Methods, progresses, and opportunities of materials informatics

As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development (R&D) cycle of new materials by half or even more. ML shows great potential in the combination with other scientific research technologies, especial...

Full description

Saved in:
Bibliographic Details
Published inInfoMat Vol. 5; no. 8
Main Authors Li, Chen, Zheng, Kun
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons, Inc 01.08.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development (R&D) cycle of new materials by half or even more. ML shows great potential in the combination with other scientific research technologies, especially in the processing and classification of large amounts of material data from theoretical calculation and experimental characterization. It is very important to systematically understand the research ideas of material informatics to accelerate the exploration of new materials. Here, we provide a comprehensive introduction to the most commonly used ML modeling methods in material informatics with classic cases. Then, we review the latest progresses of prediction models, which focus on new processing–structure–properties–performance (PSPP) relationships in some popular material systems, such as perovskites, catalysts, alloys, two‐dimensional materials, and polymers. In addition, we summarize the recent pioneering researches in innovation of material research technology, such as inverse design, ML interatomic potentials, and microtopography characterization assistance, as new research directions of material informatics. Finally, we comprehensively provide the most significant challenges and outlooks related to the future innovation and development in the field of material informatics. This review provides a critical and concise appraisal for the applications of material informatics, and a systematic and coherent guidance for material scientists to choose modeling methods based on required materials and technologies. A review on the basic elements and latest applications of materials informatics in perovskites, catalysts, alloys, two‐dimensional materials and polymers.
AbstractList As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development (R&D) cycle of new materials by half or even more. ML shows great potential in the combination with other scientific research technologies, especially in the processing and classification of large amounts of material data from theoretical calculation and experimental characterization. It is very important to systematically understand the research ideas of material informatics to accelerate the exploration of new materials. Here, we provide a comprehensive introduction to the most commonly used ML modeling methods in material informatics with classic cases. Then, we review the latest progresses of prediction models, which focus on new processing–structure–properties–performance (PSPP) relationships in some popular material systems, such as perovskites, catalysts, alloys, two-dimensional materials, and polymers. In addition, we summarize the recent pioneering researches in innovation of material research technology, such as inverse design, ML interatomic potentials, and microtopography characterization assistance, as new research directions of material informatics. Finally, we comprehensively provide the most significant challenges and outlooks related to the future innovation and development in the field of material informatics. This review provides a critical and concise appraisal for the applications of material informatics, and a systematic and coherent guidance for material scientists to choose modeling methods based on required materials and technologies.
Abstract As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development (R&D) cycle of new materials by half or even more. ML shows great potential in the combination with other scientific research technologies, especially in the processing and classification of large amounts of material data from theoretical calculation and experimental characterization. It is very important to systematically understand the research ideas of material informatics to accelerate the exploration of new materials. Here, we provide a comprehensive introduction to the most commonly used ML modeling methods in material informatics with classic cases. Then, we review the latest progresses of prediction models, which focus on new processing–structure–properties–performance (PSPP) relationships in some popular material systems, such as perovskites, catalysts, alloys, two‐dimensional materials, and polymers. In addition, we summarize the recent pioneering researches in innovation of material research technology, such as inverse design, ML interatomic potentials, and microtopography characterization assistance, as new research directions of material informatics. Finally, we comprehensively provide the most significant challenges and outlooks related to the future innovation and development in the field of material informatics. This review provides a critical and concise appraisal for the applications of material informatics, and a systematic and coherent guidance for material scientists to choose modeling methods based on required materials and technologies.
As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development (R&D) cycle of new materials by half or even more. ML shows great potential in the combination with other scientific research technologies, especially in the processing and classification of large amounts of material data from theoretical calculation and experimental characterization. It is very important to systematically understand the research ideas of material informatics to accelerate the exploration of new materials. Here, we provide a comprehensive introduction to the most commonly used ML modeling methods in material informatics with classic cases. Then, we review the latest progresses of prediction models, which focus on new processing–structure–properties–performance (PSPP) relationships in some popular material systems, such as perovskites, catalysts, alloys, two‐dimensional materials, and polymers. In addition, we summarize the recent pioneering researches in innovation of material research technology, such as inverse design, ML interatomic potentials, and microtopography characterization assistance, as new research directions of material informatics. Finally, we comprehensively provide the most significant challenges and outlooks related to the future innovation and development in the field of material informatics. This review provides a critical and concise appraisal for the applications of material informatics, and a systematic and coherent guidance for material scientists to choose modeling methods based on required materials and technologies. A review on the basic elements and latest applications of materials informatics in perovskites, catalysts, alloys, two‐dimensional materials and polymers.
Author Li, Chen
Zheng, Kun
Author_xml – sequence: 1
  givenname: Chen
  surname: Li
  fullname: Li, Chen
  organization: Beijing University of Technology
– sequence: 2
  givenname: Kun
  orcidid: 0000-0001-7556-0203
  surname: Zheng
  fullname: Zheng, Kun
  email: kunzheng@bjut.edu.cn
  organization: Beijing University of Technology
BookMark eNp9kE9LAzEQxYNUsNZe_AQL3sSt-bubPYkUq4WqFz2HNDupKe2mJluk3960qyAinjIZfu_NmzlFvcY3gNA5wSOCMb12jaUjQjkVR6hPRVHmjBSi96M-QcMYlzjBAieM9NHNI7Rvvo5X2Sb4RYAYIdW6qTO_2fjQbhvXOoiZt9latxCcXsUsDfIhfZ2JZ-jYphYMv94Bep3cvYwf8tnz_XR8O8sNT4PyoiSWSC0MLbmWnFVcm7qqKa6xKAzTmkAJhBWMCFuWhbCV5cTMGSsrMFYLNkDTzrf2eqk2wa112CmvnTo0fFgoHVKgFagi-VCQgAXGnGsiGZdMloTPZQUwr5PXReeVVn7fQmzV0m9Dk-IrKoXkQkpOEoU7ygQfYwCrjGvTzr5pg3YrRbDaX13tr64OV0-Sy1-S76B_wqSDP9wKdv-Qavo0oZ3mE69Ykb8
CitedBy_id crossref_primary_10_1016_j_nxener_2023_100078
crossref_primary_10_1002_adfm_202414670
crossref_primary_10_1021_acs_chemrev_3c00708
crossref_primary_10_1016_j_commatsci_2023_112737
crossref_primary_10_1016_j_surfin_2024_104658
crossref_primary_10_1002_pc_29082
crossref_primary_10_1016_j_xcrp_2024_102316
crossref_primary_10_1016_j_nxmate_2024_100449
crossref_primary_10_3390_met14121412
crossref_primary_10_1007_s10853_024_09379_w
crossref_primary_10_1088_2631_7990_ada857
crossref_primary_10_1016_j_msea_2025_148173
crossref_primary_10_1186_s12951_024_02974_8
crossref_primary_10_1016_j_cej_2024_148698
crossref_primary_10_1021_acs_jpcc_4c01715
crossref_primary_10_1002_adfm_202423732
crossref_primary_10_1080_27660400_2024_2442902
crossref_primary_10_3390_pr12122855
crossref_primary_10_20517_jmi_2024_10
crossref_primary_10_1002_aenm_202304362
crossref_primary_10_1016_j_inoche_2024_113577
crossref_primary_10_1021_acsomega_3c07859
crossref_primary_10_32604_cmc_2025_060109
crossref_primary_10_1063_5_0187867
crossref_primary_10_3390_polym17050694
crossref_primary_10_1016_j_cma_2024_117309
Cites_doi 10.1039/D1CS00503K
10.1038/s41586-020-03072-z
10.1016/j.jallcom.2022.167894
10.1016/j.jmst.2021.05.076
10.1016/j.heliyon.2020.e05055
10.3390/polym14030527
10.1126/science.1127647
10.1016/j.jmbbm.2018.07.022
10.1021/ci300415d
10.1002/advs.201903389
10.1021/acsami.1c01098
10.1038/nnano.2015.338
10.1021/acsnano.1c02104
10.1002/inf2.12028
10.1038/s41524-020-0287-8
10.1021/acscentsci.7b00572
10.1038/s41586-021-04078-x
10.1016/j.compositesb.2018.02.012
10.1016/j.jallcom.2022.168019
10.1080/14786440109462720
10.1021/acs.jpca.7b08750
10.1038/s41524-022-00696-9
10.3390/ma15010056
10.1016/j.mtcomm.2022.104896
10.1088/0953-8984/21/39/395502
10.1557/mrs.2012.96
10.1038/s41524-021-00687-2
10.1016/j.scriptamat.2005.06.022
10.1038/323533a0
10.1038/nmat1752
10.1016/j.ijfatigue.2020.105941
10.1063/5.0023759
10.1016/j.eml.2020.100651
10.1002/adma.202108900
10.1021/acsaem.0c02647
10.1002/aenm.202200389
10.1038/npjcompumats.2015.10
10.1016/j.apcatb.2021.120736
10.1016/j.jmsy.2021.07.013
10.1021/ci100050t
10.1021/acs.jpclett.8b00124
10.3390/polym14194084
10.1109/72.788645
10.1038/s41524-018-0128-1
10.1002/advs.201902607
10.1002/anie.201703114
10.1016/j.commatsci.2020.109614
10.1063/1.4946894
10.1038/s41598-021-92278-w
10.1093/nar/gky1075
10.1126/science.aam7092
10.1103/PhysRevB.42.9458
10.1038/s41524-022-00793-9
10.1088/0953-8984/27/28/283203
10.3390/pr9101846
10.1016/j.actamat.2020.10.010
10.1038/s41524-018-0093-8
10.1038/s41586-022-05322-8
10.1107/S0108768102003890
10.1016/j.fuel.2020.119069
10.1007/s00170-020-06515-z
10.1063/1.3623476
10.1016/j.actamat.2020.09.081
10.1109/TITS.2022.3170628
10.1007/s10115-007-0114-2
10.1021/cr980129f
10.1038/s41524-022-00880-x
10.1007/s10854-021-06883-6
10.1016/j.actamat.2021.116980
10.1016/j.jmst.2022.09.033
10.1016/j.physrep.2019.03.001
10.1016/j.jma.2020.06.021
10.1016/j.matt.2019.08.017
10.1016/j.jpowsour.2021.230968
10.1038/s41586-022-05036-x
10.1038/d41586-020-03259-4
10.1007/s42114-021-00229-w
10.1162/neco.1989.1.4.541
10.1016/j.jmapro.2022.10.040
10.1017/S1431927619000497
10.1103/PhysRevB.85.115104
10.1016/j.actamat.2021.116815
10.1115/1.4050525
10.1103/PhysRevB.105.115202
10.1016/j.commatsci.2020.110259
10.1021/acs.accounts.9b00529
10.1038/s41560-020-00768-4
10.1016/j.jlumin.2022.119406
10.1038/natrevmats.2016.98
10.1021/acsnano.1c09644
10.1038/s41699-021-00228-x
10.1016/j.jclepro.2020.120694
10.3390/polym14091802
10.1038/s41467-021-22472-x
10.1126/science.1165893
10.1016/j.carbon.2020.07.013
10.1103/PhysRevB.99.064114
10.1021/ci00057a005
10.1002/adma.202106506
10.1103/PhysRevB.87.085112
10.1016/j.progsurf.2021.100626
10.1021/acsami.1c21558
10.1103/PhysRevB.62.11089
10.1038/nmat3568
10.1016/j.mattod.2020.06.012
10.1007/s00500-020-05297-6
10.1103/PhysRevLett.128.180201
10.1093/nar/gkr777
10.1038/s41524-020-0300-2
10.1021/acsami.1c22886
10.1016/j.mattod.2019.06.009
10.3390/molecules27123829
10.1002/advs.201900808
10.1002/advs.201901614
10.1021/acs.jpclett.1c01939
10.1021/acs.jpclett.9b03664
10.1016/j.commatsci.2020.110025
10.1039/D0NA00388C
10.1126/science.1080615
10.1016/j.commatsci.2012.02.005
10.1002/inf2.12167
10.1002/adts.202100565
10.1038/nature17439
10.1021/ed100697w
10.1002/adma.201600669
10.1038/s41586-021-03338-0
10.1109/ACCESS.2016.2596776
10.1063/1.360979
10.1001/jama.2016.17216
10.1038/s41586-019-0944-6
10.1016/j.actamat.2021.117535
10.1609/aimag.v18i3.1303
10.1063/1.5088083
10.1038/s41524-020-00477-2
10.1103/PhysRevB.87.205410
10.1016/j.pmatsci.2013.10.001
10.1021/acs.chemrev.2c00061
10.1016/j.carbon.2016.08.024
10.1039/D1TA09878K
10.1016/j.ijplas.2019.05.007
10.1016/j.cej.2021.133126
10.1016/j.jmst.2020.01.005
10.1021/acsnano.0c06809
10.1103/RevModPhys.83.407
10.1016/j.cpc.2018.03.016
10.1002/jcc.21707
10.1109/MCI.2015.2471235
10.3390/polym14061160
10.1109/TIT.1967.1053964
10.1109/CVPR.2005.177
10.1002/adfm.202208418
10.1016/j.jmst.2021.06.072
10.1103/PhysRevMaterials.2.083802
10.1002/adma.201304138
10.1016/j.commatsci.2021.110530
10.1038/s41524-017-0056-5
10.1016/j.jmst.2022.08.013
10.1103/PhysRevB.54.11169
10.1038/s41524-020-00460-x
10.1016/j.pmatsci.2019.01.003
10.1002/adma.202106776
10.1039/D1EE02369A
10.1016/j.commatsci.2008.01.039
10.1093/nar/gkr900
10.1016/j.actamat.2022.117924
10.1002/smtd.202100035
10.1002/adma.202205715
10.1126/science.1228604
10.1039/C7TA10374C
10.1007/BF00116251
10.1002/inf2.12094
10.1021/acsami.9b14530
10.1038/s43588-020-00002-x
10.1039/D1ME00160D
10.1038/sdata.2014.22
10.1039/D2TA02039D
10.1038/s41467-021-24523-9
10.1038/s41597-019-0081-y
10.1007/978-1-62703-748-8_7
10.1016/j.matdes.2019.108378
10.1021/acs.chemmater.0c01894
10.1002/adma.202002780
10.1016/j.matchemphys.2022.126988
10.1038/nmat1849
10.1016/j.nanoen.2020.105665
10.1038/nature12340
10.1038/s41467-019-13297-w
10.1016/j.ccr.2020.213470
10.1016/j.mser.2009.03.001
10.1021/acs.biomac.2c00047
10.1016/j.artint.2010.04.018
10.1002/advs.202103648
10.1021/jacs.1c07217
10.1063/1.4812323
10.1016/j.heliyon.2018.e00938
10.1103/PhysRevB.95.094203
10.1038/s41586-020-2242-8
10.1038/s41524-021-00541-5
10.1103/PhysRevB.78.161402
10.1016/j.solmat.2019.110284
10.1021/acsami.1c23610
10.1007/s11837-021-05008-y
10.1088/1361-648X/aba06b
10.1016/j.pmatsci.2021.100777
10.1007/s11144-021-01980-3
10.1002/adma.202005112
10.1109/TPAMI.2021.3116668
10.1107/S2052520616003954
10.1016/j.polymertesting.2022.107580
10.1016/j.chempr.2021.11.009
10.1007/s42979-021-00592-x
10.1016/j.matt.2020.02.012
10.1145/3422622
10.1038/s41524-021-00495-8
10.1038/nmat4938
10.1021/jp4006422
10.1016/j.psep.2022.03.020
10.1038/s41524-022-00923-3
10.1038/s41597-019-0080-z
10.1038/s41524-020-00352-0
10.1016/j.apsusc.2021.150916
10.1016/j.biortech.2022.126812
10.1088/1674-1056/28/8/087102
10.1007/s12613-022-2457-9
10.1107/S0108768102006948
10.1093/nar/gkv951
10.3389/fnbot.2013.00021
10.1016/j.matdes.2020.109260
10.1016/j.ijhydene.2022.02.030
10.1016/j.commatsci.2022.111435
10.1016/j.jmst.2022.07.061
10.1103/PhysRevB.48.4777
10.1088/2053-1583/aacfc1
10.1016/j.pmatsci.2017.10.001
10.1038/s41524-019-0152-9
10.1038/s41467-021-23798-2
10.1039/c3nr02543h
10.1126/sciadv.aaq1566
10.1021/acs.chemmater.1c03220
10.1038/s41586-020-2677-y
10.1016/j.commatsci.2020.110244
10.1039/D1TA09762H
10.1021/ci025584y
10.1186/1758-2946-3-33
10.1016/j.mtphys.2020.100296
10.1126/science.1102896
10.1021/acs.chemmater.0c03402
10.1126/science.aat2663
10.1038/s41524-021-00688-1
10.1038/s41598-022-10563-8
10.1023/A:1010933404324
10.1021/nn501226z
10.1021/acsnano.0c08133
10.1093/nar/gkaa971
10.1002/inf2.12026
10.3390/met12010001
10.1016/j.eswa.2007.01.018
10.1016/j.intermet.2022.107712
10.1107/S0021889809016690
10.1007/s11837-013-0755-4
10.1038/s41586-022-04998-2
10.1039/D1MH01912K
10.1002/inf2.12315
10.3390/catal11040518
10.1039/C1JM14216J
10.1007/s11665-008-9225-5
10.1109/TKDE.2009.191
10.1038/s41524-019-0165-4
10.1021/acsenergylett.0c01749
10.1021/acssuschemeng.0c09192
10.1002/advs.202106043
10.1021/acs.chemrev.9b00248
10.1021/ci00062a008
10.1109/TNNLS.2020.3015830
10.1016/j.jmat.2019.03.003
10.1021/acs.chemmater.1c02725
10.1039/D1EE00154J
10.1038/s41578-019-0121-4
10.1038/s41524-020-0333-6
10.3390/polym12010163
10.3390/app12073318
10.1016/j.commatsci.2012.02.002
10.1016/j.jallcom.2022.168113
10.1007/BF00994018
10.1021/acsami.1c24715
10.1016/j.jallcom.2020.156209
10.1063/5.0021106
10.1016/S0167-7012(00)00201-3
10.1162/153244303322753616
10.1103/PhysRevLett.61.2879
10.1063/1.4849292
10.1007/s11705-019-1900-6
ContentType Journal Article
Copyright 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/inf2.12425
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Journals (Open Access)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3165
EndPage n/a
ExternalDocumentID oai_doaj_org_article_61362e8e050044a1834838714b89eebd
10_1002_inf2_12425
INF212425
Genre reviewArticle
GrantInformation_xml – fundername: Beijing Outstanding Young Scientists Projects
  funderid: BJJWZYJH01201910005018
– fundername: National Natural Science Foundation of China
  funderid: 12074015
GroupedDBID 0R~
1OC
24P
AAMMB
ABJCF
ACCMX
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KB.
M7S
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
WIN
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c4425-671f18a5c274a84394acd9d20d056c3aa1e7e136315f7765f9f41cb3379ecfa53
IEDL.DBID BENPR
ISSN 2567-3165
IngestDate Wed Aug 27 01:30:46 EDT 2025
Wed Aug 13 06:40:39 EDT 2025
Tue Jul 01 01:33:44 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Wed Aug 20 07:26:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4425-671f18a5c274a84394acd9d20d056c3aa1e7e136315f7765f9f41cb3379ecfa53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7556-0203
OpenAccessLink https://www.proquest.com/docview/2858458841?pq-origsite=%requestingapplication%
PQID 2858458841
PQPubID 5068510
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_61362e8e050044a1834838714b89eebd
proquest_journals_2858458841
crossref_citationtrail_10_1002_inf2_12425
crossref_primary_10_1002_inf2_12425
wiley_primary_10_1002_inf2_12425_INF212425
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: Beijing
PublicationTitle InfoMat
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 209
2013; 65
2019; 10
2021; 568
2008; 34
2020; 14
2020; 12
2020; 11
2020; 169
2001; 45
1996; 79
2021; 73
2022; 611
1995; 20
2013; 1569
1986; 1
2022; 161
2016; 316
2013; 117
2019; 25
2019; 28
2022; 609
1967; 13
2020; 177
2022; 608
2019; 150
2012; 22
2021; 81
2016; 44
1984; 40
2021; 49
2009; 65
2013; 87
2020; 40
2018; 228
2020; 36
2020; 32
2012; 37
2011; 3
2004; 306
2003; 299
2016; 11
2016; 4
2022; 4
2022; 5
2022; 7
2022; 8
2022; 9
2019; 47
2017; 56
2018; 92
2010; 174
2008; 43
2016; 28
2012; 40
2002; 58
2001; 101
2020; 63
2016; 109
2020; 120
2020; 128
2011; 99
2008; 78
2018; 87
2014; 61
2017; 358
2014; 1
2020; 7
2020; 6
2020; 5
2020; 2
2020; 53
2021; 112
2013; 12
2021; 118
2003; 3
2020; 258
2021; 591
1999; 10
2017; 121
2020; 43
2014; 8
2012; 338
2009; 324
2022; 521
2021; 9
2022; 430
2015; 1
2021; 7
2021; 6
2021; 5
2021; 4
2021; 3
2021; 2
2020; 581
2021; 589
2009
2020; 585
1901; 2
2021; 1
2021; 96
1996; 54
1989; 29
2010; 87
1986; 323
2022
2021
2021; 214
2020
2017; 16
2019
2014
2022; 300
2022; 211
2013; 1
2019; 99
2021; 600
2022; 23
2019; 566
2014; 26
2020; 205
2021; 285
2020; 201
2013; 7
2013; 5
2022; 27
2022; 29
2018; 6
2010; 22
2018; 9
1990; 42
2018; 2
2018; 5
2018; 4
2023; 294
2022; 34
2007; 6
1982
2022; 32
2022; 33
2003; 43
2022; 232
1993; 48
1990; 30
2022; 110
2019; 4
2019; 6
1989; 1
2019; 5
2019; 1
2011; 83
2019; 103
2021; 142
2020; 422
2021; 143
1988; 28
2022; 12
2022; 14
2022; 15
2022; 10
2021; 133
2022; 348
2022; 104
2022; 16
2022; 105
2010; 50
2022; 103
2022; 224
2021; 25
2018; 361
2022; 252
2017; 2
2017; 3
2009; 42
2023; 142
2000; 43
2000; 44
2016; 72
2012; 58
2012; 52
2019; 120
2014; 1107
2022; 122
2021; 32
2021; 33
2022; 84
2023; 139
1997; 18
2000; 62
2023; 935
2021; 197
2021; 196
2023; 934
2022; 128
2018; 143
2022; 151
2009; 21
2021; 189
2022; 51
2020; 187
2008; 17
2008; 14
2022; 47
2006; 5
2011; 32
2021; 186
2021; 188
2022; 44
2006; 313
2021; 14
2022; 144
2017; 95
2021; 13
2021; 16
2021; 15
2015; 27
2021; 12
2021; 11
2022; 62
2021; 854
2013; 499
2005; 53
1988; 61
2016; 533
2019; 810
2012; 85
e_1_2_7_3_1
e_1_2_7_311_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_297_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_248_1
e_1_2_7_225_1
e_1_2_7_263_1
e_1_2_7_240_1
e_1_2_7_116_1
e_1_2_7_285_1
e_1_2_7_307_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_237_1
e_1_2_7_177_1
e_1_2_7_214_1
e_1_2_7_275_1
e_1_2_7_252_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_296_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
Weininger D (e_1_2_7_95_1) 1990; 30
e_1_2_7_310_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
Hey T (e_1_2_7_6_1) 2009
e_1_2_7_249_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_226_1
e_1_2_7_166_1
e_1_2_7_241_1
e_1_2_7_264_1
e_1_2_7_117_1
e_1_2_7_284_1
e_1_2_7_306_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_238_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_230_1
e_1_2_7_253_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_295_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_227_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_204_1
e_1_2_7_265_1
e_1_2_7_242_1
e_1_2_7_118_1
e_1_2_7_283_1
e_1_2_7_305_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_216_1
e_1_2_7_194_1
e_1_2_7_239_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_254_1
e_1_2_7_231_1
e_1_2_7_294_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
Liu R (e_1_2_7_234_1) 2021; 13
e_1_2_7_279_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_228_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_220_1
e_1_2_7_243_1
e_1_2_7_266_1
e_1_2_7_168_1
Breiman L (e_1_2_7_9_1) 1984; 40
e_1_2_7_119_1
e_1_2_7_282_1
e_1_2_7_91_1
e_1_2_7_304_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
e_1_2_7_38_1
e_1_2_7_134_1
Montgomery DC (e_1_2_7_114_1) 1982
e_1_2_7_232_1
e_1_2_7_255_1
e_1_2_7_157_1
e_1_2_7_270_1
e_1_2_7_108_1
e_1_2_7_293_1
e_1_2_7_315_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_278_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_229_1
e_1_2_7_49_1
e_1_2_7_267_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_244_1
e_1_2_7_221_1
e_1_2_7_281_1
e_1_2_7_303_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_289_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_218_1
e_1_2_7_256_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_233_1
e_1_2_7_210_1
e_1_2_7_271_1
e_1_2_7_292_1
e_1_2_7_314_1
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_277_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_245_1
e_1_2_7_268_1
e_1_2_7_147_1
e_1_2_7_222_1
e_1_2_7_260_1
e_1_2_7_280_1
e_1_2_7_302_1
e_1_2_7_113_1
e_1_2_7_288_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_219_1
e_1_2_7_197_1
e_1_2_7_257_1
e_1_2_7_136_1
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_272_1
e_1_2_7_291_1
Smith WF (e_1_2_7_2_1) 2019
e_1_2_7_5_1
e_1_2_7_313_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_276_1
e_1_2_7_299_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_223_1
e_1_2_7_269_1
e_1_2_7_186_1
e_1_2_7_246_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_261_1
e_1_2_7_301_1
e_1_2_7_287_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_258_1
e_1_2_7_198_1
e_1_2_7_235_1
e_1_2_7_137_1
e_1_2_7_309_1
e_1_2_7_273_1
e_1_2_7_250_1
e_1_2_7_290_1
e_1_2_7_312_1
e_1_2_7_126_1
e_1_2_7_298_1
e_1_2_7_103_1
Macdonald TJ (e_1_2_7_167_1) 2022
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_224_1
e_1_2_7_247_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_262_1
e_1_2_7_300_1
Samuel A (e_1_2_7_7_1) 2000; 44
e_1_2_7_115_1
e_1_2_7_286_1
e_1_2_7_72_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
e_1_2_7_236_1
e_1_2_7_259_1
e_1_2_7_308_1
e_1_2_7_138_1
e_1_2_7_274_1
e_1_2_7_251_1
References_xml – volume: 5
  issue: 4
  year: 2018
  article-title: The computational 2D materials database: high‐throughput modeling and discovery of atomically thin crystals
  publication-title: 2D Mater
– volume: 4
  issue: 11
  year: 2018
  article-title: State‐of‐the‐art in artificial neural network applications: a survey
  publication-title: Heliyon
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 4
  start-page: 268
  issue: 2
  year: 2018
  end-page: 276
  article-title: Automatic chemical design using a data‐driven continuous representation of molecules
  publication-title: ACS Cent Sci
– volume: 5
  start-page: 48
  issue: 1
  year: 2021
  article-title: Deep learning model to predict fracture mechanisms of graphene
  publication-title: npj 2DMater Appl
– volume: 7
  issue: 10
  year: 2020
  article-title: Halide perovskites: thermal transport and prospects for thermoelectricity
  publication-title: Adv Sci
– volume: 13
  year: 2021
  article-title: A physics‐informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing
  publication-title: Int J Adv Manuf Technol
– volume: 61
  start-page: 1
  year: 2014
  end-page: 93
  article-title: Microstructures and properties of high‐entropy alloys
  publication-title: Prog Mater Sci
– volume: 87
  start-page: 68
  year: 2018
  end-page: 79
  article-title: Mechanical properties of magnesium alloys for medical application: a review
  publication-title: J Mech Behav Biomed Mater
– volume: 10
  start-page: 15309
  issue: 29
  year: 2022
  end-page: 15331
  article-title: Machine learning for design principles for single atom catalysts towards electrochemical reactions
  publication-title: J Mater Chem A
– volume: 214
  year: 2021
  article-title: Machine‐learning interatomic potentials for materials science
  publication-title: Acta Mater
– volume: 591
  start-page: 385
  issue: 7850
  year: 2021
  end-page: 390
  article-title: High‐order superlattices by rolling up van der Waals heterostructures
  publication-title: Nature
– volume: 174
  start-page: 597
  issue: 9–10
  year: 2010
  end-page: 618
  article-title: Positive approximation: an accelerator for attribute reduction in rough set theory
  publication-title: Artif Intell
– volume: 43
  start-page: 493
  issue: 2
  year: 2003
  end-page: 500
  article-title: The chemistry development kit (cdk): an open‐source java library for chemo‐ and bioinformatics
  publication-title: J Chem Inf Comput Sci
– volume: 29
  start-page: 825
  issue: 4
  year: 2022
  end-page: 835
  article-title: Data‐mining and atmospheric corrosion resistance evaluation of Sn‐ and Sb‐additional low alloy steel based on big data technology
  publication-title: Int J Miner Metall Mater
– volume: 118
  year: 2021
  article-title: Mechanical behavior of high‐entropy alloys
  publication-title: Prog Mater Sci
– volume: 16
  start-page: 2721
  issue: 2
  year: 2022
  end-page: 2729
  article-title: Artificial neuron networks enabled identification and characterizations of 2d materials and van der Waals heterostructures
  publication-title: ACS Nano
– volume: 228
  start-page: 178
  year: 2018
  end-page: 184
  article-title: DeePMD‐kit: a deep learning package for many‐body potential energy representation and molecular dynamics
  publication-title: Comput Phys Commun
– volume: 58
  start-page: 227
  year: 2012
  end-page: 235
  article-title: AFLOWLIB.ORG: a distributed materials properties repository from high‐throughput ab initio calculations
  publication-title: Comput Mater Sci
– volume: 6
  issue: 10
  year: 2020
  article-title: Machine learning glass transition temperature of polymers
  publication-title: Heliyon
– volume: 854
  year: 2021
  article-title: Study on solid‐solution interaction and existing forms of alloying elements in Mg–Al–Zn–Gd alloy
  publication-title: J Alloys Compd
– year: 2014
– volume: 581
  start-page: 178
  issue: 7807
  year: 2020
  end-page: 183
  article-title: Accelerated discovery of CO electrocatalysts using active machine learning
  publication-title: Nature
– volume: 566
  start-page: 475
  issue: 7745
  year: 2019
  end-page: 479
  article-title: Catalogue of topological electronic materials
  publication-title: Nature
– volume: 22
  start-page: 1469
  issue: 4
  year: 2012
  end-page: 1476
  article-title: Highly selective photocatalytic and sensing properties of 2D‐ordered dome films of nano titania and nano Ag doped titania
  publication-title: J Mater Chem
– volume: 34
  start-page: 998
  issue: 3
  year: 2022
  end-page: 1009
  article-title: Customized carbon dots with predictable optical properties synthesized at room temperature guided by machine learning
  publication-title: Chem Mater
– volume: 49
  start-page: D1388
  issue: D1
  year: 2021
  end-page: D1395
  article-title: PubChem in 2021: new data content and improved web interfaces
  publication-title: Nucleic Acids Res
– volume: 7
  issue: 5
  year: 2020
  article-title: Generative deep neural networks for inverse materials design using backpropagation and active learning
  publication-title: Adv Sci
– volume: 1
  start-page: 359
  issue: 3
  year: 2019
  end-page: 375
  article-title: A machine perspective of atomic defects in scanning transmission electron microscopy
  publication-title: InfoMat
– volume: 32
  start-page: 5854
  issue: 13
  year: 2020
  end-page: 5863
  article-title: Active learning accelerated discovery of stable iridium oxide polymorphs for the oxygen evolution reaction
  publication-title: Chem Mater
– volume: 6
  issue: 1
  year: 2020
  article-title: Frequency‐dependent dielectric constant prediction of polymers using machine learning
  publication-title: npj Comput Mater
– volume: 608
  start-page: 483
  issue: 7923
  year: 2022
  end-page: 487
  article-title: Evidence for intrinsic charm quarks in the proton
  publication-title: Nature
– volume: 2
  start-page: 3115
  issue: 8
  year: 2020
  end-page: 3130
  article-title: Machine learning‐driven new material discovery
  publication-title: Nanoscale Adv
– volume: 7
  start-page: 69
  issue: 1
  year: 2021
  article-title: Data driven discovery of conjugated polyelectrolytes for optoelectronic and photocatalytic applications
  publication-title: npj Comput Mater
– volume: 5
  issue: 1
  year: 2019
  article-title: Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride
  publication-title: npj Comput Mater
– volume: 62
  start-page: 11089
  issue: 16
  year: 2000
  end-page: 11103
  article-title: Density, sp3 fraction, and cross‐sectional structure of amorphous carbon films determined by x‐ray reflectivity and electron energy‐loss spectroscopy
  publication-title: Phys Rev B
– volume: 32
  issue: 44
  year: 2020
  article-title: High throughput methods in the synthesis, characterization, and optimization of porous materials
  publication-title: Adv Mater
– volume: 7
  start-page: 7
  year: 2013
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front Neurorobot
– volume: 10
  start-page: 1048
  issue: 5
  year: 1999
  end-page: 1054
  article-title: Support vector machines for spam categorization
  publication-title: IEEE Trans Neural Netw
– volume: 6
  start-page: 183
  issue: 3
  year: 2007
  end-page: 191
  article-title: The rise of graphene
  publication-title: Nat Mater
– volume: 65
  start-page: 1501
  issue: 11
  year: 2013
  end-page: 1509
  article-title: Materials design and discovery with high‐throughput density functional theory: the open quantum materials database (OQMD)
  publication-title: JOM
– year: 2019
– volume: 189
  year: 2021
  article-title: A new criterion for predicting the glass‐forming ability of alloys based on machine learning
  publication-title: Comput Mater Sci
– volume: 37
  start-page: 513
  issue: 5
  year: 2012
  end-page: 521
  article-title: Computational aspects of many‐body potentials
  publication-title: MRS Bull
– volume: 36
  year: 2020
  article-title: Interactive inverse design of layered phononic crystals based on reinforcement learning
  publication-title: Extreme Mech Lett
– volume: 15
  start-page: 830
  issue: 2
  year: 2022
  end-page: 842
  article-title: Unraveling the dual defect sites in graphite carbon nitride for ultra‐high photocatalytic H O evolution
  publication-title: Energy Environ Sci
– volume: 28
  start-page: 6804
  issue: 32
  year: 2016
  end-page: 6834
  article-title: Perovskite materials for light‐emitting diodes and lasers
  publication-title: Adv Mater
– volume: 142
  start-page: 225
  year: 2023
  end-page: 239
  article-title: Strength and ductility enhancement of twin‐roll cast Al–Zn–Mg–Cu alloys with high solidification intervals through a synergistic segregation‐controlling strategy
  publication-title: J Mater Sci Technol
– volume: 7
  issue: 4
  year: 2020
  article-title: Data‐driven materials research enabled by natural language processing and information extraction
  publication-title: Appl Phys Rev
– volume: 43
  start-page: 752
  issue: 4
  year: 2008
  end-page: 758
  article-title: Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel
  publication-title: Comput Mater Sci
– volume: 112
  start-page: 1231
  issue: 5–6
  year: 2021
  end-page: 1258
  article-title: Metallic glass properties, processing method and development perspective: a review
  publication-title: Int J Adv Manuf Technol
– volume: 611
  start-page: 491
  issue: 7936
  year: 2022
  end-page: 495
  article-title: Using machine learning to assess the livelihood impact of electricity access
  publication-title: Nature
– volume: 32
  start-page: 24710
  issue: 20
  year: 2021
  end-page: 24725
  article-title: Effect of dopants and morphology on the electrical properties of polyaniline for various applications
  publication-title: J Mater Sci: Mater Electron
– volume: 4
  start-page: 515
  issue: 8
  year: 2019
  end-page: 534
  article-title: High‐entropy alloys
  publication-title: Nat Rev Mater
– volume: 81
  year: 2021
  article-title: Accelerated discovery of stable spinels in energy systems via machine learning
  publication-title: Nano Energy
– volume: 58
  start-page: 364
  issue: 3
  year: 2002
  end-page: 369
  article-title: New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
  publication-title: Acta Crystallogr B Struct Sci
– volume: 128
  issue: 17
  year: 2020
  article-title: Machine‐learning predictions of polymer properties with polymer genome
  publication-title: J Appl Phys
– volume: 1
  issue: 1
  year: 2013
  article-title: Commentary: the materials project: a materials genome approach to accelerating materials innovation
  publication-title: APL Mater
– volume: 5
  start-page: 413
  issue: 3
  year: 2019
  end-page: 421
  article-title: Rapid identification of two‐dimensional materials via machine learning assisted optic microscopy
  publication-title: J Materiomics
– volume: 33
  start-page: 845
  issue: 3
  year: 2021
  end-page: 858
  article-title: A machine learning approach for the prediction of formability and thermodynamic stability of single and double perovskite oxides
  publication-title: Chem Mater
– volume: 34
  issue: 40
  year: 2022
  article-title: Atomic‐scale observation of grain boundary dominated unsynchronized phase transition in polycrystalline Cu Se
  publication-title: Adv Mater
– volume: 5
  start-page: 12
  issue: 1
  year: 2019
  article-title: Deep learning analysis of defect and phase evolution during electron beam‐induced transformations in WS2
  publication-title: npj Comput Mater
– volume: 78
  issue: 16
  year: 2008
  article-title: Describing bond‐breaking processes by reactive potentials: importance of an environment‐dependent interaction range
  publication-title: Phys Rev B
– volume: 85
  issue: 11
  year: 2012
  article-title: Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental‐phase reference energies
  publication-title: Phys Rev B
– volume: 9
  start-page: 1518
  issue: 5
  year: 2022
  end-page: 1525
  article-title: Performance‐oriented multistage design for multi‐principal element alloys with low cost yet high efficiency
  publication-title: Mater Horiz
– volume: 87
  issue: 8
  year: 2013
  article-title: Band‐structure calculations for the 3d transition metal oxides in GW
  publication-title: Phys Rev B
– volume: 83
  start-page: 407
  issue: 2
  year: 2011
  end-page: 470
  article-title: Electronic transport in two‐dimensional graphene
  publication-title: Rev Mod Phys
– volume: 12
  start-page: 4329
  issue: 1
  year: 2021
  article-title: High‐throughput design of high‐performance lightweight high‐entropy alloys
  publication-title: Nat Commun
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  end-page: 27
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans Inf Theory
– volume: 23
  start-page: 19187
  issue: 10
  year: 2022
  end-page: 19200
  article-title: A XGBoost‐based lane change prediction on time series data using feature engineering for autopilot vehicles
  publication-title: IEEE Trans Intell Transport Syst
– volume: 6
  start-page: 194
  issue: 2
  year: 2021
  end-page: 202
  article-title: Identification of embedded nanotwins at c‐Si/a‐Si:H interface limiting the performance of high‐efficiency silicon heterojunction solar cells
  publication-title: Nat Energy
– volume: 32
  start-page: 3608
  issue: 8
  year: 2021
  end-page: 3620
  article-title: A unified framework for multilingual speech recognition in air traffic control systems
  publication-title: IEEE Trans Neural Netw Learning Syst
– volume: 1
  start-page: 1370
  issue: 5
  year: 2019
  end-page: 1384
  article-title: Inverse design of solid‐state materials via a continuous representation
  publication-title: Matter
– volume: 5
  start-page: 909
  issue: 11
  year: 2006
  end-page: 913
  article-title: Computational high‐throughput screening of electrocatalytic materials for hydrogen evolution
  publication-title: Nature Mater
– volume: 6
  start-page: 35
  issue: 1
  year: 2020
  article-title: High‐throughput discovery of high Curie point two‐dimensional ferromagnetic materials
  publication-title: npj Comput Mater
– year: 2009
– volume: 7
  start-page: 661
  issue: 6
  year: 2022
  end-page: 676
  article-title: Featurization strategies for polymer sequence or composition design by machine learning
  publication-title: Mol Syst Des Eng
– volume: 13
  start-page: 16336
  issue: 14
  year: 2021
  end-page: 16344
  article-title: High‐throughput screening of a single‐atom alloy for electroreduction of dinitrogen to ammonia
  publication-title: ACS Appl Mater Interfaces
– volume: 6
  start-page: 18
  issue: 1
  year: 2020
  article-title: Magnetic and superconducting phase diagrams and transition temperatures predicted using text mining and machine learning
  publication-title: npj Comput Mater
– volume: 27
  start-page: 3829
  issue: 12
  year: 2022
  article-title: The development of iDPC‐STEM and its application in electron beam sensitive materials
  publication-title: Molecules
– volume: 43
  start-page: 168
  year: 2020
  end-page: 174
  article-title: Theoretical prediction on thermal and mechanical properties of high entropy (Zr Hf Ti Nb Ta )C by deep learning potential
  publication-title: J Mater Sci Technol
– volume: 205
  year: 2020
  article-title: Machine learning analysis on stability of perovskite solar cells
  publication-title: Solar Energy Mater Sol Cells
– volume: 25
  start-page: 2277
  issue: 3
  year: 2021
  end-page: 2293
  article-title: Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation
  publication-title: Soft Comput
– volume: 5
  issue: 5
  year: 2022
  article-title: New opportunity: machine learning for polymer materials design and discovery
  publication-title: Adv Theory Simul
– volume: 99
  issue: 6
  year: 2011
  article-title: Structural and semiconductor‐to‐metal transitions of double‐perovskite cobalt oxide Sr2−xLaxCoTiO6−δ with enhanced thermoelectric capability
  publication-title: Appl Phys Lett
– volume: 48
  start-page: 4777
  issue: 7
  year: 1993
  end-page: 4782
  article-title: Properties of filtered‐ion‐beam‐deposited diamondlike carbon as a function of ion energy
  publication-title: Phys Rev B
– volume: 11
  issue: 1
  year: 2021
  article-title: Parsimonious neural networks learn interpretable physical laws
  publication-title: Sci Rep
– volume: 144
  issue: 1
  year: 2022
  article-title: Triboinformatics approach for friction and wear prediction of al‐graphite composites using machine learning methods
  publication-title: J Tribol
– year: 2021
– volume: 1
  issue: 1
  year: 2015
  article-title: The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
  publication-title: npj Comput Mater
– volume: 9
  start-page: 1
  issue: 1
  year: 2021
  end-page: 20
  article-title: Recent developments and applications on high‐performance cast magnesium rare‐earth alloys
  publication-title: J Magnes Alloy
– volume: 2
  start-page: 553
  issue: 3
  year: 2020
  end-page: 576
  article-title: Machine learning: accelerating materials development for energy storage and conversion
  publication-title: InfoMat
– volume: 186
  year: 2021
  article-title: Discovery of novel quaternary bulk metallic glasses using a developed correlation‐based neural network approach
  publication-title: Comput Mater Sci
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  end-page: 106
  article-title: Induction of decision trees
  publication-title: Mach Learn
– volume: 10
  start-page: 5316
  issue: 1
  year: 2019
  article-title: Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
  publication-title: Nat Commun
– volume: 3
  start-page: 353
  issue: 4
  year: 2021
  end-page: 361
  article-title: Machine learning in polymer informatics
  publication-title: InfoMat
– volume: 499
  start-page: 316
  issue: 7458
  year: 2013
  end-page: 319
  article-title: Sequential deposition as a route to high‐performance perovskite‐sensitized solar cells
  publication-title: Nature
– volume: 58
  start-page: 380
  issue: 3
  year: 2002
  end-page: 388
  article-title: The Cambridge Structural Database: a quarter of a million crystal structures and rising
  publication-title: Acta Crystallogr B Struct Sci
– volume: 62
  start-page: 875
  year: 2022
  end-page: 885
  article-title: Leveraging simulated and empirical data‐driven insight to supervised‐learning for porosity prediction in laser metal deposition
  publication-title: J Manuf Syst
– volume: 6
  start-page: 75
  issue: 1
  year: 2019
  article-title: Catalysis‐Hub.org, an open electronic structure database for surface reactions
  publication-title: Sci Data
– volume: 32
  issue: 47
  year: 2020
  article-title: Data‐driven discovery of 3D and 2D thermoelectric materials
  publication-title: J Phys: Condens Matter
– volume: 201
  start-page: 182
  year: 2020
  end-page: 190
  article-title: Machine learning‐based glass formation prediction in multicomponent alloys
  publication-title: Acta Mater
– volume: 72
  start-page: 171
  issue: 2
  year: 2016
  end-page: 179
  article-title: The Cambridge structural database
  publication-title: Acta Crystallogr B Struct Sci Cryst Eng Mater
– volume: 9
  start-page: 3590
  issue: 9
  year: 2021
  end-page: 3599
  article-title: Single‐atom rhodium on defective g‐C3N4: a promising bifunctional oxygen electrocatalyst
  publication-title: ACS Sustain Chem Eng
– volume: 12
  start-page: 20149
  issue: 18
  year: 2020
  end-page: 20157
  article-title: Exploring two‐dimensional materials thermodynamic stability via machine learning
  publication-title: ACS Appl Mater Interfaces
– volume: 258
  year: 2020
  article-title: A critical review on application of photocatalysis for toxicity reduction of real wastewaters
  publication-title: J Clean Prod
– volume: 14
  start-page: 3455
  issue: 6
  year: 2021
  end-page: 3468
  article-title: Tuning metal single atoms embedded in N C moieties toward high‐performance electrocatalysis
  publication-title: Energy Environ Sci
– volume: 9
  start-page: 1846
  issue: 10
  year: 2021
  article-title: Alkali and alkali‐earth metals incorporation to Ni/USY catalysts for CO methanation: the effect of the metal nature
  publication-title: Processes
– volume: 151
  year: 2022
  article-title: Steel–aluminum hybrid die casting: microstructures related to the applied Al–Si bond coating
  publication-title: Intermetallics
– volume: 44
  start-page: 7327
  issue: 11
  year: 2022
  end-page: 7347
  article-title: Deep generative modelling: a comparative review of VAEs, GANs, normalizing flows, energy‐based and autoregressive models
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 33
  year: 2022
  article-title: First‐principles study on the crystal structure stability and hydrogen storage mechanism of hydrogen occupancy in interstitial sites in ZrCo compounds
  publication-title: Mater Today Commun
– volume: 1569
  year: 2013
  article-title: Copper influence on the melting point of Sn‐Bi alloy
  publication-title: AIP Conf Proc
– volume: 109
  start-page: 681
  year: 2016
  end-page: 693
  article-title: Graphitization of amorphous carbons: a comparative study of interatomic potentials
  publication-title: Carbon
– volume: 18
  start-page: 11
  issue: 3
  year: 1997
  end-page: 20
  article-title: Does machine learning really work?
  publication-title: AI Mag
– volume: 12
  start-page: 3572
  issue: 1
  year: 2021
  article-title: A design strategy for high mobility stretchable polymer semiconductors
  publication-title: Nat Commun
– volume: 4
  issue: 5
  year: 2016
  article-title: Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science
  publication-title: APL Mater
– volume: 589
  start-page: 524
  issue: 7843
  year: 2021
  end-page: 525
  article-title: Accurate machine learning in materials science facilitated by using diverse data sources
  publication-title: Nature
– volume: 224
  year: 2022
  article-title: Machine learning assisted design of FeCoNiCrMn high‐entropy alloys with ultra‐low hydrogen diffusion coefficients
  publication-title: Acta Mater
– volume: 61
  start-page: 2879
  issue: 25
  year: 1988
  end-page: 2882
  article-title: Empirical interatomic potential for carbon, with applications to amorphous carbon
  publication-title: Phys Rev Lett
– volume: 211
  year: 2022
  article-title: PSO‐SVR predicting for the Ehull of ABO ‐type compounds to screen the thermodynamic stable perovskite candidates based on multi‐scale descriptors
  publication-title: Comput Mater Sci
– volume: 87
  issue: 20
  year: 2013
  article-title: Screened empirical bond‐order potentials for Si‐C
  publication-title: Phys Rev B
– volume: 169
  start-page: 9
  year: 2020
  end-page: 16
  article-title: Inverse design of two‐dimensional graphene/h‐BN hybrids by a regressional and conditional GAN
  publication-title: Carbon
– volume: 4
  issue: 6
  year: 2022
  article-title: Deep machine learning unravels the structural origin of mid‐gap states in chalcogenide glass for high‐density memory integration
  publication-title: InfoMat
– volume: 299
  start-page: 1719
  issue: 5613
  year: 2003
  end-page: 1722
  article-title: Epitaxial BiFeO multiferroic thin film heterostructures
  publication-title: Science
– volume: 9
  issue: 4
  year: 2022
  article-title: Discovery of lead‐free perovskites for high‐performance solar cells via machine learning: ultrabroadband absorption, low radiative combination, and enhanced thermal conductivities
  publication-title: Adv Sci
– volume: 14
  start-page: 937
  issue: 6
  year: 2020
  end-page: 947
  article-title: Room temperature oxidation of acetone by ozone over alumina‐supported manganese and cobalt mixed oxides
  publication-title: Front Chem Sci Eng
– volume: 161
  start-page: 848
  year: 2022
  end-page: 859
  article-title: Data‐driven photocatalytic degradation activity prediction with Gaussian process
  publication-title: Process Saf Environ Prot
– volume: 252
  year: 2022
  article-title: Lanthanide‐doped luminescent perovskites: a review of synthesis, properties, and applications
  publication-title: J Lumin
– volume: 12
  issue: 20
  year: 2022
  article-title: Emerging strategies for CO photoreduction to CH : from experimental to data‐driven design
  publication-title: Adv Energy Mater
– volume: 34
  start-page: 537
  issue: 2
  year: 2022
  end-page: 546
  article-title: Machine learning analysis and discovery of zero‐dimensional ns metal halides toward enhanced photoluminescence quantum yield
  publication-title: Chem Mater
– volume: 9
  start-page: 1668
  issue: 7
  year: 2018
  end-page: 1673
  article-title: Predicting the band gaps of inorganic solids by machine learning
  publication-title: J Phys Chem Lett
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  end-page: 1359
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
– volume: 1
  issue: 1
  year: 2014
  article-title: Quantum chemistry structures and properties of 134 kilo molecules
  publication-title: Sci Data
– volume: 121
  start-page: 8939
  issue: 46
  year: 2017
  end-page: 8954
  article-title: Resolving transition metal chemical space: feature selection for machine learning and structure–property relationships
  publication-title: J Phys Chem A
– volume: 430
  year: 2022
  article-title: Activating γ‐graphyne nanoribbons as bifunctional electrocatalysts toward oxygen reduction and hydrogen evolution reactions by edge termination and nitrogen doping
  publication-title: Chem Eng J
– volume: 17
  start-page: 888
  issue: 6
  year: 2008
  end-page: 893
  article-title: Correlation of yield strength and tensile strength with hardness for steels
  publication-title: J Mater Eng and Perform
– volume: 34
  start-page: 1599
  issue: 3
  year: 2008
  end-page: 1608
  article-title: An incremental cluster‐based approach to spam filtering
  publication-title: Expert Syst Appl
– volume: 105
  issue: 11
  year: 2022
  article-title: Accurate description of high‐order phonon anharmonicity and lattice thermal conductivity from molecular dynamics simulations with machine learning potential
  publication-title: Phys Rev B
– volume: 42
  start-page: 726
  issue: 4
  year: 2009
  end-page: 729
  article-title: Crystallography Open Database—an open‐access collection of crystal structures
  publication-title: J Appl Crystallogr
– volume: 42
  start-page: 9458
  issue: 15
  year: 1990
  end-page: 9471
  article-title: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films
  publication-title: Phys Rev B
– volume: 120
  start-page: 851
  issue: 2
  year: 2020
  end-page: 918
  article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles
  publication-title: Chem Rev
– volume: 8
  start-page: 196
  issue: 1
  year: 2022
  article-title: Materials property mapping from atomic scale imaging via machine learning based sub‐pixel processing
  publication-title: npj Comput Mater
– volume: 12
  start-page: 163
  issue: 1
  year: 2020
  article-title: Machine‐learning‐assisted de novo design of organic molecules and polymers: opportunities and challenges
  publication-title: Polymers
– volume: 7
  start-page: 24
  issue: 1
  year: 2021
  article-title: Machine‐learned interatomic potentials for alloys and alloy phase diagrams
  publication-title: npj Comput Mater
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Mach Learn
– year: 2022
  article-title: Engineering stable lead‐free tin halide perovskite solar cells: lessons from materials chemistry
  publication-title: Adv Mater
– volume: 8
  start-page: 9
  issue: 1
  year: 2022
  article-title: Automated pipeline for superalloy data by text mining
  publication-title: npj Comput Mater
– volume: 2
  start-page: 938
  issue: 4
  year: 2020
  end-page: 947
  article-title: Machine‐learning‐accelerated perovskite crystallization
  publication-title: Matter
– volume: 8
  start-page: 769
  issue: 3
  year: 2022
  end-page: 783
  article-title: On‐the‐fly interpretable machine learning for rapid discovery of two‐dimensional ferromagnets with high Curie temperature
  publication-title: Chem
– volume: 32
  start-page: 222
  year: 2020
  end-page: 243
  article-title: Product selectivity of photocatalytic CO reduction reactions
  publication-title: Mater Today
– year: 2020
– volume: 34
  issue: 19
  year: 2022
  article-title: Searching for an optimal multi‐metallic alloy catalyst by active learning combined with experiments
  publication-title: Adv Mater
– volume: 27
  issue: 28
  year: 2015
  article-title: Semiconducting transition metal oxides
  publication-title: J Phys: Condens Matter
– volume: 65
  start-page: 39
  issue: 4–6
  year: 2009
  end-page: 104
  article-title: Recent developments in stainless steels
  publication-title: Mater Sci Eng R Rep
– volume: 11
  start-page: 518
  issue: 4
  year: 2021
  article-title: Lipase immobilized on mcfs as biocatalysts for kinetic and dynamic kinetic resolution of sec‐alcohols
  publication-title: Catalysts
– volume: 12
  start-page: 7423
  issue: 31
  year: 2021
  end-page: 7430
  article-title: Predicting the formability of hybrid organic–inorganic perovskites via an interpretable machine learning strategy
  publication-title: J Phys Chem Lett
– volume: 139
  start-page: 156
  year: 2023
  end-page: 166
  article-title: Mechanical property and cellular structure of an additive manufactured FeCoNiCrMo0.2 high‐entropy alloy at high‐velocity deformation
  publication-title: J Mater Sci Technol
– volume: 8
  start-page: 232
  issue: 1
  year: 2022
  article-title: Data‐driven discovery of 2D materials by deep generative models
  publication-title: npj Comput Mater
– volume: 609
  start-page: 512
  issue: 7927
  year: 2022
  end-page: 516
  article-title: The first‐principles phase diagram of monolayer nanoconfined water
  publication-title: Nature
– volume: 306
  start-page: 666
  issue: 5696
  year: 2004
  end-page: 669
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 1107
  start-page: 105
  year: 2014
  end-page: 128
  article-title: Introduction to machine learning
  publication-title: Methods Mol Biol
– volume: 95
  issue: 9
  year: 2017
  article-title: Machine learning based interatomic potential for amorphous carbon
  publication-title: Phys Rev B
– volume: 11
  start-page: 41
  issue: 1
  year: 2016
  end-page: 53
  article-title: Ensemble classification and regression‐recent developments, applications and future directions
  publication-title: IEEE Comput Intell Mag
– volume: 324
  start-page: 81
  issue: 5923
  year: 2009
  end-page: 85
  article-title: Distilling free‐form natural laws from experimental data
  publication-title: Science
– volume: 33
  issue: 5
  year: 2021
  article-title: Finding the next superhard material through ensemble learning
  publication-title: Adv Mater
– volume: 11
  start-page: 2336
  issue: 6
  year: 2020
  end-page: 2347
  article-title: Quantum chemistry in the age of machine learning
  publication-title: J Phys Chem Lett
– volume: 47
  start-page: 19655
  issue: 45
  year: 2022
  end-page: 19668
  article-title: Machine learning analysis of gas phase photocatalytic CO reduction for hydrogen production
  publication-title: Int J Hydrog Energy
– volume: 103
  start-page: 235
  year: 2019
  end-page: 318
  article-title: Fe‐based bulk metallic glasses: glass formation, fabrication, properties and applications
  publication-title: Prog Mater Sci
– volume: 92
  start-page: 112
  year: 2018
  end-page: 224
  article-title: Additive manufacturing of metallic components—process, structure and properties
  publication-title: Prog Mater Sci
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  end-page: 572
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: Lond Edinb Dublin Philos Mag J Sci
– volume: 103
  start-page: 113
  year: 2022
  end-page: 120
  article-title: Machine learning prediction of magnetic properties of Fe‐based metallic glasses considering glass forming ability
  publication-title: J Mater Sci Technol
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  end-page: 536
  article-title: Learning representations by back‐propagating errors
  publication-title: Nature
– volume: 143
  start-page: 172
  year: 2018
  end-page: 196
  article-title: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges
  publication-title: Compos B Eng
– volume: 12
  start-page: 3318
  issue: 7
  year: 2022
  article-title: Feature mining: a novel training strategy for convolutional neural network
  publication-title: Appl Sci
– volume: 117
  start-page: 7681
  issue: 15
  year: 2013
  end-page: 7689
  article-title: Large‐scale quantitative structure–property relationship (QSPR) analysis of methane storage in metal–organic frameworks
  publication-title: J Phys Chem C
– volume: 209
  year: 2021
  article-title: Machine learning identified materials descriptors for ferroelectricity
  publication-title: Acta Mater
– volume: 99
  issue: 6
  year: 2019
  article-title: Accelerating crystal structure prediction by machine‐learning interatomic potentials with active learning
  publication-title: Phys Rev B
– volume: 142
  year: 2021
  article-title: Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L
  publication-title: Int J Fatigue
– volume: 52
  start-page: 2864
  issue: 11
  year: 2012
  end-page: 2875
  article-title: Enumeration of 166 billion organic small molecules in the chemical universe database GDB‐17
  publication-title: J Chem Inf Model
– volume: 96
  issue: 2
  year: 2021
  article-title: Mechanical exfoliation of large area 2D materials from vdW crystals
  publication-title: Prog Surf Sci
– volume: 7
  issue: 1
  year: 2020
  article-title: Progress and challenges toward the rational design of oxygen electrocatalysts based on a descriptor approach
  publication-title: Adv Sci
– volume: 101
  start-page: 1981
  issue: 7
  year: 2001
  end-page: 2018
  article-title: Chemical structures and performance of perovskite oxides
  publication-title: Chem Rev
– volume: 177
  year: 2020
  article-title: Screening stable and metastable ABO perovskites using machine learning and the materials project
  publication-title: Comput Mater Sci
– year: 2022
– volume: 122
  start-page: 13478
  issue: 16
  year: 2022
  end-page: 13515
  article-title: Machine learning for electrocatalyst and photocatalyst design and discovery
  publication-title: Chem Rev
– volume: 43
  start-page: 3
  issue: 1
  year: 2000
  end-page: 31
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: J Microbiol Methods
– volume: 12
  start-page: 191
  issue: 3
  year: 2013
  end-page: 201
  article-title: The high‐throughput highway to computational materials design
  publication-title: Nature Mater
– volume: 521
  year: 2022
  article-title: Synergetic effect of N/O functional groups and microstructures of activated carbon on supercapacitor performance by machine learning
  publication-title: J Power Sources
– volume: 2
  start-page: 160
  issue: 3
  year: 2021
  article-title: Machine learning: algorithms, real‐world applications and research directions
  publication-title: SN Comput Sci
– volume: 54
  start-page: 11169
  issue: 16
  year: 1996
  end-page: 11186
  article-title: Efficient iterative schemes for ab initio total‐energy calculations using a plane‐wave basis set
  publication-title: Phys Rev B
– volume: 32
  issue: 47
  year: 2022
  article-title: A universal machine learning framework for electrocatalyst innovation: a case study of discovering alloys for hydrogen evolution reaction
  publication-title: Adv Funct Mater
– volume: 348
  year: 2022
  article-title: Machine learning prediction of lignin content in poplar with Raman spectroscopy
  publication-title: Bioresour Technol
– volume: 8
  start-page: 4033
  issue: 4
  year: 2014
  end-page: 4041
  article-title: Phosphorene: an unexplored 2D semiconductor with a high hole mobility
  publication-title: ACS Nano
– volume: 5
  start-page: 8752
  issue: 19
  year: 2013
  article-title: Perovskite ferroelectric nanomaterials
  publication-title: Nanoscale
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  end-page: 2410
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 2
  issue: 8
  year: 2018
  article-title: SISSO: a compressed‐sensing method for identifying the best low‐dimensional descriptor in an immensity of offered candidates
  publication-title: Phys Rev Mater
– volume: 568
  year: 2021
  article-title: Screening for lead‐free inorganic double perovskites with suitable band gaps and high stability using combined machine learning and DFT calculation
  publication-title: Appl Surf Sci
– volume: 14
  start-page: 4084
  issue: 19
  year: 2022
  article-title: Recent trends in magnetic polymer nanocomposites for aerospace applications: a review
  publication-title: Polymers
– volume: 84
  start-page: 587
  year: 2022
  end-page: 599
  article-title: Directed energy deposition‐arc of aluminum‐alloy curved‐generatrix‐shell pyramid lattice structure
  publication-title: J Manuf Process
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 16
  start-page: 925
  issue: 9
  year: 2017
  end-page: 931
  article-title: Dynamic surface self‐reconstruction is the key of highly active perovskite nano‐electrocatalysts for water splitting
  publication-title: Nature Mater
– volume: 6
  start-page: 4948
  issue: 12
  year: 2018
  end-page: 4954
  article-title: An electrochemically neutralized energy‐assisted low‐cost acid‐alkaline electrolyzer for energy‐saving electrolysis hydrogen generation
  publication-title: J Mater Chem A
– volume: 143
  start-page: 17535
  issue: 42
  year: 2021
  end-page: 17547
  article-title: Using machine learning and data mining to leverage community knowledge for the engineering of stable metal–organic frameworks
  publication-title: J Am Chem Soc
– volume: 585
  start-page: 217
  issue: 7824
  year: 2020
  end-page: 220
  article-title: Evidence for supercritical behaviour of high‐pressure liquid hydrogen
  publication-title: Nature
– volume: 12
  start-page: 6615
  issue: 1
  year: 2022
  article-title: An insight into tetracycline photocatalytic degradation by MOFs using the artificial intelligence technique
  publication-title: Sci Rep
– volume: 358
  start-page: 751
  issue: 6364
  year: 2017
  end-page: 756
  article-title: Perovskites in catalysis and electrocatalysis
  publication-title: Science
– volume: 285
  year: 2021
  article-title: Regeneration of alkali poisoned TiO ‐based catalyst by various acids in NO selective catalytic reduction with NH
  publication-title: Fuel
– volume: 25
  start-page: 563
  issue: 3
  year: 2019
  end-page: 582
  article-title: Four‐dimensional scanning transmission electron microscopy (4D‐STEM): from scanning nanodiffraction to ptychography and beyond
  publication-title: Microsc Microanal
– volume: 73
  start-page: 3681
  issue: 12
  year: 2021
  end-page: 3683
  article-title: The second decade of the materials genome initiative
  publication-title: JOM
– volume: 1
  start-page: 46
  issue: 1
  year: 2021
  end-page: 53
  article-title: Learning properties of ordered and disordered materials from multi‐fidelity data
  publication-title: Nat Comput Sci
– volume: 4
  start-page: 67
  issue: 1
  year: 2018
  article-title: Deep‐learning‐based inverse design model for intelligent discovery of organic molecules
  publication-title: npj Comput Mater
– volume: 4
  start-page: 4155
  year: 2016
  end-page: 4167
  article-title: On wireless power transfer and max flow in rechargeable wireless sensor networks
  publication-title: IEEE Access
– volume: 9
  issue: 12
  year: 2022
  article-title: Applications of machine learning in alloy catalysts: rational selection and future development of descriptors
  publication-title: Adv Sci
– volume: 8
  start-page: 13
  issue: 1
  year: 2022
  article-title: Magnetic moment tensor potentials for collinear spin‐polarized materials reproduce different magnetic states of bcc Fe
  publication-title: npj Comput Mater
– volume: 28
  start-page: 31
  issue: 1
  year: 1988
  end-page: 36
  article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
  publication-title: J Chem Inf Model
– volume: 14
  start-page: 15587
  issue: 13
  year: 2022
  end-page: 15598
  article-title: Exploring high thermal conductivity amorphous polymers using reinforcement learning
  publication-title: ACS Appl Mater Interfaces
– volume: 12
  start-page: 2191
  issue: 1
  year: 2021
  article-title: Discovery of temperature‐induced stability reversal in perovskites using high‐throughput robotic learning
  publication-title: Nat Commun
– volume: 600
  start-page: E12
  issue: 7889
  year: 2021
  end-page: E14
  article-title: On the liquid–liquid phase transition of dense hydrogen
  publication-title: Nature
– volume: 6
  start-page: 76
  issue: 1
  year: 2019
  article-title: High‐throughput calculations of catalytic properties of bimetallic alloy surfaces
  publication-title: Sci Data
– volume: 128
  issue: 18
  year: 2022
  article-title: Machine learning hidden symmetries
  publication-title: Phys Rev Lett
– volume: 810
  start-page: 1
  year: 2019
  end-page: 124
  article-title: A high‐bias, low‐variance introduction to machine learning for physicists
  publication-title: Phys Rep
– volume: 8
  start-page: 8
  issue: 1
  year: 2022
  article-title: A machine learning approach to map crystal orientation by optical microscopy
  publication-title: npj Comput Mater
– volume: 300
  year: 2022
  article-title: Band alignment of homojunction by anchoring CN quantum dots on g‐C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution
  publication-title: Appl Catal B: Environ
– volume: 14
  start-page: 1160
  issue: 6
  year: 2022
  article-title: Energy storage application of all‐organic polymer dielectrics: a review
  publication-title: Polymers
– volume: 58
  start-page: 218
  year: 2012
  end-page: 226
  article-title: AFLOW: an automatic framework for high‐throughput materials discovery
  publication-title: Comput Mater Sci
– volume: 4
  issue: 4
  year: 2018
  article-title: Accelerated discovery of metallic glasses through iteration of machine learning and high‐throughput experiments
  publication-title: Sci Adv
– volume: 40
  start-page: 358
  issue: 3
  year: 1984
  article-title: Classification and regression trees (CART)
  publication-title: Biometrics
– volume: 935
  year: 2023
  article-title: Fabrication of Ti‐6Al‐4V alloy powder by a novel sintering‐deoxygenation process
  publication-title: J Alloys Compd
– volume: 10
  start-page: 4170
  issue: 8
  year: 2022
  end-page: 4180
  article-title: Machine learning and molecular dynamics simulation‐assisted evolutionary design and discovery pipeline to screen efficient small molecule acceptors for PTB7‐Th‐based organic solar cells with over 15% efficiency
  publication-title: J Mater Chem A
– volume: 14
  start-page: 9418
  issue: 7
  year: 2022
  end-page: 9432
  article-title: Machine learning study of the magnetic ordering in 2D materials
  publication-title: ACS Appl Mater Interfaces
– volume: 188
  year: 2021
  article-title: Machine learning‐based prediction of phases in high‐entropy alloys
  publication-title: Comput Mater Sci
– volume: 3
  start-page: 33
  issue: 1
  year: 2011
  article-title: Open Babel: an open chemical toolbox
  publication-title: J Cheminform
– volume: 589
  start-page: 59
  issue: 7840
  year: 2021
  end-page: 64
  article-title: Origins of structural and electronic transitions in disordered silicon
  publication-title: Nature
– volume: 361
  start-page: 360
  issue: 6400
  year: 2018
  end-page: 365
  article-title: Inverse molecular design using machine learning: generative models for matter engineering
  publication-title: Science
– volume: 8
  start-page: 114
  issue: 1
  year: 2022
  article-title: Uncovering material deformations via machine learning combined with four‐dimensional scanning transmission electron microscopy
  publication-title: npj Comput Mater
– volume: 935
  year: 2023
  article-title: Microstructure evolution and mechanical properties of 2060 Al‐Li alloy via friction stir additive manufacturing
  publication-title: J Alloys Compd
– volume: 79
  start-page: 1416
  issue: 3
  year: 1996
  end-page: 1422
  article-title: Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating
  publication-title: J Appl Phys
– volume: 4
  start-page: 235
  issue: 2
  year: 2021
  end-page: 247
  article-title: Progress on material characterization methods under big data environment
  publication-title: Adv Compos Hybrid Mater
– volume: 133
  start-page: 245
  issue: 1
  year: 2021
  end-page: 258
  article-title: Poisoning effect of calcium hydroxide on Fe–Ce/TiO catalyst for NO removal: evolution of active species and surface properties
  publication-title: Reac Kinet Mech Cat
– volume: 934
  year: 2023
  article-title: Enhanced mechanical properties and thermal stability in additively manufactured Al‐Ni alloy by Sc addition
  publication-title: J Alloys Compd
– volume: 30
  start-page: 237
  issue: 3
  year: 1990
  end-page: 243
  article-title: SMILES. 3. DEPICT. Graphical depiction of chemical structures
  publication-title: J Chem Inf Model
– volume: 232
  year: 2022
  article-title: Efficient machine‐learning model for fast assessment of elastic properties of high‐entropy alloys
  publication-title: Acta Mater
– volume: 2
  issue: 2
  year: 2017
  article-title: 2D metal carbides and nitrides (MXenes) for energy storage
  publication-title: Nat Rev Mater
– volume: 3
  start-page: 54
  issue: 1
  year: 2017
  article-title: Machine learning in materials informatics: recent applications and prospects
  publication-title: npj Comput Mater
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  article-title: Development of data‐driven machine learning models for the prediction of casting surface defects
  publication-title: Metals
– volume: 201
  start-page: 316
  year: 2020
  end-page: 328
  article-title: Machine‐learning assisted laser powder bed fusion process optimization for AlSi10Mg: new microstructure description indices and fracture mechanisms
  publication-title: Acta Mater
– volume: 197
  year: 2021
  article-title: Deep learning‐based phase prediction of high‐entropy alloys: optimization, generation, and explanation
  publication-title: Mater Des
– volume: 53
  start-page: 937
  issue: 8
  year: 2005
  end-page: 942
  article-title: Modification of Fe‐containing intermetallic compounds by K addition to Fe‐rich AA319 aluminum alloys
  publication-title: Scripta Materialia
– volume: 56
  start-page: 12828
  issue: 42
  year: 2017
  end-page: 12840
  article-title: First principles neural network potentials for reactive simulations of large molecular and condensed systems
  publication-title: Angew Chem Int Ed
– volume: 14
  start-page: 17125
  issue: 12
  year: 2020
  end-page: 17133
  article-title: Statistical characterization of the morphologies of nanoparticles through machine learning based electron microscopy image analysis
  publication-title: ACS Nano
– volume: 14
  start-page: 1
  issue: 1
  year: 2008
  end-page: 37
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl Inf Syst
– volume: 34
  issue: 10
  year: 2022
  article-title: Machine learning guided dopant selection for metal oxide‐based photoelectrochemical water splitting: the case study of Fe O and CuO
  publication-title: Adv Mater
– volume: 187
  year: 2020
  article-title: A machine‐learning approach to predicting and understanding the properties of amorphous metallic alloys
  publication-title: Mater Des
– volume: 338
  start-page: 643
  issue: 6107
  year: 2012
  end-page: 647
  article-title: Efficient hybrid solar cells based on meso‐superstructured organometal halide perovskites
  publication-title: Science
– year: 1982
– volume: 1
  start-page: 338
  issue: 3
  year: 2019
  end-page: 358
  article-title: Machine learning in materials science
  publication-title: InfoMat
– volume: 422
  year: 2020
  article-title: Recent advances, opportunities, and challenges in high‐throughput computational screening of MOFs for gas separations
  publication-title: Coord Chem Rev
– volume: 29
  start-page: 97
  issue: 2
  year: 1989
  end-page: 101
  article-title: SMILES. 2. Algorithm for generation of unique SMILES notation
  publication-title: J Chem Inf Comput Sci
– volume: 15
  start-page: 12604
  issue: 8
  year: 2021
  end-page: 12627
  article-title: Automated and autonomous experiments in electron and scanning probe microscopy
  publication-title: ACS Nano
– volume: 5
  issue: 5
  year: 2021
  article-title: Machine learning method reveals hidden strong metal‐support interaction in microscopy datasets
  publication-title: Small Methods
– volume: 28
  issue: 8
  year: 2019
  article-title: SymTopo: an automatic tool for calculating topological properties of nonmagnetic crystalline materials*
  publication-title: Chinese Phys B
– volume: 32
  start-page: 1466
  issue: 7
  year: 2011
  end-page: 1474
  article-title: PaDEL‐descriptor: an open source software to calculate molecular descriptors and fingerprints
  publication-title: J Comput Chem
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  end-page: 551
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput
– volume: 44
  start-page: D1202
  issue: D1
  year: 2016
  end-page: D1213
  article-title: Pubchem substance and compound databases
  publication-title: Nucleic Acids Res
– volume: 139
  start-page: 59
  year: 2023
  end-page: 68
  article-title: Unusually high corrosion resistance in Mo CrNiCo medium entropy alloy enhanced by acidity in aqueous solution
  publication-title: J Mater Sci Technol
– volume: 15
  start-page: 56
  issue: 1
  year: 2021
  article-title: Investigation of deoxidation process of MoO using environmental TEM
  publication-title: Materials
– volume: 53
  start-page: 547
  issue: 3
  year: 2020
  end-page: 560
  article-title: Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery
  publication-title: Acc Chem Res
– volume: 14
  start-page: 16568
  issue: 14
  year: 2022
  end-page: 16581
  article-title: Predicting young's modulus of linear polyurethane and polyurethane–polyurea elastomers: bridging length scales with physicochemical modeling and machine learning
  publication-title: ACS Appl Mater Interfaces
– volume: 40
  start-page: D1100
  issue: D1
  year: 2012
  end-page: D1107
  article-title: ChEMBL: a large‐scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 4
  start-page: 36
  issue: 1
  year: 2018
  article-title: Automated defect analysis in electron microscopic images
  publication-title: npj Comput Mater
– volume: 11
  start-page: 479
  issue: 5
  year: 2016
  end-page: 486
  article-title: Meta‐analysis of cellular toxicity for cadmium‐containing quantum dots
  publication-title: Nature Nanotech
– volume: 533
  start-page: 73
  issue: 7601
  year: 2016
  end-page: 76
  article-title: Machine‐learning‐assisted materials discovery using failed experiments
  publication-title: Nature
– volume: 7
  start-page: 23
  issue: 1
  year: 2021
  article-title: Machine learning for perovskite materials design and discovery
  publication-title: npj Comput Mater
– volume: 6
  start-page: 187
  issue: 1
  year: 2020
  article-title: Interpretable machine‐learning strategy for soft‐magnetic property and thermal stability in Fe‐based metallic glasses
  publication-title: npj Comput Mater
– volume: 40
  start-page: 132
  year: 2020
  end-page: 139
  article-title: Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD)
  publication-title: Materials Today
– volume: 196
  year: 2021
  article-title: Graph representational learning for bandgap prediction in varied perovskite crystals
  publication-title: Comput Mater Sci
– volume: 23
  start-page: 1841
  issue: 5
  year: 2022
  end-page: 1863
  article-title: Biocompatible synthetic polymers for tissue engineering purposes
  publication-title: Biomacromolecules
– volume: 294
  year: 2023
  article-title: Wire arc additive manufacturing of metals: a review on processes, materials and their behaviour
  publication-title: Mater Chem Phys
– volume: 6
  start-page: 84
  issue: 1
  year: 2020
  article-title: Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials
  publication-title: npj Comput Mater
– volume: 44
  start-page: 207
  issue: 1–2
  year: 2000
  end-page: 226
  article-title: Some studies in machine learning using the game of checkers (Reprinted from Journal of Research and Development, Vol. 3, 1959)
  publication-title: IBM Journal of Research and Development
– volume: 150
  issue: 11
  year: 2019
  article-title: The chemical space of B, N‐substituted polycyclic aromatic hydrocarbons: combinatorial enumeration and high‐throughput first‐principles modeling
  publication-title: J Chem Phys
– volume: 110
  year: 2022
  article-title: Application of machine learning methods on dynamic strength analysis for additive manufactured polypropylene‐based composites
  publication-title: Polym Test
– volume: 14
  start-page: 16114
  issue: 11
  year: 2020
  end-page: 16121
  article-title: Measurement of exciton and trion energies in multistacked hBN/WS coupled quantum wells for resonant tunneling diodes
  publication-title: ACS Nano
– volume: 10
  start-page: 6679
  issue: 12
  year: 2022
  end-page: 6689
  article-title: Machine learning assisted high‐throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts
  publication-title: J Mater Chem A
– volume: 34
  issue: 12
  year: 2022
  article-title: Machine learning guided synthesis of flash graphene
  publication-title: Adv Mater
– volume: 40
  start-page: D420
  issue: D1
  year: 2012
  end-page: D427
  article-title: Crystallography Open Database (COD): an open‐access collection of crystal structures and platform for world‐wide collaboration
  publication-title: Nucleic Acids Res
– volume: 16
  year: 2021
  article-title: Realization of closed‐loop optimization of epitaxial titanium nitride thin‐film growth via machine learning
  publication-title: Mater Today Phys
– volume: 21
  issue: 39
  year: 2009
  article-title: QUANTUM ESPRESSO: a modular and open‐source software project for quantum simulations of materials
  publication-title: J Phys: Condens Matter
– volume: 51
  start-page: 1899
  issue: 6
  year: 2022
  end-page: 1925
  article-title: Understanding, discovery, and synthesis of 2D materials enabled by machine learning
  publication-title: Chem Soc Rev
– volume: 26
  start-page: 992
  issue: 7
  year: 2014
  end-page: 1005
  article-title: 25th anniversary article: mxenes: a new family of two‐dimensional materials
  publication-title: Adv Mater
– volume: 120
  start-page: 320
  year: 2019
  end-page: 339
  article-title: Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal plasticity FE simulations: part II: thermo‐elasto‐plastic model with experimental validation for titanium alloys
  publication-title: Int J Plast
– volume: 87
  start-page: 1123
  issue: 11
  year: 2010
  end-page: 1124
  article-title: ChemSpider: an online chemical information resource
  publication-title: J Chem Educ
– volume: 47
  start-page: D930
  issue: D1
  year: 2019
  end-page: D940
  article-title: ChEMBL: towards direct deposition of bioassay data
  publication-title: Nucleic Acids Res
– volume: 104
  start-page: 285
  year: 2022
  end-page: 291
  article-title: Using multiple regression analysis to predict directionally solidified TiAl mechanical property
  publication-title: J Mater Sci Technol
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  end-page: 144
  article-title: Generative adversarial networks
  publication-title: Commun ACM
– volume: 50
  start-page: 742
  issue: 5
  year: 2010
  end-page: 754
  article-title: Extended‐connectivity fingerprints
  publication-title: J Chem Inf Model
– volume: 5
  start-page: 3426
  issue: 11
  year: 2020
  end-page: 3436
  article-title: Chemical robotics enabled exploration of stability in multicomponent lead halide perovskites via machine learning
  publication-title: ACS Energy Lett
– volume: 6
  issue: 21
  year: 2019
  article-title: Data‐driven materials science: status, challenges, and perspectives
  publication-title: Adv Sci
– volume: 14
  start-page: 8427
  issue: 6
  year: 2022
  end-page: 8436
  article-title: Machine learning‐enabled prediction and high‐throughput screening of polymer membranes for pervaporation separation
  publication-title: ACS Appl Mater Interfaces
– ident: e_1_2_7_36_1
  doi: 10.1039/D1CS00503K
– ident: e_1_2_7_294_1
  doi: 10.1038/s41586-020-03072-z
– ident: e_1_2_7_210_1
  doi: 10.1016/j.jallcom.2022.167894
– ident: e_1_2_7_132_1
  doi: 10.1016/j.jmst.2021.05.076
– ident: e_1_2_7_261_1
  doi: 10.1016/j.heliyon.2020.e05055
– ident: e_1_2_7_263_1
  doi: 10.3390/polym14030527
– ident: e_1_2_7_12_1
  doi: 10.1126/science.1127647
– ident: e_1_2_7_216_1
  doi: 10.1016/j.jmbbm.2018.07.022
– ident: e_1_2_7_25_1
– ident: e_1_2_7_59_1
  doi: 10.1021/ci300415d
– ident: e_1_2_7_161_1
  doi: 10.1002/advs.201903389
– ident: e_1_2_7_194_1
  doi: 10.1021/acsami.1c01098
– ident: e_1_2_7_130_1
  doi: 10.1038/nnano.2015.338
– ident: e_1_2_7_303_1
  doi: 10.1021/acsnano.1c02104
– ident: e_1_2_7_39_1
  doi: 10.1002/inf2.12028
– ident: e_1_2_7_79_1
  doi: 10.1038/s41524-020-0287-8
– ident: e_1_2_7_152_1
  doi: 10.1021/acscentsci.7b00572
– ident: e_1_2_7_297_1
  doi: 10.1038/s41586-021-04078-x
– ident: e_1_2_7_231_1
  doi: 10.1016/j.compositesb.2018.02.012
– ident: e_1_2_7_206_1
  doi: 10.1016/j.jallcom.2022.168019
– ident: e_1_2_7_135_1
  doi: 10.1080/14786440109462720
– ident: e_1_2_7_104_1
  doi: 10.1021/acs.jpca.7b08750
– volume: 44
  start-page: 207
  issue: 1
  year: 2000
  ident: e_1_2_7_7_1
  article-title: Some studies in machine learning using the game of checkers (Reprinted from Journal of Research and Development, Vol. 3, 1959)
  publication-title: IBM Journal of Research and Development
– ident: e_1_2_7_146_1
  doi: 10.1038/s41524-022-00696-9
– ident: e_1_2_7_302_1
  doi: 10.3390/ma15010056
– ident: e_1_2_7_204_1
  doi: 10.1016/j.mtcomm.2022.104896
– ident: e_1_2_7_282_1
  doi: 10.1088/0953-8984/21/39/395502
– ident: e_1_2_7_279_1
  doi: 10.1557/mrs.2012.96
– ident: e_1_2_7_80_1
  doi: 10.1038/s41524-021-00687-2
– ident: e_1_2_7_203_1
  doi: 10.1016/j.scriptamat.2005.06.022
– ident: e_1_2_7_8_1
  doi: 10.1038/323533a0
– ident: e_1_2_7_87_1
  doi: 10.1038/nmat1752
– ident: e_1_2_7_235_1
  doi: 10.1016/j.ijfatigue.2020.105941
– volume-title: Introduction to Linear Regression Analysis, 5th ed
  year: 1982
  ident: e_1_2_7_114_1
– ident: e_1_2_7_157_1
  doi: 10.1063/5.0023759
– ident: e_1_2_7_275_1
  doi: 10.1016/j.eml.2020.100651
– ident: e_1_2_7_197_1
  doi: 10.1002/adma.202108900
– ident: e_1_2_7_260_1
  doi: 10.1021/acsaem.0c02647
– ident: e_1_2_7_188_1
  doi: 10.1002/aenm.202200389
– ident: e_1_2_7_70_1
  doi: 10.1038/npjcompumats.2015.10
– ident: e_1_2_7_183_1
  doi: 10.1016/j.apcatb.2021.120736
– ident: e_1_2_7_233_1
  doi: 10.1016/j.jmsy.2021.07.013
– ident: e_1_2_7_96_1
  doi: 10.1021/ci100050t
– ident: e_1_2_7_119_1
  doi: 10.1021/acs.jpclett.8b00124
– ident: e_1_2_7_257_1
  doi: 10.3390/polym14194084
– ident: e_1_2_7_17_1
  doi: 10.1109/72.788645
– ident: e_1_2_7_267_1
  doi: 10.1038/s41524-018-0128-1
– ident: e_1_2_7_268_1
  doi: 10.1002/advs.201902607
– ident: e_1_2_7_285_1
  doi: 10.1002/anie.201703114
– ident: e_1_2_7_172_1
  doi: 10.1016/j.commatsci.2020.109614
– ident: e_1_2_7_5_1
  doi: 10.1063/1.4946894
– ident: e_1_2_7_23_1
  doi: 10.1038/s41598-021-92278-w
– ident: e_1_2_7_51_1
  doi: 10.1093/nar/gky1075
– ident: e_1_2_7_160_1
  doi: 10.1126/science.aam7092
– ident: e_1_2_7_292_1
  doi: 10.1103/PhysRevB.42.9458
– ident: e_1_2_7_305_1
  doi: 10.1038/s41524-022-00793-9
– ident: e_1_2_7_68_1
  doi: 10.1088/0953-8984/27/28/283203
– ident: e_1_2_7_182_1
  doi: 10.3390/pr9101846
– ident: e_1_2_7_232_1
  doi: 10.1016/j.actamat.2020.10.010
– ident: e_1_2_7_306_1
  doi: 10.1038/s41524-018-0093-8
– ident: e_1_2_7_22_1
  doi: 10.1038/s41586-022-05322-8
– ident: e_1_2_7_58_1
  doi: 10.1107/S0108768102003890
– ident: e_1_2_7_180_1
  doi: 10.1016/j.fuel.2020.119069
– ident: e_1_2_7_217_1
  doi: 10.1007/s00170-020-06515-z
– ident: e_1_2_7_162_1
  doi: 10.1063/1.3623476
– ident: e_1_2_7_101_1
  doi: 10.1016/j.actamat.2020.09.081
– ident: e_1_2_7_16_1
  doi: 10.1109/TITS.2022.3170628
– ident: e_1_2_7_20_1
  doi: 10.1007/s10115-007-0114-2
– ident: e_1_2_7_158_1
  doi: 10.1021/cr980129f
– ident: e_1_2_7_308_1
  doi: 10.1038/s41524-022-00880-x
– ident: e_1_2_7_251_1
  doi: 10.1007/s10854-021-06883-6
– ident: e_1_2_7_270_1
  doi: 10.1016/j.actamat.2021.116980
– ident: e_1_2_7_211_1
  doi: 10.1016/j.jmst.2022.09.033
– ident: e_1_2_7_109_1
  doi: 10.1016/j.physrep.2019.03.001
– ident: e_1_2_7_215_1
  doi: 10.1016/j.jma.2020.06.021
– ident: e_1_2_7_277_1
  doi: 10.1016/j.matt.2019.08.017
– volume-title: Foundations of Materials Science and Engineering
  year: 2019
  ident: e_1_2_7_2_1
– ident: e_1_2_7_126_1
  doi: 10.1016/j.jpowsour.2021.230968
– ident: e_1_2_7_295_1
  doi: 10.1038/s41586-022-05036-x
– ident: e_1_2_7_75_1
  doi: 10.1038/d41586-020-03259-4
– ident: e_1_2_7_86_1
  doi: 10.1007/s42114-021-00229-w
– ident: e_1_2_7_127_1
  doi: 10.1162/neco.1989.1.4.541
– ident: e_1_2_7_213_1
  doi: 10.1016/j.jmapro.2022.10.040
– ident: e_1_2_7_298_1
  doi: 10.1017/S1431927619000497
– ident: e_1_2_7_66_1
  doi: 10.1103/PhysRevB.85.115104
– ident: e_1_2_7_89_1
  doi: 10.1016/j.actamat.2021.116815
– ident: e_1_2_7_144_1
  doi: 10.1115/1.4050525
– ident: e_1_2_7_147_1
  doi: 10.1103/PhysRevB.105.115202
– ident: e_1_2_7_219_1
  doi: 10.1016/j.commatsci.2020.110259
– ident: e_1_2_7_191_1
  doi: 10.1021/acs.accounts.9b00529
– ident: e_1_2_7_301_1
  doi: 10.1038/s41560-020-00768-4
– ident: e_1_2_7_168_1
  doi: 10.1016/j.jlumin.2022.119406
– ident: e_1_2_7_236_1
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_7_148_1
  doi: 10.1021/acsnano.1c09644
– ident: e_1_2_7_249_1
  doi: 10.1038/s41699-021-00228-x
– ident: e_1_2_7_193_1
  doi: 10.1016/j.jclepro.2020.120694
– ident: e_1_2_7_264_1
  doi: 10.3390/polym14091802
– ident: e_1_2_7_84_1
  doi: 10.1038/s41467-021-22472-x
– ident: e_1_2_7_314_1
  doi: 10.1126/science.1165893
– ident: e_1_2_7_276_1
  doi: 10.1016/j.carbon.2020.07.013
– ident: e_1_2_7_29_1
  doi: 10.1103/PhysRevB.99.064114
– ident: e_1_2_7_93_1
  doi: 10.1021/ci00057a005
– ident: e_1_2_7_133_1
  doi: 10.1002/adma.202106506
– ident: e_1_2_7_67_1
  doi: 10.1103/PhysRevB.87.085112
– ident: e_1_2_7_247_1
  doi: 10.1016/j.progsurf.2021.100626
– ident: e_1_2_7_139_1
– ident: e_1_2_7_246_1
  doi: 10.1021/acsami.1c21558
– ident: e_1_2_7_290_1
  doi: 10.1103/PhysRevB.62.11089
– ident: e_1_2_7_85_1
  doi: 10.1038/nmat3568
– ident: e_1_2_7_248_1
  doi: 10.1016/j.mattod.2020.06.012
– ident: e_1_2_7_117_1
  doi: 10.1007/s00500-020-05297-6
– ident: e_1_2_7_315_1
  doi: 10.1103/PhysRevLett.128.180201
– ident: e_1_2_7_50_1
  doi: 10.1093/nar/gkr777
– ident: e_1_2_7_255_1
– ident: e_1_2_7_250_1
– ident: e_1_2_7_245_1
  doi: 10.1038/s41524-020-0300-2
– ident: e_1_2_7_266_1
  doi: 10.1021/acsami.1c22886
– ident: e_1_2_7_192_1
  doi: 10.1016/j.mattod.2019.06.009
– ident: e_1_2_7_299_1
  doi: 10.3390/molecules27123829
– ident: e_1_2_7_42_1
  doi: 10.1002/advs.201900808
– ident: e_1_2_7_187_1
  doi: 10.1002/advs.201901614
– ident: e_1_2_7_176_1
  doi: 10.1021/acs.jpclett.1c01939
– ident: e_1_2_7_284_1
  doi: 10.1021/acs.jpclett.9b03664
– ident: e_1_2_7_221_1
  doi: 10.1016/j.commatsci.2020.110025
– ident: e_1_2_7_27_1
  doi: 10.1039/D0NA00388C
– ident: e_1_2_7_163_1
  doi: 10.1126/science.1080615
– ident: e_1_2_7_46_1
  doi: 10.1016/j.commatsci.2012.02.005
– ident: e_1_2_7_258_1
  doi: 10.1002/inf2.12167
– ident: e_1_2_7_113_1
  doi: 10.1002/adts.202100565
– ident: e_1_2_7_73_1
  doi: 10.1038/nature17439
– year: 2022
  ident: e_1_2_7_167_1
  article-title: Engineering stable lead‐free tin halide perovskite solar cells: lessons from materials chemistry
  publication-title: Adv Mater
– ident: e_1_2_7_265_1
– ident: e_1_2_7_52_1
  doi: 10.1021/ed100697w
– ident: e_1_2_7_169_1
  doi: 10.1002/adma.201600669
– ident: e_1_2_7_241_1
  doi: 10.1038/s41586-021-03338-0
– ident: e_1_2_7_14_1
  doi: 10.1109/ACCESS.2016.2596776
– ident: e_1_2_7_289_1
  doi: 10.1063/1.360979
– ident: e_1_2_7_19_1
  doi: 10.1001/jama.2016.17216
– ident: e_1_2_7_62_1
  doi: 10.1038/s41586-019-0944-6
– ident: e_1_2_7_226_1
  doi: 10.1016/j.actamat.2021.117535
– ident: e_1_2_7_40_1
  doi: 10.1609/aimag.v18i3.1303
– ident: e_1_2_7_64_1
  doi: 10.1063/1.5088083
– ident: e_1_2_7_269_1
  doi: 10.1038/s41524-020-00477-2
– ident: e_1_2_7_293_1
  doi: 10.1103/PhysRevB.87.205410
– ident: e_1_2_7_53_1
– ident: e_1_2_7_224_1
  doi: 10.1016/j.pmatsci.2013.10.001
– ident: e_1_2_7_34_1
  doi: 10.1021/acs.chemrev.2c00061
– ident: e_1_2_7_280_1
  doi: 10.1016/j.carbon.2016.08.024
– ident: e_1_2_7_21_1
  doi: 10.1039/D1TA09878K
– ident: e_1_2_7_103_1
  doi: 10.1016/j.ijplas.2019.05.007
– ident: e_1_2_7_195_1
  doi: 10.1016/j.cej.2021.133126
– ident: e_1_2_7_225_1
  doi: 10.1016/j.jmst.2020.01.005
– ident: e_1_2_7_304_1
  doi: 10.1021/acsnano.0c06809
– ident: e_1_2_7_239_1
  doi: 10.1103/RevModPhys.83.407
– ident: e_1_2_7_283_1
  doi: 10.1016/j.cpc.2018.03.016
– ident: e_1_2_7_98_1
  doi: 10.1002/jcc.21707
– ident: e_1_2_7_110_1
  doi: 10.1109/MCI.2015.2471235
– ident: e_1_2_7_254_1
  doi: 10.3390/polym14061160
– ident: e_1_2_7_120_1
  doi: 10.1109/TIT.1967.1053964
– ident: e_1_2_7_13_1
  doi: 10.1109/CVPR.2005.177
– ident: e_1_2_7_310_1
  doi: 10.1002/adfm.202208418
– ident: e_1_2_7_116_1
  doi: 10.1016/j.jmst.2021.06.072
– ident: e_1_2_7_105_1
  doi: 10.1103/PhysRevMaterials.2.083802
– ident: e_1_2_7_238_1
  doi: 10.1002/adma.201304138
– ident: e_1_2_7_170_1
  doi: 10.1016/j.commatsci.2021.110530
– ident: e_1_2_7_31_1
  doi: 10.1038/s41524-017-0056-5
– ident: e_1_2_7_205_1
  doi: 10.1016/j.jmst.2022.08.013
– ident: e_1_2_7_281_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_7_220_1
  doi: 10.1038/s41524-020-00460-x
– ident: e_1_2_7_218_1
  doi: 10.1016/j.pmatsci.2019.01.003
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.202106776
– ident: e_1_2_7_186_1
  doi: 10.1039/D1EE02369A
– ident: e_1_2_7_274_1
– ident: e_1_2_7_125_1
  doi: 10.1016/j.commatsci.2008.01.039
– ident: e_1_2_7_56_1
  doi: 10.1093/nar/gkr900
– ident: e_1_2_7_106_1
  doi: 10.1016/j.actamat.2022.117924
– ident: e_1_2_7_272_1
  doi: 10.1002/smtd.202100035
– ident: e_1_2_7_300_1
  doi: 10.1002/adma.202205715
– ident: e_1_2_7_166_1
  doi: 10.1126/science.1228604
– ident: e_1_2_7_88_1
  doi: 10.1039/C7TA10374C
– ident: e_1_2_7_10_1
  doi: 10.1007/BF00116251
– ident: e_1_2_7_38_1
  doi: 10.1002/inf2.12094
– ident: e_1_2_7_45_1
  doi: 10.1021/acsami.9b14530
– ident: e_1_2_7_74_1
  doi: 10.1038/s43588-020-00002-x
– ident: e_1_2_7_92_1
  doi: 10.1039/D1ME00160D
– ident: e_1_2_7_63_1
  doi: 10.1038/sdata.2014.22
– ident: e_1_2_7_189_1
  doi: 10.1039/D2TA02039D
– ident: e_1_2_7_81_1
  doi: 10.1038/s41467-021-24523-9
– ident: e_1_2_7_48_1
  doi: 10.1038/s41597-019-0081-y
– ident: e_1_2_7_108_1
  doi: 10.1007/978-1-62703-748-8_7
– ident: e_1_2_7_155_1
  doi: 10.1016/j.matdes.2019.108378
– ident: e_1_2_7_173_1
  doi: 10.1021/acs.chemmater.0c01894
– ident: e_1_2_7_83_1
  doi: 10.1002/adma.202002780
– ident: e_1_2_7_230_1
  doi: 10.1016/j.matchemphys.2022.126988
– ident: e_1_2_7_244_1
  doi: 10.1038/nmat1849
– ident: e_1_2_7_26_1
  doi: 10.1016/j.nanoen.2020.105665
– ident: e_1_2_7_165_1
  doi: 10.1038/nature12340
– ident: e_1_2_7_91_1
  doi: 10.1038/s41467-019-13297-w
– volume: 13
  year: 2021
  ident: e_1_2_7_234_1
  article-title: A physics‐informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing
  publication-title: Int J Adv Manuf Technol
– ident: e_1_2_7_82_1
  doi: 10.1016/j.ccr.2020.213470
– ident: e_1_2_7_214_1
  doi: 10.1016/j.mser.2009.03.001
– ident: e_1_2_7_256_1
  doi: 10.1021/acs.biomac.2c00047
– ident: e_1_2_7_311_1
  doi: 10.1016/j.artint.2010.04.018
– ident: e_1_2_7_179_1
  doi: 10.1002/advs.202103648
– ident: e_1_2_7_201_1
  doi: 10.1021/jacs.1c07217
– ident: e_1_2_7_65_1
  doi: 10.1063/1.4812323
– ident: e_1_2_7_124_1
  doi: 10.1016/j.heliyon.2018.e00938
– ident: e_1_2_7_286_1
  doi: 10.1103/PhysRevB.95.094203
– ident: e_1_2_7_196_1
  doi: 10.1038/s41586-020-2242-8
– ident: e_1_2_7_198_1
  doi: 10.1038/s41524-021-00541-5
– ident: e_1_2_7_287_1
  doi: 10.1103/PhysRevB.78.161402
– ident: e_1_2_7_76_1
  doi: 10.1016/j.solmat.2019.110284
– ident: e_1_2_7_252_1
  doi: 10.1021/acsami.1c23610
– ident: e_1_2_7_4_1
  doi: 10.1007/s11837-021-05008-y
– ident: e_1_2_7_90_1
  doi: 10.1088/1361-648X/aba06b
– ident: e_1_2_7_222_1
  doi: 10.1016/j.pmatsci.2021.100777
– ident: e_1_2_7_136_1
– ident: e_1_2_7_181_1
  doi: 10.1007/s11144-021-01980-3
– ident: e_1_2_7_111_1
  doi: 10.1002/adma.202005112
– ident: e_1_2_7_138_1
  doi: 10.1109/TPAMI.2021.3116668
– ident: e_1_2_7_57_1
  doi: 10.1107/S2052520616003954
– ident: e_1_2_7_112_1
  doi: 10.1016/j.polymertesting.2022.107580
– ident: e_1_2_7_156_1
  doi: 10.1016/j.chempr.2021.11.009
– ident: e_1_2_7_41_1
  doi: 10.1007/s42979-021-00592-x
– ident: e_1_2_7_178_1
  doi: 10.1016/j.matt.2020.02.012
– ident: e_1_2_7_140_1
  doi: 10.1145/3422622
– ident: e_1_2_7_33_1
  doi: 10.1038/s41524-021-00495-8
– ident: e_1_2_7_159_1
  doi: 10.1038/nmat4938
– ident: e_1_2_7_3_1
– ident: e_1_2_7_122_1
  doi: 10.1021/jp4006422
– ident: e_1_2_7_199_1
  doi: 10.1016/j.psep.2022.03.020
– ident: e_1_2_7_273_1
  doi: 10.1038/s41524-022-00923-3
– ident: e_1_2_7_49_1
  doi: 10.1038/s41597-019-0080-z
– ident: e_1_2_7_142_1
  doi: 10.1038/s41524-020-00352-0
– ident: e_1_2_7_171_1
  doi: 10.1016/j.apsusc.2021.150916
– ident: e_1_2_7_134_1
  doi: 10.1016/j.biortech.2022.126812
– ident: e_1_2_7_61_1
  doi: 10.1088/1674-1056/28/8/087102
– ident: e_1_2_7_151_1
  doi: 10.1007/s12613-022-2457-9
– ident: e_1_2_7_60_1
  doi: 10.1107/S0108768102006948
– ident: e_1_2_7_71_1
  doi: 10.1093/nar/gkv951
– ident: e_1_2_7_131_1
  doi: 10.3389/fnbot.2013.00021
– ident: e_1_2_7_228_1
  doi: 10.1016/j.matdes.2020.109260
– ident: e_1_2_7_77_1
  doi: 10.1016/j.ijhydene.2022.02.030
– ident: e_1_2_7_177_1
  doi: 10.1016/j.commatsci.2022.111435
– ident: e_1_2_7_212_1
  doi: 10.1016/j.jmst.2022.07.061
– ident: e_1_2_7_288_1
  doi: 10.1103/PhysRevB.48.4777
– ident: e_1_2_7_54_1
  doi: 10.1088/2053-1583/aacfc1
– ident: e_1_2_7_229_1
  doi: 10.1016/j.pmatsci.2017.10.001
– ident: e_1_2_7_307_1
  doi: 10.1038/s41524-019-0152-9
– ident: e_1_2_7_253_1
  doi: 10.1038/s41467-021-23798-2
– volume-title: The Fourth Paradigm: Data‐Intensive Scientific Discovery
  year: 2009
  ident: e_1_2_7_6_1
– ident: e_1_2_7_164_1
  doi: 10.1039/c3nr02543h
– ident: e_1_2_7_174_1
  doi: 10.1126/sciadv.aaq1566
– ident: e_1_2_7_137_1
  doi: 10.1021/acs.chemmater.1c03220
– ident: e_1_2_7_296_1
  doi: 10.1038/s41586-020-2677-y
– ident: e_1_2_7_227_1
  doi: 10.1016/j.commatsci.2020.110244
– ident: e_1_2_7_143_1
  doi: 10.1039/D1TA09762H
– ident: e_1_2_7_97_1
  doi: 10.1021/ci025584y
– ident: e_1_2_7_99_1
  doi: 10.1186/1758-2946-3-33
– ident: e_1_2_7_118_1
  doi: 10.1016/j.mtphys.2020.100296
– ident: e_1_2_7_243_1
  doi: 10.1126/science.1102896
– ident: e_1_2_7_102_1
  doi: 10.1021/acs.chemmater.0c03402
– ident: e_1_2_7_141_1
  doi: 10.1126/science.aat2663
– ident: e_1_2_7_149_1
  doi: 10.1038/s41524-021-00688-1
– ident: e_1_2_7_200_1
  doi: 10.1038/s41598-022-10563-8
– ident: e_1_2_7_129_1
  doi: 10.1023/A:1010933404324
– volume: 30
  start-page: 237
  issue: 3
  year: 1990
  ident: e_1_2_7_95_1
  article-title: SMILES. 3. DEPICT. Graphical depiction of chemical structures
  publication-title: J Chem Inf Model
– ident: e_1_2_7_237_1
  doi: 10.1021/nn501226z
– ident: e_1_2_7_242_1
  doi: 10.1021/acsnano.0c08133
– ident: e_1_2_7_72_1
  doi: 10.1093/nar/gkaa971
– ident: e_1_2_7_271_1
  doi: 10.1002/inf2.12026
– ident: e_1_2_7_44_1
  doi: 10.3390/met12010001
– ident: e_1_2_7_18_1
  doi: 10.1016/j.eswa.2007.01.018
– ident: e_1_2_7_208_1
  doi: 10.1016/j.intermet.2022.107712
– ident: e_1_2_7_55_1
  doi: 10.1107/S0021889809016690
– ident: e_1_2_7_69_1
  doi: 10.1007/s11837-013-0755-4
– ident: e_1_2_7_24_1
  doi: 10.1038/s41586-022-04998-2
– ident: e_1_2_7_121_1
  doi: 10.1039/D1MH01912K
– ident: e_1_2_7_150_1
  doi: 10.1002/inf2.12315
– ident: e_1_2_7_185_1
  doi: 10.3390/catal11040518
– volume: 40
  start-page: 358
  issue: 3
  year: 1984
  ident: e_1_2_7_9_1
  article-title: Classification and regression trees (CART)
  publication-title: Biometrics
– ident: e_1_2_7_309_1
– ident: e_1_2_7_240_1
  doi: 10.1039/C1JM14216J
– ident: e_1_2_7_115_1
  doi: 10.1007/s11665-008-9225-5
– ident: e_1_2_7_278_1
– ident: e_1_2_7_313_1
  doi: 10.1109/TKDE.2009.191
– ident: e_1_2_7_128_1
  doi: 10.1038/s41524-019-0165-4
– ident: e_1_2_7_153_1
  doi: 10.1021/acsenergylett.0c01749
– ident: e_1_2_7_154_1
  doi: 10.1021/acssuschemeng.0c09192
– ident: e_1_2_7_35_1
  doi: 10.1002/advs.202106043
– ident: e_1_2_7_190_1
  doi: 10.1021/acs.chemrev.9b00248
– ident: e_1_2_7_94_1
  doi: 10.1021/ci00062a008
– ident: e_1_2_7_15_1
  doi: 10.1109/TNNLS.2020.3015830
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jmat.2019.03.003
– ident: e_1_2_7_175_1
  doi: 10.1021/acs.chemmater.1c02725
– ident: e_1_2_7_32_1
  doi: 10.1039/D1EE00154J
– ident: e_1_2_7_145_1
– ident: e_1_2_7_223_1
  doi: 10.1038/s41578-019-0121-4
– ident: e_1_2_7_259_1
  doi: 10.1038/s41524-020-0333-6
– ident: e_1_2_7_37_1
  doi: 10.3390/polym12010163
– ident: e_1_2_7_107_1
  doi: 10.3390/app12073318
– ident: e_1_2_7_47_1
  doi: 10.1016/j.commatsci.2012.02.002
– ident: e_1_2_7_207_1
  doi: 10.1016/j.jallcom.2022.168113
– ident: e_1_2_7_11_1
  doi: 10.1007/BF00994018
– ident: e_1_2_7_30_1
  doi: 10.1021/acsami.1c24715
– ident: e_1_2_7_202_1
  doi: 10.1016/j.jallcom.2020.156209
– ident: e_1_2_7_78_1
  doi: 10.1063/5.0021106
– ident: e_1_2_7_123_1
  doi: 10.1016/S0167-7012(00)00201-3
– ident: e_1_2_7_100_1
  doi: 10.1162/153244303322753616
– ident: e_1_2_7_262_1
– ident: e_1_2_7_291_1
  doi: 10.1103/PhysRevLett.61.2879
– ident: e_1_2_7_312_1
– ident: e_1_2_7_209_1
  doi: 10.1063/1.4849292
– ident: e_1_2_7_184_1
  doi: 10.1007/s11705-019-1900-6
SSID ssj0002504251
Score 2.3925333
SecondaryResourceType review_article
Snippet As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development (R&D) cycle...
Abstract As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 21st century
Addition polymerization
Algorithms
Back propagation
Composite materials
Computers
Data collection
Decision trees
Deep learning
features
Informatics
Innovations
Interdisciplinary subjects
Inverse design
Linear programming
Machine learning
materials
materials informatics
Materials information
Materials science
modeling
Modelling
Neural networks
Perovskites
Prediction models
R&D
Research & development
Scientific method
Support vector machines
Two dimensional materials
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEMcX6UkP4hOrVQJ6UYxN9pXkJCqWKrQnC70t-8pJ0mLb7-_MJi0piF68LWEPw8zuzn_Jzm8IuXGmxApHGjMtTcxdksRa5zIW1knhtfHCYO3waCyHE_4-FdNWqy98E1bjgWvH9SHdSOpznwj896hhBfKcgcrnJi-8Nw5PX8h5rcsUnsEI5oLMveGR0j7Eiz6kKLC3MlAA9W-py7ZGDUlmcED2G3UYPdVWHZIdXx2RvRYz8Jg8jkLP58V9FJ5WIfobxrpy0WyOWnpVBUZqNCsjEKP1-ooaPCoimU_IZPD68TKMmy4IseVgbSyztExzLSzcH3WOhazausLRxIF2sUzr1GcenMRSUWaZFGVR8tQaxrLC21ILdko61azyZySy3CcghxjP8B7lmRGZK6yj0iKg1usuuV17RtkGEY6dKj5VDTemCr2oghe75Hozd16DMX6c9YwO3sxAmHX4ACFWTYjVXyHukt46PKrZYQtFc5BOWGWbdsldCNkvZqi38YCG0fl_GHRBdrHrfP0OsEc6y6-VvwRtsjRXYRl-A7VJ3ag
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access (WRLC)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMcHHxc9iE9cXxT0oli3zastCKLiooKLBxf2FvKqF-kuu_r9zaTdugsieCtlCmGSSf5JM78BOLO6xAxHElMldMxsksRK5SLmxgrulHZcY-7wS188DtjzkA-X4HqWC1PzIdoDN4yMMF9jgCs97f5AQ30HkKsUFfMyrGJuLV7oI-y1PWFBOBcJ9Rf9so6HcYK3fFLS_fl8YUUK4P4FtTmvWcOi09uEjUYtRrd1927Bkqu2YX2OIbgDNy-hBvT0MgpXrRAF7p9VZaPRGLX1VxWYqdGojLw4rcdb1OBSEdG8C4Pew9v9Y9xURYgN862NRZaWaa648ftJlWNiqzK2sCSxXssYqlTqMpdSQVNeZpngZVGy1GhKs8KZUnG6ByvVqHL7EBnmEi-PKMtwX-Wo5pktjCXCILDWqQ6czzwjTYMMx8oVH7KGHROJXpTBix04bW3HNSjjV6s7dHBrgXDr8GI0eZdNrEivMARxuUs4_m5WftJhOfUbO6bzwjltO3A06x7ZRNxUktxLKcy6TTtwEbrsj2bIp36PhKeD_xgfwhpWm6_v_x3Byufkyx17TfKpT8LQ-wbZHNj9
  priority: 102
  providerName: Wiley-Blackwell
Title Methods, progresses, and opportunities of materials informatics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12425
https://www.proquest.com/docview/2858458841
https://doaj.org/article/61362e8e050044a1834838714b89eebd
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_q-aIP4ieeXo8F-2Lp6m6-NvsktXi1BQ8pFXwL-Vpfyu7V0__fTDZ3Ksi9LGEJIcwkM79JMr8B-OJMgxmOJKdamJy5osi1liLn1gnutfHcYO7wzVRc37Hf9_w-HbjN07PKhU2Mhtp1Fs_Iz4kMrhKzKsuL2f8cq0bh7WoqobEG68EESzmA9cur6e2f5SkLEnQFD77kJSXnQW_krESg_c4TRcL-dyjzLVaNzmayDVsJJWbfe7XuwCff7sLmG-7APbi4ibWf59-y-MQKKcBDW7cu62aIqZ_byJWadU0WQGm_zrJEk4rUzPtwN7n6--M6T9UQcsvCbHNRlU0pNbchjtQSE1q1dbUjhQsYxlKtS1_5kgpa8qaqBG_qhpXWUFrV3jaa0wMYtF3rDyGzzBcBFlFWYTzlqeGVq60jwiJRrddDOF1IRtlEFY4VK_6pnuSYKJSiilIcwsmy76wnyPiw1yUKeNkDSa3jj-7xQaU9ogKyEMRLX3C8ZtbB2DBJQ0DHjKy9N24Io4V6VNppc_W6LobwNapsxTTUr-mExNbR6rGOYQPryvcv_UYweHp89p8D-ngyY1gj7DZ85eTnOC23cYzkXwDCzNq6
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V5QAcEBQQCy1EAg4gQhN_JTlUFS0su7S7p1bqzfgrXFCydFsh_lR_Y2ecZGmlqrferMiKovHzzBvH8wbgnbc1VTiylBtlU-GzLDWmVKl0XslgbJCWaodnczU5Fj9O5MkaXAy1MHStcvCJ0VH71tEZ-TYrMVRSVWW-u_iTUtco-rs6tNDoYHEQ_v3FlG25M_2K6_uesfG3o_1J2ncVSJ1AgKaqyOu8NNJhPmZKKgw1zleeZR65gOPG5KEIOVc8l3VRKFlXtcid5byogqsNdYlAl39PcIzkVJk-_r460yE5MOQLKxVUto0oYZ9zovXX4l5sD3CN015lxjG0jR_Do56TJl86ED2BtdBswMMrSoVPYXcWO00vPyXxQhcJjuPYND5pF8Tgz5uozJq0dYIUuEN10ouykhD0Mzi-Eys9h_WmbcILSJwIGZIwLgrK3gK3svCV80w5ksUNZgQfBsto1wuTU3-M37qTVGaarKijFUfwdjV30clx3Dhrjwy8mkES2vFBe_pL9ztSI49RLJQhk_RT26BrEyXH9FHYsgrB-hFsDsuj-3291P9ROIKPcclu-Qw9nY9ZHL28_V1v4P7kaHaoD6fzg1fwgDrad3cMN2H97PQ8bCHvObOvI9gS-HnX6L4Egv8Shw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7KFUQfim0Vr9Y2YH1QjJfsZjfJg5T-OnrWHkUs9G3dX_FFkrPXIv5r_nXObJJrC6VvfVvCEsLst7PfbGa-AdhxpqIKRxZzLU2cuSSJtS5kLKyTwmvjhaHa4dOpPD7PvlyIiyX419fCUFpl7xODo3aNpTvyESvwqKSqynRUdWkRZ4fj3dnvmDpI0Z_Wvp1GC5ET__cPhm_zz5NDXOt3jI2Pvh8cx12HgdhmCNZY5mmVFlpYjM10QUWi2rrSscQhL7Bc69TnPuWSp6LKcymqsspSazjPS28rTR0j0P0v5xQVDWB5_2h69m1xw0PiYMgeFpqobISYYZ9SIvl3TsHQLOAOw73Nk8NBN34OKx1DjfZaSK3Ckq_X4Nkt3cJ12D0NfafnH6OQ3kXy4zjWtYuaGfH56zrotEZNFSEhbjEedRKtJAv9As4fxU4vYVA3tX8Fkc18gpSMZznFcp4bkbvSOiYtieR6PYT3vWWU7WTKqVvGL9UKLDNFVlTBikN4u5g7a8U57p21TwZezCBB7fCgufypuv2pkNVI5gufCPrFrdHRZQXHYDIzRem9cUPY7JdHdbt8rm4wOYQPYcke-Aw1mY5ZGG08_K5teILIVl8n05PX8JTa27cJh5swuLq89m-QBF2ZrQ5tEfx4bID_B_HgGBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods%2C+progresses%2C+and+opportunities+of+materials+informatics&rft.jtitle=InfoMat&rft.au=Li%2C+Chen&rft.au=Zheng%2C+Kun&rft.date=2023-08-01&rft.issn=2567-3165&rft.eissn=2567-3165&rft.volume=5&rft.issue=8&rft_id=info:doi/10.1002%2Finf2.12425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_inf2_12425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon