Recent progress in cathode interlayer materials for non‐fullerene organic solar cells
Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion efficiency (PCE) of non‐fullerene organic solar cells (NF‐OSCs) with single and multiple‐junction has surpassed 18% and 19%, respectively. The...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 4; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion efficiency (PCE) of non‐fullerene organic solar cells (NF‐OSCs) with single and multiple‐junction has surpassed 18% and 19%, respectively. The cathode interlayer (CIL) plays a significant role in the improvement of PCE and the stability of OSCs. Recently, a large number of CIL materials have been employed in OSCs. This review summarizes the recent progress of CIL materials and systematically describes their impact on the device efficiency and stability in single‐junction NF‐OSCs. Firstly, the functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are summarized. Afterward, some big families of materials including metal oxides, metal salts/complexes, small molecules, polymers, composites/hybrids are presented as CIL for NF‐OSCs. Finally, the scale‐up techniques, conclusion, and future challenges regarding CIL in NF‐OSCs are elucidated.
This review summarizes the recent advances of cathode interlayer (CIL) materials and systematically describes their impact on the device efficiency and stability in single‐junction non‐fullerene‐based organic solar cells (NF‐OSCs). The functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are discussed, along with the scale‐up techniques and future challenges in this area of research. |
---|---|
AbstractList | Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion efficiency (PCE) of non‐fullerene organic solar cells (NF‐OSCs) with single and multiple‐junction has surpassed 18% and 19%, respectively. The cathode interlayer (CIL) plays a significant role in the improvement of PCE and the stability of OSCs. Recently, a large number of CIL materials have been employed in OSCs. This review summarizes the recent progress of CIL materials and systematically describes their impact on the device efficiency and stability in single‐junction NF‐OSCs. Firstly, the functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are summarized. Afterward, some big families of materials including metal oxides, metal salts/complexes, small molecules, polymers, composites/hybrids are presented as CIL for NF‐OSCs. Finally, the scale‐up techniques, conclusion, and future challenges regarding CIL in NF‐OSCs are elucidated. Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion efficiency (PCE) of non‐fullerene organic solar cells (NF‐OSCs) with single and multiple‐junction has surpassed 18% and 19%, respectively. The cathode interlayer (CIL) plays a significant role in the improvement of PCE and the stability of OSCs. Recently, a large number of CIL materials have been employed in OSCs. This review summarizes the recent progress of CIL materials and systematically describes their impact on the device efficiency and stability in single‐junction NF‐OSCs. Firstly, the functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are summarized. Afterward, some big families of materials including metal oxides, metal salts/complexes, small molecules, polymers, composites/hybrids are presented as CIL for NF‐OSCs. Finally, the scale‐up techniques, conclusion, and future challenges regarding CIL in NF‐OSCs are elucidated. This review summarizes the recent advances of cathode interlayer (CIL) materials and systematically describes their impact on the device efficiency and stability in single‐junction non‐fullerene‐based organic solar cells (NF‐OSCs). The functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are discussed, along with the scale‐up techniques and future challenges in this area of research. Abstract Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion efficiency (PCE) of non‐fullerene organic solar cells (NF‐OSCs) with single and multiple‐junction has surpassed 18% and 19%, respectively. The cathode interlayer (CIL) plays a significant role in the improvement of PCE and the stability of OSCs. Recently, a large number of CIL materials have been employed in OSCs. This review summarizes the recent progress of CIL materials and systematically describes their impact on the device efficiency and stability in single‐junction NF‐OSCs. Firstly, the functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are summarized. Afterward, some big families of materials including metal oxides, metal salts/complexes, small molecules, polymers, composites/hybrids are presented as CIL for NF‐OSCs. Finally, the scale‐up techniques, conclusion, and future challenges regarding CIL in NF‐OSCs are elucidated. Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion efficiency (PCE) of non‐fullerene organic solar cells (NF‐OSCs) with single and multiple‐junction has surpassed 18% and 19%, respectively. The cathode interlayer (CIL) plays a significant role in the improvement of PCE and the stability of OSCs. Recently, a large number of CIL materials have been employed in OSCs. This review summarizes the recent progress of CIL materials and systematically describes their impact on the device efficiency and stability in single‐junction NF‐OSCs. Firstly, the functions, key requirements, and distinctive features of CILs when used in NF‐OSCs are summarized. Afterward, some big families of materials including metal oxides, metal salts/complexes, small molecules, polymers, composites/hybrids are presented as CIL for NF‐OSCs. Finally, the scale‐up techniques, conclusion, and future challenges regarding CIL in NF‐OSCs are elucidated. image |
Author | Fan, Ping Zhou, Huiqiong Ahmad, Nafees Liang, Guangxing |
Author_xml | – sequence: 1 givenname: Nafees orcidid: 0000-0003-2120-4750 surname: Ahmad fullname: Ahmad, Nafees organization: CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology – sequence: 2 givenname: Huiqiong surname: Zhou fullname: Zhou, Huiqiong organization: CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology – sequence: 3 givenname: Ping surname: Fan fullname: Fan, Ping organization: Shenzhen University – sequence: 4 givenname: Guangxing orcidid: 0000-0002-9033-4885 surname: Liang fullname: Liang, Guangxing email: lgx@szu.edu.cn organization: Shenzhen University |
BookMark | eNp9kc1KJTEQhYMo-DNufIKAO-FqJZ1Ody9FdBQUYRBchrrpipNLbkeTvsjd-QjzjPMkE20ZRMRVDuE75xRVu2xziAMxdiDgWADIE4pLeSykqPUG25G1bmaVaKrND3qb7ee8gALXoKQSO-z-F1kaRv6Y4kOinLkfuMXxd-ypyJFSwDUlvsQiPYbMXUy89P59-eNWIVCigXhMDzh4y3MMmLilEPIPtuUKTvvv7x67uzi_O7ucXd_-vDo7vZ5ZpaSeibnrdYtKzqF2tSYnWqmg7hxY6EjNnbatmwM0DnoF1AjprJKyUyC1Raz22NUU20dcmMfkl5jWJqI3bx9lMINp9DaQadGRRhTOiV65qkGhoMG-VHW2r7q6ZB1OWWUXTyvKo1nEVRrK9EZqIdqmaTUU6miibIo5J3L_WwWY1zOY1zOYtzMUGD7B1o84-jiMCX342iImy7MPtP4m3Jzf3sjJ8w-zapz0 |
CitedBy_id | crossref_primary_10_1002_slct_202400163 crossref_primary_10_1002_adts_202300624 crossref_primary_10_1016_j_dyepig_2024_112382 crossref_primary_10_1002_smll_202311715 crossref_primary_10_1002_qua_27510 crossref_primary_10_1016_j_solener_2024_113169 crossref_primary_10_1002_solr_202200486 crossref_primary_10_1016_j_nantod_2024_102600 crossref_primary_10_1021_acs_macromol_4c01285 crossref_primary_10_1002_solr_202300848 crossref_primary_10_1002_ente_202301447 crossref_primary_10_1002_adfm_202305445 crossref_primary_10_1002_eom2_12318 crossref_primary_10_1016_j_optmat_2024_115630 crossref_primary_10_1063_5_0091671 crossref_primary_10_1016_j_jcis_2022_07_096 crossref_primary_10_1002_inf2_12370 crossref_primary_10_1021_acsenergylett_3c02795 crossref_primary_10_1039_D3TC00188A crossref_primary_10_1016_j_commatsci_2024_112961 crossref_primary_10_1016_j_xcrp_2023_101654 crossref_primary_10_1039_D5NJ00035A crossref_primary_10_1016_j_matchemphys_2024_129685 crossref_primary_10_1016_j_chemphys_2024_112476 crossref_primary_10_1016_j_porgcoat_2024_108309 crossref_primary_10_1016_j_chemphys_2024_112277 crossref_primary_10_1016_j_chemphys_2024_112515 crossref_primary_10_1016_j_optmat_2024_115295 crossref_primary_10_1016_j_dyepig_2024_112429 crossref_primary_10_1016_j_mtener_2023_101297 crossref_primary_10_1016_j_physb_2024_416437 crossref_primary_10_1016_j_rio_2024_100748 crossref_primary_10_1016_j_jphotochem_2024_116026 crossref_primary_10_1016_j_mtener_2024_101756 crossref_primary_10_1016_j_nanoen_2023_109219 crossref_primary_10_1002_ente_202200986 crossref_primary_10_1016_j_jphotochem_2024_115457 crossref_primary_10_1016_j_mtcomm_2024_108188 crossref_primary_10_1016_j_comptc_2024_114533 crossref_primary_10_1002_adem_202201437 crossref_primary_10_3390_ma17071566 crossref_primary_10_1002_smll_202201046 crossref_primary_10_1016_j_rechem_2024_101382 crossref_primary_10_1007_s10895_024_03891_7 crossref_primary_10_1016_j_jssc_2024_125059 crossref_primary_10_1016_j_jssc_2025_125213 crossref_primary_10_1021_acsaem_3c02945 crossref_primary_10_1002_solr_202200381 crossref_primary_10_1016_j_jssc_2025_125250 crossref_primary_10_1021_acsenergylett_4c01451 crossref_primary_10_1002_aesr_202300210 crossref_primary_10_1002_er_8342 crossref_primary_10_1007_s00894_024_05836_0 crossref_primary_10_3390_polym15132954 crossref_primary_10_1002_aenm_202402920 crossref_primary_10_1007_s10854_023_10838_4 crossref_primary_10_1002_cjoc_202300347 crossref_primary_10_1002_adfm_202303603 crossref_primary_10_1016_j_saa_2025_125918 crossref_primary_10_1002_admi_202201363 crossref_primary_10_1016_j_saa_2024_124746 crossref_primary_10_1002_adem_202300183 crossref_primary_10_1016_j_mtcomm_2024_109880 crossref_primary_10_3762_bjoc_19_119 crossref_primary_10_1016_j_commatsci_2024_113037 crossref_primary_10_1002_adfm_202422023 crossref_primary_10_1007_s00894_024_05923_2 crossref_primary_10_1016_j_saa_2024_125453 crossref_primary_10_1021_acsami_2c22130 crossref_primary_10_1016_j_commatsci_2024_112984 crossref_primary_10_1016_j_chemphys_2024_112295 crossref_primary_10_1016_j_chemphys_2024_112379 crossref_primary_10_1016_j_jssc_2025_125201 crossref_primary_10_1016_j_cej_2022_138169 crossref_primary_10_1016_j_saa_2024_125298 crossref_primary_10_3390_nanoenergyadv3020006 crossref_primary_10_1016_j_dyepig_2022_110432 crossref_primary_10_1016_j_jssc_2025_125240 crossref_primary_10_1021_acsami_4c02150 crossref_primary_10_1016_j_mtcomm_2024_108403 crossref_primary_10_1021_acsami_4c05662 crossref_primary_10_1016_j_heliyon_2024_e30473 crossref_primary_10_1002_adma_202407119 crossref_primary_10_1016_j_jphotochem_2024_115670 crossref_primary_10_1039_D3LF00166K |
Cites_doi | 10.1016/j.renene.2012.07.012 10.1002/anie.201803748 10.1016/j.orgel.2013.09.019 10.1002/adma.201908205 10.1039/C8QO00788H 10.1063/1.1384001 10.3389/fchem.2018.00292 10.1038/srep04691 10.1016/j.jechem.2019.08.005 10.1002/eom2.12133 10.1016/j.orgel.2018.09.016 10.1039/C9TA10002D 10.1039/C4EE01223B 10.1002/adma.201902965 10.1021/cm034650o 10.1039/c0jm00662a 10.1039/C7EE00601B 10.1002/solr.201700160 10.1016/j.solmat.2010.04.082 10.1016/j.progpolymsci.2020.101222 10.1021/acsami.8b09313 10.1002/adma.201807577 10.1002/aenm.201301338 10.1038/s41467-020-15364-z 10.7567/1347-4065/aafd8c 10.1002/solr.201900179 10.1039/C9TA05789G 10.1039/C7TA10306A 10.1063/1.2723077 10.1007/s11426-017-9199-1 10.1002/adma.201200120 10.1021/acsami.7b13494 10.1016/j.orgel.2018.09.012 10.1016/j.solener.2017.07.053 10.1039/C9TA09961A 10.1063/1.3174914 10.1016/j.apsusc.2019.01.130 10.1039/C8TA11624E 10.1007/s10854-019-00921-0 10.1007/s12274-014-0620-y 10.1021/am201844q 10.1002/advs.201902269 10.1002/adma.202002973 10.1021/acsaem.8b02252 10.1134/S0012501619030011 10.1063/1.2730746 10.1039/b925382c 10.1016/j.matlet.2013.06.063 10.1021/nl303419n 10.1038/nmat5063 10.1002/eom2.12134 10.1021/acs.macromol.8b01490 10.1039/D1EE00496D 10.1021/am500336s 10.1002/eom2.12015 10.1021/acs.jpcc.9b09833 10.1016/j.solmat.2008.10.004 10.1039/C8RA07071G 10.1038/nphoton.2015.126 10.1039/B921396A 10.1016/j.orgel.2020.105725 10.1039/C9TC02781E 10.1016/j.electacta.2019.01.028 10.1021/cm402462m 10.1002/adma.201300295 10.1103/PhysRevB.73.085207 10.1021/ar900139v 10.1021/jp405176u 10.1021/jz2002259 10.1016/j.orgel.2012.10.020 10.1002/aenm.201500802 10.1039/C7RA13428B 10.1038/s41467-020-16509-w 10.1063/1.2171781 10.1039/C9MH00379G 10.1002/adma.200601093 10.1088/0957-4484/24/48/484011 10.1002/ange.201907467 10.1063/1.1446988 10.1002/adma.202002608 10.1103/PhysRevB.64.085201 10.1016/j.orgel.2019.05.032 10.1016/j.tsf.2014.06.008 10.1002/eom2.12099 10.1063/1.2784961 10.1002/aenm.201902065 10.1021/acsami.0c03632 10.1002/adma.202102787 10.1016/j.mser.2008.12.001 10.1007/s12274-014-0615-8 10.1016/j.jpowsour.2018.08.078 10.1126/science.270.5243.1789 10.1002/adma.202101279 10.1117/12.2520187 10.1039/c1ee01873f 10.1002/aenm.201401298 10.1002/aenm.201500277 10.1039/c2jm33838f 10.1016/j.solener.2019.08.009 10.1016/j.joule.2019.01.004 10.1016/j.orgel.2017.11.008 10.1016/j.orgel.2019.03.039 10.1021/acsaem.0c00218 10.1002/adma.201103006 10.1021/acsami.9b18095 10.1002/smll.202101133 10.1021/acsaem.9b02176 10.1063/1.3028094 10.1039/D0TC03048A 10.1016/j.scib.2019.10.019 10.1002/adfm.201905810 10.1002/adma.201907801 10.1021/am5044278 10.1002/adma.201104863 10.1016/j.joule.2021.06.020 10.1002/admi.201600476 10.1021/acs.nanolett.9b04586 10.1016/j.solmat.2018.08.010 10.1039/c3ta01226c 10.1016/j.orgel.2017.01.028 10.1016/j.orgel.2013.07.016 10.1021/acsami.7b10365 10.1039/C9EE03710A 10.1016/j.scib.2020.01.001 10.1002/aelm.201901245 10.1039/C9TA02844G 10.1002/adma.201404317 10.1038/ncomms9929 10.1021/ja908602j 10.1016/j.orgel.2014.02.004 10.1016/j.nanoen.2016.11.032 10.1063/1.4980842 10.1039/C3TA13275G 10.1016/j.solmat.2015.10.021 10.1021/acsami.9b22933 10.1002/adma.201500647 10.1038/nmat2102 10.1002/aenm.202000765 10.1002/pssr.201900372 10.1021/ma400924b 10.1021/cr300005u 10.1039/C8QM00311D 10.1039/C9SE01079C 10.1038/s41560-021-00820-x 10.1039/C8TC00705E 10.1021/acs.chemmater.7b01615 10.1039/D0TC00435A 10.1002/adma.201004301 10.1021/acsami.9b22531 10.1002/advs.201500095 10.1021/acsaem.8b01040 10.1016/j.nanoen.2018.05.034 10.1103/PhysRevLett.106.216402 10.1038/ncomms11287 10.1039/C9TA01195A 10.1002/adma.201808356 10.1039/D1TA01135A 10.1063/1.371859 10.1063/1.1620683 10.1021/cr900182s 10.1021/acsami.6b13675 10.1016/j.nanoen.2019.103931 10.1016/j.orgel.2019.02.009 10.1063/1.98799 10.1039/C8EE01150H 10.1021/acsami.9b19830 10.1016/j.progpolymsci.2019.02.002 10.1002/adma.201804657 10.1016/j.solmat.2004.09.002 10.1016/j.orgel.2019.02.015 10.1016/j.orgel.2014.01.024 10.1002/adma.200701101 10.1073/pnas.0711990105 10.1002/adfm.200390011 10.1016/j.orgel.2017.10.016 10.1063/1.3250176 10.1063/1.3479916 10.1002/eom2.12127 10.1039/c4ee00022f 10.1002/adma.201801801 10.1016/j.scib.2019.09.016 10.1016/j.orgel.2019.105427 10.1002/aenm.201901805 10.1038/s41467-019-13264-5 10.1038/nphoton.2011.317 10.1021/acsaem.9b01591 10.1016/j.solmat.2015.04.040 10.1016/j.cplett.2013.08.015 10.1021/jacs.7b02677 10.1039/C9TA07417A 10.1002/adma.202105301 10.1002/adma.200602597 10.1016/j.nanoen.2015.02.032 10.1021/ar1000296 10.1016/j.solmat.2019.110151 10.1021/acsaem.8b01658 10.1063/1.2362624 10.1039/C5TA00930H 10.1002/adma.201906557 10.1002/adfm.200500207 10.3390/nano10010080 10.1021/am302252p 10.1016/j.solmat.2013.05.007 10.1038/s41560-017-0016-9 10.3390/polym9110571 10.1002/admi.201800031 10.1002/eom2.12092 10.1002/aenm.201970164 10.1063/1.5129351 10.1039/c2jm33445c 10.1002/solr.201800182 10.1088/2058-8585/ab5f57 10.1002/eom2.12061 10.1002/adma.200903528 10.1016/j.jcis.2019.12.025 10.1016/j.orgel.2019.105483 10.1016/j.joule.2018.10.024 10.1063/1.2212270 10.1039/C9TC03506K 10.1016/j.jechem.2019.12.011 10.1039/D0TC00195C 10.1002/eom2.12006 10.1002/adma.200602653 10.1039/C9TA05023J 10.1002/aenm.201100632 10.1038/srep01965 10.1002/adma.201806616 10.1039/C8TA00881G 10.1002/adma.201600281 10.1002/adma.200501825 10.1002/adfm.200801286 10.1039/c4ee00260a 10.1002/anie.201901536 10.1016/j.solmat.2011.03.023 10.1016/j.orgel.2012.01.009 10.1093/nsr/nwaa305 10.1063/1.2359579 10.1016/j.orgel.2019.06.035 10.1016/j.matpr.2016.02.007 10.1016/j.solener.2019.12.079 10.1038/s41566-019-0573-5 10.1002/ente.202000072 10.1002/adma.201302845 10.1002/adfm.200600917 10.1002/admi.201900797 10.1016/j.tsf.2015.03.061 10.1063/1.1345834 10.1038/nmat2548 10.1038/nphoton.2009.69 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY DOA |
DOI | 10.1002/eom2.12156 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_8afe6aa1ff1d4f37a1407ad9f09cd395 10_1002_eom2_12156 EOM212156 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Key Project of Department of Education of Guangdong Province funderid: 2018KZDXM059 – fundername: National Natural Science Foundation of China funderid: 62074102 – fundername: Science and Technology Plan Project of Shenzhen funderid: JCYJ20190808153409238 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION IEP PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c4426-1bfd68a42b05f56ef1824059f0c09e4bf6c8fb007f0d40e712fc42294026caa3 |
IEDL.DBID | DOA |
ISSN | 2567-3173 |
IngestDate | Wed Aug 27 01:31:44 EDT 2025 Wed Aug 13 04:27:40 EDT 2025 Tue Jul 01 02:50:12 EDT 2025 Thu Apr 24 23:12:20 EDT 2025 Wed Jan 22 16:26:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4426-1bfd68a42b05f56ef1824059f0c09e4bf6c8fb007f0d40e712fc42294026caa3 |
Notes | Funding information National Natural Science Foundation of China, Grant/Award Number: 62074102; Science and Technology Plan Project of Shenzhen, Grant/Award Number: JCYJ20190808153409238; Key Project of Department of Education of Guangdong Province, Grant/Award Number: 2018KZDXM059 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2120-4750 0000-0002-9033-4885 |
OpenAccessLink | https://doaj.org/article/8afe6aa1ff1d4f37a1407ad9f09cd395 |
PQID | 2611877860 |
PQPubID | 5066170 |
PageCount | 33 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8afe6aa1ff1d4f37a1407ad9f09cd395 proquest_journals_2611877860 crossref_primary_10_1002_eom2_12156 crossref_citationtrail_10_1002_eom2_12156 wiley_primary_10_1002_eom2_12156_EOM212156 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Beijing |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2015; 141 2019; 91 2010; 97 2013; 3 2013; 1 2019; 10 2000; 87 2019; 13 2019; 12 2014; 26 2016; 144 2020; 14 2019; 202 2020; 13 2008; 105 2020; 562 2020; 12 2020; 11 2020; 10 2017; 155 2012; 13 2012; 12 2013; 5 2010; 22 2018; 6 2010; 20 2018; 8 2009; 95 2018; 2 2018; 5 2019; 20 2018; 1 2009; 93 2013; 50 2013; 117 2014; 15 2013; 113 2019; 29 2018; 30 2008; 20 2009; 19 2012; 24 2012; 22 2007; 17 2019; 7 2007; 19 2019; 9 2018; 187 2019; 191 2019; 3 1987; 51 2011; 2 2019; 6 2009; 64 2019; 31 2019; 30 2013; 108 2019; 2 2019; 32 2019; 1 2007; 90 2005; 86 2007; 91 2013; 586 2020; 32 2002; 80 2011; 4 1995; 270 2017; 139 2010; 43 2018; 17 2016; 7 2016; 3 2011; 95 2016; 28 2018; 11 2009; 109 2018; 10 2019; 299 2017; 2 2013; 25 2006; 73 2009; 42 2013; 24 2017; 43 2015; 583 2018; 401 2019; 58 2003; 13 2008; 7 2020; 124 2017; 110 2003; 94 2017; 9 2020; 8 2020; 7 2017; 31 2020; 6 2020; 5 2020; 4 2013; 14 2014; 4 2020; 3 2020; 2 2021; 33 2014; 2 2019; 64 2019; 68 2019; 69 2019; 476 2020; 47 2011; 23 2020; 43 2014; 7 2014; 6 2014; 564 2021; 9 2015; 13 2015; 2 2021; 8 2021; 6 2021; 5 2015; 6 2015; 5 2019; 70 2021; 3 2019; 72 2015; 3 2019; 75 2019; 74 2013; 46 2006; 16 2020; 82 2006; 18 2006 2018; 63 2017; 29 2018; 61 2020; 103 2020; 76 2015; 9 2015; 8 2008; 93 2001; 64 2021; 14 2012; 2 2015; 27 2011; 106 2006; 89 2021 2004; 16 2020; 197 2006; 88 2017; 10 2021; 17 2010; 132 2019 2009; 8 2018; 52 2018; 51 2018; 50 2020; 65 2009; 3 2012; 6 2001; 78 2001; 79 2012; 4 2018; 53 2010; 94 2019; 131 2018; 57 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_239_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_71_1 e_1_2_9_231_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_6_1 e_1_2_9_119_1 Za T (e_1_2_9_120_1) 2014; 4 e_1_2_9_60_1 e_1_2_9_242_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_232_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_217_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_243_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_228_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_220_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_233_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_218_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_221_1 e_1_2_9_244_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_229_1 e_1_2_9_174_1 e_1_2_9_211_1 e_1_2_9_234_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_219_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_245_1 e_1_2_9_222_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_235_1 e_1_2_9_212_1 e_1_2_9_90_1 e_1_2_9_250_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_223_1 e_1_2_9_246_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_236_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_1 e_1_2_9_65_1 e_1_2_9_247_1 e_1_2_9_80_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_214_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_237_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_248_1 e_1_2_9_4_1 e_1_2_9_240_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_238_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_230_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_249_1 e_1_2_9_86_1 e_1_2_9_226_1 e_1_2_9_3_1 e_1_2_9_241_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 5 year: 2015 article-title: Overcoming the light‐soaking problem in inverted polymer solar cells by introducing a heavily doped titanium sub‐oxide functional layer publication-title: Adv Energy Mater – volume: 15 start-page: 913 issue: 4 year: 2014 end-page: 919 article-title: Enhancing the short‐circuit current, efficiency of inverted organic solar cells using tetra sulfonic copper phthalocyanine (TS‐CuPc) as electron transporting layer publication-title: Org Electron – volume: 562 start-page: 142 issue: C year: 2020 end-page: 148 article-title: Interface passivation and electron transport improvement via employing calcium fluoride for polymer solar cells publication-title: J Colloid Interface Sci – volume: 7 start-page: 2925 issue: 9 year: 2014 end-page: 2933 article-title: Scalable, ambient atmosphere roll‐to‐roll manufacture of encapsulated large area, flexible organic tandem solar cell modules publication-title: Energy Environ Sci – volume: 61 start-page: 531 issue: 5 year: 2018 end-page: 537 article-title: Synergistic effect of fluorination on both donor and acceptor materials for high performance non‐fullerene polymer solar cells with 13.5% efficiency publication-title: Sci China Chem – volume: 72 start-page: 6 year: 2019 end-page: 17 article-title: An universal electron transport layer involving hydrogen plasma–treated tungsten disulfide nanosheets doped zinc oxide layers for polymer donors with fullerene or small molecule acceptor photovoltaics publication-title: Org Electron – volume: 3 year: 2019 article-title: One‐step blade‐coated highly efficient nonfullerene organic solar cells with a self‐assembled interfacial layer enabled by solvent vapor annealing publication-title: Sol RRL – volume: 7 year: 2020 article-title: From straw to device Interface: Carboxymethyl‐cellulose‐based modified interlayer for enhanced power conversion efficiency of organic solar cells publication-title: Adv Sci – volume: 94 start-page: 6849 issue: 10 year: 2003 end-page: 6854 article-title: Cathode dependence of the open‐circuit voltage of polymer: fullerene bulk heterojunction solar cells publication-title: J Appl Phys – volume: 113 start-page: 3734 issue: 5 year: 2013 end-page: 3765 article-title: Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly (3‐hexylthiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester system publication-title: Chem Rev – volume: 87 start-page: 295 issue: 1 year: 2000 end-page: 298 article-title: Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x‐ray photoemission spectroscopies publication-title: J Appl Phys – volume: 3 start-page: 1694 issue: 2 year: 2020 end-page: 1701 article-title: Increased electron transport and hole blocking in an aqueous solution processed dye‐doped ZnO cathode interlayer for high performance organic solar cells publication-title: ACS Appl Energy Mater – volume: 46 start-page: 6379 issue: 16 year: 2013 end-page: 6387 article-title: Structural factors that affect the performance of organic bulk heterojunction solar cells publication-title: Macromolecules – volume: 93 start-page: 394 issue: 4 year: 2009 end-page: 412 article-title: Fabrication and processing of polymer solar cells: a review of printing and coating techniques publication-title: Sol Energy Mater Sol Cells – volume: 187 start-page: 273 year: 2018 end-page: 282 article-title: Enhanced electron transport enables over 12% efficiency by interface engineering of non‐fullerene organic solar cells publication-title: Sol Energy Mater Sol Cells – volume: 10 year: 2020 article-title: Effect of insertion of bathocuproine buffer layer at grating‐structured cathode–organic‐layer interface in bulk‐heterojunction solar cells publication-title: AIP Adv – volume: 8 start-page: 36542 issue: 64 year: 2018 end-page: 36548 article-title: Light‐soaking free organic photovoltaic devices with sol–gel deposited ZnO and AZO electron transport layers publication-title: RSC Adv – volume: 58 year: 2019 article-title: Characteristics of 9, 10‐diphenylanthracene field‐effect transistors obtained by exposing the silver electrodes to oxidative conditions publication-title: Jpn J Appl Phys – volume: 63 start-page: 93 year: 2018 end-page: 97 article-title: Efficient inverted polymer solar cells via pyridine‐based organic molecules as interfacial modification layer on sol‐gel zinc oxide surface publication-title: Org Electron – volume: 64 start-page: 1 issue: 1‐2 year: 2009 end-page: 31 article-title: Energetics of metal–organic interfaces: new experiments and assessment of the field publication-title: Mater Sci Eng: R: Rep – volume: 69 start-page: 20 year: 2019 end-page: 25 article-title: Interface modification layers for high‐performance inverted organic photovoltaics publication-title: Org Electron – volume: 43 start-page: 207 year: 2017 end-page: 213 article-title: Ga‐doped ZnO as an electron transport layer for PffBT4T‐2OD: PC70BM organic solar cells publication-title: Org Electron – volume: 31 year: 2019 article-title: A self‐organized poly (vinylpyrrolidone)‐based cathode interlayer in inverted fullerene‐free organic solar cells publication-title: Adv Mater – volume: 12 start-page: 10706 issue: 9 year: 2020 end-page: 10716 article-title: Polyolefin elastomer as the anode interfacial layer for improved mechanical and air stabilities in nonfullerene solar cells publication-title: ACS Appl Mater Interfaces – volume: 65 start-page: 131 issue: 2 year: 2020 end-page: 137 article-title: Semitransparent polymer solar cells with 12.37% efficiency and 18.6% average visible transmittance publication-title: Sci Bull – volume: 20 start-page: 862 issue: 5 year: 2010 end-page: 866 article-title: Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer publication-title: J Mater Chem – year: 2019 – volume: 3 start-page: 1965 issue: 1 year: 2013 article-title: Barium: an efficient cathode layer for bulk‐heterojunction solar cells publication-title: Sci Rep – volume: 103 year: 2020 article-title: Polymer design to promote low work function surfaces in organic electronics publication-title: Prog Polym Sci – volume: 50 start-page: 169 year: 2018 end-page: 175 article-title: Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene‐free organic solar cells with an outstanding short‐circuit current publication-title: Nano Energy – volume: 43 start-page: 40 issue: 4 year: 2020 end-page: 46 article-title: Significant influence of doping effect on photovoltaic performance of efficient fullerene‐free polymer solar cells publication-title: J Energy Chem – volume: 47 start-page: 196 issue: 8 year: 2020 end-page: 202 article-title: Non‐conjugated polymers as thickness‐insensitive electron transport materials in high‐performance inverted organic solar cells publication-title: J Energy Chem – volume: 73 year: 2006 article-title: Band structure of silicon as measured in extended momentum space publication-title: Phys Rev B – volume: 11 start-page: 2225 issue: 8 year: 2018 end-page: 2234 article-title: P3HT: non‐fullerene acceptor based large area, semi‐transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods publication-title: Energy Environ Sci – volume: 4 start-page: 1234 issue: 3 year: 2020 end-page: 1241 article-title: An environmentally friendly natural polymer as a universal interfacial modifier for fullerene and non‐fullerene polymer solar cells publication-title: Sustain Energy Fuels – volume: 65 start-page: 208 issue: 3 year: 2020 end-page: 216 article-title: Interface‐enhanced organic solar cells with extrapolated T80 lifetimes of over 20 years publication-title: Sci Bull – volume: 14 start-page: 267 issue: 1 year: 2013 end-page: 272 article-title: Inverted polymer solar cells with a solution‐processed cesium halide interlayer publication-title: Org Electron – volume: 3 issue: 2 year: 2021 article-title: Dual‐function interface engineering for efficient perovskite solar cells publication-title: EcoMat – volume: 15 start-page: 835 issue: 4 year: 2014 end-page: 843 article-title: Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer publication-title: Org Electron – volume: 19 start-page: 1551 issue: 12 year: 2007 end-page: 1566 article-title: Device physics of polymer: fullerene bulk heterojunction solar cells publication-title: Adv Mater – volume: 6 year: 2020 article-title: Passivating surface defects of n‐SnO2 electron transporting layer by InP/ZnS quantum dots: toward efficient and stable organic solar cells publication-title: Adv Electron Mater – volume: 6 start-page: 5122 issue: 7 year: 2014 end-page: 5129 article-title: Improving the stability of bulk heterojunction solar cells by incorporating pH‐neutral PEDOT: PSS as the hole transport layer publication-title: ACS Appl Mater Interfaces – volume: 105 start-page: 2783 issue: 8 year: 2008 end-page: 2787 article-title: P‐type semiconducting nickel oxide as an efficiency‐enhancing anode interfacial layer in polymer bulk‐heterojunction solar cells publication-title: Proc Natl Acad Sci – volume: 76 year: 2020 article-title: Efficiency enhancement of organic solar cells enabled by interface engineering of sol‐gel zinc oxide with an oxadiazole‐based material publication-title: Org Electron – volume: 52 start-page: 146 year: 2018 end-page: 152 article-title: Flexographic printing of polycarbazole‐based inverted solar cells publication-title: Org Electron – volume: 29 start-page: 4176 issue: 10 year: 2017 end-page: 4180 article-title: Fullerene‐free organic solar cells with efficiency over 12% based on EDTA–ZnO hybrid cathode interlayer publication-title: Chem Mater – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 8 article-title: Robust metal ion‐chelated polymer interfacial layer for ultraflexible non‐fullerene organic solar cells publication-title: Nat Commun – volume: 5 year: 2015 article-title: Carrier‐selectivity‐dependent charge recombination dynamics in organic photovoltaic cells with a ferroelectric blend interlayer publication-title: Adv Energy Mater – volume: 51 start-page: 8197 issue: 20 year: 2018 end-page: 8204 article-title: Regulation of the polar groups in n‐type conjugated polyelectrolytes as electron transfer layer for inverted polymer solar cells publication-title: Macromolecules – volume: 10 start-page: 35896 issue: 42 year: 2018 end-page: 35903 article-title: Organophosphorus derivatives as cathode interfacial‐layer materials for highly efficient fullerene‐free polymer solar cells publication-title: ACS Appl Mater Interfaces – volume: 8 start-page: 5984 issue: 11 year: 2018 end-page: 5991 article-title: Interface engineering through electron transport layer modification for high efficiency organic solar cells publication-title: RSC Adv – year: 2021 article-title: Volatilizable solid additive‐assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80% publication-title: Adv Mater – volume: 12 start-page: 12083 issue: 10 year: 2020 end-page: 12092 article-title: Development of block copolymers with poly (3‐hexylthiophene) segments as compatibilizers in non‐fullerene organic solar cells publication-title: ACS Appl Mater Interfaces – volume: 2 start-page: 541 issue: 5 year: 2012 end-page: 545 article-title: Toward high‐stability inverted polymer solar cells with an electrodeposited ZnO electron transporting layer publication-title: Adv Energy Mater – volume: 8 year: 2020 article-title: Organic solar cells' efficiency enhanced by perylene monoimide phosphorus salt cathode interfacial layer publication-title: Energ Technol – volume: 16 start-page: 708 issue: 4 year: 2004 end-page: 716 article-title: Novel electroluminescent conjugated polyelectrolytes based on polyfluorene publication-title: Chem Mater – volume: 7 start-page: 158 issue: 2 year: 2008 end-page: 164 article-title: Morphology evolution via self‐organization and lateral and vertical diffusion in polymer: fullerene solar cell blends publication-title: Nat Mater – volume: 93 start-page: 441 issue: 23 year: 2008 article-title: High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self‐assembled monolayer publication-title: Appl Phys Lett – volume: 564 start-page: 213 year: 2014 end-page: 217 article-title: Stabilization of aluminum doped zinc oxide nanoparticle suspensions and their application in organic solar cells publication-title: Thin Solid Films – volume: 91 start-page: 51 year: 2019 end-page: 79 article-title: Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules publication-title: Prog Polym Sci – volume: 3 issue: 5 year: 2021 article-title: Metal/covalent‐organic frameworks for electrochemical energy storage applications publication-title: EcoMat – volume: 401 start-page: 13 year: 2018 end-page: 19 article-title: Tellurophene‐based metal‐organic framework nanosheets for high‐performance organic solar cells publication-title: J Power Sources – volume: 3 start-page: 10660 issue: 20 year: 2015 end-page: 10665 article-title: Efficiency exceeding 10% for inverted polymer solar cells with a ZnO/ionic liquid combined cathode interfacial layer publication-title: J Mater Chem A – volume: 3 start-page: 297 issue: 5 year: 2009 end-page: 302 article-title: Bulk heterojunction solar cells with internal quantum efficiency approaching 100% publication-title: Nat Photon – volume: 88 year: 2006 article-title: Efficient inverted polymer solar cells publication-title: Appl Phys Lett – volume: 270 start-page: 1789 issue: 5243 year: 1995 end-page: 1791 article-title: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor‐acceptor heterojunctions publication-title: Science – volume: 19 start-page: 2445 issue: 18 year: 2007 end-page: 2449 article-title: Air‐stable polymer electronic devices publication-title: Adv Mater – volume: 29 year: 2019 article-title: Use of the Phen‐NaDPO: Sn (SCN) 2 blend as electron transport layer results to consistent efficiency improvements in organic and hybrid perovskite solar cells publication-title: Adv Funct Mater – volume: 9 start-page: 11828 issue: 13 year: 2017 end-page: 11836 article-title: Amorphous tin oxide as a low‐temperature‐processed electron‐transport layer for organic and hybrid perovskite solar cells publication-title: ACS Appl Mater Interfaces – volume: 20 start-page: 415 issue: 3 year: 2008 end-page: 419 article-title: A semi‐transparent plastic solar cell fabricated by a lamination process publication-title: Adv Mater – volume: 23 start-page: 4636 issue: 40 year: 2011 end-page: 4643 article-title: Simultaneous enhancement of open‐circuit voltage, short‐circuit current density, and fill factor in polymer solar cells publication-title: Adv Mater – volume: 10 year: 2020 article-title: The future of flexible organic solar cells publication-title: Adv Energy Mater – volume: 7 start-page: 25088 issue: 43 year: 2019 end-page: 25101 article-title: Suppressing photo‐oxidation of non‐fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers publication-title: J Mater Chem A – volume: 90 year: 2007 article-title: Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells publication-title: Appl Phys Lett – volume: 2 start-page: 849 issue: 11 year: 2017 end-page: 860 article-title: Emergence of highly transparent photovoltaics for distributed applications publication-title: Nat Energy – volume: 8 start-page: 904 issue: 11 year: 2009 end-page: 909 article-title: On the origin of the open‐circuit voltage of polymer–fullerene solar cells publication-title: Nat Mater – volume: 2 start-page: 1732 issue: 6 year: 2014 end-page: 1737 article-title: Facile preparation of TiO X film as an interface material for efficient inverted polymer solar cells publication-title: J Mater Chem A – volume: 17 start-page: 2991 issue: 5 year: 2007 end-page: 2999 article-title: Organic thin‐film photovoltaic cells based on oligothiophenes with reduced bandgap publication-title: Adv Funct Mater – volume: 24 year: 2013 article-title: Tuning indium tin oxide work function with solution‐processed alkali carbonate interfacial layers for high‐efficiency inverted organic photovoltaic cells publication-title: Nanotechnology – volume: 6 start-page: 20569 issue: 23 year: 2014 end-page: 20573 article-title: Disodium edetate as a promising interfacial material for inverted organic solar cells and the device performance optimization publication-title: ACS Appl Mater Interfaces – volume: 6 start-page: 292 year: 2018 article-title: Constructing desired vertical component distribution within a PBDB‐T: ITIC‐M photoactive layer via fine‐tuning the surface free energy of a titanium chelate cathode buffer layer publication-title: Front Chem – volume: 20 start-page: 715 issue: 1 year: 2019 end-page: 721 article-title: Potassium‐presenting zinc oxide surfaces induce vertical phase separation in fullerene‐free organic photovoltaics publication-title: Nano Lett – volume: 117 start-page: 24804 issue: 47 year: 2013 end-page: 24814 article-title: Electrostatic self‐assembled metal oxide/conjugated polyelectrolytes as electron‐transporting layers for inverted solar cells with high efficiency publication-title: J Phys Chem C – volume: 6 start-page: 4457 issue: 16 year: 2018 end-page: 4463 article-title: Efficient device engineering for inverted non‐fullerene organic solar cells with low energy loss publication-title: J Mater Chem C – volume: 30 year: 2018 article-title: A highly efficient non‐fullerene organic solar cell with a fill factor over 0.80 enabled by a fine‐tuned hole‐transporting layer publication-title: Adv Mater – volume: 3 issue: 3 year: 2021 article-title: Multifunctional CNT: TiO2 additives in spiro‐OMeTAD layer for highly efficient and stable perovskite solar cells publication-title: EcoMat – volume: 70 start-page: 25 year: 2019 end-page: 31 article-title: Surface modification of ZnO electron transport layers with glycine for efficient inverted non‐fullerene polymer solar cells publication-title: Org Electron – volume: 7 start-page: 25808 issue: 45 year: 2019 end-page: 25817 article-title: A universal approach for optimizing charge extraction in electron transporting layer‐free organic solar cells via Lewis base doping publication-title: J Mater Chem A – volume: 75 year: 2019 article-title: Effect of spatial molecular configuration of ZnO/polyethylenimine hybrid electron injection materials on OLEDs performance publication-title: Org Electron – volume: 63 start-page: 143 year: 2018 end-page: 148 article-title: Enhanced performance of inverted non‐fullerene organic solar cells through modifying zinc oxide surface with self‐assembled monolayers publication-title: Org Electron – volume: 13 year: 2019 article-title: Self‐assembled monomolecular layer modified ZnO for efficient inverted polymer solar cells with 11.53% efficiency publication-title: Phys Status Solidi RRL – volume: 3 issue: 5 year: 2021 article-title: Inorganic top electron transport layer for high performance inverted perovskite solar cells publication-title: EcoMat – volume: 5 year: 2020 article-title: Scalable fabrication of organic solar cells based on non‐fullerene acceptors publication-title: Flexible and Printed Electron – volume: 42 start-page: 1758 issue: 11 year: 2009 end-page: 1767 article-title: Critical interfaces in organic solar cells and their influence on the open‐circuit voltage publication-title: Acc Chem Res – volume: 3 issue: 5 year: 2021 article-title: Toward improved stability of nonfullerene organic solar cells: impact of interlayer and built‐in potential publication-title: EcoMat – volume: 131 start-page: 13185 issue: 37 year: 2019 end-page: 13189 article-title: Tetrahydroxy‐perylene Bisimide embedded in a zinc oxide thin film as an electron‐transporting layer for high‐performance non‐fullerene organic solar cells publication-title: Angew Chem – volume: 28 start-page: 4734 issue: 23 year: 2016 end-page: 4739 article-title: Fullerene‐free polymer solar cells with over 11% efficiency and excellent thermal stability publication-title: Adv Mater – volume: 33 year: 2021 article-title: Nanographene–Osmapentalyne complexes as a cathode interlayer in organic solar cells enhance efficiency over 18% publication-title: Adv Mater – volume: 19 start-page: 1227 issue: 8 year: 2009 end-page: 1234 article-title: Vertical phase separation in poly (3‐hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells publication-title: Adv Funct Mater – volume: 22 start-page: 16224 issue: 32 year: 2012 end-page: 16229 article-title: Room‐temperature solution processed SnO x as an electron extraction layer for inverted organic solar cells with superior thermal stability publication-title: J Mater Chem – volume: 8 start-page: 5273 issue: 15 year: 2020 end-page: 5279 article-title: Design and synthesis of an amino‐functionalized non‐fullerene acceptor as a cathode interfacial layer for polymer solar cells publication-title: J Mater Chem C – volume: 68 start-page: 168 year: 2019 end-page: 175 article-title: Enhancing the electron blocking ability of n‐type MoO3 by doping with p‐type NiOx for efficient nonfullerene polymer solar cells publication-title: Org Electron – volume: 32 year: 2020 article-title: Tailoring and modifying an organic electron acceptor toward the cathode interlayer for highly efficient organic solar cells publication-title: Adv Mater – volume: 51 start-page: 913 issue: 12 year: 1987 end-page: 915 article-title: Organic electroluminescent diodes publication-title: Appl Phys Lett – volume: 14 start-page: 3190 issue: 12 year: 2013 end-page: 3194 article-title: An X‐ray fluorescence study on the segregation of Cs and I in an inverted organic solar cell publication-title: Org Electron – volume: 9 start-page: 43871 issue: 50 year: 2017 end-page: 43879 article-title: Incorporating an electrode modification layer with a vertical phase separated photoactive layer for efficient and stable inverted nonfullerene polymer solar cells publication-title: ACS Appl Mater Interfaces – volume: 14 start-page: 3945 issue: 7 year: 2021 end-page: 3953 article-title: Rational compatibility in a ternary matrix enables all‐small‐molecule organic solar cells with over 16% efficiency publication-title: Energy Environ Sci – volume: 86 start-page: 499 issue: 4 year: 2005 end-page: 516 article-title: Lifetimes of organic photovoltaics: photochemistry, atmosphere effects and barrier layers in ITO‐MEHPPV: PCBM‐aluminium devices publication-title: Sol Energy Mater Sol Cells – volume: 139 start-page: 7148 issue: 21 year: 2017 end-page: 7151 article-title: Molecular optimization enables over 13% efficiency in organic solar cells publication-title: J Am Chem Soc – volume: 8 start-page: 456 issue: 2 year: 2015 end-page: 468 article-title: Solution‐derived poly (ethylene glycol)‐TiO x nanocomposite film as a universal cathode buffer layer for enhancing efficiency and stability of polymer solar cells publication-title: Nano Res – volume: 32 year: 2020 article-title: A cost‐effective, aqueous‐solution‐processed cathode interlayer based on organosilica nanodots for highly efficient and stable organic solar cells publication-title: Adv Mater – volume: 9 year: 2019 article-title: Slot‐die and roll‐to‐roll processed single junction organic photovoltaic cells with the highest efficiency publication-title: Adv Energy Mater. – volume: 12 start-page: 27405 issue: 24 year: 2020 end-page: 27415 article-title: Efficient non‐fullerene organic photovoltaics printed by electrospray via solvent engineering publication-title: ACS Appl Mater Interfaces – volume: 6 start-page: 6327 issue: 15 year: 2018 end-page: 6334 article-title: Highly efficient non‐fullerene polymer solar cells enabled by novel non‐conjugated small‐molecule cathode interlayers publication-title: J Mater Chem A – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 8 article-title: Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open‐circuit voltages publication-title: Nat Commun – volume: 20 start-page: 2575 issue: 13 year: 2010 end-page: 2598 article-title: Interface investigation and engineering–achieving high performance polymer photovoltaic devices publication-title: J Mater Chem – volume: 64 year: 2019 article-title: Morphology optimization via molecular weight tuning of donor polymer enables all‐polymer solar cells with simultaneously improved performance and stability publication-title: Nano Energy – volume: 13 start-page: 275 year: 2015 end-page: 282 article-title: Efficiency improved for inverted polymer solar cells with electrostatically self‐assembled BenMeIm‐cl ionic liquid layer as cathode interface layer publication-title: Nano Energy – volume: 53 start-page: 296 year: 2018 end-page: 302 article-title: Efficient organic solar cells employing ytterbium ion‐doped zinc oxide as cathode transporting layer publication-title: Org Electron – volume: 5 start-page: 2408 issue: 9 year: 2021 end-page: 2419 article-title: Reduced non‐radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency publication-title: Joule – volume: 197 start-page: 311 year: 2020 end-page: 316 article-title: Electrospun ZnO nanofiber interlayers for enhanced performance of organic photovoltaic devices publication-title: Sol Energy – volume: 27 start-page: 1170 issue: 7 year: 2015 end-page: 1174 article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells publication-title: Adv Mater – volume: 25 start-page: 2397 issue: 17 year: 2013 end-page: 2402 article-title: Efficient solution‐processed small‐molecule solar cells with inverted structure publication-title: Adv Mater – volume: 31 start-page: 201 year: 2017 end-page: 209 article-title: High performance polymer solar cells with electron extraction and light‐trapping dual functional cathode interfacial layer publication-title: Nano Energy – volume: 32 year: 2019 article-title: Beyond ternary OPV: high‐throughput experimentation and self‐driving laboratories optimize multi‐component systems publication-title: Adv Mater – volume: 14 start-page: 3083 issue: 11 year: 2013 end-page: 3088 article-title: Device stability of inverted and conventional bulk heterojunction solar cells with MoO3 and ZnO nanoparticles as charge transport layers publication-title: Org Electron – volume: 2 start-page: 7602 issue: 10 year: 2019 end-page: 7608 article-title: Reversible chemical reactivity of non‐fullerene acceptors for organic solar cells under acidic and basic environment publication-title: ACS Appl Energy Mater – volume: 6 start-page: 1438 issue: 7 year: 2019 end-page: 1443 article-title: Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO 2 for nonfullerene organic solar cells publication-title: Mater Horiz – volume: 8 start-page: 15795 issue: 4 year: 2020 end-page: 15803 article-title: A biopolymeric buffer layer improves device efficiency and stability in inverted organic solar cells publication-title: J Mater Chem C – volume: 2 year: 2015 article-title: Morphology evolution in high‐performance polymer solar cells processed from nonhalogenated solvent publication-title: Adv Sci – volume: 12 start-page: 3301 issue: 3 year: 2019 end-page: 3326 article-title: Materials for interfaces in organic solar cells and photodetectors publication-title: ACS Appl Mater Interfaces – volume: 1 issue: 1 year: 2019 article-title: Suppressing the excessive aggregation of nonfullerene acceptor in blade‐coated active layer by using n‐type polymer additive to achieve large‐area printed organic solar cells with efficiency over 15% publication-title: EcoMat – volume: 57 start-page: 9675 issue: 31 year: 2018 end-page: 9678 article-title: Combining fullerenes and zwitterions in non‐conjugated polymer interlayers to raise solar cell efficiency publication-title: Angew Chem Int Ed – volume: 10 start-page: 80 issue: 1 year: 2020 article-title: Hybrid ZnO electron transport layer by down conversion complexes for dual improvements of photovoltaic and stable performances in polymer solar cells publication-title: Nanomaterials – volume: 18 start-page: 572 issue: 5 year: 2006 end-page: 576 article-title: New architecture for high‐efficiency polymer photovoltaic cells using solution‐based titanium oxide as an optical spacer publication-title: Adv Mater – volume: 7 start-page: 3570 issue: 8 year: 2019 end-page: 3576 article-title: Exquisite modulation of ZnO nanoparticle electron transporting layer for high‐performance fullerene‐free organic solar cell with inverted structure publication-title: J Mater Chem A – volume: 13 start-page: 697 issue: 14 year: 2012 end-page: 704 article-title: Efficient inverted polymer solar cells incorporating doped organic electron transporting layer publication-title: Org Electron – volume: 12 start-page: 6315 issue: 12 year: 2012 end-page: 6321 article-title: Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells publication-title: Nano Lett – volume: 2 start-page: 1337 issue: 11 year: 2011 end-page: 1350 article-title: Selective interlayers and contacts in organic photovoltaic cells publication-title: J Phys Chem Lett – volume: 583 start-page: 86 year: 2015 end-page: 90 article-title: Efficient polymer: fullerene bulk heterojunction solar cells with n‐type doped titanium oxide as an electron transport layer publication-title: Thin Solid Films – volume: 202 year: 2019 article-title: Impact of P3HT materials properties and layer architecture on OPV device stability publication-title: Sol Energy Mater Sol Cells – volume: 14 start-page: 300 issue: 5 year: 2020 end-page: 305 article-title: High‐efficiency organic solar cells with low non‐radiative recombination loss and low energetic disorder publication-title: Nat Photon – volume: 3 year: 2016 article-title: A room‐temperature Processable PDI‐based electron‐transporting layer for enhanced performance in PDI‐based non‐fullerene solar cells publication-title: Adv Mater Interfaces – volume: 22 start-page: E135 issue: 20 year: 2010 end-page: E138 article-title: For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4% publication-title: Adv Mater – volume: 2 year: 2018 article-title: Fully roll‐to‐roll printed P3HT/indene‐C60‐Bisadduct modules with high open‐circuit voltage and efficiency publication-title: Sol RRL – volume: 7 start-page: 1 issue: 1 year: 2016 end-page: 9 article-title: Structural control of mixed ionic and electronic transport in conducting polymers publication-title: Nat Commun – volume: 31 year: 2019 article-title: Achieving over 15% efficiency in organic photovoltaic cells via copolymer design publication-title: Adv Mater – volume: 7 start-page: 1966 issue: 6 year: 2014 end-page: 1973 article-title: Perylene diimides: a thickness‐insensitive cathode interlayer for high performance polymer solar cells publication-title: Energy Environ Sci – volume: 7 start-page: 10795 issue: 35 year: 2019 end-page: 10801 article-title: Polydopamine/ZnO electron transport layers enhance charge extraction in inverted non‐fullerene organic solar cells publication-title: J Mater Chem C – volume: 16 start-page: 95 issue: 1 year: 2006 end-page: 100 article-title: Using self‐assembling dipole molecules to improve charge collection in molecular solar cells publication-title: Adv Funct Mater – volume: 124 start-page: 2307 issue: 4 year: 2020 end-page: 2312 article-title: Influence of substituent groups on chemical reactivity kinetics of nonfullerene acceptors publication-title: J Phys Chem C – volume: 117 start-page: 189 year: 2013 end-page: 193 article-title: Improvement in power conversion efficiency and long‐term lifetime of organic photovoltaic cells by using bathophenanthroline/molybdenum oxide as compound cathode buffer layer publication-title: Sol Energy Mater Sol Cells – volume: 24 start-page: 3046 issue: 22 year: 2012 end-page: 3052 article-title: Dual plasmonic nanostructures for high performance inverted organic solar cells publication-title: Adv Mater – volume: 2 issue: 1 year: 2020 article-title: Potassium stabilization of methylammonium lead bromide perovskite for robust photocatalytic H2 generation publication-title: EcoMat – volume: 5 start-page: 2845 issue: 19 year: 2018 end-page: 2851 article-title: Conductive fullerene surfactants via anion doping as cathode interlayers for efficient organic and perovskite solar cells publication-title: Org Chem Front – volume: 19 start-page: 1835 issue: 14 year: 2007 end-page: 1838 article-title: Enhancing the photovoltage of polymer solar cells by using a modified cathode publication-title: Adv Mater – volume: 89 year: 2006 article-title: On the function of a bathocuproine buffer layer in organic photovoltaic cells publication-title: Appl Phys Lett – volume: 31 year: 2019 article-title: 12.5% flexible nonfullerene solar cells by passivating the chemical interaction between the active layer and polymer interfacial layer publication-title: Adv Mater – volume: 17 year: 2021 article-title: Simultaneous improvement of efficiency and stability of organic photovoltaic cells by using a cross‐linkable fullerene derivative publication-title: Small – volume: 5 start-page: 713 issue: 3 year: 2013 end-page: 718 article-title: Development of inverted organic solar cells with TiO2 interface layer by using low‐temperature atomic layer deposition publication-title: ACS Appl Mater Interfaces – volume: 78 start-page: 841 issue: 6 year: 2001 end-page: 843 article-title: 2.5% efficient organic plastic solar cells publication-title: Appl Phys Lett – volume: 2 issue: 4 year: 2020 article-title: Reducing V OC loss via structure compatible and high lowest unoccupied molecular orbital nonfullerene acceptors for over 17%‐efficiency ternary organic photovoltaics publication-title: EcoMat – volume: 8 start-page: 8992 issue: 26 year: 2020 end-page: 8998 article-title: One‐step processing of multilayers in organic solar cells publication-title: J Mater Chem C – volume: 6 year: 2019 article-title: Simple approach to overcome thickness tolerance of interlayer without sacrificing the performances of polymer solar cells publication-title: Adv Mater Interfaces – volume: 4 year: 2014 article-title: Enhanced device efficiency of Bilayered inverted organic solar cells based on Photocurable P3HTs with a light‐harvesting ZnO Nanorod Array publication-title: Adv Energy Mater – volume: 95 start-page: 2194 issue: 8 year: 2011 end-page: 2199 article-title: Comparison of various sol–gel derived metal oxide layers for inverted organic solar cells publication-title: Sol Energy Mater Sol Cells – volume: 141 start-page: 93 year: 2015 end-page: 100 article-title: Application of a water‐soluble metallophthalocyanine derivative as a cathode interlayer for the polymer solar cells publication-title: Sol Energy Mater Sol Cells – volume: 32 year: 2020 article-title: A highly conductive titanium oxynitride electron‐selective contact for efficient photovoltaic devices publication-title: Adv Mater – volume: 6 start-page: 1 issue: 1 year: 2015 end-page: 9 article-title: Inverted polymer fullerene solar cells exceeding 10% efficiency with poly (2‐ethyl‐2‐oxazoline) nanodots on electron‐collecting buffer layers publication-title: Nat Commun – volume: 9 year: 2019 article-title: Evaporation‐free nonfullerene flexible organic solar cell modules manufactured by an all‐solution process publication-title: Adv Energy Mater – volume: 32 year: 2020 article-title: Single‐junction organic photovoltaic cells with approaching 18% efficiency publication-title: Adv Mater – volume: 5 year: 2018 article-title: Carbonized bamboo‐derived carbon Nanodots as efficient cathode interfacial layers in high‐performance organic photovoltaics publication-title: Adv Mater Interfaces – volume: 7 start-page: 12426 issue: 20 year: 2019 end-page: 12433 article-title: An efficient binary cathode interlayer for large‐bandgap non‐fullerene organic solar cells publication-title: J Mater Chem A – volume: 82 year: 2020 article-title: Fully doctor‐bladed efficient organic solar cells processed under ambient condition publication-title: Org Electron – volume: 97 year: 2010 article-title: High‐efficiency inverted bulk heterojunction polymer solar cells with UV ozone‐treated ultrathin aluminum interlayer publication-title: Appl Phys Lett – volume: 26 start-page: 780 issue: 5 year: 2014 end-page: 785 article-title: Conductive conjugated polyelectrolyte as hole‐transporting layer for organic bulk heterojunction solar cells publication-title: Adv Mater – volume: 50 start-page: 565 issue: C year: 2013 end-page: 569 article-title: Efficient polymer bulk heterojunction solar cells with cesium acetate as the cathode interfacial layer publication-title: Renew Energy – volume: 8 issue: 8 year: 2021 article-title: Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6: Y6‐1O as acceptor publication-title: Natl Sci Rev – volume: 17 start-page: 119 issue: 2 year: 2018 end-page: 128 article-title: Organic solar cells based on non‐fullerene acceptors publication-title: Nat Mater – volume: 4 start-page: 3861 issue: 10 year: 2011 end-page: 3877 article-title: Applications of ZnO in organic and hybrid solar cells publication-title: Energ Environ Sci – volume: 3 start-page: 3745 issue: 4 year: 2020 end-page: 3754 article-title: 13.2% efficiency of organic solar cells by controlling interfacial resistance resulting from well‐distributed vertical phase separation publication-title: ACS Appl Energy Mater – volume: 80 start-page: 1288 issue: 7 year: 2002 end-page: 1290 article-title: Effect of LiF/metal electrodes on the performance of plastic solar cells publication-title: Appl Phys Lett – volume: 6 start-page: 115 issue: 2 year: 2012 end-page: 120 article-title: High‐efficiency inverted dithienogermole–thienopyrrolodione‐based polymer solar cells publication-title: Nat Photon – volume: 31 year: 2019 article-title: Fused Benzothiadiazole: a building block for n‐type organic acceptor to achieve high‐performance organic solar cells publication-title: Adv Mater – volume: 30 start-page: 6187 issue: 6 year: 2019 end-page: 6200 article-title: Enhancing the photovoltaic characteristics of organic solar cells by introducing highly conductive graphene as a conductive platform for a PEDOT: PSS anode interfacial layer publication-title: J Mater Sci Mater Electron – volume: 9 start-page: 6797 issue: 11 year: 2021 end-page: 6804 article-title: Semitransparent organic solar cells exhibiting 13.02% efficiency and 20.2% average visible transmittance publication-title: J Mater Chem A – volume: 2 start-page: 1876 issue: 10 year: 2018 end-page: 1883 article-title: Improved fullerene‐free polymer solar cells using a rationally designed binary mixed solution of an electron extracting layer publication-title: Mater Chem Front – volume: 108 start-page: 50 year: 2013 end-page: 53 article-title: Effect of sol–gel derived ZnO annealing rate on light‐trapping in inverted polymer solar cells publication-title: Mater Lett – volume: 3 start-page: 1140 issue: 4 year: 2019 end-page: 1151 article-title: Single‐junction organic solar cell with over 15% efficiency using fused‐ring acceptor with electron‐deficient core publication-title: Joule – volume: 33 year: 2021 article-title: A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control publication-title: Adv Mater – volume: 6 start-page: 605 issue: 6 year: 2021 end-page: 613 article-title: Non‐fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells publication-title: Nat Energy – volume: 13 start-page: 635 issue: 2 year: 2020 end-page: 645 article-title: Over 17% efficiency ternary organic solar cells enabled by two non‐fullerene acceptors working in an alloy‐like model publication-title: Energ Environ Sci – volume: 25 start-page: 4725 issue: 23 year: 2013 end-page: 4730 article-title: Nanoscale dispersions of gelled Sno2: material properties and device applications publication-title: Chem Mater – volume: 476 start-page: 897 year: 2019 end-page: 904 article-title: Enhanced photovoltaic performance of Sb2S3‐sensitized solar cell using a novel Ni‐4 mercaptophenol hybrid interfacial layer publication-title: Appl Surf Sci – volume: 22 start-page: 24202 issue: 46 year: 2012 end-page: 24212 article-title: Metal oxides for interface engineering in polymer solar cells publication-title: J Mater Chem – volume: 2 year: 2018 article-title: Tris (8‐hydroxyquinoline) aluminum (III)‐cored molecular cathode interlayer: improving electron mobility and photovoltaic efficiency of polymer solar cells publication-title: Sol RRL – volume: 95 start-page: 182 issue: 1 year: 2009 article-title: Plasmonic‐enhanced polymer photovoltaic devices incorporating solution‐processable metal nanoparticles publication-title: Appl Phys Lett – volume: 7 start-page: 25830 issue: 45 year: 2019 end-page: 25837 article-title: Intrinsic photo‐degradation and mechanism of polymer solar cells: the crucial role of non‐fullerene acceptors publication-title: J Mater Chem A – volume: 31 year: 2019 article-title: 17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT: PSS publication-title: Adv Mater – volume: 144 start-page: 724 year: 2016 end-page: 731 article-title: Fully gravure printed organic photovoltaic modules: a straightforward process with a high potential for large scale production publication-title: Sol Energy Mater Sol Cells – volume: 9 year: 2019 article-title: Organic solar cells: evaporation‐free nonfullerene flexible organic solar cell modules manufactured by An all‐solution process (Adv. Energy mater. 42/2019) publication-title: Adv Energy Mater – volume: 20 start-page: 6189 issue: 29 year: 2010 end-page: 6194 article-title: Inverted organic solar cells with ITO electrodes modified with an ultrathin Al 2 O 3 buffer layer deposited by atomic layer deposition publication-title: J Mater Chem – volume: 5 year: 2015 article-title: Tin oxide (SnOx) as universal “light‐soaking” free electron extraction material for organic solar cells publication-title: Adv Energy Mater – volume: 191 start-page: 219 year: 2019 end-page: 226 article-title: Efficient non‐fullerene organic solar cells based on thickness‐insensitive conjugated small molecule cathode interface publication-title: Sol Energy – volume: 4 start-page: 2009 issue: 4 year: 2012 end-page: 2017 article-title: Highly efficient, inverted polymer solar cells with indium tin oxide modified with solution‐processed zwitterions as the transparent cathode publication-title: ACS Appl Mater Interfaces – volume: 106 year: 2011 article-title: Band bending in conjugated polymer layers publication-title: Phys Rev Lett – volume: 12 start-page: 14244 issue: 12 year: 2020 end-page: 14253 article-title: Composite interlayer consisting of alcohol‐soluble polyfluorene and carbon nanotubes for efficient polymer solar cells publication-title: ACS Appl Mater Interfaces – volume: 74 start-page: 144 year: 2019 end-page: 151 article-title: Improved performance of quantum dot light‐emitting diodes by hybrid electron transport layer comprised of ZnO nanoparticles doped organic small molecule publication-title: Org Electron – volume: 109 start-page: 5868 issue: 11 year: 2009 end-page: 5923 article-title: Synthesis of conjugated polymers for organic solar cell applications publication-title: Chem Rev – volume: 6 start-page: 2273 issue: 5 year: 2018 end-page: 2278 article-title: Chemical reaction between an ITIC electron acceptor and an amine‐containing interfacial layer in non‐fullerene solar cells publication-title: J Mater Chem A – volume: 10 start-page: 1784 issue: 8 year: 2017 end-page: 1791 article-title: Interface design for high‐efficiency non‐fullerene polymer solar cells publication-title: Energy Environ Sci – volume: 89 year: 2006 article-title: Inverted bulk‐heterojunction organic photovoltaic device using a solution‐derived ZnO underlayer publication-title: Appl Phys Lett – volume: 3 start-page: 227 issue: 1 year: 2019 end-page: 239 article-title: A printable organic cathode interlayer enables over 13% efficiency for 1‐cm2 organic solar cells publication-title: Joule – volume: 90 year: 2007 article-title: High performance polythiophene/fullerene bulk‐heterojunction solar cell with a Ti O x hole blocking layer publication-title: Appl Phys Lett – volume: 299 start-page: 366 year: 2019 end-page: 371 article-title: Nickel oxide and polytetrafluoroethylene stacked structure as an interfacial layer for efficient polymer solar cells publication-title: Electrochim Acta – volume: 58 start-page: 5677 issue: 17 year: 2019 end-page: 5681 article-title: Transforming Ionene polymers into efficient cathode interlayers with pendent fullerenes publication-title: Angew Chem Int Ed – volume: 2 start-page: 1663 issue: 3 year: 2019 end-page: 1675 article-title: Lithium doping of ZnO for high efficiency and stability fullerene and non‐fullerene organic solar cells publication-title: ACS Appl Energy Mater – volume: 1 start-page: 3387 issue: 10 year: 2013 end-page: 3394 article-title: Pyridinium salt‐based molecules as cathode interlayers for enhanced performance in polymer solar cells publication-title: J Mater Chem A – volume: 9 start-page: 571 issue: 11 year: 2017 article-title: The effect of donor and nonfullerene acceptor inhomogeneous distribution within the photoactive layer on the performance of polymer solar cells with different device structures publication-title: Polymers – volume: 9 start-page: 36070 issue: 41 year: 2017 end-page: 36081 article-title: Naphthalene diimide based n‐type conjugated polymers as efficient cathode interfacial materials for polymer and perovskite solar cells publication-title: ACS Appl Mater Interfaces – volume: 94 start-page: 1618 issue: 10 year: 2010 end-page: 1621 article-title: Low work function metal modified ITO as cathode for inverted polymer solar cells publication-title: Sol Energy Mater Sol Cells – volume: 27 start-page: 2938 issue: 18 year: 2015 end-page: 2944 article-title: Single‐junction organic solar cells based on a novel wide‐bandgap polymer with efficiency of 9.7% publication-title: Adv Mater – volume: 65 start-page: 272 issue: 4 year: 2020 end-page: 275 article-title: 18% efficiency organic solar cells publication-title: Sci Bull – volume: 7 start-page: 15944 issue: 26 year: 2019 end-page: 15950 article-title: Cathode interfacial layer‐free all small‐molecule solar cells with efficiency over 12% publication-title: J Mater Chem A – volume: 132 start-page: 1377 issue: 4 year: 2010 end-page: 1382 article-title: Indene− C60 bisadduct: a new acceptor for high‐performance polymer solar cells publication-title: J Am Chem Soc – volume: 24 start-page: 1476 issue: 11 year: 2012 end-page: 1481 article-title: High‐performance inverted polymer solar cells with solution‐processed titanium chelate as electron‐collecting layer on ITO electrode publication-title: Adv Mater – volume: 2 start-page: 2238 issue: 3 year: 2019 end-page: 2245 article-title: Intermolecular n‐doping nonconjugated polymer cathode interfacial materials for organic solar cells publication-title: ACS Appl Energy Mater – volume: 64 year: 2001 article-title: Interface‐limited injection in amorphous organic semiconductors publication-title: Phys Rev B – volume: 91 year: 2007 article-title: The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study publication-title: Appl Phys Lett – volume: 43 start-page: 1227 issue: 9 year: 2010 end-page: 1236 article-title: A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance publication-title: Acc Chem Res – volume: 1 start-page: 5977 issue: 11 year: 2018 end-page: 5985 article-title: Effect of the electron transport layer on the interfacial energy barriers and lifetime of R2R printed organic solar cell modules publication-title: ACS Appl Energy Mater – volume: 586 start-page: 81 year: 2013 end-page: 84 article-title: Solution‐processed amorphous niobium oxide as a novel electron collection layer for inverted polymer solar cells publication-title: Chem Phys Lett – volume: 7 start-page: 11160 issue: 18 year: 2019 end-page: 11169 article-title: MXenes with tunable work functions and their application as electron‐and hole‐transport materials in non‐fullerene organic solar cells publication-title: J Mater Chem A – volume: 8 start-page: 340 issue: 2 year: 2015 end-page: 354 article-title: Recent advances in the development of organic photothermal nano‐agents publication-title: Nano Res – volume: 110 year: 2017 article-title: Open‐circuit voltage loss in annealed P3HT: perylene diimide bulk heterojunction solar cells publication-title: Appl Phys Lett – volume: 79 start-page: 126 issue: 1 year: 2001 end-page: 128 article-title: Very‐high‐efficiency double‐heterostructure copper phthalocyanine/C 60 photovoltaic cells publication-title: Appl Phys Lett – volume: 155 start-page: 1052 year: 2017 end-page: 1058 article-title: Ternary organic solar cells based on ZnO‐Ge double electron transport layer with enhanced power conversion efficiency publication-title: Sol Energy – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 10 article-title: Cathode engineering with perylene‐diimide interlayer enabling over 17% efficiency single‐junction organic solar cells publication-title: Nat Commun – volume: 13 start-page: 85 issue: 1 year: 2003 end-page: 88 article-title: Effects of postproduction treatment on plastic solar cells publication-title: Adv Funct Mater – volume: 95 start-page: 275 issue: 15 year: 2009 article-title: An inverted organic solar cell with an ultrathin ca electron‐transporting layer and MoO 3 hole‐transporting layer publication-title: Appl Phys Lett – volume: 23 start-page: 1679 issue: 14 year: 2011 end-page: 1683 article-title: Inverted polymer solar cells integrated with a low‐temperature‐annealed sol‐gel‐derived ZnO film as an electron transport layer publication-title: Adv Mater – year: 2006 – volume: 4 start-page: 4691 issue: 1 year: 2014 article-title: High performance polymer solar cells with as‐prepared zirconium acetylacetonate film as cathode buffer layer publication-title: Sci Rep – volume: 3 start-page: 758 issue: 3 year: 2016 end-page: 771 article-title: Improvement of inverted OPV performance by enhancement of ZnO layer properties as an electron transfer layer publication-title: Mater Today: Proc – volume: 7 start-page: 11152 issue: 36 year: 2019 end-page: 11159 article-title: Self‐doping n‐type polymer as a cathode interface layer enables efficient organic solar cells by increasing built‐in electric field and boosting interface contact publication-title: J Mater Chem C – volume: 9 start-page: 520 issue: 8 year: 2015 end-page: 524 article-title: Efficient polymer solar cells employing a non‐conjugated small‐molecule electrolyte publication-title: Nat Photon – volume: 7 start-page: 15887 issue: 26 year: 2019 end-page: 15894 article-title: Interfacial engineering and optical coupling for multicolored semitransparent inverted organic photovoltaics with a record efficiency of over 12% publication-title: J Mater Chem A – volume: 7 start-page: 2123 issue: 7 year: 2014 end-page: 2144 article-title: Recent progress in organic photovoltaics: device architecture and optical design publication-title: Energy Environ Sci – ident: e_1_2_9_114_1 doi: 10.1016/j.renene.2012.07.012 – ident: e_1_2_9_189_1 doi: 10.1002/anie.201803748 – ident: e_1_2_9_110_1 doi: 10.1016/j.orgel.2013.09.019 – ident: e_1_2_9_8_1 doi: 10.1002/adma.201908205 – ident: e_1_2_9_170_1 doi: 10.1039/C8QO00788H – ident: e_1_2_9_60_1 doi: 10.1063/1.1384001 – ident: e_1_2_9_142_1 doi: 10.3389/fchem.2018.00292 – volume: 4 start-page: 4691 issue: 1 year: 2014 ident: e_1_2_9_120_1 article-title: High performance polymer solar cells with as‐prepared zirconium acetylacetonate film as cathode buffer layer publication-title: Sci Rep doi: 10.1038/srep04691 – ident: e_1_2_9_188_1 doi: 10.1016/j.jechem.2019.08.005 – ident: e_1_2_9_214_1 doi: 10.1002/eom2.12133 – ident: e_1_2_9_218_1 doi: 10.1016/j.orgel.2018.09.016 – ident: e_1_2_9_104_1 doi: 10.1039/C9TA10002D – ident: e_1_2_9_243_1 doi: 10.1039/C4EE01223B – ident: e_1_2_9_9_1 doi: 10.1002/adma.201902965 – ident: e_1_2_9_39_1 doi: 10.1021/cm034650o – ident: e_1_2_9_161_1 doi: 10.1039/c0jm00662a – ident: e_1_2_9_103_1 doi: 10.1039/C7EE00601B – ident: e_1_2_9_244_1 doi: 10.1002/solr.201700160 – ident: e_1_2_9_106_1 doi: 10.1016/j.solmat.2010.04.082 – ident: e_1_2_9_55_1 doi: 10.1016/j.progpolymsci.2020.101222 – ident: e_1_2_9_177_1 doi: 10.1021/acsami.8b09313 – ident: e_1_2_9_5_1 doi: 10.1002/adma.201807577 – ident: e_1_2_9_128_1 doi: 10.1002/aenm.201301338 – ident: e_1_2_9_185_1 doi: 10.1038/s41467-020-15364-z – ident: e_1_2_9_59_1 doi: 10.7567/1347-4065/aafd8c – ident: e_1_2_9_181_1 doi: 10.1002/solr.201900179 – ident: e_1_2_9_160_1 doi: 10.1039/C9TA05789G – ident: e_1_2_9_187_1 doi: 10.1039/C7TA10306A – ident: e_1_2_9_108_1 doi: 10.1063/1.2723077 – ident: e_1_2_9_31_1 doi: 10.1007/s11426-017-9199-1 – ident: e_1_2_9_150_1 doi: 10.1002/adma.201200120 – ident: e_1_2_9_154_1 doi: 10.1021/acsami.7b13494 – ident: e_1_2_9_212_1 doi: 10.1016/j.orgel.2018.09.012 – ident: e_1_2_9_115_1 doi: 10.1016/j.solener.2017.07.053 – ident: e_1_2_9_98_1 doi: 10.1039/C9TA09961A – ident: e_1_2_9_58_1 doi: 10.1063/1.3174914 – ident: e_1_2_9_66_1 doi: 10.1016/j.apsusc.2019.01.130 – ident: e_1_2_9_139_1 doi: 10.1039/C8TA11624E – ident: e_1_2_9_45_1 doi: 10.1007/s10854-019-00921-0 – ident: e_1_2_9_149_1 doi: 10.1007/s12274-014-0620-y – ident: e_1_2_9_165_1 doi: 10.1021/am201844q – ident: e_1_2_9_231_1 doi: 10.1002/advs.201902269 – ident: e_1_2_9_233_1 doi: 10.1002/adma.202002973 – ident: e_1_2_9_191_1 doi: 10.1021/acsaem.8b02252 – ident: e_1_2_9_73_1 doi: 10.1134/S0012501619030011 – ident: e_1_2_9_63_1 doi: 10.1063/1.2730746 – ident: e_1_2_9_93_1 doi: 10.1039/b925382c – ident: e_1_2_9_134_1 doi: 10.1016/j.matlet.2013.06.063 – ident: e_1_2_9_117_1 doi: 10.1021/nl303419n – ident: e_1_2_9_23_1 doi: 10.1038/nmat5063 – ident: e_1_2_9_77_1 doi: 10.1002/eom2.12134 – ident: e_1_2_9_232_1 doi: 10.1021/acs.macromol.8b01490 – ident: e_1_2_9_14_1 doi: 10.1039/D1EE00496D – ident: e_1_2_9_100_1 doi: 10.1021/am500336s – ident: e_1_2_9_140_1 doi: 10.1002/eom2.12015 – ident: e_1_2_9_101_1 doi: 10.1021/acs.jpcc.9b09833 – ident: e_1_2_9_84_1 doi: 10.1016/j.solmat.2008.10.004 – ident: e_1_2_9_124_1 doi: 10.1039/C8RA07071G – ident: e_1_2_9_169_1 doi: 10.1038/nphoton.2015.126 – ident: e_1_2_9_131_1 doi: 10.1039/B921396A – ident: e_1_2_9_245_1 doi: 10.1016/j.orgel.2020.105725 – ident: e_1_2_9_225_1 doi: 10.1039/C9TC02781E – ident: e_1_2_9_46_1 doi: 10.1016/j.electacta.2019.01.028 – ident: e_1_2_9_158_1 doi: 10.1021/cm402462m – ident: e_1_2_9_217_1 doi: 10.1002/adma.201300295 – ident: e_1_2_9_44_1 doi: 10.1103/PhysRevB.73.085207 – ident: e_1_2_9_51_1 doi: 10.1021/ar900139v – ident: e_1_2_9_208_1 doi: 10.1021/jp405176u – ident: e_1_2_9_52_1 doi: 10.1021/jz2002259 – ident: e_1_2_9_109_1 doi: 10.1016/j.orgel.2012.10.020 – ident: e_1_2_9_201_1 doi: 10.1002/aenm.201500802 – ident: e_1_2_9_213_1 doi: 10.1039/C7RA13428B – ident: e_1_2_9_172_1 doi: 10.1038/s41467-020-16509-w – ident: e_1_2_9_74_1 doi: 10.1063/1.2171781 – ident: e_1_2_9_95_1 doi: 10.1039/C9MH00379G – ident: e_1_2_9_53_1 doi: 10.1002/adma.200601093 – ident: e_1_2_9_112_1 doi: 10.1088/0957-4484/24/48/484011 – ident: e_1_2_9_203_1 doi: 10.1002/ange.201907467 – ident: e_1_2_9_38_1 doi: 10.1063/1.1446988 – ident: e_1_2_9_155_1 doi: 10.1002/adma.202002608 – ident: e_1_2_9_43_1 doi: 10.1103/PhysRevB.64.085201 – ident: e_1_2_9_126_1 doi: 10.1016/j.orgel.2019.05.032 – ident: e_1_2_9_133_1 doi: 10.1016/j.tsf.2014.06.008 – ident: e_1_2_9_229_1 doi: 10.1002/eom2.12099 – ident: e_1_2_9_81_1 doi: 10.1063/1.2784961 – ident: e_1_2_9_250_1 doi: 10.1002/aenm.201902065 – ident: e_1_2_9_241_1 doi: 10.1021/acsami.0c03632 – ident: e_1_2_9_28_1 doi: 10.1002/adma.202102787 – ident: e_1_2_9_42_1 doi: 10.1016/j.mser.2008.12.001 – ident: e_1_2_9_202_1 doi: 10.1007/s12274-014-0615-8 – ident: e_1_2_9_215_1 doi: 10.1016/j.jpowsour.2018.08.078 – ident: e_1_2_9_17_1 doi: 10.1126/science.270.5243.1789 – ident: e_1_2_9_207_1 doi: 10.1002/adma.202101279 – ident: e_1_2_9_89_1 doi: 10.1117/12.2520187 – ident: e_1_2_9_123_1 doi: 10.1039/c1ee01873f – ident: e_1_2_9_152_1 doi: 10.1002/aenm.201401298 – ident: e_1_2_9_156_1 doi: 10.1002/aenm.201500277 – ident: e_1_2_9_40_1 doi: 10.1039/c2jm33838f – ident: e_1_2_9_222_1 doi: 10.1016/j.solener.2019.08.009 – ident: e_1_2_9_24_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_9_138_1 doi: 10.1016/j.orgel.2017.11.008 – ident: e_1_2_9_220_1 doi: 10.1016/j.orgel.2019.03.039 – ident: e_1_2_9_224_1 doi: 10.1021/acsaem.0c00218 – ident: e_1_2_9_180_1 doi: 10.1002/adma.201103006 – ident: e_1_2_9_96_1 doi: 10.1021/acsami.9b18095 – ident: e_1_2_9_227_1 doi: 10.1002/smll.202101133 – ident: e_1_2_9_199_1 doi: 10.1021/acsaem.9b02176 – ident: e_1_2_9_82_1 doi: 10.1063/1.3028094 – ident: e_1_2_9_226_1 doi: 10.1039/D0TC03048A – ident: e_1_2_9_234_1 doi: 10.1016/j.scib.2019.10.019 – ident: e_1_2_9_204_1 doi: 10.1002/adfm.201905810 – ident: e_1_2_9_87_1 doi: 10.1002/adma.201907801 – ident: e_1_2_9_113_1 doi: 10.1021/am5044278 – ident: e_1_2_9_119_1 doi: 10.1002/adma.201104863 – ident: e_1_2_9_11_1 doi: 10.1016/j.joule.2021.06.020 – ident: e_1_2_9_221_1 doi: 10.1002/admi.201600476 – ident: e_1_2_9_141_1 doi: 10.1021/acs.nanolett.9b04586 – ident: e_1_2_9_135_1 doi: 10.1016/j.solmat.2018.08.010 – ident: e_1_2_9_168_1 doi: 10.1039/c3ta01226c – ident: e_1_2_9_137_1 doi: 10.1016/j.orgel.2017.01.028 – ident: e_1_2_9_129_1 doi: 10.1016/j.orgel.2013.07.016 – ident: e_1_2_9_183_1 doi: 10.1021/acsami.7b10365 – ident: e_1_2_9_26_1 doi: 10.1039/C9EE03710A – ident: e_1_2_9_33_1 doi: 10.1016/j.scib.2020.01.001 – ident: e_1_2_9_216_1 doi: 10.1002/aelm.201901245 – ident: e_1_2_9_192_1 doi: 10.1039/C9TA02844G – ident: e_1_2_9_21_1 doi: 10.1002/adma.201404317 – ident: e_1_2_9_209_1 doi: 10.1038/ncomms9929 – ident: e_1_2_9_34_1 doi: 10.1021/ja908602j – ident: e_1_2_9_118_1 doi: 10.1016/j.orgel.2014.02.004 – ident: e_1_2_9_48_1 doi: 10.1016/j.nanoen.2016.11.032 – ident: e_1_2_9_56_1 doi: 10.1063/1.4980842 – ident: e_1_2_9_148_1 doi: 10.1039/C3TA13275G – ident: e_1_2_9_242_1 doi: 10.1016/j.solmat.2015.10.021 – ident: e_1_2_9_228_1 doi: 10.1021/acsami.9b22933 – ident: e_1_2_9_121_1 doi: 10.1002/adma.201500647 – ident: e_1_2_9_71_1 doi: 10.1038/nmat2102 – ident: e_1_2_9_2_1 doi: 10.1002/aenm.202000765 – ident: e_1_2_9_236_1 doi: 10.1002/pssr.201900372 – ident: e_1_2_9_50_1 doi: 10.1021/ma400924b – ident: e_1_2_9_72_1 doi: 10.1021/cr300005u – ident: e_1_2_9_176_1 doi: 10.1039/C8QM00311D – ident: e_1_2_9_194_1 doi: 10.1039/C9SE01079C – ident: e_1_2_9_12_1 doi: 10.1038/s41560-021-00820-x – ident: e_1_2_9_235_1 doi: 10.1039/C8TC00705E – ident: e_1_2_9_143_1 doi: 10.1021/acs.chemmater.7b01615 – ident: e_1_2_9_174_1 doi: 10.1039/D0TC00435A – ident: e_1_2_9_29_1 doi: 10.1002/adma.201004301 – ident: e_1_2_9_195_1 doi: 10.1021/acsami.9b22531 – ident: e_1_2_9_179_1 doi: 10.1002/advs.201500095 – ident: e_1_2_9_248_1 doi: 10.1021/acsaem.8b01040 – ident: e_1_2_9_196_1 doi: 10.1016/j.nanoen.2018.05.034 – ident: e_1_2_9_57_1 doi: 10.1103/PhysRevLett.106.216402 – ident: e_1_2_9_36_1 doi: 10.1038/ncomms11287 – ident: e_1_2_9_206_1 doi: 10.1039/C9TA01195A – ident: e_1_2_9_32_1 doi: 10.1002/adma.201808356 – ident: e_1_2_9_79_1 doi: 10.1039/D1TA01135A – ident: e_1_2_9_41_1 doi: 10.1063/1.371859 – ident: e_1_2_9_54_1 doi: 10.1063/1.1620683 – ident: e_1_2_9_83_1 doi: 10.1021/cr900182s – ident: e_1_2_9_159_1 doi: 10.1021/acsami.6b13675 – ident: e_1_2_9_6_1 doi: 10.1016/j.nanoen.2019.103931 – ident: e_1_2_9_91_1 doi: 10.1016/j.orgel.2019.02.009 – ident: e_1_2_9_16_1 doi: 10.1063/1.98799 – ident: e_1_2_9_246_1 doi: 10.1039/C8EE01150H – ident: e_1_2_9_144_1 doi: 10.1021/acsami.9b19830 – ident: e_1_2_9_88_1 doi: 10.1016/j.progpolymsci.2019.02.002 – ident: e_1_2_9_193_1 doi: 10.1002/adma.201804657 – ident: e_1_2_9_15_1 doi: 10.1016/j.solmat.2004.09.002 – ident: e_1_2_9_65_1 doi: 10.1016/j.orgel.2019.02.015 – ident: e_1_2_9_146_1 doi: 10.1016/j.orgel.2014.01.024 – ident: e_1_2_9_111_1 doi: 10.1002/adma.200701101 – ident: e_1_2_9_64_1 doi: 10.1073/pnas.0711990105 – ident: e_1_2_9_19_1 doi: 10.1002/adfm.200390011 – ident: e_1_2_9_249_1 doi: 10.1016/j.orgel.2017.10.016 – ident: e_1_2_9_105_1 doi: 10.1063/1.3250176 – ident: e_1_2_9_162_1 doi: 10.1063/1.3479916 – ident: e_1_2_9_122_1 doi: 10.1002/eom2.12127 – ident: e_1_2_9_167_1 doi: 10.1039/c4ee00022f – ident: e_1_2_9_37_1 doi: 10.1002/adma.201801801 – ident: e_1_2_9_78_1 doi: 10.1016/j.scib.2019.09.016 – ident: e_1_2_9_200_1 doi: 10.1016/j.orgel.2019.105427 – ident: e_1_2_9_247_1 doi: 10.1002/aenm.201901805 – ident: e_1_2_9_25_1 doi: 10.1038/s41467-019-13264-5 – ident: e_1_2_9_197_1 doi: 10.1038/nphoton.2011.317 – ident: e_1_2_9_99_1 doi: 10.1021/acsaem.9b01591 – ident: e_1_2_9_116_1 doi: 10.1016/j.solmat.2015.04.040 – ident: e_1_2_9_163_1 doi: 10.1016/j.cplett.2013.08.015 – ident: e_1_2_9_30_1 doi: 10.1021/jacs.7b02677 – ident: e_1_2_9_94_1 doi: 10.1039/C9TA07417A – ident: e_1_2_9_27_1 doi: 10.1002/adma.202105301 – ident: e_1_2_9_186_1 doi: 10.1002/adma.200602597 – ident: e_1_2_9_166_1 doi: 10.1016/j.nanoen.2015.02.032 – ident: e_1_2_9_85_1 doi: 10.1021/ar1000296 – ident: e_1_2_9_86_1 doi: 10.1016/j.solmat.2019.110151 – ident: e_1_2_9_97_1 doi: 10.1021/acsaem.8b01658 – ident: e_1_2_9_62_1 doi: 10.1063/1.2362624 – ident: e_1_2_9_210_1 doi: 10.1039/C5TA00930H – ident: e_1_2_9_178_1 doi: 10.1002/adma.201906557 – ident: e_1_2_9_70_1 doi: 10.1002/adfm.200500207 – ident: e_1_2_9_205_1 doi: 10.3390/nano10010080 – ident: e_1_2_9_151_1 doi: 10.1021/am302252p – ident: e_1_2_9_164_1 doi: 10.1016/j.solmat.2013.05.007 – ident: e_1_2_9_3_1 doi: 10.1038/s41560-017-0016-9 – ident: e_1_2_9_219_1 doi: 10.3390/polym9110571 – ident: e_1_2_9_92_1 doi: 10.1002/admi.201800031 – ident: e_1_2_9_230_1 doi: 10.1002/eom2.12092 – ident: e_1_2_9_7_1 doi: 10.1002/aenm.201970164 – ident: e_1_2_9_61_1 doi: 10.1063/1.5129351 – ident: e_1_2_9_157_1 doi: 10.1039/c2jm33445c – ident: e_1_2_9_175_1 doi: 10.1002/solr.201800182 – ident: e_1_2_9_239_1 doi: 10.1088/2058-8585/ab5f57 – ident: e_1_2_9_10_1 doi: 10.1002/eom2.12061 – ident: e_1_2_9_20_1 doi: 10.1002/adma.200903528 – ident: e_1_2_9_76_1 doi: 10.1016/j.jcis.2019.12.025 – ident: e_1_2_9_223_1 doi: 10.1016/j.orgel.2019.105483 – ident: e_1_2_9_238_1 doi: 10.1016/j.joule.2018.10.024 – ident: e_1_2_9_67_1 doi: 10.1063/1.2212270 – ident: e_1_2_9_184_1 doi: 10.1039/C9TC03506K – ident: e_1_2_9_190_1 doi: 10.1016/j.jechem.2019.12.011 – ident: e_1_2_9_237_1 doi: 10.1039/D0TC00195C – ident: e_1_2_9_182_1 doi: 10.1002/eom2.12006 – ident: e_1_2_9_147_1 doi: 10.1002/adma.200602653 – ident: e_1_2_9_47_1 doi: 10.1039/C9TA05023J – ident: e_1_2_9_130_1 doi: 10.1002/aenm.201100632 – ident: e_1_2_9_107_1 doi: 10.1038/srep01965 – ident: e_1_2_9_102_1 doi: 10.1002/adma.201806616 – ident: e_1_2_9_173_1 doi: 10.1039/C8TA00881G – ident: e_1_2_9_22_1 doi: 10.1002/adma.201600281 – ident: e_1_2_9_80_1 doi: 10.1002/adma.200501825 – ident: e_1_2_9_68_1 doi: 10.1002/adfm.200801286 – ident: e_1_2_9_69_1 doi: 10.1039/c4ee00260a – ident: e_1_2_9_90_1 doi: 10.1002/anie.201901536 – ident: e_1_2_9_136_1 doi: 10.1016/j.solmat.2011.03.023 – ident: e_1_2_9_198_1 doi: 10.1016/j.orgel.2012.01.009 – ident: e_1_2_9_13_1 doi: 10.1093/nsr/nwaa305 – ident: e_1_2_9_132_1 doi: 10.1063/1.2359579 – ident: e_1_2_9_211_1 doi: 10.1016/j.orgel.2019.06.035 – ident: e_1_2_9_127_1 doi: 10.1016/j.matpr.2016.02.007 – ident: e_1_2_9_125_1 doi: 10.1016/j.solener.2019.12.079 – ident: e_1_2_9_4_1 doi: 10.1038/s41566-019-0573-5 – ident: e_1_2_9_171_1 doi: 10.1002/ente.202000072 – ident: e_1_2_9_35_1 doi: 10.1002/adma.201302845 – ident: e_1_2_9_75_1 doi: 10.1002/adfm.200600917 – ident: e_1_2_9_240_1 doi: 10.1002/admi.201900797 – ident: e_1_2_9_153_1 doi: 10.1016/j.tsf.2015.03.061 – ident: e_1_2_9_18_1 doi: 10.1063/1.1345834 – ident: e_1_2_9_49_1 doi: 10.1038/nmat2548 – ident: e_1_2_9_145_1 doi: 10.1038/nphoton.2009.69 |
SSID | ssj0002504241 |
Score | 2.4913583 |
SecondaryResourceType | review_article |
Snippet | Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power conversion... Abstract Non‐fullerene acceptors are currently a hot research area in the development of organic solar cells (OSCs). At present, the‐state‐of‐the‐art power... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | cathode interlayer Cathodes charge extraction Coordination compounds device efficiency and stability Efficiency Electrodes Energy Energy conversion efficiency Fullerenes Hybrids Interfaces Interlayers Metal oxides non‐fullerene organic solar cell Photovoltaic cells Polymer matrix composites Polymers Salts Solar cells Stability |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LS8QwEMcHXS96EJ-4ukpALwrFNpukzUlcWRHBB6LoLaR5gLC66urdj-Bn9JM4SbOrgngrJfQxecx_pulvAHa8NDqQ6TItnMiY4SyTtuCZL4UWla9lGXFNZ-fi5Iad3vG7lHAbpW2V4zUxLtR2aEKOfB-VflEF2Fl-8PSchapR4etqKqExDTO4BFdVC2Z6_fPLq0mWJQC60EdNuKR03w0faEQqiF-eKAL7f6nMn1o1OpvjBZhPKpEcNt26CFPucQnmfrADl-EWBR86DBI3WOFyRe4fSWCwDq0jgQHxMtCopgkK0maMEVSnBGP9z_ePkHKPRVFIU9PJkFEIcElI4o9W4Pq4f310kqUqCZlh6F6zovZWVJrROueeC-cxYkAVJn1uculY7YVBm6MU8LlluSsL6g2jVGLgKIzW3VVo4c3dGhBd8sJwjQrRl8xzWVtXsprKGkWlQ2nUht2xwZRJBPFQyGKgGvYxVcG4Khq3DduTtk8NN-PPVr1g90mLwLqOJ_D1VZo6qtLeCa0L7wvLfLfUGBOW2uILSmO7krehM-41lSbgSH0PlzbsxZ785zFU_-KMxqP1_6-1AbM0_P4QUzAdaL2-vLlNFCWv9VYaeV9eweJ- priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LaxsxEMcH1720h9BXqBOnCNpLA4t3ZT0syKUpMabgtoeU-CYkrQQFJy62e-9H6GfsJ-mMdr2OIRR6WxYtuzt6zH8G6TcA75IJjsh0hVNRFSJIUZi6kkXSyqlJ8kZnXNP8s5p9E58WctGDi91ZmIYP0SXcaGbk9ZomuPOb0R4aGle3PLMR1CN4TGdraUMfF1-7DAvBuXguXYlunZJxetzxSflo__iBR8rg_gO1eV-zZqczfQZHrVpkH5rufQ69ePcCnt5jCL6EGxR-6DhY3miFyxb7fseIxbqqIyMWxHrpUFUzFKbNWGOoUhnG_H9-_abUey6OwpraToFtKNBllMzfvILr6dX1x1nRVksogkA3W1Q-1WriBPelTFLFhJEDqjGTylCaKHxSAW2PkiCVtSijrngKgnODAaQKzo2PoY8vj6-BOS2rIB0qxaRFksbXUQvPjUdxGdGWA3i_M5gNLUmcClosbcNA5paMa7NxB_C2a_uj4Wc82OqS7N61IOZ1voG_b9spZCcuReVclVJVizTWDmND7Wr8QRPqsZEDGO56zbYTcWMxQKwmxMgrB3Cee_Ifn2Gvvsx5vjr5n8an8ITToYicmBlCf7v-Gc9Qqmz9mzwi_wIqq-OP priority: 102 providerName: Wiley-Blackwell |
Title | Recent progress in cathode interlayer materials for non‐fullerene organic solar cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12156 https://www.proquest.com/docview/2611877860 https://doaj.org/article/8afe6aa1ff1d4f37a1407ad9f09cd395 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMcfOi96EH9idY6AXhTK2ixNmqPK5hCmIhN3C2magDB_4PTun-Df6F_iS9qNCaIXL6WUQNP30rzvC8nnARw6abQn08WaWx4zk7FYlmkWO8E1z10hRcA1DS55_5ZdjLLRXKkvvyeswgNXhmvn2lmudepcWjLXERozAqFL6RJpyo4M9FKMeXPJlJ-DPZgLY9OMR0rb9umBBpQC_xaBAqj_m7qc16ghyPTWYLVWh-Sk6tU6LNjHDViZYwZuwh0KPQwUJGyswmmK3D8Sz159Ki3x7IeXsUYVTVCIVmOLoColmON_vn_4pfZQDIVUtZwMmfjElvjF-8kWDHvd4Vk_rqsjxIZhWI3TwpU814wWSeYybh1mCqi-0DAmkZYVjhu0NUoAl5QssSKlzjBKJSaM3Gjd2YYGvtzuANEiS02mURk6wVwmi9IKVlBZoJi0KIkiOJoaTJmaHO4LWIxVxTymyhtXBeNGcDBr-1zxMn5sdertPmvhGdfhAX6-qj2v_vJ8BM2p11T9400UJoRp7pl4SQTHwZO_dEN1rwY03O3-R4f2YJn6wxFhgaYJjdeXN7uPkuW1aMEiZdd4zXvnLVg67V5e37TCiP0CCz3uIw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROLQcKuhDpAVqqfTQSit2HdsbHyoElDQ8Qi-pys3y-iEh0YQSqqo3fgJ_pH-qv6Qz3t0AUsWN22pl-TEee74Z298AbETtLDHTZVYFlQknRaZ9IbNYKqt6sdJlomsaHqvBV3FwIk_m4E_7FoauVbZ7Ytqo_cRRjHwTkX7RI7KzfOv8R0ZZo-h0tU2hUavFYfj9C1226cf9Tzi_7zjv7412B1mTVSBzAs1RVlTRq54VvMpllCpERNiIWnTMXa6DqKJy2Ec0nTH3Ig9lwaMTnGt0tJSztovVPoIF0UVDTg_T-59nIR1iA0ODOCNB5Zth8p0n_gZ1x-yl7AB3IO1tYJwsW38JnjaQlG3XOrQMc2H8DBZvERU-h2-ILtE6sXSbC_dGdjpmRPg68YER4cTFmUXozhD91grNEAqz8WT89-qa4vspAwurE0g5NiVvmtGJwfQFjB5CeC9hHhsPK8BsKQsnLcLRWIoodeVDKSquK0SwAXFYB963AjOuoSunrBlnpiZa5oaEa5JwO_B2Vva8Jun4b6kdkvusBBFrpx84fNOsU9OzMShrixgLL2K3tOiAltbjALXzXS07sNrOmmlW-9Tc6GYHPqSZvKcbZu_LkKevV_fX9QYeD0bDI3O0f3z4Gp5weneRYj-rMH958TOsIRq6rNaTDjIwD6zz_wCuehzB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD7ULYg-iFe6tmpAfVAYdiaby-ZBxNpdWmvXIhX7FjK5gFB3225FfPMn-Hf8O_4Sz8nMrC1I3_o2DCGTOfmS851cvgPwLBnvSJmucCqqQngpChMqWSStnBql2ugs17Q3VdufxLtDebgCv7u7MHSsspsT80Qd5p7WyAfI9KsRiZ2Vg9Qei9jfmrw-PikogxTttHbpNBqI7MYf3zF8W7za2cK-fs75ZHzwdrtoMwwUXqBrKqo6BTVygtelTFLFhGwbGYxJpS9NFHVSHtuLbjSVQZRRVzx5wbnBoEt554ZY7TVY1RQU9WB1czzd_7hc4CFtMHSPS0lUPojzrzyrOagLTjDnCrhAcM_T5OznJrfhVktQ2ZsGUXdgJc7uws1zsoX34DNyTfRVLJ_twpmSfZkxkn-dh8hIfuL0yCGRZ8iFG3gzJMZsNp_9-fmLjJrzsbAmnZRnC4qtGe0fLO7DwVWY7wH08ONxDZjTsvLSITlNWiRp6hC1qLmpkc9GZGV9eNEZzPpWvJxyaBzZRnaZWzKuzcbtw9Nl2eNGsuO_pTbJ7ssSJLOdX-Dv23bU2pFLUTlXpVQFkYbaYTiqXcAfND4MjezDRtdrth37C_sPqX14mXvykmbY8Yc9np8eXl7XE7iOeLfvd6a763CD0yWMvBC0Ab2z02_xEVKjs_pxC0IG9oph_xeJSSJT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+cathode+interlayer+materials+for+non%E2%80%90fullerene+organic+solar+cells&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Nafees+Ahmad&rft.au=Huiqiong+Zhou&rft.au=Ping+Fan&rft.au=Guangxing+Liang&rft.date=2022-01-01&rft.pub=Wiley&rft.eissn=2567-3173&rft.volume=4&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12156&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8afe6aa1ff1d4f37a1407ad9f09cd395 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |