
crossref_primary_10_1002_solr_202300848
crossref_primary_10_1002_ente_202301447
crossref_primary_10_1002_adfm_202305445
crossref_primary_10_1002_eom2_12318
crossref_primary_10_1016_j_optmat_2024_115630
crossref_primary_10_1063_5_0091671
crossref_primary_10_1016_j_jcis_2022_07_096
crossref_primary_10_1002_inf2_12370
crossref_primary_10_1021_acsenergylett_3c02795
crossref_primary_10_1039_D3TC00188A
crossref_primary_10_1016_j_commatsci_2024_112961
crossref_primary_10_1016_j_xcrp_2023_101654
crossref_primary_10_1039_D5NJ00035A
crossref_primary_10_1016_j_matchemphys_2024_129685
crossref_primary_10_1016_j_chemphys_2024_112476
crossref_primary_10_1016_j_porgcoat_2024_108309
crossref_primary_10_1016_j_chemphys_2024_112277
crossref_primary_10_1016_j_chemphys_2024_112515
crossref_primary_10_1016_j_optmat_2024_115295
crossref_primary_10_1016_j_dyepig_2024_112429
crossref_primary_10_1016_j_mtener_2023_101297
crossref_primary_10_1016_j_physb_2024_416437
crossref_primary_10_1016_j_rio_2024_100748
crossref_primary_10_1016_j_jphotochem_2024_116026
crossref_primary_10_1016_j_mtener_2024_101756
crossref_primary_10_1016_j_nanoen_2023_109219
crossref_primary_10_1002_ente_202200986
crossref_primary_10_1016_j_jphotochem_2024_115457
crossref_primary_10_1016_j_mtcomm_2024_108188
crossref_primary_10_1016_j_comptc_2024_114533
crossref_primary_10_1002_adem_202201437
crossref_primary_10_3390_ma17071566
crossref_primary_10_1002_smll_202201046
crossref_primary_10_1016_j_rechem_2024_101382
crossref_primary_10_1007_s10895_024_03891_7
crossref_primary_10_1016_j_jssc_2024_125059
crossref_primary_10_1016_j_jssc_2025_125213
crossref_primary_10_1021_acsaem_3c02945
crossref_primary_10_1002_solr_202200381
crossref_primary_10_1016_j_jssc_2025_125250
crossref_primary_10_1021_acsenergylett_4c01451
crossref_primary_10_1002_aesr_202300210
crossref_primary_10_1002_er_8342
crossref_primary_10_1007_s00894_024_05836_0
crossref_primary_10_3390_polym15132954
crossref_primary_10_1002_aenm_202402920
crossref_primary_10_1007_s10854_023_10838_4
crossref_primary_10_1002_cjoc_202300347
crossref_primary_10_1002_adfm_202303603
crossref_primary_10_1016_j_saa_2025_125918
crossref_primary_10_1002_admi_202201363
crossref_primary_10_1016_j_saa_2024_124746
crossref_primary_10_1002_adem_202300183
crossref_primary_10_1016_j_mtcomm_2024_109880
crossref_primary_10_3762_bjoc_19_119
crossref_primary_10_1016_j_commatsci_2024_113037
crossref_primary_10_1002_adfm_202422023
crossref_primary_10_1007_s00894_024_05923_2
crossref_primary_10_1016_j_saa_2024_125453
crossref_primary_10_1021_acsami_2c22130
crossref_primary_10_1016_j_commatsci_2024_112984
crossref_primary_10_1016_j_chemphys_2024_112295
crossref_primary_10_1016_j_chemphys_2024_112379
crossref_primary_10_1016_j_jssc_2025_125201
crossref_primary_10_1016_j_cej_2022_138169
crossref_primary_10_1016_j_saa_2024_125298
crossref_primary_10_3390_nanoenergyadv3020006
crossref_primary_10_1016_j_dyepig_2022_110432
crossref_primary_10_1016_j_jssc_2025_125240
crossref_primary_10_1021_acsami_4c02150
crossref_primary_10_1016_j_mtcomm_2024_108403
crossref_primary_10_1021_acsami_4c05662
crossref_primary_10_1016_j_heliyon_2024_e30473
crossref_primary_10_1002_adma_202407119
crossref_primary_10_1016_j_jphotochem_2024_115670
crossref_primary_10_1039_D3LF00166K
Cites_doi 10.1016/j.renene.2012.07.012
10.1002/anie.201803748
10.1016/j.orgel.2013.09.019
10.1002/adma.201908205
10.1039/C8QO00788H
10.1063/1.1384001
10.3389/fchem.2018.00292
10.1038/srep04691
10.1016/j.jechem.2019.08.005
10.1002/eom2.12133
10.1016/j.orgel.2018.09.016
10.1039/C9TA10002D
10.1039/C4EE01223B
10.1002/adma.201902965
10.1021/cm034650o
10.1039/c0jm00662a
10.1039/C7EE00601B
10.1002/solr.201700160
10.1016/j.solmat.2010.04.082
10.1016/j.progpolymsci.2020.101222
10.1021/acsami.8b09313
10.1002/adma.201807577
10.1002/aenm.201301338
10.1038/s41467-020-15364-z
10.7567/1347-4065/aafd8c
10.1002/solr.201900179
10.1039/C9TA05789G
10.1039/C7TA10306A
10.1063/1.2723077
10.1007/s11426-017-9199-1
10.1002/adma.201200120
10.1021/acsami.7b13494
10.1016/j.orgel.2018.09.012
10.1016/j.solener.2017.07.053
10.1039/C9TA09961A
10.1063/1.3174914
10.1016/j.apsusc.2019.01.130
10.1039/C8TA11624E
10.1007/s10854-019-00921-0
10.1007/s12274-014-0620-y
10.1021/am201844q
10.1002/advs.201902269
10.1002/adma.202002973
10.1021/acsaem.8b02252
10.1134/S0012501619030011
10.1063/1.2730746
10.1039/b925382c
10.1016/j.matlet.2013.06.063
10.1021/nl303419n
10.1038/nmat5063
10.1002/eom2.12134
10.1021/acs.macromol.8b01490
10.1039/D1EE00496D
10.1021/am500336s
10.1002/eom2.12015
10.1021/acs.jpcc.9b09833
10.1016/j.solmat.2008.10.004
10.1039/C8RA07071G
10.1038/nphoton.2015.126
10.1039/B921396A
10.1016/j.orgel.2020.105725
10.1039/C9TC02781E
10.1016/j.electacta.2019.01.028
10.1021/cm402462m
10.1002/adma.201300295
10.1103/PhysRevB.73.085207
10.1021/ar900139v
10.1021/jp405176u
10.1021/jz2002259
10.1016/j.orgel.2012.10.020
10.1002/aenm.201500802
10.1039/C7RA13428B
10.1038/s41467-020-16509-w
10.1063/1.2171781
10.1039/C9MH00379G
10.1002/adma.200601093
10.1088/0957-4484/24/48/484011
10.1002/ange.201907467
10.1063/1.1446988
10.1002/adma.202002608
10.1103/PhysRevB.64.085201
10.1016/j.orgel.2019.05.032
10.1016/j.tsf.2014.06.008
10.1002/eom2.12099
10.1063/1.2784961
10.1002/aenm.201902065
10.1021/acsami.0c03632
10.1002/adma.202102787
10.1016/j.mser.2008.12.001
10.1007/s12274-014-0615-8
10.1016/j.jpowsour.2018.08.078
10.1126/science.270.5243.1789
10.1002/adma.202101279
10.1117/12.2520187
10.1039/c1ee01873f
10.1002/aenm.201401298
10.1002/aenm.201500277
10.1039/c2jm33838f
10.1016/j.solener.2019.08.009
10.1016/j.joule.2019.01.004
10.1016/j.orgel.2017.11.008
10.1016/j.orgel.2019.03.039
10.1021/acsaem.0c00218
10.1002/adma.201103006
10.1021/acsami.9b18095
10.1002/smll.202101133
10.1021/acsaem.9b02176
10.1063/1.3028094
10.1039/D0TC03048A
10.1016/j.scib.2019.10.019
10.1002/adfm.201905810
10.1002/adma.201907801
10.1021/am5044278
10.1002/adma.201104863
10.1016/j.joule.2021.06.020
10.1002/admi.201600476
10.1021/acs.nanolett.9b04586
10.1016/j.solmat.2018.08.010
10.1039/c3ta01226c
10.1016/j.orgel.2017.01.028
10.1016/j.orgel.2013.07.016
10.1021/acsami.7b10365
10.1039/C9EE03710A
10.1016/j.scib.2020.01.001
10.1002/aelm.201901245
10.1039/C9TA02844G
10.1002/adma.201404317
10.1038/ncomms9929
10.1021/ja908602j
10.1016/j.orgel.2014.02.004
10.1016/j.nanoen.2016.11.032
10.1063/1.4980842
10.1039/C3TA13275G
10.1016/j.solmat.2015.10.021
10.1021/acsami.9b22933
10.1002/adma.201500647
10.1038/nmat2102
10.1002/aenm.202000765
10.1002/pssr.201900372
10.1021/ma400924b
10.1021/cr300005u
10.1039/C8QM00311D
10.1039/C9SE01079C
10.1038/s41560-021-00820-x
10.1039/C8TC00705E
10.1021/acs.chemmater.7b01615
10.1039/D0TC00435A
10.1002/adma.201004301
10.1021/acsami.9b22531
10.1002/advs.201500095
10.1021/acsaem.8b01040
10.1016/j.nanoen.2018.05.034
10.1103/PhysRevLett.106.216402
10.1038/ncomms11287
10.1039/C9TA01195A
10.1002/adma.201808356
10.1039/D1TA01135A
10.1063/1.371859
10.1063/1.1620683
10.1021/cr900182s
10.1021/acsami.6b13675
10.1016/j.nanoen.2019.103931
10.1016/j.orgel.2019.02.009
10.1063/1.98799
10.1039/C8EE01150H
10.1021/acsami.9b19830
10.1016/j.progpolymsci.2019.02.002
10.1002/adma.201804657
10.1016/j.solmat.2004.09.002
10.1016/j.orgel.2019.02.015
10.1016/j.orgel.2014.01.024
10.1002/adma.200701101
10.1073/pnas.0711990105
10.1002/adfm.200390011
10.1016/j.orgel.2017.10.016
10.1063/1.3250176
10.1063/1.3479916
10.1002/eom2.12127
10.1039/c4ee00022f
10.1002/adma.201801801
10.1016/j.scib.2019.09.016
10.1016/j.orgel.2019.105427
10.1002/aenm.201901805
10.1038/s41467-019-13264-5
10.1038/nphoton.2011.317
10.1021/acsaem.9b01591
10.1016/j.solmat.2015.04.040
10.1016/j.cplett.2013.08.015
10.1021/jacs.7b02677
10.1039/C9TA07417A
10.1002/adma.202105301
10.1002/adma.200602597
10.1016/j.nanoen.2015.02.032
10.1021/ar1000296
10.1016/j.solmat.2019.110151
10.1021/acsaem.8b01658
10.1063/1.2362624
10.1039/C5TA00930H
10.1002/adma.201906557
10.1002/adfm.200500207
10.3390/nano10010080
10.1021/am302252p
10.1016/j.solmat.2013.05.007
10.1038/s41560-017-0016-9
10.3390/polym9110571
10.1002/admi.201800031
10.1002/eom2.12092
10.1002/aenm.201970164
10.1063/1.5129351
10.1039/c2jm33445c
10.1002/solr.201800182
10.1088/2058-8585/ab5f57
10.1002/eom2.12061
10.1002/adma.200903528
10.1016/j.jcis.2019.12.025
10.1016/j.orgel.2019.105483
10.1016/j.joule.2018.10.024
10.1063/1.2212270
10.1039/C9TC03506K
10.1016/j.jechem.2019.12.011
10.1039/D0TC00195C
10.1002/eom2.12006
10.1002/adma.200602653
10.1039/C9TA05023J
10.1002/aenm.201100632
10.1038/srep01965
10.1002/adma.201806616
10.1039/C8TA00881G
10.1002/adma.201600281
10.1002/adma.200501825
10.1002/adfm.200801286
10.1039/c4ee00260a
10.1002/anie.201901536
10.1016/j.solmat.2011.03.023
10.1016/j.orgel.2012.01.009
10.1093/nsr/nwaa305
10.1063/1.2359579
10.1016/j.orgel.2019.06.035
10.1016/j.matpr.2016.02.007
10.1016/j.solener.2019.12.079
10.1038/s41566-019-0573-5
10.1002/ente.202000072
10.1002/adma.201302845
10.1002/adfm.200600917
10.1002/admi.201900797
10.1016/j.tsf.2015.03.061
10.1063/1.1345834
10.1038/nmat2548
10.1038/nphoton.2009.69
ContentType Journal Article
Copyright 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.1002/eom2.12156
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID oai_doaj_org_article_8afe6aa1ff1d4f37a1407ad9f09cd395
10_1002_eom2_12156
EOM212156
Genre reviewArticle
GrantInformation_xml – fundername: Key Project of Department of Education of Guangdong Province
  funderid: 2018KZDXM059
– fundername: National Natural Science Foundation of China
  funderid: 62074102
– fundername: Science and Technology Plan Project of Shenzhen
  funderid: JCYJ20190808153409238
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c4426-1bfd68a42b05f56ef1824059f0c09e4bf6c8fb007f0d40e712fc42294026caa3
IEDL.DBID DOA
ISSN 2567-3173
IngestDate Wed Aug 27 01:31:44 EDT 2025
Wed Aug 13 04:27:40 EDT 2025
Tue Jul 01 02:50:12 EDT 2025
Thu Apr 24 23:12:20 EDT 2025
Wed Jan 22 16:26:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4426-1bfd68a42b05f56ef1824059f0c09e4bf6c8fb007f0d40e712fc42294026caa3
Notes Funding information
National Natural Science Foundation of China, Grant/Award Number: 62074102; Science and Technology Plan Project of Shenzhen, Grant/Award Number: JCYJ20190808153409238; Key Project of Department of Education of Guangdong Province, Grant/Award Number: 2018KZDXM059
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2120-4750
0000-0002-9033-4885
OpenAccessLink https://doaj.org/article/8afe6aa1ff1d4f37a1407ad9f09cd395
PQID 2611877860
PQPubID 5066170
PageCount 33
ParticipantIDs doaj_primary_oai_doaj_org_article_8afe6aa1ff1d4f37a1407ad9f09cd395
proquest_journals_2611877860
crossref_primary_10_1002_eom2_12156
crossref_citationtrail_10_1002_eom2_12156
wiley_primary_10_1002_eom2_12156_EOM212156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Beijing
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 141
2019; 91
2010; 97
2013; 3
2013; 1
2019; 10
2000; 87
2019; 13
2019; 12
2014; 26
2016; 144
2020; 14
2019; 202
2020; 13
2008; 105
2020; 562
2020; 12
2020; 11
2020; 10
2017; 155
2012; 13
2012; 12
2013; 5
2010; 22
2018; 6
2010; 20
2018; 8
2009; 95
2018; 2
2018; 5
2019; 20
2018; 1
2009; 93
2013; 50
2013; 117
2014; 15
2013; 113
2019; 29
2018; 30
2008; 20
2009; 19
2012; 24
2012; 22
2007; 17
2019; 7
2007; 19
2019; 9
2018; 187
2019; 191
2019; 3
1987; 51
2011; 2
2019; 6
2009; 64
2019; 31
2019; 30
2013; 108
2019; 2
2019; 32
2019; 1
2007; 90
2005; 86
2007; 91
2013; 586
2020; 32
2002; 80
2011; 4
1995; 270
2017; 139
2010; 43
2018; 17
2016; 7
2016; 3
2011; 95
2016; 28
2018; 11
2009; 109
2018; 10
2019; 299
2017; 2
2013; 25
2006; 73
2009; 42
2013; 24
2017; 43
2015; 583
2018; 401
2019; 58
2003; 13
2008; 7
2020; 124
2017; 110
2003; 94
2017; 9
2020; 8
2020; 7
2017; 31
2020; 6
2020; 5
2020; 4
2013; 14
2014; 4
2020; 3
2020; 2
2021; 33
2014; 2
2019; 64
2019; 68
2019; 69
2019; 476
2020; 47
2011; 23
2020; 43
2014; 7
2014; 6
2014; 564
2021; 9
2015; 13
2015; 2
2021; 8
2021; 6
2021; 5
2015; 6
2015; 5
2019; 70
2021; 3
2019; 72
2015; 3
2019; 75
2019; 74
2013; 46
2006; 16
2020; 82
2006; 18
2006
2018; 63
2017; 29
2018; 61
2020; 103
2020; 76
2015; 9
2015; 8
2008; 93
2001; 64
2021; 14
2012; 2
2015; 27
2011; 106
2006; 89
2021
2004; 16
2020; 197
2006; 88
2017; 10
2021; 17
2010; 132
2019
2009; 8
2018; 52
2018; 51
2018; 50
2020; 65
2009; 3
2012; 6
2001; 78
2001; 79
2012; 4
2018; 53
2010; 94
2019; 131
2018; 57
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_239_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_71_1
e_1_2_9_231_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_6_1
e_1_2_9_119_1
Za T (e_1_2_9_120_1) 2014; 4
e_1_2_9_60_1
e_1_2_9_242_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_232_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_217_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_243_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_228_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_220_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_233_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_218_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_221_1
e_1_2_9_244_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_229_1
e_1_2_9_174_1
e_1_2_9_211_1
e_1_2_9_234_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_219_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_245_1
e_1_2_9_222_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_235_1
e_1_2_9_212_1
e_1_2_9_90_1
e_1_2_9_250_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_223_1
e_1_2_9_246_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_236_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_1
e_1_2_9_65_1
e_1_2_9_247_1
e_1_2_9_80_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_214_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_237_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_248_1
e_1_2_9_4_1
e_1_2_9_240_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_238_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_230_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_249_1
e_1_2_9_86_1
e_1_2_9_226_1
e_1_2_9_3_1
e_1_2_9_241_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 5
  year: 2015
  article-title: Overcoming the light‐soaking problem in inverted polymer solar cells by introducing a heavily doped titanium sub‐oxide functional layer
  publication-title: Adv Energy Mater
– volume: 15
  start-page: 913
  issue: 4
  year: 2014
  end-page: 919
  article-title: Enhancing the short‐circuit current, efficiency of inverted organic solar cells using tetra sulfonic copper phthalocyanine (TS‐CuPc) as electron transporting layer
  publication-title: Org Electron
– volume: 562
  start-page: 142
  issue: C
  year: 2020
  end-page: 148
  article-title: Interface passivation and electron transport improvement via employing calcium fluoride for polymer solar cells
  publication-title: J Colloid Interface Sci
– volume: 7
  start-page: 2925
  issue: 9
  year: 2014
  end-page: 2933
  article-title: Scalable, ambient atmosphere roll‐to‐roll manufacture of encapsulated large area, flexible organic tandem solar cell modules
  publication-title: Energy Environ Sci
– volume: 61
  start-page: 531
  issue: 5
  year: 2018
  end-page: 537
  article-title: Synergistic effect of fluorination on both donor and acceptor materials for high performance non‐fullerene polymer solar cells with 13.5% efficiency
  publication-title: Sci China Chem
– volume: 72
  start-page: 6
  year: 2019
  end-page: 17
  article-title: An universal electron transport layer involving hydrogen plasma–treated tungsten disulfide nanosheets doped zinc oxide layers for polymer donors with fullerene or small molecule acceptor photovoltaics
  publication-title: Org Electron
– volume: 3
  year: 2019
  article-title: One‐step blade‐coated highly efficient nonfullerene organic solar cells with a self‐assembled interfacial layer enabled by solvent vapor annealing
  publication-title: Sol RRL
– volume: 7
  year: 2020
  article-title: From straw to device Interface: Carboxymethyl‐cellulose‐based modified interlayer for enhanced power conversion efficiency of organic solar cells
  publication-title: Adv Sci
– volume: 94
  start-page: 6849
  issue: 10
  year: 2003
  end-page: 6854
  article-title: Cathode dependence of the open‐circuit voltage of polymer: fullerene bulk heterojunction solar cells
  publication-title: J Appl Phys
– volume: 113
  start-page: 3734
  issue: 5
  year: 2013
  end-page: 3765
  article-title: Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly (3‐hexylthiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester system
  publication-title: Chem Rev
– volume: 87
  start-page: 295
  issue: 1
  year: 2000
  end-page: 298
  article-title: Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x‐ray photoemission spectroscopies
  publication-title: J Appl Phys
– volume: 3
  start-page: 1694
  issue: 2
  year: 2020
  end-page: 1701
  article-title: Increased electron transport and hole blocking in an aqueous solution processed dye‐doped ZnO cathode interlayer for high performance organic solar cells
  publication-title: ACS Appl Energy Mater
– volume: 46
  start-page: 6379
  issue: 16
  year: 2013
  end-page: 6387
  article-title: Structural factors that affect the performance of organic bulk heterojunction solar cells
  publication-title: Macromolecules
– volume: 93
  start-page: 394
  issue: 4
  year: 2009
  end-page: 412
  article-title: Fabrication and processing of polymer solar cells: a review of printing and coating techniques
  publication-title: Sol Energy Mater Sol Cells
– volume: 187
  start-page: 273
  year: 2018
  end-page: 282
  article-title: Enhanced electron transport enables over 12% efficiency by interface engineering of non‐fullerene organic solar cells
  publication-title: Sol Energy Mater Sol Cells
– volume: 10
  year: 2020
  article-title: Effect of insertion of bathocuproine buffer layer at grating‐structured cathode–organic‐layer interface in bulk‐heterojunction solar cells
  publication-title: AIP Adv
– volume: 8
  start-page: 36542
  issue: 64
  year: 2018
  end-page: 36548
  article-title: Light‐soaking free organic photovoltaic devices with sol–gel deposited ZnO and AZO electron transport layers
  publication-title: RSC Adv
– volume: 58
  year: 2019
  article-title: Characteristics of 9, 10‐diphenylanthracene field‐effect transistors obtained by exposing the silver electrodes to oxidative conditions
  publication-title: Jpn J Appl Phys
– volume: 63
  start-page: 93
  year: 2018
  end-page: 97
  article-title: Efficient inverted polymer solar cells via pyridine‐based organic molecules as interfacial modification layer on sol‐gel zinc oxide surface
  publication-title: Org Electron
– volume: 64
  start-page: 1
  issue: 1‐2
  year: 2009
  end-page: 31
  article-title: Energetics of metal–organic interfaces: new experiments and assessment of the field
  publication-title: Mater Sci Eng: R: Rep
– volume: 69
  start-page: 20
  year: 2019
  end-page: 25
  article-title: Interface modification layers for high‐performance inverted organic photovoltaics
  publication-title: Org Electron
– volume: 43
  start-page: 207
  year: 2017
  end-page: 213
  article-title: Ga‐doped ZnO as an electron transport layer for PffBT4T‐2OD: PC70BM organic solar cells
  publication-title: Org Electron
– volume: 31
  year: 2019
  article-title: A self‐organized poly (vinylpyrrolidone)‐based cathode interlayer in inverted fullerene‐free organic solar cells
  publication-title: Adv Mater
– volume: 12
  start-page: 10706
  issue: 9
  year: 2020
  end-page: 10716
  article-title: Polyolefin elastomer as the anode interfacial layer for improved mechanical and air stabilities in nonfullerene solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 65
  start-page: 131
  issue: 2
  year: 2020
  end-page: 137
  article-title: Semitransparent polymer solar cells with 12.37% efficiency and 18.6% average visible transmittance
  publication-title: Sci Bull
– volume: 20
  start-page: 862
  issue: 5
  year: 2010
  end-page: 866
  article-title: Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer
  publication-title: J Mater Chem
– year: 2019
– volume: 3
  start-page: 1965
  issue: 1
  year: 2013
  article-title: Barium: an efficient cathode layer for bulk‐heterojunction solar cells
  publication-title: Sci Rep
– volume: 103
  year: 2020
  article-title: Polymer design to promote low work function surfaces in organic electronics
  publication-title: Prog Polym Sci
– volume: 50
  start-page: 169
  year: 2018
  end-page: 175
  article-title: Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene‐free organic solar cells with an outstanding short‐circuit current
  publication-title: Nano Energy
– volume: 43
  start-page: 40
  issue: 4
  year: 2020
  end-page: 46
  article-title: Significant influence of doping effect on photovoltaic performance of efficient fullerene‐free polymer solar cells
  publication-title: J Energy Chem
– volume: 47
  start-page: 196
  issue: 8
  year: 2020
  end-page: 202
  article-title: Non‐conjugated polymers as thickness‐insensitive electron transport materials in high‐performance inverted organic solar cells
  publication-title: J Energy Chem
– volume: 73
  year: 2006
  article-title: Band structure of silicon as measured in extended momentum space
  publication-title: Phys Rev B
– volume: 11
  start-page: 2225
  issue: 8
  year: 2018
  end-page: 2234
  article-title: P3HT: non‐fullerene acceptor based large area, semi‐transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods
  publication-title: Energy Environ Sci
– volume: 4
  start-page: 1234
  issue: 3
  year: 2020
  end-page: 1241
  article-title: An environmentally friendly natural polymer as a universal interfacial modifier for fullerene and non‐fullerene polymer solar cells
  publication-title: Sustain Energy Fuels
– volume: 65
  start-page: 208
  issue: 3
  year: 2020
  end-page: 216
  article-title: Interface‐enhanced organic solar cells with extrapolated T80 lifetimes of over 20 years
  publication-title: Sci Bull
– volume: 14
  start-page: 267
  issue: 1
  year: 2013
  end-page: 272
  article-title: Inverted polymer solar cells with a solution‐processed cesium halide interlayer
  publication-title: Org Electron
– volume: 3
  issue: 2
  year: 2021
  article-title: Dual‐function interface engineering for efficient perovskite solar cells
  publication-title: EcoMat
– volume: 15
  start-page: 835
  issue: 4
  year: 2014
  end-page: 843
  article-title: Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer
  publication-title: Org Electron
– volume: 19
  start-page: 1551
  issue: 12
  year: 2007
  end-page: 1566
  article-title: Device physics of polymer: fullerene bulk heterojunction solar cells
  publication-title: Adv Mater
– volume: 6
  year: 2020
  article-title: Passivating surface defects of n‐SnO2 electron transporting layer by InP/ZnS quantum dots: toward efficient and stable organic solar cells
  publication-title: Adv Electron Mater
– volume: 6
  start-page: 5122
  issue: 7
  year: 2014
  end-page: 5129
  article-title: Improving the stability of bulk heterojunction solar cells by incorporating pH‐neutral PEDOT: PSS as the hole transport layer
  publication-title: ACS Appl Mater Interfaces
– volume: 105
  start-page: 2783
  issue: 8
  year: 2008
  end-page: 2787
  article-title: P‐type semiconducting nickel oxide as an efficiency‐enhancing anode interfacial layer in polymer bulk‐heterojunction solar cells
  publication-title: Proc Natl Acad Sci
– volume: 76
  year: 2020
  article-title: Efficiency enhancement of organic solar cells enabled by interface engineering of sol‐gel zinc oxide with an oxadiazole‐based material
  publication-title: Org Electron
– volume: 52
  start-page: 146
  year: 2018
  end-page: 152
  article-title: Flexographic printing of polycarbazole‐based inverted solar cells
  publication-title: Org Electron
– volume: 29
  start-page: 4176
  issue: 10
  year: 2017
  end-page: 4180
  article-title: Fullerene‐free organic solar cells with efficiency over 12% based on EDTA–ZnO hybrid cathode interlayer
  publication-title: Chem Mater
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 8
  article-title: Robust metal ion‐chelated polymer interfacial layer for ultraflexible non‐fullerene organic solar cells
  publication-title: Nat Commun
– volume: 5
  year: 2015
  article-title: Carrier‐selectivity‐dependent charge recombination dynamics in organic photovoltaic cells with a ferroelectric blend interlayer
  publication-title: Adv Energy Mater
– volume: 51
  start-page: 8197
  issue: 20
  year: 2018
  end-page: 8204
  article-title: Regulation of the polar groups in n‐type conjugated polyelectrolytes as electron transfer layer for inverted polymer solar cells
  publication-title: Macromolecules
– volume: 10
  start-page: 35896
  issue: 42
  year: 2018
  end-page: 35903
  article-title: Organophosphorus derivatives as cathode interfacial‐layer materials for highly efficient fullerene‐free polymer solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 8
  start-page: 5984
  issue: 11
  year: 2018
  end-page: 5991
  article-title: Interface engineering through electron transport layer modification for high efficiency organic solar cells
  publication-title: RSC Adv
– year: 2021
  article-title: Volatilizable solid additive‐assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80%
  publication-title: Adv Mater
– volume: 12
  start-page: 12083
  issue: 10
  year: 2020
  end-page: 12092
  article-title: Development of block copolymers with poly (3‐hexylthiophene) segments as compatibilizers in non‐fullerene organic solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 2
  start-page: 541
  issue: 5
  year: 2012
  end-page: 545
  article-title: Toward high‐stability inverted polymer solar cells with an electrodeposited ZnO electron transporting layer
  publication-title: Adv Energy Mater
– volume: 8
  year: 2020
  article-title: Organic solar cells' efficiency enhanced by perylene monoimide phosphorus salt cathode interfacial layer
  publication-title: Energ Technol
– volume: 16
  start-page: 708
  issue: 4
  year: 2004
  end-page: 716
  article-title: Novel electroluminescent conjugated polyelectrolytes based on polyfluorene
  publication-title: Chem Mater
– volume: 7
  start-page: 158
  issue: 2
  year: 2008
  end-page: 164
  article-title: Morphology evolution via self‐organization and lateral and vertical diffusion in polymer: fullerene solar cell blends
  publication-title: Nat Mater
– volume: 93
  start-page: 441
  issue: 23
  year: 2008
  article-title: High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self‐assembled monolayer
  publication-title: Appl Phys Lett
– volume: 564
  start-page: 213
  year: 2014
  end-page: 217
  article-title: Stabilization of aluminum doped zinc oxide nanoparticle suspensions and their application in organic solar cells
  publication-title: Thin Solid Films
– volume: 91
  start-page: 51
  year: 2019
  end-page: 79
  article-title: Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules
  publication-title: Prog Polym Sci
– volume: 3
  issue: 5
  year: 2021
  article-title: Metal/covalent‐organic frameworks for electrochemical energy storage applications
  publication-title: EcoMat
– volume: 401
  start-page: 13
  year: 2018
  end-page: 19
  article-title: Tellurophene‐based metal‐organic framework nanosheets for high‐performance organic solar cells
  publication-title: J Power Sources
– volume: 3
  start-page: 10660
  issue: 20
  year: 2015
  end-page: 10665
  article-title: Efficiency exceeding 10% for inverted polymer solar cells with a ZnO/ionic liquid combined cathode interfacial layer
  publication-title: J Mater Chem A
– volume: 3
  start-page: 297
  issue: 5
  year: 2009
  end-page: 302
  article-title: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%
  publication-title: Nat Photon
– volume: 88
  year: 2006
  article-title: Efficient inverted polymer solar cells
  publication-title: Appl Phys Lett
– volume: 270
  start-page: 1789
  issue: 5243
  year: 1995
  end-page: 1791
  article-title: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor‐acceptor heterojunctions
  publication-title: Science
– volume: 19
  start-page: 2445
  issue: 18
  year: 2007
  end-page: 2449
  article-title: Air‐stable polymer electronic devices
  publication-title: Adv Mater
– volume: 29
  year: 2019
  article-title: Use of the Phen‐NaDPO: Sn (SCN) 2 blend as electron transport layer results to consistent efficiency improvements in organic and hybrid perovskite solar cells
  publication-title: Adv Funct Mater
– volume: 9
  start-page: 11828
  issue: 13
  year: 2017
  end-page: 11836
  article-title: Amorphous tin oxide as a low‐temperature‐processed electron‐transport layer for organic and hybrid perovskite solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 20
  start-page: 415
  issue: 3
  year: 2008
  end-page: 419
  article-title: A semi‐transparent plastic solar cell fabricated by a lamination process
  publication-title: Adv Mater
– volume: 23
  start-page: 4636
  issue: 40
  year: 2011
  end-page: 4643
  article-title: Simultaneous enhancement of open‐circuit voltage, short‐circuit current density, and fill factor in polymer solar cells
  publication-title: Adv Mater
– volume: 10
  year: 2020
  article-title: The future of flexible organic solar cells
  publication-title: Adv Energy Mater
– volume: 7
  start-page: 25088
  issue: 43
  year: 2019
  end-page: 25101
  article-title: Suppressing photo‐oxidation of non‐fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers
  publication-title: J Mater Chem A
– volume: 90
  year: 2007
  article-title: Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells
  publication-title: Appl Phys Lett
– volume: 2
  start-page: 849
  issue: 11
  year: 2017
  end-page: 860
  article-title: Emergence of highly transparent photovoltaics for distributed applications
  publication-title: Nat Energy
– volume: 8
  start-page: 904
  issue: 11
  year: 2009
  end-page: 909
  article-title: On the origin of the open‐circuit voltage of polymer–fullerene solar cells
  publication-title: Nat Mater
– volume: 2
  start-page: 1732
  issue: 6
  year: 2014
  end-page: 1737
  article-title: Facile preparation of TiO X film as an interface material for efficient inverted polymer solar cells
  publication-title: J Mater Chem A
– volume: 17
  start-page: 2991
  issue: 5
  year: 2007
  end-page: 2999
  article-title: Organic thin‐film photovoltaic cells based on oligothiophenes with reduced bandgap
  publication-title: Adv Funct Mater
– volume: 24
  year: 2013
  article-title: Tuning indium tin oxide work function with solution‐processed alkali carbonate interfacial layers for high‐efficiency inverted organic photovoltaic cells
  publication-title: Nanotechnology
– volume: 6
  start-page: 20569
  issue: 23
  year: 2014
  end-page: 20573
  article-title: Disodium edetate as a promising interfacial material for inverted organic solar cells and the device performance optimization
  publication-title: ACS Appl Mater Interfaces
– volume: 6
  start-page: 292
  year: 2018
  article-title: Constructing desired vertical component distribution within a PBDB‐T: ITIC‐M photoactive layer via fine‐tuning the surface free energy of a titanium chelate cathode buffer layer
  publication-title: Front Chem
– volume: 20
  start-page: 715
  issue: 1
  year: 2019
  end-page: 721
  article-title: Potassium‐presenting zinc oxide surfaces induce vertical phase separation in fullerene‐free organic photovoltaics
  publication-title: Nano Lett
– volume: 117
  start-page: 24804
  issue: 47
  year: 2013
  end-page: 24814
  article-title: Electrostatic self‐assembled metal oxide/conjugated polyelectrolytes as electron‐transporting layers for inverted solar cells with high efficiency
  publication-title: J Phys Chem C
– volume: 6
  start-page: 4457
  issue: 16
  year: 2018
  end-page: 4463
  article-title: Efficient device engineering for inverted non‐fullerene organic solar cells with low energy loss
  publication-title: J Mater Chem C
– volume: 30
  year: 2018
  article-title: A highly efficient non‐fullerene organic solar cell with a fill factor over 0.80 enabled by a fine‐tuned hole‐transporting layer
  publication-title: Adv Mater
– volume: 3
  issue: 3
  year: 2021
  article-title: Multifunctional CNT: TiO2 additives in spiro‐OMeTAD layer for highly efficient and stable perovskite solar cells
  publication-title: EcoMat
– volume: 70
  start-page: 25
  year: 2019
  end-page: 31
  article-title: Surface modification of ZnO electron transport layers with glycine for efficient inverted non‐fullerene polymer solar cells
  publication-title: Org Electron
– volume: 7
  start-page: 25808
  issue: 45
  year: 2019
  end-page: 25817
  article-title: A universal approach for optimizing charge extraction in electron transporting layer‐free organic solar cells via Lewis base doping
  publication-title: J Mater Chem A
– volume: 75
  year: 2019
  article-title: Effect of spatial molecular configuration of ZnO/polyethylenimine hybrid electron injection materials on OLEDs performance
  publication-title: Org Electron
– volume: 63
  start-page: 143
  year: 2018
  end-page: 148
  article-title: Enhanced performance of inverted non‐fullerene organic solar cells through modifying zinc oxide surface with self‐assembled monolayers
  publication-title: Org Electron
– volume: 13
  year: 2019
  article-title: Self‐assembled monomolecular layer modified ZnO for efficient inverted polymer solar cells with 11.53% efficiency
  publication-title: Phys Status Solidi RRL
– volume: 3
  issue: 5
  year: 2021
  article-title: Inorganic top electron transport layer for high performance inverted perovskite solar cells
  publication-title: EcoMat
– volume: 5
  year: 2020
  article-title: Scalable fabrication of organic solar cells based on non‐fullerene acceptors
  publication-title: Flexible and Printed Electron
– volume: 42
  start-page: 1758
  issue: 11
  year: 2009
  end-page: 1767
  article-title: Critical interfaces in organic solar cells and their influence on the open‐circuit voltage
  publication-title: Acc Chem Res
– volume: 3
  issue: 5
  year: 2021
  article-title: Toward improved stability of nonfullerene organic solar cells: impact of interlayer and built‐in potential
  publication-title: EcoMat
– volume: 131
  start-page: 13185
  issue: 37
  year: 2019
  end-page: 13189
  article-title: Tetrahydroxy‐perylene Bisimide embedded in a zinc oxide thin film as an electron‐transporting layer for high‐performance non‐fullerene organic solar cells
  publication-title: Angew Chem
– volume: 28
  start-page: 4734
  issue: 23
  year: 2016
  end-page: 4739
  article-title: Fullerene‐free polymer solar cells with over 11% efficiency and excellent thermal stability
  publication-title: Adv Mater
– volume: 33
  year: 2021
  article-title: Nanographene–Osmapentalyne complexes as a cathode interlayer in organic solar cells enhance efficiency over 18%
  publication-title: Adv Mater
– volume: 19
  start-page: 1227
  issue: 8
  year: 2009
  end-page: 1234
  article-title: Vertical phase separation in poly (3‐hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells
  publication-title: Adv Funct Mater
– volume: 22
  start-page: 16224
  issue: 32
  year: 2012
  end-page: 16229
  article-title: Room‐temperature solution processed SnO x as an electron extraction layer for inverted organic solar cells with superior thermal stability
  publication-title: J Mater Chem
– volume: 8
  start-page: 5273
  issue: 15
  year: 2020
  end-page: 5279
  article-title: Design and synthesis of an amino‐functionalized non‐fullerene acceptor as a cathode interfacial layer for polymer solar cells
  publication-title: J Mater Chem C
– volume: 68
  start-page: 168
  year: 2019
  end-page: 175
  article-title: Enhancing the electron blocking ability of n‐type MoO3 by doping with p‐type NiOx for efficient nonfullerene polymer solar cells
  publication-title: Org Electron
– volume: 32
  year: 2020
  article-title: Tailoring and modifying an organic electron acceptor toward the cathode interlayer for highly efficient organic solar cells
  publication-title: Adv Mater
– volume: 51
  start-page: 913
  issue: 12
  year: 1987
  end-page: 915
  article-title: Organic electroluminescent diodes
  publication-title: Appl Phys Lett
– volume: 14
  start-page: 3190
  issue: 12
  year: 2013
  end-page: 3194
  article-title: An X‐ray fluorescence study on the segregation of Cs and I in an inverted organic solar cell
  publication-title: Org Electron
– volume: 9
  start-page: 43871
  issue: 50
  year: 2017
  end-page: 43879
  article-title: Incorporating an electrode modification layer with a vertical phase separated photoactive layer for efficient and stable inverted nonfullerene polymer solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 14
  start-page: 3945
  issue: 7
  year: 2021
  end-page: 3953
  article-title: Rational compatibility in a ternary matrix enables all‐small‐molecule organic solar cells with over 16% efficiency
  publication-title: Energy Environ Sci
– volume: 86
  start-page: 499
  issue: 4
  year: 2005
  end-page: 516
  article-title: Lifetimes of organic photovoltaics: photochemistry, atmosphere effects and barrier layers in ITO‐MEHPPV: PCBM‐aluminium devices
  publication-title: Sol Energy Mater Sol Cells
– volume: 139
  start-page: 7148
  issue: 21
  year: 2017
  end-page: 7151
  article-title: Molecular optimization enables over 13% efficiency in organic solar cells
  publication-title: J Am Chem Soc
– volume: 8
  start-page: 456
  issue: 2
  year: 2015
  end-page: 468
  article-title: Solution‐derived poly (ethylene glycol)‐TiO x nanocomposite film as a universal cathode buffer layer for enhancing efficiency and stability of polymer solar cells
  publication-title: Nano Res
– volume: 32
  year: 2020
  article-title: A cost‐effective, aqueous‐solution‐processed cathode interlayer based on organosilica nanodots for highly efficient and stable organic solar cells
  publication-title: Adv Mater
– volume: 9
  year: 2019
  article-title: Slot‐die and roll‐to‐roll processed single junction organic photovoltaic cells with the highest efficiency
  publication-title: Adv Energy Mater.
– volume: 12
  start-page: 27405
  issue: 24
  year: 2020
  end-page: 27415
  article-title: Efficient non‐fullerene organic photovoltaics printed by electrospray via solvent engineering
  publication-title: ACS Appl Mater Interfaces
– volume: 6
  start-page: 6327
  issue: 15
  year: 2018
  end-page: 6334
  article-title: Highly efficient non‐fullerene polymer solar cells enabled by novel non‐conjugated small‐molecule cathode interlayers
  publication-title: J Mater Chem A
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 8
  article-title: Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open‐circuit voltages
  publication-title: Nat Commun
– volume: 20
  start-page: 2575
  issue: 13
  year: 2010
  end-page: 2598
  article-title: Interface investigation and engineering–achieving high performance polymer photovoltaic devices
  publication-title: J Mater Chem
– volume: 64
  year: 2019
  article-title: Morphology optimization via molecular weight tuning of donor polymer enables all‐polymer solar cells with simultaneously improved performance and stability
  publication-title: Nano Energy
– volume: 13
  start-page: 275
  year: 2015
  end-page: 282
  article-title: Efficiency improved for inverted polymer solar cells with electrostatically self‐assembled BenMeIm‐cl ionic liquid layer as cathode interface layer
  publication-title: Nano Energy
– volume: 53
  start-page: 296
  year: 2018
  end-page: 302
  article-title: Efficient organic solar cells employing ytterbium ion‐doped zinc oxide as cathode transporting layer
  publication-title: Org Electron
– volume: 5
  start-page: 2408
  issue: 9
  year: 2021
  end-page: 2419
  article-title: Reduced non‐radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency
  publication-title: Joule
– volume: 197
  start-page: 311
  year: 2020
  end-page: 316
  article-title: Electrospun ZnO nanofiber interlayers for enhanced performance of organic photovoltaic devices
  publication-title: Sol Energy
– volume: 27
  start-page: 1170
  issue: 7
  year: 2015
  end-page: 1174
  article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells
  publication-title: Adv Mater
– volume: 25
  start-page: 2397
  issue: 17
  year: 2013
  end-page: 2402
  article-title: Efficient solution‐processed small‐molecule solar cells with inverted structure
  publication-title: Adv Mater
– volume: 31
  start-page: 201
  year: 2017
  end-page: 209
  article-title: High performance polymer solar cells with electron extraction and light‐trapping dual functional cathode interfacial layer
  publication-title: Nano Energy
– volume: 32
  year: 2019
  article-title: Beyond ternary OPV: high‐throughput experimentation and self‐driving laboratories optimize multi‐component systems
  publication-title: Adv Mater
– volume: 14
  start-page: 3083
  issue: 11
  year: 2013
  end-page: 3088
  article-title: Device stability of inverted and conventional bulk heterojunction solar cells with MoO3 and ZnO nanoparticles as charge transport layers
  publication-title: Org Electron
– volume: 2
  start-page: 7602
  issue: 10
  year: 2019
  end-page: 7608
  article-title: Reversible chemical reactivity of non‐fullerene acceptors for organic solar cells under acidic and basic environment
  publication-title: ACS Appl Energy Mater
– volume: 6
  start-page: 1438
  issue: 7
  year: 2019
  end-page: 1443
  article-title: Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO 2 for nonfullerene organic solar cells
  publication-title: Mater Horiz
– volume: 8
  start-page: 15795
  issue: 4
  year: 2020
  end-page: 15803
  article-title: A biopolymeric buffer layer improves device efficiency and stability in inverted organic solar cells
  publication-title: J Mater Chem C
– volume: 2
  year: 2015
  article-title: Morphology evolution in high‐performance polymer solar cells processed from nonhalogenated solvent
  publication-title: Adv Sci
– volume: 12
  start-page: 3301
  issue: 3
  year: 2019
  end-page: 3326
  article-title: Materials for interfaces in organic solar cells and photodetectors
  publication-title: ACS Appl Mater Interfaces
– volume: 1
  issue: 1
  year: 2019
  article-title: Suppressing the excessive aggregation of nonfullerene acceptor in blade‐coated active layer by using n‐type polymer additive to achieve large‐area printed organic solar cells with efficiency over 15%
  publication-title: EcoMat
– volume: 57
  start-page: 9675
  issue: 31
  year: 2018
  end-page: 9678
  article-title: Combining fullerenes and zwitterions in non‐conjugated polymer interlayers to raise solar cell efficiency
  publication-title: Angew Chem Int Ed
– volume: 10
  start-page: 80
  issue: 1
  year: 2020
  article-title: Hybrid ZnO electron transport layer by down conversion complexes for dual improvements of photovoltaic and stable performances in polymer solar cells
  publication-title: Nanomaterials
– volume: 18
  start-page: 572
  issue: 5
  year: 2006
  end-page: 576
  article-title: New architecture for high‐efficiency polymer photovoltaic cells using solution‐based titanium oxide as an optical spacer
  publication-title: Adv Mater
– volume: 7
  start-page: 3570
  issue: 8
  year: 2019
  end-page: 3576
  article-title: Exquisite modulation of ZnO nanoparticle electron transporting layer for high‐performance fullerene‐free organic solar cell with inverted structure
  publication-title: J Mater Chem A
– volume: 13
  start-page: 697
  issue: 14
  year: 2012
  end-page: 704
  article-title: Efficient inverted polymer solar cells incorporating doped organic electron transporting layer
  publication-title: Org Electron
– volume: 12
  start-page: 6315
  issue: 12
  year: 2012
  end-page: 6321
  article-title: Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells
  publication-title: Nano Lett
– volume: 2
  start-page: 1337
  issue: 11
  year: 2011
  end-page: 1350
  article-title: Selective interlayers and contacts in organic photovoltaic cells
  publication-title: J Phys Chem Lett
– volume: 583
  start-page: 86
  year: 2015
  end-page: 90
  article-title: Efficient polymer: fullerene bulk heterojunction solar cells with n‐type doped titanium oxide as an electron transport layer
  publication-title: Thin Solid Films
– volume: 202
  year: 2019
  article-title: Impact of P3HT materials properties and layer architecture on OPV device stability
  publication-title: Sol Energy Mater Sol Cells
– volume: 14
  start-page: 300
  issue: 5
  year: 2020
  end-page: 305
  article-title: High‐efficiency organic solar cells with low non‐radiative recombination loss and low energetic disorder
  publication-title: Nat Photon
– volume: 3
  year: 2016
  article-title: A room‐temperature Processable PDI‐based electron‐transporting layer for enhanced performance in PDI‐based non‐fullerene solar cells
  publication-title: Adv Mater Interfaces
– volume: 22
  start-page: E135
  issue: 20
  year: 2010
  end-page: E138
  article-title: For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%
  publication-title: Adv Mater
– volume: 2
  year: 2018
  article-title: Fully roll‐to‐roll printed P3HT/indene‐C60‐Bisadduct modules with high open‐circuit voltage and efficiency
  publication-title: Sol RRL
– volume: 7
  start-page: 1
  issue: 1
  year: 2016
  end-page: 9
  article-title: Structural control of mixed ionic and electronic transport in conducting polymers
  publication-title: Nat Commun
– volume: 31
  year: 2019
  article-title: Achieving over 15% efficiency in organic photovoltaic cells via copolymer design
  publication-title: Adv Mater
– volume: 7
  start-page: 1966
  issue: 6
  year: 2014
  end-page: 1973
  article-title: Perylene diimides: a thickness‐insensitive cathode interlayer for high performance polymer solar cells
  publication-title: Energy Environ Sci
– volume: 7
  start-page: 10795
  issue: 35
  year: 2019
  end-page: 10801
  article-title: Polydopamine/ZnO electron transport layers enhance charge extraction in inverted non‐fullerene organic solar cells
  publication-title: J Mater Chem C
– volume: 16
  start-page: 95
  issue: 1
  year: 2006
  end-page: 100
  article-title: Using self‐assembling dipole molecules to improve charge collection in molecular solar cells
  publication-title: Adv Funct Mater
– volume: 124
  start-page: 2307
  issue: 4
  year: 2020
  end-page: 2312
  article-title: Influence of substituent groups on chemical reactivity kinetics of nonfullerene acceptors
  publication-title: J Phys Chem C
– volume: 117
  start-page: 189
  year: 2013
  end-page: 193
  article-title: Improvement in power conversion efficiency and long‐term lifetime of organic photovoltaic cells by using bathophenanthroline/molybdenum oxide as compound cathode buffer layer
  publication-title: Sol Energy Mater Sol Cells
– volume: 24
  start-page: 3046
  issue: 22
  year: 2012
  end-page: 3052
  article-title: Dual plasmonic nanostructures for high performance inverted organic solar cells
  publication-title: Adv Mater
– volume: 2
  issue: 1
  year: 2020
  article-title: Potassium stabilization of methylammonium lead bromide perovskite for robust photocatalytic H2 generation
  publication-title: EcoMat
– volume: 5
  start-page: 2845
  issue: 19
  year: 2018
  end-page: 2851
  article-title: Conductive fullerene surfactants via anion doping as cathode interlayers for efficient organic and perovskite solar cells
  publication-title: Org Chem Front
– volume: 19
  start-page: 1835
  issue: 14
  year: 2007
  end-page: 1838
  article-title: Enhancing the photovoltage of polymer solar cells by using a modified cathode
  publication-title: Adv Mater
– volume: 89
  year: 2006
  article-title: On the function of a bathocuproine buffer layer in organic photovoltaic cells
  publication-title: Appl Phys Lett
– volume: 31
  year: 2019
  article-title: 12.5% flexible nonfullerene solar cells by passivating the chemical interaction between the active layer and polymer interfacial layer
  publication-title: Adv Mater
– volume: 17
  year: 2021
  article-title: Simultaneous improvement of efficiency and stability of organic photovoltaic cells by using a cross‐linkable fullerene derivative
  publication-title: Small
– volume: 5
  start-page: 713
  issue: 3
  year: 2013
  end-page: 718
  article-title: Development of inverted organic solar cells with TiO2 interface layer by using low‐temperature atomic layer deposition
  publication-title: ACS Appl Mater Interfaces
– volume: 78
  start-page: 841
  issue: 6
  year: 2001
  end-page: 843
  article-title: 2.5% efficient organic plastic solar cells
  publication-title: Appl Phys Lett
– volume: 2
  issue: 4
  year: 2020
  article-title: Reducing V OC loss via structure compatible and high lowest unoccupied molecular orbital nonfullerene acceptors for over 17%‐efficiency ternary organic photovoltaics
  publication-title: EcoMat
– volume: 8
  start-page: 8992
  issue: 26
  year: 2020
  end-page: 8998
  article-title: One‐step processing of multilayers in organic solar cells
  publication-title: J Mater Chem C
– volume: 6
  year: 2019
  article-title: Simple approach to overcome thickness tolerance of interlayer without sacrificing the performances of polymer solar cells
  publication-title: Adv Mater Interfaces
– volume: 4
  year: 2014
  article-title: Enhanced device efficiency of Bilayered inverted organic solar cells based on Photocurable P3HTs with a light‐harvesting ZnO Nanorod Array
  publication-title: Adv Energy Mater
– volume: 95
  start-page: 2194
  issue: 8
  year: 2011
  end-page: 2199
  article-title: Comparison of various sol–gel derived metal oxide layers for inverted organic solar cells
  publication-title: Sol Energy Mater Sol Cells
– volume: 141
  start-page: 93
  year: 2015
  end-page: 100
  article-title: Application of a water‐soluble metallophthalocyanine derivative as a cathode interlayer for the polymer solar cells
  publication-title: Sol Energy Mater Sol Cells
– volume: 32
  year: 2020
  article-title: A highly conductive titanium oxynitride electron‐selective contact for efficient photovoltaic devices
  publication-title: Adv Mater
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  end-page: 9
  article-title: Inverted polymer fullerene solar cells exceeding 10% efficiency with poly (2‐ethyl‐2‐oxazoline) nanodots on electron‐collecting buffer layers
  publication-title: Nat Commun
– volume: 9
  year: 2019
  article-title: Evaporation‐free nonfullerene flexible organic solar cell modules manufactured by an all‐solution process
  publication-title: Adv Energy Mater
– volume: 32
  year: 2020
  article-title: Single‐junction organic photovoltaic cells with approaching 18% efficiency
  publication-title: Adv Mater
– volume: 5
  year: 2018
  article-title: Carbonized bamboo‐derived carbon Nanodots as efficient cathode interfacial layers in high‐performance organic photovoltaics
  publication-title: Adv Mater Interfaces
– volume: 7
  start-page: 12426
  issue: 20
  year: 2019
  end-page: 12433
  article-title: An efficient binary cathode interlayer for large‐bandgap non‐fullerene organic solar cells
  publication-title: J Mater Chem A
– volume: 82
  year: 2020
  article-title: Fully doctor‐bladed efficient organic solar cells processed under ambient condition
  publication-title: Org Electron
– volume: 97
  year: 2010
  article-title: High‐efficiency inverted bulk heterojunction polymer solar cells with UV ozone‐treated ultrathin aluminum interlayer
  publication-title: Appl Phys Lett
– volume: 26
  start-page: 780
  issue: 5
  year: 2014
  end-page: 785
  article-title: Conductive conjugated polyelectrolyte as hole‐transporting layer for organic bulk heterojunction solar cells
  publication-title: Adv Mater
– volume: 50
  start-page: 565
  issue: C
  year: 2013
  end-page: 569
  article-title: Efficient polymer bulk heterojunction solar cells with cesium acetate as the cathode interfacial layer
  publication-title: Renew Energy
– volume: 8
  issue: 8
  year: 2021
  article-title: Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6: Y6‐1O as acceptor
  publication-title: Natl Sci Rev
– volume: 17
  start-page: 119
  issue: 2
  year: 2018
  end-page: 128
  article-title: Organic solar cells based on non‐fullerene acceptors
  publication-title: Nat Mater
– volume: 4
  start-page: 3861
  issue: 10
  year: 2011
  end-page: 3877
  article-title: Applications of ZnO in organic and hybrid solar cells
  publication-title: Energ Environ Sci
– volume: 3
  start-page: 3745
  issue: 4
  year: 2020
  end-page: 3754
  article-title: 13.2% efficiency of organic solar cells by controlling interfacial resistance resulting from well‐distributed vertical phase separation
  publication-title: ACS Appl Energy Mater
– volume: 80
  start-page: 1288
  issue: 7
  year: 2002
  end-page: 1290
  article-title: Effect of LiF/metal electrodes on the performance of plastic solar cells
  publication-title: Appl Phys Lett
– volume: 6
  start-page: 115
  issue: 2
  year: 2012
  end-page: 120
  article-title: High‐efficiency inverted dithienogermole–thienopyrrolodione‐based polymer solar cells
  publication-title: Nat Photon
– volume: 31
  year: 2019
  article-title: Fused Benzothiadiazole: a building block for n‐type organic acceptor to achieve high‐performance organic solar cells
  publication-title: Adv Mater
– volume: 30
  start-page: 6187
  issue: 6
  year: 2019
  end-page: 6200
  article-title: Enhancing the photovoltaic characteristics of organic solar cells by introducing highly conductive graphene as a conductive platform for a PEDOT: PSS anode interfacial layer
  publication-title: J Mater Sci Mater Electron
– volume: 9
  start-page: 6797
  issue: 11
  year: 2021
  end-page: 6804
  article-title: Semitransparent organic solar cells exhibiting 13.02% efficiency and 20.2% average visible transmittance
  publication-title: J Mater Chem A
– volume: 2
  start-page: 1876
  issue: 10
  year: 2018
  end-page: 1883
  article-title: Improved fullerene‐free polymer solar cells using a rationally designed binary mixed solution of an electron extracting layer
  publication-title: Mater Chem Front
– volume: 108
  start-page: 50
  year: 2013
  end-page: 53
  article-title: Effect of sol–gel derived ZnO annealing rate on light‐trapping in inverted polymer solar cells
  publication-title: Mater Lett
– volume: 3
  start-page: 1140
  issue: 4
  year: 2019
  end-page: 1151
  article-title: Single‐junction organic solar cell with over 15% efficiency using fused‐ring acceptor with electron‐deficient core
  publication-title: Joule
– volume: 33
  year: 2021
  article-title: A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control
  publication-title: Adv Mater
– volume: 6
  start-page: 605
  issue: 6
  year: 2021
  end-page: 613
  article-title: Non‐fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells
  publication-title: Nat Energy
– volume: 13
  start-page: 635
  issue: 2
  year: 2020
  end-page: 645
  article-title: Over 17% efficiency ternary organic solar cells enabled by two non‐fullerene acceptors working in an alloy‐like model
  publication-title: Energ Environ Sci
– volume: 25
  start-page: 4725
  issue: 23
  year: 2013
  end-page: 4730
  article-title: Nanoscale dispersions of gelled Sno2: material properties and device applications
  publication-title: Chem Mater
– volume: 476
  start-page: 897
  year: 2019
  end-page: 904
  article-title: Enhanced photovoltaic performance of Sb2S3‐sensitized solar cell using a novel Ni‐4 mercaptophenol hybrid interfacial layer
  publication-title: Appl Surf Sci
– volume: 22
  start-page: 24202
  issue: 46
  year: 2012
  end-page: 24212
  article-title: Metal oxides for interface engineering in polymer solar cells
  publication-title: J Mater Chem
– volume: 2
  year: 2018
  article-title: Tris (8‐hydroxyquinoline) aluminum (III)‐cored molecular cathode interlayer: improving electron mobility and photovoltaic efficiency of polymer solar cells
  publication-title: Sol RRL
– volume: 95
  start-page: 182
  issue: 1
  year: 2009
  article-title: Plasmonic‐enhanced polymer photovoltaic devices incorporating solution‐processable metal nanoparticles
  publication-title: Appl Phys Lett
– volume: 7
  start-page: 25830
  issue: 45
  year: 2019
  end-page: 25837
  article-title: Intrinsic photo‐degradation and mechanism of polymer solar cells: the crucial role of non‐fullerene acceptors
  publication-title: J Mater Chem A
– volume: 31
  year: 2019
  article-title: 17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT: PSS
  publication-title: Adv Mater
– volume: 144
  start-page: 724
  year: 2016
  end-page: 731
  article-title: Fully gravure printed organic photovoltaic modules: a straightforward process with a high potential for large scale production
  publication-title: Sol Energy Mater Sol Cells
– volume: 9
  year: 2019
  article-title: Organic solar cells: evaporation‐free nonfullerene flexible organic solar cell modules manufactured by An all‐solution process (Adv. Energy mater. 42/2019)
  publication-title: Adv Energy Mater
– volume: 20
  start-page: 6189
  issue: 29
  year: 2010
  end-page: 6194
  article-title: Inverted organic solar cells with ITO electrodes modified with an ultrathin Al 2 O 3 buffer layer deposited by atomic layer deposition
  publication-title: J Mater Chem
– volume: 5
  year: 2015
  article-title: Tin oxide (SnOx) as universal “light‐soaking” free electron extraction material for organic solar cells
  publication-title: Adv Energy Mater
– volume: 191
  start-page: 219
  year: 2019
  end-page: 226
  article-title: Efficient non‐fullerene organic solar cells based on thickness‐insensitive conjugated small molecule cathode interface
  publication-title: Sol Energy
– volume: 4
  start-page: 2009
  issue: 4
  year: 2012
  end-page: 2017
  article-title: Highly efficient, inverted polymer solar cells with indium tin oxide modified with solution‐processed zwitterions as the transparent cathode
  publication-title: ACS Appl Mater Interfaces
– volume: 106
  year: 2011
  article-title: Band bending in conjugated polymer layers
  publication-title: Phys Rev Lett
– volume: 12
  start-page: 14244
  issue: 12
  year: 2020
  end-page: 14253
  article-title: Composite interlayer consisting of alcohol‐soluble polyfluorene and carbon nanotubes for efficient polymer solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 74
  start-page: 144
  year: 2019
  end-page: 151
  article-title: Improved performance of quantum dot light‐emitting diodes by hybrid electron transport layer comprised of ZnO nanoparticles doped organic small molecule
  publication-title: Org Electron
– volume: 109
  start-page: 5868
  issue: 11
  year: 2009
  end-page: 5923
  article-title: Synthesis of conjugated polymers for organic solar cell applications
  publication-title: Chem Rev
– volume: 6
  start-page: 2273
  issue: 5
  year: 2018
  end-page: 2278
  article-title: Chemical reaction between an ITIC electron acceptor and an amine‐containing interfacial layer in non‐fullerene solar cells
  publication-title: J Mater Chem A
– volume: 10
  start-page: 1784
  issue: 8
  year: 2017
  end-page: 1791
  article-title: Interface design for high‐efficiency non‐fullerene polymer solar cells
  publication-title: Energy Environ Sci
– volume: 89
  year: 2006
  article-title: Inverted bulk‐heterojunction organic photovoltaic device using a solution‐derived ZnO underlayer
  publication-title: Appl Phys Lett
– volume: 3
  start-page: 227
  issue: 1
  year: 2019
  end-page: 239
  article-title: A printable organic cathode interlayer enables over 13% efficiency for 1‐cm2 organic solar cells
  publication-title: Joule
– volume: 90
  year: 2007
  article-title: High performance polythiophene/fullerene bulk‐heterojunction solar cell with a Ti O x hole blocking layer
  publication-title: Appl Phys Lett
– volume: 299
  start-page: 366
  year: 2019
  end-page: 371
  article-title: Nickel oxide and polytetrafluoroethylene stacked structure as an interfacial layer for efficient polymer solar cells
  publication-title: Electrochim Acta
– volume: 58
  start-page: 5677
  issue: 17
  year: 2019
  end-page: 5681
  article-title: Transforming Ionene polymers into efficient cathode interlayers with pendent fullerenes
  publication-title: Angew Chem Int Ed
– volume: 2
  start-page: 1663
  issue: 3
  year: 2019
  end-page: 1675
  article-title: Lithium doping of ZnO for high efficiency and stability fullerene and non‐fullerene organic solar cells
  publication-title: ACS Appl Energy Mater
– volume: 1
  start-page: 3387
  issue: 10
  year: 2013
  end-page: 3394
  article-title: Pyridinium salt‐based molecules as cathode interlayers for enhanced performance in polymer solar cells
  publication-title: J Mater Chem A
– volume: 9
  start-page: 571
  issue: 11
  year: 2017
  article-title: The effect of donor and nonfullerene acceptor inhomogeneous distribution within the photoactive layer on the performance of polymer solar cells with different device structures
  publication-title: Polymers
– volume: 9
  start-page: 36070
  issue: 41
  year: 2017
  end-page: 36081
  article-title: Naphthalene diimide based n‐type conjugated polymers as efficient cathode interfacial materials for polymer and perovskite solar cells
  publication-title: ACS Appl Mater Interfaces
– volume: 94
  start-page: 1618
  issue: 10
  year: 2010
  end-page: 1621
  article-title: Low work function metal modified ITO as cathode for inverted polymer solar cells
  publication-title: Sol Energy Mater Sol Cells
– volume: 27
  start-page: 2938
  issue: 18
  year: 2015
  end-page: 2944
  article-title: Single‐junction organic solar cells based on a novel wide‐bandgap polymer with efficiency of 9.7%
  publication-title: Adv Mater
– volume: 65
  start-page: 272
  issue: 4
  year: 2020
  end-page: 275
  article-title: 18% efficiency organic solar cells
  publication-title: Sci Bull
– volume: 7
  start-page: 15944
  issue: 26
  year: 2019
  end-page: 15950
  article-title: Cathode interfacial layer‐free all small‐molecule solar cells with efficiency over 12%
  publication-title: J Mater Chem A
– volume: 132
  start-page: 1377
  issue: 4
  year: 2010
  end-page: 1382
  article-title: Indene− C60 bisadduct: a new acceptor for high‐performance polymer solar cells
  publication-title: J Am Chem Soc
– volume: 24
  start-page: 1476
  issue: 11
  year: 2012
  end-page: 1481
  article-title: High‐performance inverted polymer solar cells with solution‐processed titanium chelate as electron‐collecting layer on ITO electrode
  publication-title: Adv Mater
– volume: 2
  start-page: 2238
  issue: 3
  year: 2019
  end-page: 2245
  article-title: Intermolecular n‐doping nonconjugated polymer cathode interfacial materials for organic solar cells
  publication-title: ACS Appl Energy Mater
– volume: 64
  year: 2001
  article-title: Interface‐limited injection in amorphous organic semiconductors
  publication-title: Phys Rev B
– volume: 91
  year: 2007
  article-title: The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study
  publication-title: Appl Phys Lett
– volume: 43
  start-page: 1227
  issue: 9
  year: 2010
  end-page: 1236
  article-title: A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance
  publication-title: Acc Chem Res
– volume: 1
  start-page: 5977
  issue: 11
  year: 2018
  end-page: 5985
  article-title: Effect of the electron transport layer on the interfacial energy barriers and lifetime of R2R printed organic solar cell modules
  publication-title: ACS Appl Energy Mater
– volume: 586
  start-page: 81
  year: 2013
  end-page: 84
  article-title: Solution‐processed amorphous niobium oxide as a novel electron collection layer for inverted polymer solar cells
  publication-title: Chem Phys Lett
– volume: 7
  start-page: 11160
  issue: 18
  year: 2019
  end-page: 11169
  article-title: MXenes with tunable work functions and their application as electron‐and hole‐transport materials in non‐fullerene organic solar cells
  publication-title: J Mater Chem A
– volume: 8
  start-page: 340
  issue: 2
  year: 2015
  end-page: 354
  article-title: Recent advances in the development of organic photothermal nano‐agents
  publication-title: Nano Res
– volume: 110
  year: 2017
  article-title: Open‐circuit voltage loss in annealed P3HT: perylene diimide bulk heterojunction solar cells
  publication-title: Appl Phys Lett
– volume: 79
  start-page: 126
  issue: 1
  year: 2001
  end-page: 128
  article-title: Very‐high‐efficiency double‐heterostructure copper phthalocyanine/C 60 photovoltaic cells
  publication-title: Appl Phys Lett
– volume: 155
  start-page: 1052
  year: 2017
  end-page: 1058
  article-title: Ternary organic solar cells based on ZnO‐Ge double electron transport layer with enhanced power conversion efficiency
  publication-title: Sol Energy
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 10
  article-title: Cathode engineering with perylene‐diimide interlayer enabling over 17% efficiency single‐junction organic solar cells
  publication-title: Nat Commun
– volume: 13
  start-page: 85
  issue: 1
  year: 2003
  end-page: 88
  article-title: Effects of postproduction treatment on plastic solar cells
  publication-title: Adv Funct Mater
– volume: 95
  start-page: 275
  issue: 15
  year: 2009
  article-title: An inverted organic solar cell with an ultrathin ca electron‐transporting layer and MoO 3 hole‐transporting layer
  publication-title: Appl Phys Lett
– volume: 23
  start-page: 1679
  issue: 14
  year: 2011
  end-page: 1683
  article-title: Inverted polymer solar cells integrated with a low‐temperature‐annealed sol‐gel‐derived ZnO film as an electron transport layer
  publication-title: Adv Mater
– year: 2006
– volume: 4
  start-page: 4691
  issue: 1
  year: 2014
  article-title: High performance polymer solar cells with as‐prepared zirconium acetylacetonate film as cathode buffer layer
  publication-title: Sci Rep
– volume: 3
  start-page: 758
  issue: 3
  year: 2016
  end-page: 771
  article-title: Improvement of inverted OPV performance by enhancement of ZnO layer properties as an electron transfer layer
  publication-title: Mater Today: Proc
– volume: 7
  start-page: 11152
  issue: 36
  year: 2019
  end-page: 11159
  article-title: Self‐doping n‐type polymer as a cathode interface layer enables efficient organic solar cells by increasing built‐in electric field and boosting interface contact
  publication-title: J Mater Chem C
– volume: 9
  start-page: 520
  issue: 8
  year: 2015
  end-page: 524
  article-title: Efficient polymer solar cells employing a non‐conjugated small‐molecule electrolyte
  publication-title: Nat Photon
– volume: 7
  start-page: 15887
  issue: 26
  year: 2019
  end-page: 15894
  article-title: Interfacial engineering and optical coupling for multicolored semitransparent inverted organic photovoltaics with a record efficiency of over 12%
  publication-title: J Mater Chem A
– volume: 7
  start-page: 2123
  issue: 7
  year: 2014
  end-page: 2144
  article-title: Recent progress in organic photovoltaics: device architecture and optical design
  publication-title: Energy Environ Sci
– ident: e_1_2_9_114_1
  doi: 10.1016/j.renene.2012.07.012
– ident: e_1_2_9_189_1
  doi: 10.1002/anie.201803748
– ident: e_1_2_9_110_1
  doi: 10.1016/j.orgel.2013.09.019
– ident: e_1_2_9_8_1
  doi: 10.1002/adma.201908205
– ident: e_1_2_9_170_1
  doi: 10.1039/C8QO00788H
– ident: e_1_2_9_60_1
  doi: 10.1063/1.1384001
– ident: e_1_2_9_142_1
  doi: 10.3389/fchem.2018.00292
– volume: 4
  start-page: 4691
  issue: 1
  year: 2014
  ident: e_1_2_9_120_1
  article-title: High performance polymer solar cells with as‐prepared zirconium acetylacetonate film as cathode buffer layer
  publication-title: Sci Rep
  doi: 10.1038/srep04691
– ident: e_1_2_9_188_1
  doi: 10.1016/j.jechem.2019.08.005
– ident: e_1_2_9_214_1
  doi: 10.1002/eom2.12133
– ident: e_1_2_9_218_1
  doi: 10.1016/j.orgel.2018.09.016
– ident: e_1_2_9_104_1
  doi: 10.1039/C9TA10002D
– ident: e_1_2_9_243_1
  doi: 10.1039/C4EE01223B
– ident: e_1_2_9_9_1
  doi: 10.1002/adma.201902965
– ident: e_1_2_9_39_1
  doi: 10.1021/cm034650o
– ident: e_1_2_9_161_1
  doi: 10.1039/c0jm00662a
– ident: e_1_2_9_103_1
  doi: 10.1039/C7EE00601B
– ident: e_1_2_9_244_1
  doi: 10.1002/solr.201700160
– ident: e_1_2_9_106_1
  doi: 10.1016/j.solmat.2010.04.082
– ident: e_1_2_9_55_1
  doi: 10.1016/j.progpolymsci.2020.101222
– ident: e_1_2_9_177_1
  doi: 10.1021/acsami.8b09313
– ident: e_1_2_9_5_1
  doi: 10.1002/adma.201807577
– ident: e_1_2_9_128_1
  doi: 10.1002/aenm.201301338
– ident: e_1_2_9_185_1
  doi: 10.1038/s41467-020-15364-z
– ident: e_1_2_9_59_1
  doi: 10.7567/1347-4065/aafd8c
– ident: e_1_2_9_181_1
  doi: 10.1002/solr.201900179
– ident: e_1_2_9_160_1
  doi: 10.1039/C9TA05789G
– ident: e_1_2_9_187_1
  doi: 10.1039/C7TA10306A
– ident: e_1_2_9_108_1
  doi: 10.1063/1.2723077
– ident: e_1_2_9_31_1
  doi: 10.1007/s11426-017-9199-1
– ident: e_1_2_9_150_1
  doi: 10.1002/adma.201200120
– ident: e_1_2_9_154_1
  doi: 10.1021/acsami.7b13494
– ident: e_1_2_9_212_1
  doi: 10.1016/j.orgel.2018.09.012
– ident: e_1_2_9_115_1
  doi: 10.1016/j.solener.2017.07.053
– ident: e_1_2_9_98_1
  doi: 10.1039/C9TA09961A
– ident: e_1_2_9_58_1
  doi: 10.1063/1.3174914
– ident: e_1_2_9_66_1
  doi: 10.1016/j.apsusc.2019.01.130
– ident: e_1_2_9_139_1
  doi: 10.1039/C8TA11624E
– ident: e_1_2_9_45_1
  doi: 10.1007/s10854-019-00921-0
– ident: e_1_2_9_149_1
  doi: 10.1007/s12274-014-0620-y
– ident: e_1_2_9_165_1
  doi: 10.1021/am201844q
– ident: e_1_2_9_231_1
  doi: 10.1002/advs.201902269
– ident: e_1_2_9_233_1
  doi: 10.1002/adma.202002973
– ident: e_1_2_9_191_1
  doi: 10.1021/acsaem.8b02252
– ident: e_1_2_9_73_1
  doi: 10.1134/S0012501619030011
– ident: e_1_2_9_63_1
  doi: 10.1063/1.2730746
– ident: e_1_2_9_93_1
  doi: 10.1039/b925382c
– ident: e_1_2_9_134_1
  doi: 10.1016/j.matlet.2013.06.063
– ident: e_1_2_9_117_1
  doi: 10.1021/nl303419n
– ident: e_1_2_9_23_1
  doi: 10.1038/nmat5063
– ident: e_1_2_9_77_1
  doi: 10.1002/eom2.12134
– ident: e_1_2_9_232_1
  doi: 10.1021/acs.macromol.8b01490
– ident: e_1_2_9_14_1
  doi: 10.1039/D1EE00496D
– ident: e_1_2_9_100_1
  doi: 10.1021/am500336s
– ident: e_1_2_9_140_1
  doi: 10.1002/eom2.12015
– ident: e_1_2_9_101_1
  doi: 10.1021/acs.jpcc.9b09833
– ident: e_1_2_9_84_1
  doi: 10.1016/j.solmat.2008.10.004
– ident: e_1_2_9_124_1
  doi: 10.1039/C8RA07071G
– ident: e_1_2_9_169_1
  doi: 10.1038/nphoton.2015.126
– ident: e_1_2_9_131_1
  doi: 10.1039/B921396A
– ident: e_1_2_9_245_1
  doi: 10.1016/j.orgel.2020.105725
– ident: e_1_2_9_225_1
  doi: 10.1039/C9TC02781E
– ident: e_1_2_9_46_1
  doi: 10.1016/j.electacta.2019.01.028
– ident: e_1_2_9_158_1
  doi: 10.1021/cm402462m
– ident: e_1_2_9_217_1
  doi: 10.1002/adma.201300295
– ident: e_1_2_9_44_1
  doi: 10.1103/PhysRevB.73.085207
– ident: e_1_2_9_51_1
  doi: 10.1021/ar900139v
– ident: e_1_2_9_208_1
  doi: 10.1021/jp405176u
– ident: e_1_2_9_52_1
  doi: 10.1021/jz2002259
– ident: e_1_2_9_109_1
  doi: 10.1016/j.orgel.2012.10.020
– ident: e_1_2_9_201_1
  doi: 10.1002/aenm.201500802
– ident: e_1_2_9_213_1
  doi: 10.1039/C7RA13428B
– ident: e_1_2_9_172_1
  doi: 10.1038/s41467-020-16509-w
– ident: e_1_2_9_74_1
  doi: 10.1063/1.2171781
– ident: e_1_2_9_95_1
  doi: 10.1039/C9MH00379G
– ident: e_1_2_9_53_1
  doi: 10.1002/adma.200601093
– ident: e_1_2_9_112_1
  doi: 10.1088/0957-4484/24/48/484011
– ident: e_1_2_9_203_1
  doi: 10.1002/ange.201907467
– ident: e_1_2_9_38_1
  doi: 10.1063/1.1446988
– ident: e_1_2_9_155_1
  doi: 10.1002/adma.202002608
– ident: e_1_2_9_43_1
  doi: 10.1103/PhysRevB.64.085201
– ident: e_1_2_9_126_1
  doi: 10.1016/j.orgel.2019.05.032
– ident: e_1_2_9_133_1
  doi: 10.1016/j.tsf.2014.06.008
– ident: e_1_2_9_229_1
  doi: 10.1002/eom2.12099
– ident: e_1_2_9_81_1
  doi: 10.1063/1.2784961
– ident: e_1_2_9_250_1
  doi: 10.1002/aenm.201902065
– ident: e_1_2_9_241_1
  doi: 10.1021/acsami.0c03632
– ident: e_1_2_9_28_1
  doi: 10.1002/adma.202102787
– ident: e_1_2_9_42_1
  doi: 10.1016/j.mser.2008.12.001
– ident: e_1_2_9_202_1
  doi: 10.1007/s12274-014-0615-8
– ident: e_1_2_9_215_1
  doi: 10.1016/j.jpowsour.2018.08.078
– ident: e_1_2_9_17_1
  doi: 10.1126/science.270.5243.1789
– ident: e_1_2_9_207_1
  doi: 10.1002/adma.202101279
– ident: e_1_2_9_89_1
  doi: 10.1117/12.2520187
– ident: e_1_2_9_123_1
  doi: 10.1039/c1ee01873f
– ident: e_1_2_9_152_1
  doi: 10.1002/aenm.201401298
– ident: e_1_2_9_156_1
  doi: 10.1002/aenm.201500277
– ident: e_1_2_9_40_1
  doi: 10.1039/c2jm33838f
– ident: e_1_2_9_222_1
  doi: 10.1016/j.solener.2019.08.009
– ident: e_1_2_9_24_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_9_138_1
  doi: 10.1016/j.orgel.2017.11.008
– ident: e_1_2_9_220_1
  doi: 10.1016/j.orgel.2019.03.039
– ident: e_1_2_9_224_1
  doi: 10.1021/acsaem.0c00218
– ident: e_1_2_9_180_1
  doi: 10.1002/adma.201103006
– ident: e_1_2_9_96_1
  doi: 10.1021/acsami.9b18095
– ident: e_1_2_9_227_1
  doi: 10.1002/smll.202101133
– ident: e_1_2_9_199_1
  doi: 10.1021/acsaem.9b02176
– ident: e_1_2_9_82_1
  doi: 10.1063/1.3028094
– ident: e_1_2_9_226_1
  doi: 10.1039/D0TC03048A
– ident: e_1_2_9_234_1
  doi: 10.1016/j.scib.2019.10.019
– ident: e_1_2_9_204_1
  doi: 10.1002/adfm.201905810
– ident: e_1_2_9_87_1
  doi: 10.1002/adma.201907801
– ident: e_1_2_9_113_1
  doi: 10.1021/am5044278
– ident: e_1_2_9_119_1
  doi: 10.1002/adma.201104863
– ident: e_1_2_9_11_1
  doi: 10.1016/j.joule.2021.06.020
– ident: e_1_2_9_221_1
  doi: 10.1002/admi.201600476
– ident: e_1_2_9_141_1
  doi: 10.1021/acs.nanolett.9b04586
– ident: e_1_2_9_135_1
  doi: 10.1016/j.solmat.2018.08.010
– ident: e_1_2_9_168_1
  doi: 10.1039/c3ta01226c
– ident: e_1_2_9_137_1
  doi: 10.1016/j.orgel.2017.01.028
– ident: e_1_2_9_129_1
  doi: 10.1016/j.orgel.2013.07.016
– ident: e_1_2_9_183_1
  doi: 10.1021/acsami.7b10365
– ident: e_1_2_9_26_1
  doi: 10.1039/C9EE03710A
– ident: e_1_2_9_33_1
  doi: 10.1016/j.scib.2020.01.001
– ident: e_1_2_9_216_1
  doi: 10.1002/aelm.201901245
– ident: e_1_2_9_192_1
  doi: 10.1039/C9TA02844G
– ident: e_1_2_9_21_1
  doi: 10.1002/adma.201404317
– ident: e_1_2_9_209_1
  doi: 10.1038/ncomms9929
– ident: e_1_2_9_34_1
  doi: 10.1021/ja908602j
– ident: e_1_2_9_118_1
  doi: 10.1016/j.orgel.2014.02.004
– ident: e_1_2_9_48_1
  doi: 10.1016/j.nanoen.2016.11.032
– ident: e_1_2_9_56_1
  doi: 10.1063/1.4980842
– ident: e_1_2_9_148_1
  doi: 10.1039/C3TA13275G
– ident: e_1_2_9_242_1
  doi: 10.1016/j.solmat.2015.10.021
– ident: e_1_2_9_228_1
  doi: 10.1021/acsami.9b22933
– ident: e_1_2_9_121_1
  doi: 10.1002/adma.201500647
– ident: e_1_2_9_71_1
  doi: 10.1038/nmat2102
– ident: e_1_2_9_2_1
  doi: 10.1002/aenm.202000765
– ident: e_1_2_9_236_1
  doi: 10.1002/pssr.201900372
– ident: e_1_2_9_50_1
  doi: 10.1021/ma400924b
– ident: e_1_2_9_72_1
  doi: 10.1021/cr300005u
– ident: e_1_2_9_176_1
  doi: 10.1039/C8QM00311D
– ident: e_1_2_9_194_1
  doi: 10.1039/C9SE01079C
– ident: e_1_2_9_12_1
  doi: 10.1038/s41560-021-00820-x
– ident: e_1_2_9_235_1
  doi: 10.1039/C8TC00705E
– ident: e_1_2_9_143_1
  doi: 10.1021/acs.chemmater.7b01615
– ident: e_1_2_9_174_1
  doi: 10.1039/D0TC00435A
– ident: e_1_2_9_29_1
  doi: 10.1002/adma.201004301
– ident: e_1_2_9_195_1
  doi: 10.1021/acsami.9b22531
– ident: e_1_2_9_179_1
  doi: 10.1002/advs.201500095
– ident: e_1_2_9_248_1
  doi: 10.1021/acsaem.8b01040
– ident: e_1_2_9_196_1
  doi: 10.1016/j.nanoen.2018.05.034
– ident: e_1_2_9_57_1
  doi: 10.1103/PhysRevLett.106.216402
– ident: e_1_2_9_36_1
  doi: 10.1038/ncomms11287
– ident: e_1_2_9_206_1
  doi: 10.1039/C9TA01195A
– ident: e_1_2_9_32_1
  doi: 10.1002/adma.201808356
– ident: e_1_2_9_79_1
  doi: 10.1039/D1TA01135A
– ident: e_1_2_9_41_1
  doi: 10.1063/1.371859
– ident: e_1_2_9_54_1
  doi: 10.1063/1.1620683
– ident: e_1_2_9_83_1
  doi: 10.1021/cr900182s
– ident: e_1_2_9_159_1
  doi: 10.1021/acsami.6b13675
– ident: e_1_2_9_6_1
  doi: 10.1016/j.nanoen.2019.103931
– ident: e_1_2_9_91_1
  doi: 10.1016/j.orgel.2019.02.009
– ident: e_1_2_9_16_1
  doi: 10.1063/1.98799
– ident: e_1_2_9_246_1
  doi: 10.1039/C8EE01150H
– ident: e_1_2_9_144_1
  doi: 10.1021/acsami.9b19830
– ident: e_1_2_9_88_1
  doi: 10.1016/j.progpolymsci.2019.02.002
– ident: e_1_2_9_193_1
  doi: 10.1002/adma.201804657
– ident: e_1_2_9_15_1
  doi: 10.1016/j.solmat.2004.09.002
– ident: e_1_2_9_65_1
  doi: 10.1016/j.orgel.2019.02.015
– ident: e_1_2_9_146_1
  doi: 10.1016/j.orgel.2014.01.024
– ident: e_1_2_9_111_1
  doi: 10.1002/adma.200701101
– ident: e_1_2_9_64_1
  doi: 10.1073/pnas.0711990105
– ident: e_1_2_9_19_1
  doi: 10.1002/adfm.200390011
– ident: e_1_2_9_249_1
  doi: 10.1016/j.orgel.2017.10.016
– ident: e_1_2_9_105_1
  doi: 10.1063/1.3250176
– ident: e_1_2_9_162_1
  doi: 10.1063/1.3479916
– ident: e_1_2_9_122_1
  doi: 10.1002/eom2.12127
– ident: e_1_2_9_167_1
  doi: 10.1039/c4ee00022f
– ident: e_1_2_9_37_1
  doi: 10.1002/adma.201801801
– ident: e_1_2_9_78_1
  doi: 10.1016/j.scib.2019.09.016
– ident: e_1_2_9_200_1
  doi: 10.1016/j.orgel.2019.105427
– ident: e_1_2_9_247_1
  doi: 10.1002/aenm.201901805
– ident: e_1_2_9_25_1
  doi: 10.1038/s41467-019-13264-5
– ident: e_1_2_9_197_1
  doi: 10.1038/nphoton.2011.317
– ident: e_1_2_9_99_1
  doi: 10.1021/acsaem.9b01591
– ident: e_1_2_9_116_1
  doi: 10.1016/j.solmat.2015.04.040
– ident: e_1_2_9_163_1
  doi: 10.1016/j.cplett.2013.08.015
– ident: e_1_2_9_30_1
  doi: 10.1021/jacs.7b02677
– ident: e_1_2_9_94_1
  doi: 10.1039/C9TA07417A
– ident: e_1_2_9_27_1
  doi: 10.1002/adma.202105301
– ident: e_1_2_9_186_1
  doi: 10.1002/adma.200602597
– ident: e_1_2_9_166_1
  doi: 10.1016/j.nanoen.2015.02.032
– ident: e_1_2_9_85_1
  doi: 10.1021/ar1000296
– ident: e_1_2_9_86_1
  doi: 10.1016/j.solmat.2019.110151
– ident: e_1_2_9_97_1
  doi: 10.1021/acsaem.8b01658
– ident: e_1_2_9_62_1
  doi: 10.1063/1.2362624
– ident: e_1_2_9_210_1
  doi: 10.1039/C5TA00930H
– ident: e_1_2_9_178_1
  doi: 10.1002/adma.201906557
– ident: e_1_2_9_70_1
  doi: 10.1002/adfm.200500207
– ident: e_1_2_9_205_1
  doi: 10.3390/nano10010080
– ident: e_1_2_9_151_1
  doi: 10.1021/am302252p
– ident: e_1_2_9_164_1
  doi: 10.1016/j.solmat.2013.05.007
– ident: e_1_2_9_3_1
  doi: 10.1038/s41560-017-0016-9
– ident: e_1_2_9_219_1
  doi: 10.3390/polym9110571
– ident: e_1_2_9_92_1
  doi: 10.1002/admi.201800031
– ident: e_1_2_9_230_1
  doi: 10.1002/eom2.12092
– ident: e_1_2_9_7_1
  doi: 10.1002/aenm.201970164
– ident: e_1_2_9_61_1
  doi: 10.1063/1.5129351
– ident: e_1_2_9_157_1
  doi: 10.1039/c2jm33445c
– ident: e_1_2_9_175_1
  doi: 10.1002/solr.201800182
– ident: e_1_2_9_239_1
  doi: 10.1088/2058-8585/ab5f57
– ident: e_1_2_9_10_1
  doi: 10.1002/eom2.12061
– ident: e_1_2_9_20_1
  doi: 10.1002/adma.200903528
– ident: e_1_2_9_76_1
  doi: 10.1016/j.jcis.2019.12.025
– ident: e_1_2_9_223_1
  doi: 10.1016/j.orgel.2019.105483
– ident: e_1_2_9_238_1
  doi: 10.1016/j.joule.2018.10.024
– ident: e_1_2_9_67_1
  doi: 10.1063/1.2212270
– ident: e_1_2_9_184_1
  doi: 10.1039/C9TC03506K
– ident: e_1_2_9_190_1
  doi: 10.1016/j.jechem.2019.12.011
– ident: e_1_2_9_237_1
  doi: 10.1039/D0TC00195C
– ident: e_1_2_9_182_1
  doi: 10.1002/eom2.12006
– ident: e_1_2_9_147_1
  doi: 10.1002/adma.200602653
– ident: e_1_2_9_47_1
  doi: 10.1039/C9TA05023J
– ident: e_1_2_9_130_1
  doi: 10.1002/aenm.201100632
– ident: e_1_2_9_107_1
  doi: 10.1038/srep01965
– ident: e_1_2_9_102_1
  doi: 10.1002/adma.201806616
– ident: e_1_2_9_173_1
  doi: 10.1039/C8TA00881G
– ident: e_1_2_9_22_1
  doi: 10.1002/adma.201600281
– ident: e_1_2_9_80_1
  doi: 10.1002/adma.200501825
– ident: e_1_2_9_68_1
  doi: 10.1002/adfm.200801286
– ident: e_1_2_9_69_1
  doi: 10.1039/c4ee00260a
– ident: e_1_2_9_90_1
  doi: 10.1002/anie.201901536
– ident: e_1_2_9_136_1
  doi: 10.1016/j.solmat.2011.03.023
– ident: e_1_2_9_198_1
  doi: 10.1016/j.orgel.2012.01.009
– ident: e_1_2_9_13_1
  doi: 10.1093/nsr/nwaa305
– ident: e_1_2_9_132_1
  doi: 10.1063/1.2359579
– ident: e_1_2_9_211_1
  doi: 10.1016/j.orgel.2019.06.035
– ident: e_1_2_9_127_1
  doi: 10.1016/j.matpr.2016.02.007
– ident: e_1_2_9_125_1
  doi: 10.1016/j.solener.2019.12.079
– ident: e_1_2_9_4_1
  doi: 10.1038/s41566-019-0573-5
– ident: e_1_2_9_171_1
  doi: 10.1002/ente.202000072
– ident: e_1_2_9_35_1
  doi: 10.1002/adma.201302845
– ident: e_1_2_9_75_1
  doi: 10.1002/adfm.200600917
– ident: e_1_2_9_240_1
  doi: 10.1002/admi.201900797
– ident: e_1_2_9_153_1
  doi: 10.1016/j.tsf.2015.03.061
– ident: e_1_2_9_18_1
  doi: 10.1063/1.1345834
– ident: e_1_2_9_49_1
  doi: 10.1038/nmat2548
– ident: e_1_2_9_145_1
  doi: 10.1038/nphoton.2009.69
SSID ssj0002504241
Score 2.4913583
SecondaryResourceType review_article
Snippet Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion...
Abstract Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms cathode interlayer
Cathodes
charge extraction
Coordination compounds
device efficiency and stability
Efficiency
Electrodes
Energy
Energy conversion efficiency
Fullerenes
Hybrids
Interfaces
Interlayers
Metal oxides
non‐fullerene organic solar cell
Photovoltaic cells
Polymer matrix composites
Polymers
Salts
Solar cells
Stability
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LS8QwEMcHXS96EJ-4ukpALwrFNpukzUlcWRHBB6LoLaR5gLC66urdj-Bn9JM4SbOrgngrJfQxecx_pulvAHa8NDqQ6TItnMiY4SyTtuCZL4UWla9lGXFNZ-fi5Iad3vG7lHAbpW2V4zUxLtR2aEKOfB-VflEF2Fl-8PSchapR4etqKqExDTO4BFdVC2Z6_fPLq0mWJQC60EdNuKR03w0faEQqiF-eKAL7f6nMn1o1OpvjBZhPKpEcNt26CFPucQnmfrADl-EWBR86DBI3WOFyRe4fSWCwDq0jgQHxMtCopgkK0maMEVSnBGP9z_ePkHKPRVFIU9PJkFEIcElI4o9W4Pq4f310kqUqCZlh6F6zovZWVJrROueeC-cxYkAVJn1uculY7YVBm6MU8LlluSsL6g2jVGLgKIzW3VVo4c3dGhBd8sJwjQrRl8xzWVtXsprKGkWlQ2nUht2xwZRJBPFQyGKgGvYxVcG4Khq3DduTtk8NN-PPVr1g90mLwLqOJ_D1VZo6qtLeCa0L7wvLfLfUGBOW2uILSmO7krehM-41lSbgSH0PlzbsxZ785zFU_-KMxqP1_6-1AbM0_P4QUzAdaL2-vLlNFCWv9VYaeV9eweJ-
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LaxsxEMcH1720h9BXqBOnCNpLA4t3ZT0syKUpMabgtoeU-CYkrQQFJy62e-9H6GfsJ-mMdr2OIRR6WxYtuzt6zH8G6TcA75IJjsh0hVNRFSJIUZi6kkXSyqlJ8kZnXNP8s5p9E58WctGDi91ZmIYP0SXcaGbk9ZomuPOb0R4aGle3PLMR1CN4TGdraUMfF1-7DAvBuXguXYlunZJxetzxSflo__iBR8rg_gO1eV-zZqczfQZHrVpkH5rufQ69ePcCnt5jCL6EGxR-6DhY3miFyxb7fseIxbqqIyMWxHrpUFUzFKbNWGOoUhnG_H9-_abUey6OwpraToFtKNBllMzfvILr6dX1x1nRVksogkA3W1Q-1WriBPelTFLFhJEDqjGTylCaKHxSAW2PkiCVtSijrngKgnODAaQKzo2PoY8vj6-BOS2rIB0qxaRFksbXUQvPjUdxGdGWA3i_M5gNLUmcClosbcNA5paMa7NxB_C2a_uj4Wc82OqS7N61IOZ1voG_b9spZCcuReVclVJVizTWDmND7Wr8QRPqsZEDGO56zbYTcWMxQKwmxMgrB3Cee_Ifn2Gvvsx5vjr5n8an8ITToYicmBlCf7v-Gc9Qqmz9mzwi_wIqq-OP
  priority: 102
  providerName: Wiley-Blackwell
Title Recent progress in cathode interlayer materials for non‐fullerene organic solar cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12156
https://www.proquest.com/docview/2611877860
https://doaj.org/article/8afe6aa1ff1d4f37a1407ad9f09cd395
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMcfOi96EH9idY6AXhTK2ixNmqPK5hCmIhN3C2magDB_4PTun-Df6F_iS9qNCaIXL6WUQNP30rzvC8nnARw6abQn08WaWx4zk7FYlmkWO8E1z10hRcA1DS55_5ZdjLLRXKkvvyeswgNXhmvn2lmudepcWjLXERozAqFL6RJpyo4M9FKMeXPJlJ-DPZgLY9OMR0rb9umBBpQC_xaBAqj_m7qc16ghyPTWYLVWh-Sk6tU6LNjHDViZYwZuwh0KPQwUJGyswmmK3D8Sz159Ki3x7IeXsUYVTVCIVmOLoColmON_vn_4pfZQDIVUtZwMmfjElvjF-8kWDHvd4Vk_rqsjxIZhWI3TwpU814wWSeYybh1mCqi-0DAmkZYVjhu0NUoAl5QssSKlzjBKJSaM3Gjd2YYGvtzuANEiS02mURk6wVwmi9IKVlBZoJi0KIkiOJoaTJmaHO4LWIxVxTymyhtXBeNGcDBr-1zxMn5sdertPmvhGdfhAX6-qj2v_vJ8BM2p11T9400UJoRp7pl4SQTHwZO_dEN1rwY03O3-R4f2YJn6wxFhgaYJjdeXN7uPkuW1aMEiZdd4zXvnLVg67V5e37TCiP0CCz3uIw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROLQcKuhDpAVqqfTQSit2HdsbHyoElDQ8Qi-pys3y-iEh0YQSqqo3fgJ_pH-qv6Qz3t0AUsWN22pl-TEee74Z298AbETtLDHTZVYFlQknRaZ9IbNYKqt6sdJlomsaHqvBV3FwIk_m4E_7FoauVbZ7Ytqo_cRRjHwTkX7RI7KzfOv8R0ZZo-h0tU2hUavFYfj9C1226cf9Tzi_7zjv7412B1mTVSBzAs1RVlTRq54VvMpllCpERNiIWnTMXa6DqKJy2Ec0nTH3Ig9lwaMTnGt0tJSztovVPoIF0UVDTg_T-59nIR1iA0ODOCNB5Zth8p0n_gZ1x-yl7AB3IO1tYJwsW38JnjaQlG3XOrQMc2H8DBZvERU-h2-ILtE6sXSbC_dGdjpmRPg68YER4cTFmUXozhD91grNEAqz8WT89-qa4vspAwurE0g5NiVvmtGJwfQFjB5CeC9hHhsPK8BsKQsnLcLRWIoodeVDKSquK0SwAXFYB963AjOuoSunrBlnpiZa5oaEa5JwO_B2Vva8Jun4b6kdkvusBBFrpx84fNOsU9OzMShrixgLL2K3tOiAltbjALXzXS07sNrOmmlW-9Tc6GYHPqSZvKcbZu_LkKevV_fX9QYeD0bDI3O0f3z4Gp5weneRYj-rMH958TOsIRq6rNaTDjIwD6zz_wCuehzB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD7ULYg-iFe6tmpAfVAYdiaby-ZBxNpdWmvXIhX7FjK5gFB3225FfPMn-Hf8O_4Sz8nMrC1I3_o2DCGTOfmS851cvgPwLBnvSJmucCqqQngpChMqWSStnBql2ugs17Q3VdufxLtDebgCv7u7MHSsspsT80Qd5p7WyAfI9KsRiZ2Vg9Qei9jfmrw-PikogxTttHbpNBqI7MYf3zF8W7za2cK-fs75ZHzwdrtoMwwUXqBrKqo6BTVygtelTFLFhGwbGYxJpS9NFHVSHtuLbjSVQZRRVzx5wbnBoEt554ZY7TVY1RQU9WB1czzd_7hc4CFtMHSPS0lUPojzrzyrOagLTjDnCrhAcM_T5OznJrfhVktQ2ZsGUXdgJc7uws1zsoX34DNyTfRVLJ_twpmSfZkxkn-dh8hIfuL0yCGRZ8iFG3gzJMZsNp_9-fmLjJrzsbAmnZRnC4qtGe0fLO7DwVWY7wH08ONxDZjTsvLSITlNWiRp6hC1qLmpkc9GZGV9eNEZzPpWvJxyaBzZRnaZWzKuzcbtw9Nl2eNGsuO_pTbJ7ssSJLOdX-Dv23bU2pFLUTlXpVQFkYbaYTiqXcAfND4MjezDRtdrth37C_sPqX14mXvykmbY8Yc9np8eXl7XE7iOeLfvd6a763CD0yWMvBC0Ab2z02_xEVKjs_pxC0IG9oph_xeJSSJT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+cathode+interlayer+materials+for+non%E2%80%90fullerene+organic+solar+cells&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Nafees+Ahmad&rft.au=Huiqiong+Zhou&rft.au=Ping+Fan&rft.au=Guangxing+Liang&rft.date=2022-01-01&rft.pub=Wiley&rft.eissn=2567-3173&rft.volume=4&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12156&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8afe6aa1ff1d4f37a1407ad9f09cd395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon