Methods, progresses, and opportunities of materials informatics
As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development (R&D) cycle of new materials by half or even more. ML shows great potential in the combination with other scientific research technologies, especial...
Saved in:
Published in | InfoMat Vol. 5; no. 8 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons, Inc
01.08.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development (R&D) cycle of new materials by half or even more. ML shows great potential in the combination with other scientific research technologies, especially in the processing and classification of large amounts of material data from theoretical calculation and experimental characterization. It is very important to systematically understand the research ideas of material informatics to accelerate the exploration of new materials. Here, we provide a comprehensive introduction to the most commonly used ML modeling methods in material informatics with classic cases. Then, we review the latest progresses of prediction models, which focus on new processing–structure–properties–performance (PSPP) relationships in some popular material systems, such as perovskites, catalysts, alloys, two‐dimensional materials, and polymers. In addition, we summarize the recent pioneering researches in innovation of material research technology, such as inverse design, ML interatomic potentials, and microtopography characterization assistance, as new research directions of material informatics. Finally, we comprehensively provide the most significant challenges and outlooks related to the future innovation and development in the field of material informatics. This review provides a critical and concise appraisal for the applications of material informatics, and a systematic and coherent guidance for material scientists to choose modeling methods based on required materials and technologies.
A review on the basic elements and latest applications of materials informatics in perovskites, catalysts, alloys, two‐dimensional materials and polymers. |
---|---|
AbstractList | As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development (R&D) cycle of new materials by half or even more. ML shows great potential in the combination with other scientific research technologies, especially in the processing and classification of large amounts of material data from theoretical calculation and experimental characterization. It is very important to systematically understand the research ideas of material informatics to accelerate the exploration of new materials. Here, we provide a comprehensive introduction to the most commonly used ML modeling methods in material informatics with classic cases. Then, we review the latest progresses of prediction models, which focus on new processing–structure–properties–performance (PSPP) relationships in some popular material systems, such as perovskites, catalysts, alloys, two-dimensional materials, and polymers. In addition, we summarize the recent pioneering researches in innovation of material research technology, such as inverse design, ML interatomic potentials, and microtopography characterization assistance, as new research directions of material informatics. Finally, we comprehensively provide the most significant challenges and outlooks related to the future innovation and development in the field of material informatics. This review provides a critical and concise appraisal for the applications of material informatics, and a systematic and coherent guidance for material scientists to choose modeling methods based on required materials and technologies. Abstract As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development (R&D) cycle of new materials by half or even more. ML shows great potential in the combination with other scientific research technologies, especially in the processing and classification of large amounts of material data from theoretical calculation and experimental characterization. It is very important to systematically understand the research ideas of material informatics to accelerate the exploration of new materials. Here, we provide a comprehensive introduction to the most commonly used ML modeling methods in material informatics with classic cases. Then, we review the latest progresses of prediction models, which focus on new processing–structure–properties–performance (PSPP) relationships in some popular material systems, such as perovskites, catalysts, alloys, two‐dimensional materials, and polymers. In addition, we summarize the recent pioneering researches in innovation of material research technology, such as inverse design, ML interatomic potentials, and microtopography characterization assistance, as new research directions of material informatics. Finally, we comprehensively provide the most significant challenges and outlooks related to the future innovation and development in the field of material informatics. This review provides a critical and concise appraisal for the applications of material informatics, and a systematic and coherent guidance for material scientists to choose modeling methods based on required materials and technologies. As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development (R&D) cycle of new materials by half or even more. ML shows great potential in the combination with other scientific research technologies, especially in the processing and classification of large amounts of material data from theoretical calculation and experimental characterization. It is very important to systematically understand the research ideas of material informatics to accelerate the exploration of new materials. Here, we provide a comprehensive introduction to the most commonly used ML modeling methods in material informatics with classic cases. Then, we review the latest progresses of prediction models, which focus on new processing–structure–properties–performance (PSPP) relationships in some popular material systems, such as perovskites, catalysts, alloys, two‐dimensional materials, and polymers. In addition, we summarize the recent pioneering researches in innovation of material research technology, such as inverse design, ML interatomic potentials, and microtopography characterization assistance, as new research directions of material informatics. Finally, we comprehensively provide the most significant challenges and outlooks related to the future innovation and development in the field of material informatics. This review provides a critical and concise appraisal for the applications of material informatics, and a systematic and coherent guidance for material scientists to choose modeling methods based on required materials and technologies. A review on the basic elements and latest applications of materials informatics in perovskites, catalysts, alloys, two‐dimensional materials and polymers. |
Author | Li, Chen Zheng, Kun |
Author_xml | – sequence: 1 givenname: Chen surname: Li fullname: Li, Chen organization: Beijing University of Technology – sequence: 2 givenname: Kun orcidid: 0000-0001-7556-0203 surname: Zheng fullname: Zheng, Kun email: kunzheng@bjut.edu.cn organization: Beijing University of Technology |
BookMark | eNp9kE9LAzEQxYNUsNZe_AQL3sSt-bubPYkUq4WqFz2HNDupKe2mJluk3960qyAinjIZfu_NmzlFvcY3gNA5wSOCMb12jaUjQjkVR6hPRVHmjBSi96M-QcMYlzjBAieM9NHNI7Rvvo5X2Sb4RYAYIdW6qTO_2fjQbhvXOoiZt9latxCcXsUsDfIhfZ2JZ-jYphYMv94Bep3cvYwf8tnz_XR8O8sNT4PyoiSWSC0MLbmWnFVcm7qqKa6xKAzTmkAJhBWMCFuWhbCV5cTMGSsrMFYLNkDTzrf2eqk2wa112CmvnTo0fFgoHVKgFagi-VCQgAXGnGsiGZdMloTPZQUwr5PXReeVVn7fQmzV0m9Dk-IrKoXkQkpOEoU7ygQfYwCrjGvTzr5pg3YrRbDaX13tr64OV0-Sy1-S76B_wqSDP9wKdv-Qavo0oZ3mE69Ykb8 |
CitedBy_id | crossref_primary_10_1016_j_nxener_2023_100078 crossref_primary_10_1002_adfm_202414670 crossref_primary_10_1021_acs_chemrev_3c00708 crossref_primary_10_1016_j_commatsci_2023_112737 crossref_primary_10_1016_j_surfin_2024_104658 crossref_primary_10_1002_pc_29082 crossref_primary_10_1016_j_xcrp_2024_102316 crossref_primary_10_1016_j_nxmate_2024_100449 crossref_primary_10_3390_met14121412 crossref_primary_10_1007_s10853_024_09379_w crossref_primary_10_1088_2631_7990_ada857 crossref_primary_10_1016_j_msea_2025_148173 crossref_primary_10_1186_s12951_024_02974_8 crossref_primary_10_1016_j_cej_2024_148698 crossref_primary_10_1021_acs_jpcc_4c01715 crossref_primary_10_1002_adfm_202423732 crossref_primary_10_1080_27660400_2024_2442902 crossref_primary_10_3390_pr12122855 crossref_primary_10_20517_jmi_2024_10 crossref_primary_10_1002_aenm_202304362 crossref_primary_10_1016_j_inoche_2024_113577 crossref_primary_10_1021_acsomega_3c07859 crossref_primary_10_32604_cmc_2025_060109 crossref_primary_10_1063_5_0187867 crossref_primary_10_3390_polym17050694 crossref_primary_10_1016_j_cma_2024_117309 |
Cites_doi | 10.1039/D1CS00503K 10.1038/s41586-020-03072-z 10.1016/j.jallcom.2022.167894 10.1016/j.jmst.2021.05.076 10.1016/j.heliyon.2020.e05055 10.3390/polym14030527 10.1126/science.1127647 10.1016/j.jmbbm.2018.07.022 10.1021/ci300415d 10.1002/advs.201903389 10.1021/acsami.1c01098 10.1038/nnano.2015.338 10.1021/acsnano.1c02104 10.1002/inf2.12028 10.1038/s41524-020-0287-8 10.1021/acscentsci.7b00572 10.1038/s41586-021-04078-x 10.1016/j.compositesb.2018.02.012 10.1016/j.jallcom.2022.168019 10.1080/14786440109462720 10.1021/acs.jpca.7b08750 10.1038/s41524-022-00696-9 10.3390/ma15010056 10.1016/j.mtcomm.2022.104896 10.1088/0953-8984/21/39/395502 10.1557/mrs.2012.96 10.1038/s41524-021-00687-2 10.1016/j.scriptamat.2005.06.022 10.1038/323533a0 10.1038/nmat1752 10.1016/j.ijfatigue.2020.105941 10.1063/5.0023759 10.1016/j.eml.2020.100651 10.1002/adma.202108900 10.1021/acsaem.0c02647 10.1002/aenm.202200389 10.1038/npjcompumats.2015.10 10.1016/j.apcatb.2021.120736 10.1016/j.jmsy.2021.07.013 10.1021/ci100050t 10.1021/acs.jpclett.8b00124 10.3390/polym14194084 10.1109/72.788645 10.1038/s41524-018-0128-1 10.1002/advs.201902607 10.1002/anie.201703114 10.1016/j.commatsci.2020.109614 10.1063/1.4946894 10.1038/s41598-021-92278-w 10.1093/nar/gky1075 10.1126/science.aam7092 10.1103/PhysRevB.42.9458 10.1038/s41524-022-00793-9 10.1088/0953-8984/27/28/283203 10.3390/pr9101846 10.1016/j.actamat.2020.10.010 10.1038/s41524-018-0093-8 10.1038/s41586-022-05322-8 10.1107/S0108768102003890 10.1016/j.fuel.2020.119069 10.1007/s00170-020-06515-z 10.1063/1.3623476 10.1016/j.actamat.2020.09.081 10.1109/TITS.2022.3170628 10.1007/s10115-007-0114-2 10.1021/cr980129f 10.1038/s41524-022-00880-x 10.1007/s10854-021-06883-6 10.1016/j.actamat.2021.116980 10.1016/j.jmst.2022.09.033 10.1016/j.physrep.2019.03.001 10.1016/j.jma.2020.06.021 10.1016/j.matt.2019.08.017 10.1016/j.jpowsour.2021.230968 10.1038/s41586-022-05036-x 10.1038/d41586-020-03259-4 10.1007/s42114-021-00229-w 10.1162/neco.1989.1.4.541 10.1016/j.jmapro.2022.10.040 10.1017/S1431927619000497 10.1103/PhysRevB.85.115104 10.1016/j.actamat.2021.116815 10.1115/1.4050525 10.1103/PhysRevB.105.115202 10.1016/j.commatsci.2020.110259 10.1021/acs.accounts.9b00529 10.1038/s41560-020-00768-4 10.1016/j.jlumin.2022.119406 10.1038/natrevmats.2016.98 10.1021/acsnano.1c09644 10.1038/s41699-021-00228-x 10.1016/j.jclepro.2020.120694 10.3390/polym14091802 10.1038/s41467-021-22472-x 10.1126/science.1165893 10.1016/j.carbon.2020.07.013 10.1103/PhysRevB.99.064114 10.1021/ci00057a005 10.1002/adma.202106506 10.1103/PhysRevB.87.085112 10.1016/j.progsurf.2021.100626 10.1021/acsami.1c21558 10.1103/PhysRevB.62.11089 10.1038/nmat3568 10.1016/j.mattod.2020.06.012 10.1007/s00500-020-05297-6 10.1103/PhysRevLett.128.180201 10.1093/nar/gkr777 10.1038/s41524-020-0300-2 10.1021/acsami.1c22886 10.1016/j.mattod.2019.06.009 10.3390/molecules27123829 10.1002/advs.201900808 10.1002/advs.201901614 10.1021/acs.jpclett.1c01939 10.1021/acs.jpclett.9b03664 10.1016/j.commatsci.2020.110025 10.1039/D0NA00388C 10.1126/science.1080615 10.1016/j.commatsci.2012.02.005 10.1002/inf2.12167 10.1002/adts.202100565 10.1038/nature17439 10.1021/ed100697w 10.1002/adma.201600669 10.1038/s41586-021-03338-0 10.1109/ACCESS.2016.2596776 10.1063/1.360979 10.1001/jama.2016.17216 10.1038/s41586-019-0944-6 10.1016/j.actamat.2021.117535 10.1609/aimag.v18i3.1303 10.1063/1.5088083 10.1038/s41524-020-00477-2 10.1103/PhysRevB.87.205410 10.1016/j.pmatsci.2013.10.001 10.1021/acs.chemrev.2c00061 10.1016/j.carbon.2016.08.024 10.1039/D1TA09878K 10.1016/j.ijplas.2019.05.007 10.1016/j.cej.2021.133126 10.1016/j.jmst.2020.01.005 10.1021/acsnano.0c06809 10.1103/RevModPhys.83.407 10.1016/j.cpc.2018.03.016 10.1002/jcc.21707 10.1109/MCI.2015.2471235 10.3390/polym14061160 10.1109/TIT.1967.1053964 10.1109/CVPR.2005.177 10.1002/adfm.202208418 10.1016/j.jmst.2021.06.072 10.1103/PhysRevMaterials.2.083802 10.1002/adma.201304138 10.1016/j.commatsci.2021.110530 10.1038/s41524-017-0056-5 10.1016/j.jmst.2022.08.013 10.1103/PhysRevB.54.11169 10.1038/s41524-020-00460-x 10.1016/j.pmatsci.2019.01.003 10.1002/adma.202106776 10.1039/D1EE02369A 10.1016/j.commatsci.2008.01.039 10.1093/nar/gkr900 10.1016/j.actamat.2022.117924 10.1002/smtd.202100035 10.1002/adma.202205715 10.1126/science.1228604 10.1039/C7TA10374C 10.1007/BF00116251 10.1002/inf2.12094 10.1021/acsami.9b14530 10.1038/s43588-020-00002-x 10.1039/D1ME00160D 10.1038/sdata.2014.22 10.1039/D2TA02039D 10.1038/s41467-021-24523-9 10.1038/s41597-019-0081-y 10.1007/978-1-62703-748-8_7 10.1016/j.matdes.2019.108378 10.1021/acs.chemmater.0c01894 10.1002/adma.202002780 10.1016/j.matchemphys.2022.126988 10.1038/nmat1849 10.1016/j.nanoen.2020.105665 10.1038/nature12340 10.1038/s41467-019-13297-w 10.1016/j.ccr.2020.213470 10.1016/j.mser.2009.03.001 10.1021/acs.biomac.2c00047 10.1016/j.artint.2010.04.018 10.1002/advs.202103648 10.1021/jacs.1c07217 10.1063/1.4812323 10.1016/j.heliyon.2018.e00938 10.1103/PhysRevB.95.094203 10.1038/s41586-020-2242-8 10.1038/s41524-021-00541-5 10.1103/PhysRevB.78.161402 10.1016/j.solmat.2019.110284 10.1021/acsami.1c23610 10.1007/s11837-021-05008-y 10.1088/1361-648X/aba06b 10.1016/j.pmatsci.2021.100777 10.1007/s11144-021-01980-3 10.1002/adma.202005112 10.1109/TPAMI.2021.3116668 10.1107/S2052520616003954 10.1016/j.polymertesting.2022.107580 10.1016/j.chempr.2021.11.009 10.1007/s42979-021-00592-x 10.1016/j.matt.2020.02.012 10.1145/3422622 10.1038/s41524-021-00495-8 10.1038/nmat4938 10.1021/jp4006422 10.1016/j.psep.2022.03.020 10.1038/s41524-022-00923-3 10.1038/s41597-019-0080-z 10.1038/s41524-020-00352-0 10.1016/j.apsusc.2021.150916 10.1016/j.biortech.2022.126812 10.1088/1674-1056/28/8/087102 10.1007/s12613-022-2457-9 10.1107/S0108768102006948 10.1093/nar/gkv951 10.3389/fnbot.2013.00021 10.1016/j.matdes.2020.109260 10.1016/j.ijhydene.2022.02.030 10.1016/j.commatsci.2022.111435 10.1016/j.jmst.2022.07.061 10.1103/PhysRevB.48.4777 10.1088/2053-1583/aacfc1 10.1016/j.pmatsci.2017.10.001 10.1038/s41524-019-0152-9 10.1038/s41467-021-23798-2 10.1039/c3nr02543h 10.1126/sciadv.aaq1566 10.1021/acs.chemmater.1c03220 10.1038/s41586-020-2677-y 10.1016/j.commatsci.2020.110244 10.1039/D1TA09762H 10.1021/ci025584y 10.1186/1758-2946-3-33 10.1016/j.mtphys.2020.100296 10.1126/science.1102896 10.1021/acs.chemmater.0c03402 10.1126/science.aat2663 10.1038/s41524-021-00688-1 10.1038/s41598-022-10563-8 10.1023/A:1010933404324 10.1021/nn501226z 10.1021/acsnano.0c08133 10.1093/nar/gkaa971 10.1002/inf2.12026 10.3390/met12010001 10.1016/j.eswa.2007.01.018 10.1016/j.intermet.2022.107712 10.1107/S0021889809016690 10.1007/s11837-013-0755-4 10.1038/s41586-022-04998-2 10.1039/D1MH01912K 10.1002/inf2.12315 10.3390/catal11040518 10.1039/C1JM14216J 10.1007/s11665-008-9225-5 10.1109/TKDE.2009.191 10.1038/s41524-019-0165-4 10.1021/acsenergylett.0c01749 10.1021/acssuschemeng.0c09192 10.1002/advs.202106043 10.1021/acs.chemrev.9b00248 10.1021/ci00062a008 10.1109/TNNLS.2020.3015830 10.1016/j.jmat.2019.03.003 10.1021/acs.chemmater.1c02725 10.1039/D1EE00154J 10.1038/s41578-019-0121-4 10.1038/s41524-020-0333-6 10.3390/polym12010163 10.3390/app12073318 10.1016/j.commatsci.2012.02.002 10.1016/j.jallcom.2022.168113 10.1007/BF00994018 10.1021/acsami.1c24715 10.1016/j.jallcom.2020.156209 10.1063/5.0021106 10.1016/S0167-7012(00)00201-3 10.1162/153244303322753616 10.1103/PhysRevLett.61.2879 10.1063/1.4849292 10.1007/s11705-019-1900-6 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1002/inf2.12425 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Journals (Open Access) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3165 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_61362e8e050044a1834838714b89eebd 10_1002_inf2_12425 INF212425 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Beijing Outstanding Young Scientists Projects funderid: BJJWZYJH01201910005018 – fundername: National Natural Science Foundation of China funderid: 12074015 |
GroupedDBID | 0R~ 1OC 24P AAMMB ABJCF ACCMX ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC KB. M7S OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PTHSS WIN AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 8FE 8FG ABUWG AZQEC D1I DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c4425-671f18a5c274a84394acd9d20d056c3aa1e7e136315f7765f9f41cb3379ecfa53 |
IEDL.DBID | BENPR |
ISSN | 2567-3165 |
IngestDate | Wed Aug 27 01:30:46 EDT 2025 Wed Aug 13 06:40:39 EDT 2025 Tue Jul 01 01:33:44 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Wed Aug 20 07:26:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4425-671f18a5c274a84394acd9d20d056c3aa1e7e136315f7765f9f41cb3379ecfa53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7556-0203 |
OpenAccessLink | https://www.proquest.com/docview/2858458841?pq-origsite=%requestingapplication% |
PQID | 2858458841 |
PQPubID | 5068510 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_61362e8e050044a1834838714b89eebd proquest_journals_2858458841 crossref_citationtrail_10_1002_inf2_12425 crossref_primary_10_1002_inf2_12425 wiley_primary_10_1002_inf2_12425_INF212425 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 20230801 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: Beijing |
PublicationTitle | InfoMat |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2021; 209 2013; 65 2019; 10 2021; 568 2008; 34 2020; 14 2020; 12 2020; 11 2020; 169 2001; 45 1996; 79 2021; 73 2022; 611 1995; 20 2013; 1569 1986; 1 2022; 161 2016; 316 2013; 117 2019; 25 2019; 28 2022; 609 1967; 13 2020; 177 2022; 608 2019; 150 2012; 22 2021; 81 2016; 44 1984; 40 2021; 49 2009; 65 2013; 87 2020; 40 2018; 228 2020; 36 2020; 32 2012; 37 2011; 3 2004; 306 2003; 299 2016; 11 2016; 4 2022; 4 2022; 5 2022; 7 2022; 8 2022; 9 2019; 47 2017; 56 2018; 92 2010; 174 2008; 43 2016; 28 2012; 40 2002; 58 2001; 101 2020; 63 2016; 109 2020; 120 2020; 128 2011; 99 2008; 78 2018; 87 2014; 61 2017; 358 2014; 1 2020; 7 2020; 6 2020; 5 2020; 2 2020; 53 2021; 112 2013; 12 2021; 118 2003; 3 2020; 258 2021; 591 1999; 10 2017; 121 2020; 43 2014; 8 2012; 338 2009; 324 2022; 521 2021; 9 2022; 430 2015; 1 2021; 7 2021; 6 2021; 5 2021; 4 2021; 3 2021; 2 2020; 581 2021; 589 2009 2020; 585 1901; 2 2021; 1 2021; 96 1996; 54 1989; 29 2010; 87 1986; 323 2022 2021 2021; 214 2020 2017; 16 2019 2014 2022; 300 2022; 211 2013; 1 2019; 99 2021; 600 2022; 23 2019; 566 2014; 26 2020; 205 2021; 285 2020; 201 2013; 7 2013; 5 2022; 27 2022; 29 2018; 6 2010; 22 2018; 9 1990; 42 2018; 2 2018; 5 2018; 4 2023; 294 2022; 34 2007; 6 1982 2022; 32 2022; 33 2003; 43 2022; 232 1993; 48 1990; 30 2022; 110 2019; 4 2019; 6 1989; 1 2019; 5 2019; 1 2011; 83 2019; 103 2021; 142 2020; 422 2021; 143 1988; 28 2022; 12 2022; 14 2022; 15 2022; 10 2021; 133 2022; 348 2022; 104 2022; 16 2022; 105 2010; 50 2022; 103 2022; 224 2021; 25 2018; 361 2022; 252 2017; 2 2017; 3 2009; 42 2023; 142 2000; 43 2000; 44 2016; 72 2012; 58 2012; 52 2019; 120 2014; 1107 2022; 122 2021; 32 2021; 33 2022; 84 2023; 139 1997; 18 2000; 62 2023; 935 2021; 197 2021; 196 2023; 934 2022; 128 2018; 143 2022; 151 2009; 21 2021; 189 2022; 51 2020; 187 2008; 17 2008; 14 2022; 47 2006; 5 2011; 32 2021; 186 2021; 188 2022; 44 2006; 313 2021; 14 2022; 144 2017; 95 2021; 13 2021; 16 2021; 15 2015; 27 2021; 12 2021; 11 2022; 62 2021; 854 2013; 499 2005; 53 1988; 61 2016; 533 2019; 810 2012; 85 e_1_2_7_3_1 e_1_2_7_311_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_297_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_248_1 e_1_2_7_225_1 e_1_2_7_263_1 e_1_2_7_240_1 e_1_2_7_116_1 e_1_2_7_285_1 e_1_2_7_307_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_237_1 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_275_1 e_1_2_7_252_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_296_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 Weininger D (e_1_2_7_95_1) 1990; 30 e_1_2_7_310_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 Hey T (e_1_2_7_6_1) 2009 e_1_2_7_249_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_166_1 e_1_2_7_241_1 e_1_2_7_264_1 e_1_2_7_117_1 e_1_2_7_284_1 e_1_2_7_306_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_238_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_253_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_295_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_204_1 e_1_2_7_265_1 e_1_2_7_242_1 e_1_2_7_118_1 e_1_2_7_283_1 e_1_2_7_305_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_239_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_254_1 e_1_2_7_231_1 e_1_2_7_294_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 Liu R (e_1_2_7_234_1) 2021; 13 e_1_2_7_279_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_243_1 e_1_2_7_266_1 e_1_2_7_168_1 Breiman L (e_1_2_7_9_1) 1984; 40 e_1_2_7_119_1 e_1_2_7_282_1 e_1_2_7_91_1 e_1_2_7_304_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_38_1 e_1_2_7_134_1 Montgomery DC (e_1_2_7_114_1) 1982 e_1_2_7_232_1 e_1_2_7_255_1 e_1_2_7_157_1 e_1_2_7_270_1 e_1_2_7_108_1 e_1_2_7_293_1 e_1_2_7_315_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_278_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_267_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_244_1 e_1_2_7_221_1 e_1_2_7_281_1 e_1_2_7_303_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_289_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_256_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_271_1 e_1_2_7_292_1 e_1_2_7_314_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_277_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_245_1 e_1_2_7_268_1 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_260_1 e_1_2_7_280_1 e_1_2_7_302_1 e_1_2_7_113_1 e_1_2_7_288_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_257_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_272_1 e_1_2_7_291_1 Smith WF (e_1_2_7_2_1) 2019 e_1_2_7_5_1 e_1_2_7_313_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_276_1 e_1_2_7_299_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 e_1_2_7_269_1 e_1_2_7_186_1 e_1_2_7_246_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_261_1 e_1_2_7_301_1 e_1_2_7_287_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_258_1 e_1_2_7_198_1 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_309_1 e_1_2_7_273_1 e_1_2_7_250_1 e_1_2_7_290_1 e_1_2_7_312_1 e_1_2_7_126_1 e_1_2_7_298_1 e_1_2_7_103_1 Macdonald TJ (e_1_2_7_167_1) 2022 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_247_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_262_1 e_1_2_7_300_1 Samuel A (e_1_2_7_7_1) 2000; 44 e_1_2_7_115_1 e_1_2_7_286_1 e_1_2_7_72_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_236_1 e_1_2_7_259_1 e_1_2_7_308_1 e_1_2_7_138_1 e_1_2_7_274_1 e_1_2_7_251_1 |
References_xml | – volume: 5 issue: 4 year: 2018 article-title: The computational 2D materials database: high‐throughput modeling and discovery of atomically thin crystals publication-title: 2D Mater – volume: 4 issue: 11 year: 2018 article-title: State‐of‐the‐art in artificial neural network applications: a survey publication-title: Heliyon – volume: 3 start-page: 1157 year: 2003 end-page: 1182 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 4 start-page: 268 issue: 2 year: 2018 end-page: 276 article-title: Automatic chemical design using a data‐driven continuous representation of molecules publication-title: ACS Cent Sci – volume: 5 start-page: 48 issue: 1 year: 2021 article-title: Deep learning model to predict fracture mechanisms of graphene publication-title: npj 2DMater Appl – volume: 7 issue: 10 year: 2020 article-title: Halide perovskites: thermal transport and prospects for thermoelectricity publication-title: Adv Sci – volume: 13 year: 2021 article-title: A physics‐informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing publication-title: Int J Adv Manuf Technol – volume: 61 start-page: 1 year: 2014 end-page: 93 article-title: Microstructures and properties of high‐entropy alloys publication-title: Prog Mater Sci – volume: 87 start-page: 68 year: 2018 end-page: 79 article-title: Mechanical properties of magnesium alloys for medical application: a review publication-title: J Mech Behav Biomed Mater – volume: 10 start-page: 15309 issue: 29 year: 2022 end-page: 15331 article-title: Machine learning for design principles for single atom catalysts towards electrochemical reactions publication-title: J Mater Chem A – volume: 214 year: 2021 article-title: Machine‐learning interatomic potentials for materials science publication-title: Acta Mater – volume: 591 start-page: 385 issue: 7850 year: 2021 end-page: 390 article-title: High‐order superlattices by rolling up van der Waals heterostructures publication-title: Nature – volume: 174 start-page: 597 issue: 9–10 year: 2010 end-page: 618 article-title: Positive approximation: an accelerator for attribute reduction in rough set theory publication-title: Artif Intell – volume: 43 start-page: 493 issue: 2 year: 2003 end-page: 500 article-title: The chemistry development kit (cdk): an open‐source java library for chemo‐ and bioinformatics publication-title: J Chem Inf Comput Sci – volume: 29 start-page: 825 issue: 4 year: 2022 end-page: 835 article-title: Data‐mining and atmospheric corrosion resistance evaluation of Sn‐ and Sb‐additional low alloy steel based on big data technology publication-title: Int J Miner Metall Mater – volume: 118 year: 2021 article-title: Mechanical behavior of high‐entropy alloys publication-title: Prog Mater Sci – volume: 16 start-page: 2721 issue: 2 year: 2022 end-page: 2729 article-title: Artificial neuron networks enabled identification and characterizations of 2d materials and van der Waals heterostructures publication-title: ACS Nano – volume: 228 start-page: 178 year: 2018 end-page: 184 article-title: DeePMD‐kit: a deep learning package for many‐body potential energy representation and molecular dynamics publication-title: Comput Phys Commun – volume: 58 start-page: 227 year: 2012 end-page: 235 article-title: AFLOWLIB.ORG: a distributed materials properties repository from high‐throughput ab initio calculations publication-title: Comput Mater Sci – volume: 6 issue: 10 year: 2020 article-title: Machine learning glass transition temperature of polymers publication-title: Heliyon – volume: 854 year: 2021 article-title: Study on solid‐solution interaction and existing forms of alloying elements in Mg–Al–Zn–Gd alloy publication-title: J Alloys Compd – year: 2014 – volume: 581 start-page: 178 issue: 7807 year: 2020 end-page: 183 article-title: Accelerated discovery of CO electrocatalysts using active machine learning publication-title: Nature – volume: 566 start-page: 475 issue: 7745 year: 2019 end-page: 479 article-title: Catalogue of topological electronic materials publication-title: Nature – volume: 22 start-page: 1469 issue: 4 year: 2012 end-page: 1476 article-title: Highly selective photocatalytic and sensing properties of 2D‐ordered dome films of nano titania and nano Ag doped titania publication-title: J Mater Chem – volume: 34 start-page: 998 issue: 3 year: 2022 end-page: 1009 article-title: Customized carbon dots with predictable optical properties synthesized at room temperature guided by machine learning publication-title: Chem Mater – volume: 49 start-page: D1388 issue: D1 year: 2021 end-page: D1395 article-title: PubChem in 2021: new data content and improved web interfaces publication-title: Nucleic Acids Res – volume: 7 issue: 5 year: 2020 article-title: Generative deep neural networks for inverse materials design using backpropagation and active learning publication-title: Adv Sci – volume: 1 start-page: 359 issue: 3 year: 2019 end-page: 375 article-title: A machine perspective of atomic defects in scanning transmission electron microscopy publication-title: InfoMat – volume: 32 start-page: 5854 issue: 13 year: 2020 end-page: 5863 article-title: Active learning accelerated discovery of stable iridium oxide polymorphs for the oxygen evolution reaction publication-title: Chem Mater – volume: 6 issue: 1 year: 2020 article-title: Frequency‐dependent dielectric constant prediction of polymers using machine learning publication-title: npj Comput Mater – volume: 608 start-page: 483 issue: 7923 year: 2022 end-page: 487 article-title: Evidence for intrinsic charm quarks in the proton publication-title: Nature – volume: 2 start-page: 3115 issue: 8 year: 2020 end-page: 3130 article-title: Machine learning‐driven new material discovery publication-title: Nanoscale Adv – volume: 7 start-page: 69 issue: 1 year: 2021 article-title: Data driven discovery of conjugated polyelectrolytes for optoelectronic and photocatalytic applications publication-title: npj Comput Mater – volume: 5 issue: 1 year: 2019 article-title: Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride publication-title: npj Comput Mater – volume: 62 start-page: 11089 issue: 16 year: 2000 end-page: 11103 article-title: Density, sp3 fraction, and cross‐sectional structure of amorphous carbon films determined by x‐ray reflectivity and electron energy‐loss spectroscopy publication-title: Phys Rev B – volume: 32 issue: 44 year: 2020 article-title: High throughput methods in the synthesis, characterization, and optimization of porous materials publication-title: Adv Mater – volume: 7 start-page: 7 year: 2013 article-title: Gradient boosting machines, a tutorial publication-title: Front Neurorobot – volume: 10 start-page: 1048 issue: 5 year: 1999 end-page: 1054 article-title: Support vector machines for spam categorization publication-title: IEEE Trans Neural Netw – volume: 6 start-page: 183 issue: 3 year: 2007 end-page: 191 article-title: The rise of graphene publication-title: Nat Mater – volume: 65 start-page: 1501 issue: 11 year: 2013 end-page: 1509 article-title: Materials design and discovery with high‐throughput density functional theory: the open quantum materials database (OQMD) publication-title: JOM – year: 2019 – volume: 189 year: 2021 article-title: A new criterion for predicting the glass‐forming ability of alloys based on machine learning publication-title: Comput Mater Sci – volume: 37 start-page: 513 issue: 5 year: 2012 end-page: 521 article-title: Computational aspects of many‐body potentials publication-title: MRS Bull – volume: 36 year: 2020 article-title: Interactive inverse design of layered phononic crystals based on reinforcement learning publication-title: Extreme Mech Lett – volume: 15 start-page: 830 issue: 2 year: 2022 end-page: 842 article-title: Unraveling the dual defect sites in graphite carbon nitride for ultra‐high photocatalytic H O evolution publication-title: Energy Environ Sci – volume: 28 start-page: 6804 issue: 32 year: 2016 end-page: 6834 article-title: Perovskite materials for light‐emitting diodes and lasers publication-title: Adv Mater – volume: 142 start-page: 225 year: 2023 end-page: 239 article-title: Strength and ductility enhancement of twin‐roll cast Al–Zn–Mg–Cu alloys with high solidification intervals through a synergistic segregation‐controlling strategy publication-title: J Mater Sci Technol – volume: 7 issue: 4 year: 2020 article-title: Data‐driven materials research enabled by natural language processing and information extraction publication-title: Appl Phys Rev – volume: 43 start-page: 752 issue: 4 year: 2008 end-page: 758 article-title: Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel publication-title: Comput Mater Sci – volume: 112 start-page: 1231 issue: 5–6 year: 2021 end-page: 1258 article-title: Metallic glass properties, processing method and development perspective: a review publication-title: Int J Adv Manuf Technol – volume: 611 start-page: 491 issue: 7936 year: 2022 end-page: 495 article-title: Using machine learning to assess the livelihood impact of electricity access publication-title: Nature – volume: 32 start-page: 24710 issue: 20 year: 2021 end-page: 24725 article-title: Effect of dopants and morphology on the electrical properties of polyaniline for various applications publication-title: J Mater Sci: Mater Electron – volume: 4 start-page: 515 issue: 8 year: 2019 end-page: 534 article-title: High‐entropy alloys publication-title: Nat Rev Mater – volume: 81 year: 2021 article-title: Accelerated discovery of stable spinels in energy systems via machine learning publication-title: Nano Energy – volume: 58 start-page: 364 issue: 3 year: 2002 end-page: 369 article-title: New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design publication-title: Acta Crystallogr B Struct Sci – volume: 128 issue: 17 year: 2020 article-title: Machine‐learning predictions of polymer properties with polymer genome publication-title: J Appl Phys – volume: 1 issue: 1 year: 2013 article-title: Commentary: the materials project: a materials genome approach to accelerating materials innovation publication-title: APL Mater – volume: 5 start-page: 413 issue: 3 year: 2019 end-page: 421 article-title: Rapid identification of two‐dimensional materials via machine learning assisted optic microscopy publication-title: J Materiomics – volume: 33 start-page: 845 issue: 3 year: 2021 end-page: 858 article-title: A machine learning approach for the prediction of formability and thermodynamic stability of single and double perovskite oxides publication-title: Chem Mater – volume: 34 issue: 40 year: 2022 article-title: Atomic‐scale observation of grain boundary dominated unsynchronized phase transition in polycrystalline Cu Se publication-title: Adv Mater – volume: 5 start-page: 12 issue: 1 year: 2019 article-title: Deep learning analysis of defect and phase evolution during electron beam‐induced transformations in WS2 publication-title: npj Comput Mater – volume: 78 issue: 16 year: 2008 article-title: Describing bond‐breaking processes by reactive potentials: importance of an environment‐dependent interaction range publication-title: Phys Rev B – volume: 85 issue: 11 year: 2012 article-title: Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental‐phase reference energies publication-title: Phys Rev B – volume: 9 start-page: 1518 issue: 5 year: 2022 end-page: 1525 article-title: Performance‐oriented multistage design for multi‐principal element alloys with low cost yet high efficiency publication-title: Mater Horiz – volume: 87 issue: 8 year: 2013 article-title: Band‐structure calculations for the 3d transition metal oxides in GW publication-title: Phys Rev B – volume: 83 start-page: 407 issue: 2 year: 2011 end-page: 470 article-title: Electronic transport in two‐dimensional graphene publication-title: Rev Mod Phys – volume: 12 start-page: 4329 issue: 1 year: 2021 article-title: High‐throughput design of high‐performance lightweight high‐entropy alloys publication-title: Nat Commun – volume: 13 start-page: 21 issue: 1 year: 1967 end-page: 27 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans Inf Theory – volume: 23 start-page: 19187 issue: 10 year: 2022 end-page: 19200 article-title: A XGBoost‐based lane change prediction on time series data using feature engineering for autopilot vehicles publication-title: IEEE Trans Intell Transport Syst – volume: 6 start-page: 194 issue: 2 year: 2021 end-page: 202 article-title: Identification of embedded nanotwins at c‐Si/a‐Si:H interface limiting the performance of high‐efficiency silicon heterojunction solar cells publication-title: Nat Energy – volume: 32 start-page: 3608 issue: 8 year: 2021 end-page: 3620 article-title: A unified framework for multilingual speech recognition in air traffic control systems publication-title: IEEE Trans Neural Netw Learning Syst – volume: 1 start-page: 1370 issue: 5 year: 2019 end-page: 1384 article-title: Inverse design of solid‐state materials via a continuous representation publication-title: Matter – volume: 5 start-page: 909 issue: 11 year: 2006 end-page: 913 article-title: Computational high‐throughput screening of electrocatalytic materials for hydrogen evolution publication-title: Nature Mater – volume: 6 start-page: 35 issue: 1 year: 2020 article-title: High‐throughput discovery of high Curie point two‐dimensional ferromagnetic materials publication-title: npj Comput Mater – year: 2009 – volume: 7 start-page: 661 issue: 6 year: 2022 end-page: 676 article-title: Featurization strategies for polymer sequence or composition design by machine learning publication-title: Mol Syst Des Eng – volume: 13 start-page: 16336 issue: 14 year: 2021 end-page: 16344 article-title: High‐throughput screening of a single‐atom alloy for electroreduction of dinitrogen to ammonia publication-title: ACS Appl Mater Interfaces – volume: 6 start-page: 18 issue: 1 year: 2020 article-title: Magnetic and superconducting phase diagrams and transition temperatures predicted using text mining and machine learning publication-title: npj Comput Mater – volume: 27 start-page: 3829 issue: 12 year: 2022 article-title: The development of iDPC‐STEM and its application in electron beam sensitive materials publication-title: Molecules – volume: 43 start-page: 168 year: 2020 end-page: 174 article-title: Theoretical prediction on thermal and mechanical properties of high entropy (Zr Hf Ti Nb Ta )C by deep learning potential publication-title: J Mater Sci Technol – volume: 205 year: 2020 article-title: Machine learning analysis on stability of perovskite solar cells publication-title: Solar Energy Mater Sol Cells – volume: 25 start-page: 2277 issue: 3 year: 2021 end-page: 2293 article-title: Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation publication-title: Soft Comput – volume: 5 issue: 5 year: 2022 article-title: New opportunity: machine learning for polymer materials design and discovery publication-title: Adv Theory Simul – volume: 99 issue: 6 year: 2011 article-title: Structural and semiconductor‐to‐metal transitions of double‐perovskite cobalt oxide Sr2−xLaxCoTiO6−δ with enhanced thermoelectric capability publication-title: Appl Phys Lett – volume: 48 start-page: 4777 issue: 7 year: 1993 end-page: 4782 article-title: Properties of filtered‐ion‐beam‐deposited diamondlike carbon as a function of ion energy publication-title: Phys Rev B – volume: 11 issue: 1 year: 2021 article-title: Parsimonious neural networks learn interpretable physical laws publication-title: Sci Rep – volume: 144 issue: 1 year: 2022 article-title: Triboinformatics approach for friction and wear prediction of al‐graphite composites using machine learning methods publication-title: J Tribol – year: 2021 – volume: 1 issue: 1 year: 2015 article-title: The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies publication-title: npj Comput Mater – volume: 9 start-page: 1 issue: 1 year: 2021 end-page: 20 article-title: Recent developments and applications on high‐performance cast magnesium rare‐earth alloys publication-title: J Magnes Alloy – volume: 2 start-page: 553 issue: 3 year: 2020 end-page: 576 article-title: Machine learning: accelerating materials development for energy storage and conversion publication-title: InfoMat – volume: 186 year: 2021 article-title: Discovery of novel quaternary bulk metallic glasses using a developed correlation‐based neural network approach publication-title: Comput Mater Sci – volume: 1 start-page: 81 issue: 1 year: 1986 end-page: 106 article-title: Induction of decision trees publication-title: Mach Learn – volume: 10 start-page: 5316 issue: 1 year: 2019 article-title: Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning publication-title: Nat Commun – volume: 3 start-page: 353 issue: 4 year: 2021 end-page: 361 article-title: Machine learning in polymer informatics publication-title: InfoMat – volume: 499 start-page: 316 issue: 7458 year: 2013 end-page: 319 article-title: Sequential deposition as a route to high‐performance perovskite‐sensitized solar cells publication-title: Nature – volume: 58 start-page: 380 issue: 3 year: 2002 end-page: 388 article-title: The Cambridge Structural Database: a quarter of a million crystal structures and rising publication-title: Acta Crystallogr B Struct Sci – volume: 62 start-page: 875 year: 2022 end-page: 885 article-title: Leveraging simulated and empirical data‐driven insight to supervised‐learning for porosity prediction in laser metal deposition publication-title: J Manuf Syst – volume: 6 start-page: 75 issue: 1 year: 2019 article-title: Catalysis‐Hub.org, an open electronic structure database for surface reactions publication-title: Sci Data – volume: 32 issue: 47 year: 2020 article-title: Data‐driven discovery of 3D and 2D thermoelectric materials publication-title: J Phys: Condens Matter – volume: 201 start-page: 182 year: 2020 end-page: 190 article-title: Machine learning‐based glass formation prediction in multicomponent alloys publication-title: Acta Mater – volume: 72 start-page: 171 issue: 2 year: 2016 end-page: 179 article-title: The Cambridge structural database publication-title: Acta Crystallogr B Struct Sci Cryst Eng Mater – volume: 9 start-page: 3590 issue: 9 year: 2021 end-page: 3599 article-title: Single‐atom rhodium on defective g‐C3N4: a promising bifunctional oxygen electrocatalyst publication-title: ACS Sustain Chem Eng – volume: 12 start-page: 20149 issue: 18 year: 2020 end-page: 20157 article-title: Exploring two‐dimensional materials thermodynamic stability via machine learning publication-title: ACS Appl Mater Interfaces – volume: 258 year: 2020 article-title: A critical review on application of photocatalysis for toxicity reduction of real wastewaters publication-title: J Clean Prod – volume: 14 start-page: 3455 issue: 6 year: 2021 end-page: 3468 article-title: Tuning metal single atoms embedded in N C moieties toward high‐performance electrocatalysis publication-title: Energy Environ Sci – volume: 9 start-page: 1846 issue: 10 year: 2021 article-title: Alkali and alkali‐earth metals incorporation to Ni/USY catalysts for CO methanation: the effect of the metal nature publication-title: Processes – volume: 151 year: 2022 article-title: Steel–aluminum hybrid die casting: microstructures related to the applied Al–Si bond coating publication-title: Intermetallics – volume: 44 start-page: 7327 issue: 11 year: 2022 end-page: 7347 article-title: Deep generative modelling: a comparative review of VAEs, GANs, normalizing flows, energy‐based and autoregressive models publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 33 year: 2022 article-title: First‐principles study on the crystal structure stability and hydrogen storage mechanism of hydrogen occupancy in interstitial sites in ZrCo compounds publication-title: Mater Today Commun – volume: 1569 year: 2013 article-title: Copper influence on the melting point of Sn‐Bi alloy publication-title: AIP Conf Proc – volume: 109 start-page: 681 year: 2016 end-page: 693 article-title: Graphitization of amorphous carbons: a comparative study of interatomic potentials publication-title: Carbon – volume: 18 start-page: 11 issue: 3 year: 1997 end-page: 20 article-title: Does machine learning really work? publication-title: AI Mag – volume: 12 start-page: 3572 issue: 1 year: 2021 article-title: A design strategy for high mobility stretchable polymer semiconductors publication-title: Nat Commun – volume: 4 issue: 5 year: 2016 article-title: Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science publication-title: APL Mater – volume: 589 start-page: 524 issue: 7843 year: 2021 end-page: 525 article-title: Accurate machine learning in materials science facilitated by using diverse data sources publication-title: Nature – volume: 224 year: 2022 article-title: Machine learning assisted design of FeCoNiCrMn high‐entropy alloys with ultra‐low hydrogen diffusion coefficients publication-title: Acta Mater – volume: 61 start-page: 2879 issue: 25 year: 1988 end-page: 2882 article-title: Empirical interatomic potential for carbon, with applications to amorphous carbon publication-title: Phys Rev Lett – volume: 211 year: 2022 article-title: PSO‐SVR predicting for the Ehull of ABO ‐type compounds to screen the thermodynamic stable perovskite candidates based on multi‐scale descriptors publication-title: Comput Mater Sci – volume: 87 issue: 20 year: 2013 article-title: Screened empirical bond‐order potentials for Si‐C publication-title: Phys Rev B – volume: 169 start-page: 9 year: 2020 end-page: 16 article-title: Inverse design of two‐dimensional graphene/h‐BN hybrids by a regressional and conditional GAN publication-title: Carbon – volume: 4 issue: 6 year: 2022 article-title: Deep machine learning unravels the structural origin of mid‐gap states in chalcogenide glass for high‐density memory integration publication-title: InfoMat – volume: 299 start-page: 1719 issue: 5613 year: 2003 end-page: 1722 article-title: Epitaxial BiFeO multiferroic thin film heterostructures publication-title: Science – volume: 9 issue: 4 year: 2022 article-title: Discovery of lead‐free perovskites for high‐performance solar cells via machine learning: ultrabroadband absorption, low radiative combination, and enhanced thermal conductivities publication-title: Adv Sci – volume: 14 start-page: 937 issue: 6 year: 2020 end-page: 947 article-title: Room temperature oxidation of acetone by ozone over alumina‐supported manganese and cobalt mixed oxides publication-title: Front Chem Sci Eng – volume: 161 start-page: 848 year: 2022 end-page: 859 article-title: Data‐driven photocatalytic degradation activity prediction with Gaussian process publication-title: Process Saf Environ Prot – volume: 252 year: 2022 article-title: Lanthanide‐doped luminescent perovskites: a review of synthesis, properties, and applications publication-title: J Lumin – volume: 12 issue: 20 year: 2022 article-title: Emerging strategies for CO photoreduction to CH : from experimental to data‐driven design publication-title: Adv Energy Mater – volume: 34 start-page: 537 issue: 2 year: 2022 end-page: 546 article-title: Machine learning analysis and discovery of zero‐dimensional ns metal halides toward enhanced photoluminescence quantum yield publication-title: Chem Mater – volume: 9 start-page: 1668 issue: 7 year: 2018 end-page: 1673 article-title: Predicting the band gaps of inorganic solids by machine learning publication-title: J Phys Chem Lett – volume: 22 start-page: 1345 issue: 10 year: 2010 end-page: 1359 article-title: A survey on transfer learning publication-title: IEEE Trans Knowl Data Eng – volume: 1 issue: 1 year: 2014 article-title: Quantum chemistry structures and properties of 134 kilo molecules publication-title: Sci Data – volume: 121 start-page: 8939 issue: 46 year: 2017 end-page: 8954 article-title: Resolving transition metal chemical space: feature selection for machine learning and structure–property relationships publication-title: J Phys Chem A – volume: 430 year: 2022 article-title: Activating γ‐graphyne nanoribbons as bifunctional electrocatalysts toward oxygen reduction and hydrogen evolution reactions by edge termination and nitrogen doping publication-title: Chem Eng J – volume: 17 start-page: 888 issue: 6 year: 2008 end-page: 893 article-title: Correlation of yield strength and tensile strength with hardness for steels publication-title: J Mater Eng and Perform – volume: 34 start-page: 1599 issue: 3 year: 2008 end-page: 1608 article-title: An incremental cluster‐based approach to spam filtering publication-title: Expert Syst Appl – volume: 105 issue: 11 year: 2022 article-title: Accurate description of high‐order phonon anharmonicity and lattice thermal conductivity from molecular dynamics simulations with machine learning potential publication-title: Phys Rev B – volume: 42 start-page: 726 issue: 4 year: 2009 end-page: 729 article-title: Crystallography Open Database—an open‐access collection of crystal structures publication-title: J Appl Crystallogr – volume: 42 start-page: 9458 issue: 15 year: 1990 end-page: 9471 article-title: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films publication-title: Phys Rev B – volume: 120 start-page: 851 issue: 2 year: 2020 end-page: 918 article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles publication-title: Chem Rev – volume: 8 start-page: 196 issue: 1 year: 2022 article-title: Materials property mapping from atomic scale imaging via machine learning based sub‐pixel processing publication-title: npj Comput Mater – volume: 12 start-page: 163 issue: 1 year: 2020 article-title: Machine‐learning‐assisted de novo design of organic molecules and polymers: opportunities and challenges publication-title: Polymers – volume: 7 start-page: 24 issue: 1 year: 2021 article-title: Machine‐learned interatomic potentials for alloys and alloy phase diagrams publication-title: npj Comput Mater – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 article-title: Support‐vector networks publication-title: Mach Learn – year: 2022 article-title: Engineering stable lead‐free tin halide perovskite solar cells: lessons from materials chemistry publication-title: Adv Mater – volume: 8 start-page: 9 issue: 1 year: 2022 article-title: Automated pipeline for superalloy data by text mining publication-title: npj Comput Mater – volume: 2 start-page: 938 issue: 4 year: 2020 end-page: 947 article-title: Machine‐learning‐accelerated perovskite crystallization publication-title: Matter – volume: 8 start-page: 769 issue: 3 year: 2022 end-page: 783 article-title: On‐the‐fly interpretable machine learning for rapid discovery of two‐dimensional ferromagnets with high Curie temperature publication-title: Chem – volume: 32 start-page: 222 year: 2020 end-page: 243 article-title: Product selectivity of photocatalytic CO reduction reactions publication-title: Mater Today – year: 2020 – volume: 34 issue: 19 year: 2022 article-title: Searching for an optimal multi‐metallic alloy catalyst by active learning combined with experiments publication-title: Adv Mater – volume: 27 issue: 28 year: 2015 article-title: Semiconducting transition metal oxides publication-title: J Phys: Condens Matter – volume: 65 start-page: 39 issue: 4–6 year: 2009 end-page: 104 article-title: Recent developments in stainless steels publication-title: Mater Sci Eng R Rep – volume: 11 start-page: 518 issue: 4 year: 2021 article-title: Lipase immobilized on mcfs as biocatalysts for kinetic and dynamic kinetic resolution of sec‐alcohols publication-title: Catalysts – volume: 12 start-page: 7423 issue: 31 year: 2021 end-page: 7430 article-title: Predicting the formability of hybrid organic–inorganic perovskites via an interpretable machine learning strategy publication-title: J Phys Chem Lett – volume: 139 start-page: 156 year: 2023 end-page: 166 article-title: Mechanical property and cellular structure of an additive manufactured FeCoNiCrMo0.2 high‐entropy alloy at high‐velocity deformation publication-title: J Mater Sci Technol – volume: 8 start-page: 232 issue: 1 year: 2022 article-title: Data‐driven discovery of 2D materials by deep generative models publication-title: npj Comput Mater – volume: 609 start-page: 512 issue: 7927 year: 2022 end-page: 516 article-title: The first‐principles phase diagram of monolayer nanoconfined water publication-title: Nature – volume: 306 start-page: 666 issue: 5696 year: 2004 end-page: 669 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 1107 start-page: 105 year: 2014 end-page: 128 article-title: Introduction to machine learning publication-title: Methods Mol Biol – volume: 95 issue: 9 year: 2017 article-title: Machine learning based interatomic potential for amorphous carbon publication-title: Phys Rev B – volume: 11 start-page: 41 issue: 1 year: 2016 end-page: 53 article-title: Ensemble classification and regression‐recent developments, applications and future directions publication-title: IEEE Comput Intell Mag – volume: 324 start-page: 81 issue: 5923 year: 2009 end-page: 85 article-title: Distilling free‐form natural laws from experimental data publication-title: Science – volume: 33 issue: 5 year: 2021 article-title: Finding the next superhard material through ensemble learning publication-title: Adv Mater – volume: 11 start-page: 2336 issue: 6 year: 2020 end-page: 2347 article-title: Quantum chemistry in the age of machine learning publication-title: J Phys Chem Lett – volume: 47 start-page: 19655 issue: 45 year: 2022 end-page: 19668 article-title: Machine learning analysis of gas phase photocatalytic CO reduction for hydrogen production publication-title: Int J Hydrog Energy – volume: 103 start-page: 235 year: 2019 end-page: 318 article-title: Fe‐based bulk metallic glasses: glass formation, fabrication, properties and applications publication-title: Prog Mater Sci – volume: 92 start-page: 112 year: 2018 end-page: 224 article-title: Additive manufacturing of metallic components—process, structure and properties publication-title: Prog Mater Sci – volume: 2 start-page: 559 issue: 11 year: 1901 end-page: 572 article-title: LIII. On lines and planes of closest fit to systems of points in space publication-title: Lond Edinb Dublin Philos Mag J Sci – volume: 103 start-page: 113 year: 2022 end-page: 120 article-title: Machine learning prediction of magnetic properties of Fe‐based metallic glasses considering glass forming ability publication-title: J Mater Sci Technol – volume: 323 start-page: 533 issue: 6088 year: 1986 end-page: 536 article-title: Learning representations by back‐propagating errors publication-title: Nature – volume: 143 start-page: 172 year: 2018 end-page: 196 article-title: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges publication-title: Compos B Eng – volume: 12 start-page: 3318 issue: 7 year: 2022 article-title: Feature mining: a novel training strategy for convolutional neural network publication-title: Appl Sci – volume: 117 start-page: 7681 issue: 15 year: 2013 end-page: 7689 article-title: Large‐scale quantitative structure–property relationship (QSPR) analysis of methane storage in metal–organic frameworks publication-title: J Phys Chem C – volume: 209 year: 2021 article-title: Machine learning identified materials descriptors for ferroelectricity publication-title: Acta Mater – volume: 99 issue: 6 year: 2019 article-title: Accelerating crystal structure prediction by machine‐learning interatomic potentials with active learning publication-title: Phys Rev B – volume: 142 year: 2021 article-title: Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L publication-title: Int J Fatigue – volume: 52 start-page: 2864 issue: 11 year: 2012 end-page: 2875 article-title: Enumeration of 166 billion organic small molecules in the chemical universe database GDB‐17 publication-title: J Chem Inf Model – volume: 96 issue: 2 year: 2021 article-title: Mechanical exfoliation of large area 2D materials from vdW crystals publication-title: Prog Surf Sci – volume: 7 issue: 1 year: 2020 article-title: Progress and challenges toward the rational design of oxygen electrocatalysts based on a descriptor approach publication-title: Adv Sci – volume: 101 start-page: 1981 issue: 7 year: 2001 end-page: 2018 article-title: Chemical structures and performance of perovskite oxides publication-title: Chem Rev – volume: 177 year: 2020 article-title: Screening stable and metastable ABO perovskites using machine learning and the materials project publication-title: Comput Mater Sci – year: 2022 – volume: 122 start-page: 13478 issue: 16 year: 2022 end-page: 13515 article-title: Machine learning for electrocatalyst and photocatalyst design and discovery publication-title: Chem Rev – volume: 43 start-page: 3 issue: 1 year: 2000 end-page: 31 article-title: Artificial neural networks: fundamentals, computing, design, and application publication-title: J Microbiol Methods – volume: 12 start-page: 191 issue: 3 year: 2013 end-page: 201 article-title: The high‐throughput highway to computational materials design publication-title: Nature Mater – volume: 521 year: 2022 article-title: Synergetic effect of N/O functional groups and microstructures of activated carbon on supercapacitor performance by machine learning publication-title: J Power Sources – volume: 2 start-page: 160 issue: 3 year: 2021 article-title: Machine learning: algorithms, real‐world applications and research directions publication-title: SN Comput Sci – volume: 54 start-page: 11169 issue: 16 year: 1996 end-page: 11186 article-title: Efficient iterative schemes for ab initio total‐energy calculations using a plane‐wave basis set publication-title: Phys Rev B – volume: 32 issue: 47 year: 2022 article-title: A universal machine learning framework for electrocatalyst innovation: a case study of discovering alloys for hydrogen evolution reaction publication-title: Adv Funct Mater – volume: 348 year: 2022 article-title: Machine learning prediction of lignin content in poplar with Raman spectroscopy publication-title: Bioresour Technol – volume: 8 start-page: 4033 issue: 4 year: 2014 end-page: 4041 article-title: Phosphorene: an unexplored 2D semiconductor with a high hole mobility publication-title: ACS Nano – volume: 5 start-page: 8752 issue: 19 year: 2013 article-title: Perovskite ferroelectric nanomaterials publication-title: Nanoscale – volume: 316 start-page: 2402 issue: 22 year: 2016 end-page: 2410 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA – volume: 2 issue: 8 year: 2018 article-title: SISSO: a compressed‐sensing method for identifying the best low‐dimensional descriptor in an immensity of offered candidates publication-title: Phys Rev Mater – volume: 568 year: 2021 article-title: Screening for lead‐free inorganic double perovskites with suitable band gaps and high stability using combined machine learning and DFT calculation publication-title: Appl Surf Sci – volume: 14 start-page: 4084 issue: 19 year: 2022 article-title: Recent trends in magnetic polymer nanocomposites for aerospace applications: a review publication-title: Polymers – volume: 84 start-page: 587 year: 2022 end-page: 599 article-title: Directed energy deposition‐arc of aluminum‐alloy curved‐generatrix‐shell pyramid lattice structure publication-title: J Manuf Process – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 16 start-page: 925 issue: 9 year: 2017 end-page: 931 article-title: Dynamic surface self‐reconstruction is the key of highly active perovskite nano‐electrocatalysts for water splitting publication-title: Nature Mater – volume: 6 start-page: 4948 issue: 12 year: 2018 end-page: 4954 article-title: An electrochemically neutralized energy‐assisted low‐cost acid‐alkaline electrolyzer for energy‐saving electrolysis hydrogen generation publication-title: J Mater Chem A – volume: 143 start-page: 17535 issue: 42 year: 2021 end-page: 17547 article-title: Using machine learning and data mining to leverage community knowledge for the engineering of stable metal–organic frameworks publication-title: J Am Chem Soc – volume: 585 start-page: 217 issue: 7824 year: 2020 end-page: 220 article-title: Evidence for supercritical behaviour of high‐pressure liquid hydrogen publication-title: Nature – volume: 12 start-page: 6615 issue: 1 year: 2022 article-title: An insight into tetracycline photocatalytic degradation by MOFs using the artificial intelligence technique publication-title: Sci Rep – volume: 358 start-page: 751 issue: 6364 year: 2017 end-page: 756 article-title: Perovskites in catalysis and electrocatalysis publication-title: Science – volume: 285 year: 2021 article-title: Regeneration of alkali poisoned TiO ‐based catalyst by various acids in NO selective catalytic reduction with NH publication-title: Fuel – volume: 25 start-page: 563 issue: 3 year: 2019 end-page: 582 article-title: Four‐dimensional scanning transmission electron microscopy (4D‐STEM): from scanning nanodiffraction to ptychography and beyond publication-title: Microsc Microanal – volume: 73 start-page: 3681 issue: 12 year: 2021 end-page: 3683 article-title: The second decade of the materials genome initiative publication-title: JOM – volume: 1 start-page: 46 issue: 1 year: 2021 end-page: 53 article-title: Learning properties of ordered and disordered materials from multi‐fidelity data publication-title: Nat Comput Sci – volume: 4 start-page: 67 issue: 1 year: 2018 article-title: Deep‐learning‐based inverse design model for intelligent discovery of organic molecules publication-title: npj Comput Mater – volume: 4 start-page: 4155 year: 2016 end-page: 4167 article-title: On wireless power transfer and max flow in rechargeable wireless sensor networks publication-title: IEEE Access – volume: 9 issue: 12 year: 2022 article-title: Applications of machine learning in alloy catalysts: rational selection and future development of descriptors publication-title: Adv Sci – volume: 8 start-page: 13 issue: 1 year: 2022 article-title: Magnetic moment tensor potentials for collinear spin‐polarized materials reproduce different magnetic states of bcc Fe publication-title: npj Comput Mater – volume: 28 start-page: 31 issue: 1 year: 1988 end-page: 36 article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules publication-title: J Chem Inf Model – volume: 14 start-page: 15587 issue: 13 year: 2022 end-page: 15598 article-title: Exploring high thermal conductivity amorphous polymers using reinforcement learning publication-title: ACS Appl Mater Interfaces – volume: 12 start-page: 2191 issue: 1 year: 2021 article-title: Discovery of temperature‐induced stability reversal in perovskites using high‐throughput robotic learning publication-title: Nat Commun – volume: 600 start-page: E12 issue: 7889 year: 2021 end-page: E14 article-title: On the liquid–liquid phase transition of dense hydrogen publication-title: Nature – volume: 6 start-page: 76 issue: 1 year: 2019 article-title: High‐throughput calculations of catalytic properties of bimetallic alloy surfaces publication-title: Sci Data – volume: 128 issue: 18 year: 2022 article-title: Machine learning hidden symmetries publication-title: Phys Rev Lett – volume: 810 start-page: 1 year: 2019 end-page: 124 article-title: A high‐bias, low‐variance introduction to machine learning for physicists publication-title: Phys Rep – volume: 8 start-page: 8 issue: 1 year: 2022 article-title: A machine learning approach to map crystal orientation by optical microscopy publication-title: npj Comput Mater – volume: 300 year: 2022 article-title: Band alignment of homojunction by anchoring CN quantum dots on g‐C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution publication-title: Appl Catal B: Environ – volume: 14 start-page: 1160 issue: 6 year: 2022 article-title: Energy storage application of all‐organic polymer dielectrics: a review publication-title: Polymers – volume: 58 start-page: 218 year: 2012 end-page: 226 article-title: AFLOW: an automatic framework for high‐throughput materials discovery publication-title: Comput Mater Sci – volume: 4 issue: 4 year: 2018 article-title: Accelerated discovery of metallic glasses through iteration of machine learning and high‐throughput experiments publication-title: Sci Adv – volume: 40 start-page: 358 issue: 3 year: 1984 article-title: Classification and regression trees (CART) publication-title: Biometrics – volume: 935 year: 2023 article-title: Fabrication of Ti‐6Al‐4V alloy powder by a novel sintering‐deoxygenation process publication-title: J Alloys Compd – volume: 10 start-page: 4170 issue: 8 year: 2022 end-page: 4180 article-title: Machine learning and molecular dynamics simulation‐assisted evolutionary design and discovery pipeline to screen efficient small molecule acceptors for PTB7‐Th‐based organic solar cells with over 15% efficiency publication-title: J Mater Chem A – volume: 14 start-page: 9418 issue: 7 year: 2022 end-page: 9432 article-title: Machine learning study of the magnetic ordering in 2D materials publication-title: ACS Appl Mater Interfaces – volume: 188 year: 2021 article-title: Machine learning‐based prediction of phases in high‐entropy alloys publication-title: Comput Mater Sci – volume: 3 start-page: 33 issue: 1 year: 2011 article-title: Open Babel: an open chemical toolbox publication-title: J Cheminform – volume: 589 start-page: 59 issue: 7840 year: 2021 end-page: 64 article-title: Origins of structural and electronic transitions in disordered silicon publication-title: Nature – volume: 361 start-page: 360 issue: 6400 year: 2018 end-page: 365 article-title: Inverse molecular design using machine learning: generative models for matter engineering publication-title: Science – volume: 8 start-page: 114 issue: 1 year: 2022 article-title: Uncovering material deformations via machine learning combined with four‐dimensional scanning transmission electron microscopy publication-title: npj Comput Mater – volume: 935 year: 2023 article-title: Microstructure evolution and mechanical properties of 2060 Al‐Li alloy via friction stir additive manufacturing publication-title: J Alloys Compd – volume: 79 start-page: 1416 issue: 3 year: 1996 end-page: 1422 article-title: Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating publication-title: J Appl Phys – volume: 4 start-page: 235 issue: 2 year: 2021 end-page: 247 article-title: Progress on material characterization methods under big data environment publication-title: Adv Compos Hybrid Mater – volume: 133 start-page: 245 issue: 1 year: 2021 end-page: 258 article-title: Poisoning effect of calcium hydroxide on Fe–Ce/TiO catalyst for NO removal: evolution of active species and surface properties publication-title: Reac Kinet Mech Cat – volume: 934 year: 2023 article-title: Enhanced mechanical properties and thermal stability in additively manufactured Al‐Ni alloy by Sc addition publication-title: J Alloys Compd – volume: 30 start-page: 237 issue: 3 year: 1990 end-page: 243 article-title: SMILES. 3. DEPICT. Graphical depiction of chemical structures publication-title: J Chem Inf Model – volume: 232 year: 2022 article-title: Efficient machine‐learning model for fast assessment of elastic properties of high‐entropy alloys publication-title: Acta Mater – volume: 2 issue: 2 year: 2017 article-title: 2D metal carbides and nitrides (MXenes) for energy storage publication-title: Nat Rev Mater – volume: 3 start-page: 54 issue: 1 year: 2017 article-title: Machine learning in materials informatics: recent applications and prospects publication-title: npj Comput Mater – volume: 12 start-page: 1 issue: 1 year: 2021 article-title: Development of data‐driven machine learning models for the prediction of casting surface defects publication-title: Metals – volume: 201 start-page: 316 year: 2020 end-page: 328 article-title: Machine‐learning assisted laser powder bed fusion process optimization for AlSi10Mg: new microstructure description indices and fracture mechanisms publication-title: Acta Mater – volume: 197 year: 2021 article-title: Deep learning‐based phase prediction of high‐entropy alloys: optimization, generation, and explanation publication-title: Mater Des – volume: 53 start-page: 937 issue: 8 year: 2005 end-page: 942 article-title: Modification of Fe‐containing intermetallic compounds by K addition to Fe‐rich AA319 aluminum alloys publication-title: Scripta Materialia – volume: 56 start-page: 12828 issue: 42 year: 2017 end-page: 12840 article-title: First principles neural network potentials for reactive simulations of large molecular and condensed systems publication-title: Angew Chem Int Ed – volume: 14 start-page: 17125 issue: 12 year: 2020 end-page: 17133 article-title: Statistical characterization of the morphologies of nanoparticles through machine learning based electron microscopy image analysis publication-title: ACS Nano – volume: 14 start-page: 1 issue: 1 year: 2008 end-page: 37 article-title: Top 10 algorithms in data mining publication-title: Knowl Inf Syst – volume: 34 issue: 10 year: 2022 article-title: Machine learning guided dopant selection for metal oxide‐based photoelectrochemical water splitting: the case study of Fe O and CuO publication-title: Adv Mater – volume: 187 year: 2020 article-title: A machine‐learning approach to predicting and understanding the properties of amorphous metallic alloys publication-title: Mater Des – volume: 338 start-page: 643 issue: 6107 year: 2012 end-page: 647 article-title: Efficient hybrid solar cells based on meso‐superstructured organometal halide perovskites publication-title: Science – year: 1982 – volume: 1 start-page: 338 issue: 3 year: 2019 end-page: 358 article-title: Machine learning in materials science publication-title: InfoMat – volume: 422 year: 2020 article-title: Recent advances, opportunities, and challenges in high‐throughput computational screening of MOFs for gas separations publication-title: Coord Chem Rev – volume: 29 start-page: 97 issue: 2 year: 1989 end-page: 101 article-title: SMILES. 2. Algorithm for generation of unique SMILES notation publication-title: J Chem Inf Comput Sci – volume: 15 start-page: 12604 issue: 8 year: 2021 end-page: 12627 article-title: Automated and autonomous experiments in electron and scanning probe microscopy publication-title: ACS Nano – volume: 5 issue: 5 year: 2021 article-title: Machine learning method reveals hidden strong metal‐support interaction in microscopy datasets publication-title: Small Methods – volume: 28 issue: 8 year: 2019 article-title: SymTopo: an automatic tool for calculating topological properties of nonmagnetic crystalline materials* publication-title: Chinese Phys B – volume: 32 start-page: 1466 issue: 7 year: 2011 end-page: 1474 article-title: PaDEL‐descriptor: an open source software to calculate molecular descriptors and fingerprints publication-title: J Comput Chem – volume: 1 start-page: 541 issue: 4 year: 1989 end-page: 551 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput – volume: 44 start-page: D1202 issue: D1 year: 2016 end-page: D1213 article-title: Pubchem substance and compound databases publication-title: Nucleic Acids Res – volume: 139 start-page: 59 year: 2023 end-page: 68 article-title: Unusually high corrosion resistance in Mo CrNiCo medium entropy alloy enhanced by acidity in aqueous solution publication-title: J Mater Sci Technol – volume: 15 start-page: 56 issue: 1 year: 2021 article-title: Investigation of deoxidation process of MoO using environmental TEM publication-title: Materials – volume: 53 start-page: 547 issue: 3 year: 2020 end-page: 560 article-title: Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery publication-title: Acc Chem Res – volume: 14 start-page: 16568 issue: 14 year: 2022 end-page: 16581 article-title: Predicting young's modulus of linear polyurethane and polyurethane–polyurea elastomers: bridging length scales with physicochemical modeling and machine learning publication-title: ACS Appl Mater Interfaces – volume: 40 start-page: D1100 issue: D1 year: 2012 end-page: D1107 article-title: ChEMBL: a large‐scale bioactivity database for drug discovery publication-title: Nucleic Acids Res – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 4 start-page: 36 issue: 1 year: 2018 article-title: Automated defect analysis in electron microscopic images publication-title: npj Comput Mater – volume: 11 start-page: 479 issue: 5 year: 2016 end-page: 486 article-title: Meta‐analysis of cellular toxicity for cadmium‐containing quantum dots publication-title: Nature Nanotech – volume: 533 start-page: 73 issue: 7601 year: 2016 end-page: 76 article-title: Machine‐learning‐assisted materials discovery using failed experiments publication-title: Nature – volume: 7 start-page: 23 issue: 1 year: 2021 article-title: Machine learning for perovskite materials design and discovery publication-title: npj Comput Mater – volume: 6 start-page: 187 issue: 1 year: 2020 article-title: Interpretable machine‐learning strategy for soft‐magnetic property and thermal stability in Fe‐based metallic glasses publication-title: npj Comput Mater – volume: 40 start-page: 132 year: 2020 end-page: 139 article-title: Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD) publication-title: Materials Today – volume: 196 year: 2021 article-title: Graph representational learning for bandgap prediction in varied perovskite crystals publication-title: Comput Mater Sci – volume: 23 start-page: 1841 issue: 5 year: 2022 end-page: 1863 article-title: Biocompatible synthetic polymers for tissue engineering purposes publication-title: Biomacromolecules – volume: 294 year: 2023 article-title: Wire arc additive manufacturing of metals: a review on processes, materials and their behaviour publication-title: Mater Chem Phys – volume: 6 start-page: 84 issue: 1 year: 2020 article-title: Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials publication-title: npj Comput Mater – volume: 44 start-page: 207 issue: 1–2 year: 2000 end-page: 226 article-title: Some studies in machine learning using the game of checkers (Reprinted from Journal of Research and Development, Vol. 3, 1959) publication-title: IBM Journal of Research and Development – volume: 150 issue: 11 year: 2019 article-title: The chemical space of B, N‐substituted polycyclic aromatic hydrocarbons: combinatorial enumeration and high‐throughput first‐principles modeling publication-title: J Chem Phys – volume: 110 year: 2022 article-title: Application of machine learning methods on dynamic strength analysis for additive manufactured polypropylene‐based composites publication-title: Polym Test – volume: 14 start-page: 16114 issue: 11 year: 2020 end-page: 16121 article-title: Measurement of exciton and trion energies in multistacked hBN/WS coupled quantum wells for resonant tunneling diodes publication-title: ACS Nano – volume: 10 start-page: 6679 issue: 12 year: 2022 end-page: 6689 article-title: Machine learning assisted high‐throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts publication-title: J Mater Chem A – volume: 34 issue: 12 year: 2022 article-title: Machine learning guided synthesis of flash graphene publication-title: Adv Mater – volume: 40 start-page: D420 issue: D1 year: 2012 end-page: D427 article-title: Crystallography Open Database (COD): an open‐access collection of crystal structures and platform for world‐wide collaboration publication-title: Nucleic Acids Res – volume: 16 year: 2021 article-title: Realization of closed‐loop optimization of epitaxial titanium nitride thin‐film growth via machine learning publication-title: Mater Today Phys – volume: 21 issue: 39 year: 2009 article-title: QUANTUM ESPRESSO: a modular and open‐source software project for quantum simulations of materials publication-title: J Phys: Condens Matter – volume: 51 start-page: 1899 issue: 6 year: 2022 end-page: 1925 article-title: Understanding, discovery, and synthesis of 2D materials enabled by machine learning publication-title: Chem Soc Rev – volume: 26 start-page: 992 issue: 7 year: 2014 end-page: 1005 article-title: 25th anniversary article: mxenes: a new family of two‐dimensional materials publication-title: Adv Mater – volume: 120 start-page: 320 year: 2019 end-page: 339 article-title: Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal plasticity FE simulations: part II: thermo‐elasto‐plastic model with experimental validation for titanium alloys publication-title: Int J Plast – volume: 87 start-page: 1123 issue: 11 year: 2010 end-page: 1124 article-title: ChemSpider: an online chemical information resource publication-title: J Chem Educ – volume: 47 start-page: D930 issue: D1 year: 2019 end-page: D940 article-title: ChEMBL: towards direct deposition of bioassay data publication-title: Nucleic Acids Res – volume: 104 start-page: 285 year: 2022 end-page: 291 article-title: Using multiple regression analysis to predict directionally solidified TiAl mechanical property publication-title: J Mater Sci Technol – volume: 63 start-page: 139 issue: 11 year: 2020 end-page: 144 article-title: Generative adversarial networks publication-title: Commun ACM – volume: 50 start-page: 742 issue: 5 year: 2010 end-page: 754 article-title: Extended‐connectivity fingerprints publication-title: J Chem Inf Model – volume: 5 start-page: 3426 issue: 11 year: 2020 end-page: 3436 article-title: Chemical robotics enabled exploration of stability in multicomponent lead halide perovskites via machine learning publication-title: ACS Energy Lett – volume: 6 issue: 21 year: 2019 article-title: Data‐driven materials science: status, challenges, and perspectives publication-title: Adv Sci – volume: 14 start-page: 8427 issue: 6 year: 2022 end-page: 8436 article-title: Machine learning‐enabled prediction and high‐throughput screening of polymer membranes for pervaporation separation publication-title: ACS Appl Mater Interfaces – ident: e_1_2_7_36_1 doi: 10.1039/D1CS00503K – ident: e_1_2_7_294_1 doi: 10.1038/s41586-020-03072-z – ident: e_1_2_7_210_1 doi: 10.1016/j.jallcom.2022.167894 – ident: e_1_2_7_132_1 doi: 10.1016/j.jmst.2021.05.076 – ident: e_1_2_7_261_1 doi: 10.1016/j.heliyon.2020.e05055 – ident: e_1_2_7_263_1 doi: 10.3390/polym14030527 – ident: e_1_2_7_12_1 doi: 10.1126/science.1127647 – ident: e_1_2_7_216_1 doi: 10.1016/j.jmbbm.2018.07.022 – ident: e_1_2_7_25_1 – ident: e_1_2_7_59_1 doi: 10.1021/ci300415d – ident: e_1_2_7_161_1 doi: 10.1002/advs.201903389 – ident: e_1_2_7_194_1 doi: 10.1021/acsami.1c01098 – ident: e_1_2_7_130_1 doi: 10.1038/nnano.2015.338 – ident: e_1_2_7_303_1 doi: 10.1021/acsnano.1c02104 – ident: e_1_2_7_39_1 doi: 10.1002/inf2.12028 – ident: e_1_2_7_79_1 doi: 10.1038/s41524-020-0287-8 – ident: e_1_2_7_152_1 doi: 10.1021/acscentsci.7b00572 – ident: e_1_2_7_297_1 doi: 10.1038/s41586-021-04078-x – ident: e_1_2_7_231_1 doi: 10.1016/j.compositesb.2018.02.012 – ident: e_1_2_7_206_1 doi: 10.1016/j.jallcom.2022.168019 – ident: e_1_2_7_135_1 doi: 10.1080/14786440109462720 – ident: e_1_2_7_104_1 doi: 10.1021/acs.jpca.7b08750 – volume: 44 start-page: 207 issue: 1 year: 2000 ident: e_1_2_7_7_1 article-title: Some studies in machine learning using the game of checkers (Reprinted from Journal of Research and Development, Vol. 3, 1959) publication-title: IBM Journal of Research and Development – ident: e_1_2_7_146_1 doi: 10.1038/s41524-022-00696-9 – ident: e_1_2_7_302_1 doi: 10.3390/ma15010056 – ident: e_1_2_7_204_1 doi: 10.1016/j.mtcomm.2022.104896 – ident: e_1_2_7_282_1 doi: 10.1088/0953-8984/21/39/395502 – ident: e_1_2_7_279_1 doi: 10.1557/mrs.2012.96 – ident: e_1_2_7_80_1 doi: 10.1038/s41524-021-00687-2 – ident: e_1_2_7_203_1 doi: 10.1016/j.scriptamat.2005.06.022 – ident: e_1_2_7_8_1 doi: 10.1038/323533a0 – ident: e_1_2_7_87_1 doi: 10.1038/nmat1752 – ident: e_1_2_7_235_1 doi: 10.1016/j.ijfatigue.2020.105941 – volume-title: Introduction to Linear Regression Analysis, 5th ed year: 1982 ident: e_1_2_7_114_1 – ident: e_1_2_7_157_1 doi: 10.1063/5.0023759 – ident: e_1_2_7_275_1 doi: 10.1016/j.eml.2020.100651 – ident: e_1_2_7_197_1 doi: 10.1002/adma.202108900 – ident: e_1_2_7_260_1 doi: 10.1021/acsaem.0c02647 – ident: e_1_2_7_188_1 doi: 10.1002/aenm.202200389 – ident: e_1_2_7_70_1 doi: 10.1038/npjcompumats.2015.10 – ident: e_1_2_7_183_1 doi: 10.1016/j.apcatb.2021.120736 – ident: e_1_2_7_233_1 doi: 10.1016/j.jmsy.2021.07.013 – ident: e_1_2_7_96_1 doi: 10.1021/ci100050t – ident: e_1_2_7_119_1 doi: 10.1021/acs.jpclett.8b00124 – ident: e_1_2_7_257_1 doi: 10.3390/polym14194084 – ident: e_1_2_7_17_1 doi: 10.1109/72.788645 – ident: e_1_2_7_267_1 doi: 10.1038/s41524-018-0128-1 – ident: e_1_2_7_268_1 doi: 10.1002/advs.201902607 – ident: e_1_2_7_285_1 doi: 10.1002/anie.201703114 – ident: e_1_2_7_172_1 doi: 10.1016/j.commatsci.2020.109614 – ident: e_1_2_7_5_1 doi: 10.1063/1.4946894 – ident: e_1_2_7_23_1 doi: 10.1038/s41598-021-92278-w – ident: e_1_2_7_51_1 doi: 10.1093/nar/gky1075 – ident: e_1_2_7_160_1 doi: 10.1126/science.aam7092 – ident: e_1_2_7_292_1 doi: 10.1103/PhysRevB.42.9458 – ident: e_1_2_7_305_1 doi: 10.1038/s41524-022-00793-9 – ident: e_1_2_7_68_1 doi: 10.1088/0953-8984/27/28/283203 – ident: e_1_2_7_182_1 doi: 10.3390/pr9101846 – ident: e_1_2_7_232_1 doi: 10.1016/j.actamat.2020.10.010 – ident: e_1_2_7_306_1 doi: 10.1038/s41524-018-0093-8 – ident: e_1_2_7_22_1 doi: 10.1038/s41586-022-05322-8 – ident: e_1_2_7_58_1 doi: 10.1107/S0108768102003890 – ident: e_1_2_7_180_1 doi: 10.1016/j.fuel.2020.119069 – ident: e_1_2_7_217_1 doi: 10.1007/s00170-020-06515-z – ident: e_1_2_7_162_1 doi: 10.1063/1.3623476 – ident: e_1_2_7_101_1 doi: 10.1016/j.actamat.2020.09.081 – ident: e_1_2_7_16_1 doi: 10.1109/TITS.2022.3170628 – ident: e_1_2_7_20_1 doi: 10.1007/s10115-007-0114-2 – ident: e_1_2_7_158_1 doi: 10.1021/cr980129f – ident: e_1_2_7_308_1 doi: 10.1038/s41524-022-00880-x – ident: e_1_2_7_251_1 doi: 10.1007/s10854-021-06883-6 – ident: e_1_2_7_270_1 doi: 10.1016/j.actamat.2021.116980 – ident: e_1_2_7_211_1 doi: 10.1016/j.jmst.2022.09.033 – ident: e_1_2_7_109_1 doi: 10.1016/j.physrep.2019.03.001 – ident: e_1_2_7_215_1 doi: 10.1016/j.jma.2020.06.021 – ident: e_1_2_7_277_1 doi: 10.1016/j.matt.2019.08.017 – volume-title: Foundations of Materials Science and Engineering year: 2019 ident: e_1_2_7_2_1 – ident: e_1_2_7_126_1 doi: 10.1016/j.jpowsour.2021.230968 – ident: e_1_2_7_295_1 doi: 10.1038/s41586-022-05036-x – ident: e_1_2_7_75_1 doi: 10.1038/d41586-020-03259-4 – ident: e_1_2_7_86_1 doi: 10.1007/s42114-021-00229-w – ident: e_1_2_7_127_1 doi: 10.1162/neco.1989.1.4.541 – ident: e_1_2_7_213_1 doi: 10.1016/j.jmapro.2022.10.040 – ident: e_1_2_7_298_1 doi: 10.1017/S1431927619000497 – ident: e_1_2_7_66_1 doi: 10.1103/PhysRevB.85.115104 – ident: e_1_2_7_89_1 doi: 10.1016/j.actamat.2021.116815 – ident: e_1_2_7_144_1 doi: 10.1115/1.4050525 – ident: e_1_2_7_147_1 doi: 10.1103/PhysRevB.105.115202 – ident: e_1_2_7_219_1 doi: 10.1016/j.commatsci.2020.110259 – ident: e_1_2_7_191_1 doi: 10.1021/acs.accounts.9b00529 – ident: e_1_2_7_301_1 doi: 10.1038/s41560-020-00768-4 – ident: e_1_2_7_168_1 doi: 10.1016/j.jlumin.2022.119406 – ident: e_1_2_7_236_1 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_7_148_1 doi: 10.1021/acsnano.1c09644 – ident: e_1_2_7_249_1 doi: 10.1038/s41699-021-00228-x – ident: e_1_2_7_193_1 doi: 10.1016/j.jclepro.2020.120694 – ident: e_1_2_7_264_1 doi: 10.3390/polym14091802 – ident: e_1_2_7_84_1 doi: 10.1038/s41467-021-22472-x – ident: e_1_2_7_314_1 doi: 10.1126/science.1165893 – ident: e_1_2_7_276_1 doi: 10.1016/j.carbon.2020.07.013 – ident: e_1_2_7_29_1 doi: 10.1103/PhysRevB.99.064114 – ident: e_1_2_7_93_1 doi: 10.1021/ci00057a005 – ident: e_1_2_7_133_1 doi: 10.1002/adma.202106506 – ident: e_1_2_7_67_1 doi: 10.1103/PhysRevB.87.085112 – ident: e_1_2_7_247_1 doi: 10.1016/j.progsurf.2021.100626 – ident: e_1_2_7_139_1 – ident: e_1_2_7_246_1 doi: 10.1021/acsami.1c21558 – ident: e_1_2_7_290_1 doi: 10.1103/PhysRevB.62.11089 – ident: e_1_2_7_85_1 doi: 10.1038/nmat3568 – ident: e_1_2_7_248_1 doi: 10.1016/j.mattod.2020.06.012 – ident: e_1_2_7_117_1 doi: 10.1007/s00500-020-05297-6 – ident: e_1_2_7_315_1 doi: 10.1103/PhysRevLett.128.180201 – ident: e_1_2_7_50_1 doi: 10.1093/nar/gkr777 – ident: e_1_2_7_255_1 – ident: e_1_2_7_250_1 – ident: e_1_2_7_245_1 doi: 10.1038/s41524-020-0300-2 – ident: e_1_2_7_266_1 doi: 10.1021/acsami.1c22886 – ident: e_1_2_7_192_1 doi: 10.1016/j.mattod.2019.06.009 – ident: e_1_2_7_299_1 doi: 10.3390/molecules27123829 – ident: e_1_2_7_42_1 doi: 10.1002/advs.201900808 – ident: e_1_2_7_187_1 doi: 10.1002/advs.201901614 – ident: e_1_2_7_176_1 doi: 10.1021/acs.jpclett.1c01939 – ident: e_1_2_7_284_1 doi: 10.1021/acs.jpclett.9b03664 – ident: e_1_2_7_221_1 doi: 10.1016/j.commatsci.2020.110025 – ident: e_1_2_7_27_1 doi: 10.1039/D0NA00388C – ident: e_1_2_7_163_1 doi: 10.1126/science.1080615 – ident: e_1_2_7_46_1 doi: 10.1016/j.commatsci.2012.02.005 – ident: e_1_2_7_258_1 doi: 10.1002/inf2.12167 – ident: e_1_2_7_113_1 doi: 10.1002/adts.202100565 – ident: e_1_2_7_73_1 doi: 10.1038/nature17439 – year: 2022 ident: e_1_2_7_167_1 article-title: Engineering stable lead‐free tin halide perovskite solar cells: lessons from materials chemistry publication-title: Adv Mater – ident: e_1_2_7_265_1 – ident: e_1_2_7_52_1 doi: 10.1021/ed100697w – ident: e_1_2_7_169_1 doi: 10.1002/adma.201600669 – ident: e_1_2_7_241_1 doi: 10.1038/s41586-021-03338-0 – ident: e_1_2_7_14_1 doi: 10.1109/ACCESS.2016.2596776 – ident: e_1_2_7_289_1 doi: 10.1063/1.360979 – ident: e_1_2_7_19_1 doi: 10.1001/jama.2016.17216 – ident: e_1_2_7_62_1 doi: 10.1038/s41586-019-0944-6 – ident: e_1_2_7_226_1 doi: 10.1016/j.actamat.2021.117535 – ident: e_1_2_7_40_1 doi: 10.1609/aimag.v18i3.1303 – ident: e_1_2_7_64_1 doi: 10.1063/1.5088083 – ident: e_1_2_7_269_1 doi: 10.1038/s41524-020-00477-2 – ident: e_1_2_7_293_1 doi: 10.1103/PhysRevB.87.205410 – ident: e_1_2_7_53_1 – ident: e_1_2_7_224_1 doi: 10.1016/j.pmatsci.2013.10.001 – ident: e_1_2_7_34_1 doi: 10.1021/acs.chemrev.2c00061 – ident: e_1_2_7_280_1 doi: 10.1016/j.carbon.2016.08.024 – ident: e_1_2_7_21_1 doi: 10.1039/D1TA09878K – ident: e_1_2_7_103_1 doi: 10.1016/j.ijplas.2019.05.007 – ident: e_1_2_7_195_1 doi: 10.1016/j.cej.2021.133126 – ident: e_1_2_7_225_1 doi: 10.1016/j.jmst.2020.01.005 – ident: e_1_2_7_304_1 doi: 10.1021/acsnano.0c06809 – ident: e_1_2_7_239_1 doi: 10.1103/RevModPhys.83.407 – ident: e_1_2_7_283_1 doi: 10.1016/j.cpc.2018.03.016 – ident: e_1_2_7_98_1 doi: 10.1002/jcc.21707 – ident: e_1_2_7_110_1 doi: 10.1109/MCI.2015.2471235 – ident: e_1_2_7_254_1 doi: 10.3390/polym14061160 – ident: e_1_2_7_120_1 doi: 10.1109/TIT.1967.1053964 – ident: e_1_2_7_13_1 doi: 10.1109/CVPR.2005.177 – ident: e_1_2_7_310_1 doi: 10.1002/adfm.202208418 – ident: e_1_2_7_116_1 doi: 10.1016/j.jmst.2021.06.072 – ident: e_1_2_7_105_1 doi: 10.1103/PhysRevMaterials.2.083802 – ident: e_1_2_7_238_1 doi: 10.1002/adma.201304138 – ident: e_1_2_7_170_1 doi: 10.1016/j.commatsci.2021.110530 – ident: e_1_2_7_31_1 doi: 10.1038/s41524-017-0056-5 – ident: e_1_2_7_205_1 doi: 10.1016/j.jmst.2022.08.013 – ident: e_1_2_7_281_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_7_220_1 doi: 10.1038/s41524-020-00460-x – ident: e_1_2_7_218_1 doi: 10.1016/j.pmatsci.2019.01.003 – ident: e_1_2_7_43_1 doi: 10.1002/adma.202106776 – ident: e_1_2_7_186_1 doi: 10.1039/D1EE02369A – ident: e_1_2_7_274_1 – ident: e_1_2_7_125_1 doi: 10.1016/j.commatsci.2008.01.039 – ident: e_1_2_7_56_1 doi: 10.1093/nar/gkr900 – ident: e_1_2_7_106_1 doi: 10.1016/j.actamat.2022.117924 – ident: e_1_2_7_272_1 doi: 10.1002/smtd.202100035 – ident: e_1_2_7_300_1 doi: 10.1002/adma.202205715 – ident: e_1_2_7_166_1 doi: 10.1126/science.1228604 – ident: e_1_2_7_88_1 doi: 10.1039/C7TA10374C – ident: e_1_2_7_10_1 doi: 10.1007/BF00116251 – ident: e_1_2_7_38_1 doi: 10.1002/inf2.12094 – ident: e_1_2_7_45_1 doi: 10.1021/acsami.9b14530 – ident: e_1_2_7_74_1 doi: 10.1038/s43588-020-00002-x – ident: e_1_2_7_92_1 doi: 10.1039/D1ME00160D – ident: e_1_2_7_63_1 doi: 10.1038/sdata.2014.22 – ident: e_1_2_7_189_1 doi: 10.1039/D2TA02039D – ident: e_1_2_7_81_1 doi: 10.1038/s41467-021-24523-9 – ident: e_1_2_7_48_1 doi: 10.1038/s41597-019-0081-y – ident: e_1_2_7_108_1 doi: 10.1007/978-1-62703-748-8_7 – ident: e_1_2_7_155_1 doi: 10.1016/j.matdes.2019.108378 – ident: e_1_2_7_173_1 doi: 10.1021/acs.chemmater.0c01894 – ident: e_1_2_7_83_1 doi: 10.1002/adma.202002780 – ident: e_1_2_7_230_1 doi: 10.1016/j.matchemphys.2022.126988 – ident: e_1_2_7_244_1 doi: 10.1038/nmat1849 – ident: e_1_2_7_26_1 doi: 10.1016/j.nanoen.2020.105665 – ident: e_1_2_7_165_1 doi: 10.1038/nature12340 – ident: e_1_2_7_91_1 doi: 10.1038/s41467-019-13297-w – volume: 13 year: 2021 ident: e_1_2_7_234_1 article-title: A physics‐informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing publication-title: Int J Adv Manuf Technol – ident: e_1_2_7_82_1 doi: 10.1016/j.ccr.2020.213470 – ident: e_1_2_7_214_1 doi: 10.1016/j.mser.2009.03.001 – ident: e_1_2_7_256_1 doi: 10.1021/acs.biomac.2c00047 – ident: e_1_2_7_311_1 doi: 10.1016/j.artint.2010.04.018 – ident: e_1_2_7_179_1 doi: 10.1002/advs.202103648 – ident: e_1_2_7_201_1 doi: 10.1021/jacs.1c07217 – ident: e_1_2_7_65_1 doi: 10.1063/1.4812323 – ident: e_1_2_7_124_1 doi: 10.1016/j.heliyon.2018.e00938 – ident: e_1_2_7_286_1 doi: 10.1103/PhysRevB.95.094203 – ident: e_1_2_7_196_1 doi: 10.1038/s41586-020-2242-8 – ident: e_1_2_7_198_1 doi: 10.1038/s41524-021-00541-5 – ident: e_1_2_7_287_1 doi: 10.1103/PhysRevB.78.161402 – ident: e_1_2_7_76_1 doi: 10.1016/j.solmat.2019.110284 – ident: e_1_2_7_252_1 doi: 10.1021/acsami.1c23610 – ident: e_1_2_7_4_1 doi: 10.1007/s11837-021-05008-y – ident: e_1_2_7_90_1 doi: 10.1088/1361-648X/aba06b – ident: e_1_2_7_222_1 doi: 10.1016/j.pmatsci.2021.100777 – ident: e_1_2_7_136_1 – ident: e_1_2_7_181_1 doi: 10.1007/s11144-021-01980-3 – ident: e_1_2_7_111_1 doi: 10.1002/adma.202005112 – ident: e_1_2_7_138_1 doi: 10.1109/TPAMI.2021.3116668 – ident: e_1_2_7_57_1 doi: 10.1107/S2052520616003954 – ident: e_1_2_7_112_1 doi: 10.1016/j.polymertesting.2022.107580 – ident: e_1_2_7_156_1 doi: 10.1016/j.chempr.2021.11.009 – ident: e_1_2_7_41_1 doi: 10.1007/s42979-021-00592-x – ident: e_1_2_7_178_1 doi: 10.1016/j.matt.2020.02.012 – ident: e_1_2_7_140_1 doi: 10.1145/3422622 – ident: e_1_2_7_33_1 doi: 10.1038/s41524-021-00495-8 – ident: e_1_2_7_159_1 doi: 10.1038/nmat4938 – ident: e_1_2_7_3_1 – ident: e_1_2_7_122_1 doi: 10.1021/jp4006422 – ident: e_1_2_7_199_1 doi: 10.1016/j.psep.2022.03.020 – ident: e_1_2_7_273_1 doi: 10.1038/s41524-022-00923-3 – ident: e_1_2_7_49_1 doi: 10.1038/s41597-019-0080-z – ident: e_1_2_7_142_1 doi: 10.1038/s41524-020-00352-0 – ident: e_1_2_7_171_1 doi: 10.1016/j.apsusc.2021.150916 – ident: e_1_2_7_134_1 doi: 10.1016/j.biortech.2022.126812 – ident: e_1_2_7_61_1 doi: 10.1088/1674-1056/28/8/087102 – ident: e_1_2_7_151_1 doi: 10.1007/s12613-022-2457-9 – ident: e_1_2_7_60_1 doi: 10.1107/S0108768102006948 – ident: e_1_2_7_71_1 doi: 10.1093/nar/gkv951 – ident: e_1_2_7_131_1 doi: 10.3389/fnbot.2013.00021 – ident: e_1_2_7_228_1 doi: 10.1016/j.matdes.2020.109260 – ident: e_1_2_7_77_1 doi: 10.1016/j.ijhydene.2022.02.030 – ident: e_1_2_7_177_1 doi: 10.1016/j.commatsci.2022.111435 – ident: e_1_2_7_212_1 doi: 10.1016/j.jmst.2022.07.061 – ident: e_1_2_7_288_1 doi: 10.1103/PhysRevB.48.4777 – ident: e_1_2_7_54_1 doi: 10.1088/2053-1583/aacfc1 – ident: e_1_2_7_229_1 doi: 10.1016/j.pmatsci.2017.10.001 – ident: e_1_2_7_307_1 doi: 10.1038/s41524-019-0152-9 – ident: e_1_2_7_253_1 doi: 10.1038/s41467-021-23798-2 – volume-title: The Fourth Paradigm: Data‐Intensive Scientific Discovery year: 2009 ident: e_1_2_7_6_1 – ident: e_1_2_7_164_1 doi: 10.1039/c3nr02543h – ident: e_1_2_7_174_1 doi: 10.1126/sciadv.aaq1566 – ident: e_1_2_7_137_1 doi: 10.1021/acs.chemmater.1c03220 – ident: e_1_2_7_296_1 doi: 10.1038/s41586-020-2677-y – ident: e_1_2_7_227_1 doi: 10.1016/j.commatsci.2020.110244 – ident: e_1_2_7_143_1 doi: 10.1039/D1TA09762H – ident: e_1_2_7_97_1 doi: 10.1021/ci025584y – ident: e_1_2_7_99_1 doi: 10.1186/1758-2946-3-33 – ident: e_1_2_7_118_1 doi: 10.1016/j.mtphys.2020.100296 – ident: e_1_2_7_243_1 doi: 10.1126/science.1102896 – ident: e_1_2_7_102_1 doi: 10.1021/acs.chemmater.0c03402 – ident: e_1_2_7_141_1 doi: 10.1126/science.aat2663 – ident: e_1_2_7_149_1 doi: 10.1038/s41524-021-00688-1 – ident: e_1_2_7_200_1 doi: 10.1038/s41598-022-10563-8 – ident: e_1_2_7_129_1 doi: 10.1023/A:1010933404324 – volume: 30 start-page: 237 issue: 3 year: 1990 ident: e_1_2_7_95_1 article-title: SMILES. 3. DEPICT. Graphical depiction of chemical structures publication-title: J Chem Inf Model – ident: e_1_2_7_237_1 doi: 10.1021/nn501226z – ident: e_1_2_7_242_1 doi: 10.1021/acsnano.0c08133 – ident: e_1_2_7_72_1 doi: 10.1093/nar/gkaa971 – ident: e_1_2_7_271_1 doi: 10.1002/inf2.12026 – ident: e_1_2_7_44_1 doi: 10.3390/met12010001 – ident: e_1_2_7_18_1 doi: 10.1016/j.eswa.2007.01.018 – ident: e_1_2_7_208_1 doi: 10.1016/j.intermet.2022.107712 – ident: e_1_2_7_55_1 doi: 10.1107/S0021889809016690 – ident: e_1_2_7_69_1 doi: 10.1007/s11837-013-0755-4 – ident: e_1_2_7_24_1 doi: 10.1038/s41586-022-04998-2 – ident: e_1_2_7_121_1 doi: 10.1039/D1MH01912K – ident: e_1_2_7_150_1 doi: 10.1002/inf2.12315 – ident: e_1_2_7_185_1 doi: 10.3390/catal11040518 – volume: 40 start-page: 358 issue: 3 year: 1984 ident: e_1_2_7_9_1 article-title: Classification and regression trees (CART) publication-title: Biometrics – ident: e_1_2_7_309_1 – ident: e_1_2_7_240_1 doi: 10.1039/C1JM14216J – ident: e_1_2_7_115_1 doi: 10.1007/s11665-008-9225-5 – ident: e_1_2_7_278_1 – ident: e_1_2_7_313_1 doi: 10.1109/TKDE.2009.191 – ident: e_1_2_7_128_1 doi: 10.1038/s41524-019-0165-4 – ident: e_1_2_7_153_1 doi: 10.1021/acsenergylett.0c01749 – ident: e_1_2_7_154_1 doi: 10.1021/acssuschemeng.0c09192 – ident: e_1_2_7_35_1 doi: 10.1002/advs.202106043 – ident: e_1_2_7_190_1 doi: 10.1021/acs.chemrev.9b00248 – ident: e_1_2_7_94_1 doi: 10.1021/ci00062a008 – ident: e_1_2_7_15_1 doi: 10.1109/TNNLS.2020.3015830 – ident: e_1_2_7_28_1 doi: 10.1016/j.jmat.2019.03.003 – ident: e_1_2_7_175_1 doi: 10.1021/acs.chemmater.1c02725 – ident: e_1_2_7_32_1 doi: 10.1039/D1EE00154J – ident: e_1_2_7_145_1 – ident: e_1_2_7_223_1 doi: 10.1038/s41578-019-0121-4 – ident: e_1_2_7_259_1 doi: 10.1038/s41524-020-0333-6 – ident: e_1_2_7_37_1 doi: 10.3390/polym12010163 – ident: e_1_2_7_107_1 doi: 10.3390/app12073318 – ident: e_1_2_7_47_1 doi: 10.1016/j.commatsci.2012.02.002 – ident: e_1_2_7_207_1 doi: 10.1016/j.jallcom.2022.168113 – ident: e_1_2_7_11_1 doi: 10.1007/BF00994018 – ident: e_1_2_7_30_1 doi: 10.1021/acsami.1c24715 – ident: e_1_2_7_202_1 doi: 10.1016/j.jallcom.2020.156209 – ident: e_1_2_7_78_1 doi: 10.1063/5.0021106 – ident: e_1_2_7_123_1 doi: 10.1016/S0167-7012(00)00201-3 – ident: e_1_2_7_100_1 doi: 10.1162/153244303322753616 – ident: e_1_2_7_262_1 – ident: e_1_2_7_291_1 doi: 10.1103/PhysRevLett.61.2879 – ident: e_1_2_7_312_1 – ident: e_1_2_7_209_1 doi: 10.1063/1.4849292 – ident: e_1_2_7_184_1 doi: 10.1007/s11705-019-1900-6 |
SSID | ssj0002504251 |
Score | 2.3925333 |
SecondaryResourceType | review_article |
Snippet | As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development (R&D) cycle... Abstract As an implementation tool of data intensive scientific research methods, machine learning (ML) can effectively shorten the research and development... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 21st century Addition polymerization Algorithms Back propagation Composite materials Computers Data collection Decision trees Deep learning features Informatics Innovations Interdisciplinary subjects Inverse design Linear programming Machine learning materials materials informatics Materials information Materials science modeling Modelling Neural networks Perovskites Prediction models R&D Research & development Scientific method Support vector machines Two dimensional materials |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEMcX6UkP4hOrVQJ6UYxN9pXkJCqWKrQnC70t-8pJ0mLb7-_MJi0piF68LWEPw8zuzn_Jzm8IuXGmxApHGjMtTcxdksRa5zIW1knhtfHCYO3waCyHE_4-FdNWqy98E1bjgWvH9SHdSOpznwj896hhBfKcgcrnJi-8Nw5PX8h5rcsUnsEI5oLMveGR0j7Eiz6kKLC3MlAA9W-py7ZGDUlmcED2G3UYPdVWHZIdXx2RvRYz8Jg8jkLP58V9FJ5WIfobxrpy0WyOWnpVBUZqNCsjEKP1-ooaPCoimU_IZPD68TKMmy4IseVgbSyztExzLSzcH3WOhazausLRxIF2sUzr1GcenMRSUWaZFGVR8tQaxrLC21ILdko61azyZySy3CcghxjP8B7lmRGZK6yj0iKg1usuuV17RtkGEY6dKj5VDTemCr2oghe75Hozd16DMX6c9YwO3sxAmHX4ACFWTYjVXyHukt46PKrZYQtFc5BOWGWbdsldCNkvZqi38YCG0fl_GHRBdrHrfP0OsEc6y6-VvwRtsjRXYRl-A7VJ3ag priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access (WRLC) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMcHHxc9iE9cXxT0oli3zastCKLiooKLBxf2FvKqF-kuu_r9zaTdugsieCtlCmGSSf5JM78BOLO6xAxHElMldMxsksRK5SLmxgrulHZcY-7wS188DtjzkA-X4HqWC1PzIdoDN4yMMF9jgCs97f5AQ30HkKsUFfMyrGJuLV7oI-y1PWFBOBcJ9Rf9so6HcYK3fFLS_fl8YUUK4P4FtTmvWcOi09uEjUYtRrd1927Bkqu2YX2OIbgDNy-hBvT0MgpXrRAF7p9VZaPRGLX1VxWYqdGojLw4rcdb1OBSEdG8C4Pew9v9Y9xURYgN862NRZaWaa648ftJlWNiqzK2sCSxXssYqlTqMpdSQVNeZpngZVGy1GhKs8KZUnG6ByvVqHL7EBnmEi-PKMtwX-Wo5pktjCXCILDWqQ6czzwjTYMMx8oVH7KGHROJXpTBix04bW3HNSjjV6s7dHBrgXDr8GI0eZdNrEivMARxuUs4_m5WftJhOfUbO6bzwjltO3A06x7ZRNxUktxLKcy6TTtwEbrsj2bIp36PhKeD_xgfwhpWm6_v_x3Byufkyx17TfKpT8LQ-wbZHNj9 priority: 102 providerName: Wiley-Blackwell |
Title | Methods, progresses, and opportunities of materials informatics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12425 https://www.proquest.com/docview/2858458841 https://doaj.org/article/61362e8e050044a1834838714b89eebd |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_q-aIP4ieeXo8F-2Lp6m6-NvsktXi1BQ8pFXwL-Vpfyu7V0__fTDZ3Ksi9LGEJIcwkM79JMr8B-OJMgxmOJKdamJy5osi1liLn1gnutfHcYO7wzVRc37Hf9_w-HbjN07PKhU2Mhtp1Fs_Iz4kMrhKzKsuL2f8cq0bh7WoqobEG68EESzmA9cur6e2f5SkLEnQFD77kJSXnQW_krESg_c4TRcL-dyjzLVaNzmayDVsJJWbfe7XuwCff7sLmG-7APbi4ibWf59-y-MQKKcBDW7cu62aIqZ_byJWadU0WQGm_zrJEk4rUzPtwN7n6--M6T9UQcsvCbHNRlU0pNbchjtQSE1q1dbUjhQsYxlKtS1_5kgpa8qaqBG_qhpXWUFrV3jaa0wMYtF3rDyGzzBcBFlFWYTzlqeGVq60jwiJRrddDOF1IRtlEFY4VK_6pnuSYKJSiilIcwsmy76wnyPiw1yUKeNkDSa3jj-7xQaU9ogKyEMRLX3C8ZtbB2DBJQ0DHjKy9N24Io4V6VNppc_W6LobwNapsxTTUr-mExNbR6rGOYQPryvcv_UYweHp89p8D-ngyY1gj7DZ85eTnOC23cYzkXwDCzNq6 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V5QAcEBQQCy1EAg4gQhN_JTlUFS0su7S7p1bqzfgrXFCydFsh_lR_Y2ecZGmlqrferMiKovHzzBvH8wbgnbc1VTiylBtlU-GzLDWmVKl0XslgbJCWaodnczU5Fj9O5MkaXAy1MHStcvCJ0VH71tEZ-TYrMVRSVWW-u_iTUtco-rs6tNDoYHEQ_v3FlG25M_2K6_uesfG3o_1J2ncVSJ1AgKaqyOu8NNJhPmZKKgw1zleeZR65gOPG5KEIOVc8l3VRKFlXtcid5byogqsNdYlAl39PcIzkVJk-_r460yE5MOQLKxVUto0oYZ9zovXX4l5sD3CN015lxjG0jR_Do56TJl86ED2BtdBswMMrSoVPYXcWO00vPyXxQhcJjuPYND5pF8Tgz5uozJq0dYIUuEN10ouykhD0Mzi-Eys9h_WmbcILSJwIGZIwLgrK3gK3svCV80w5ksUNZgQfBsto1wuTU3-M37qTVGaarKijFUfwdjV30clx3Dhrjwy8mkES2vFBe_pL9ztSI49RLJQhk_RT26BrEyXH9FHYsgrB-hFsDsuj-3291P9ROIKPcclu-Qw9nY9ZHL28_V1v4P7kaHaoD6fzg1fwgDrad3cMN2H97PQ8bCHvObOvI9gS-HnX6L4Egv8Shw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7KFUQfim0Vr9Y2YH1QjJfsZjfJg5T-OnrWHkUs9G3dX_FFkrPXIv5r_nXObJJrC6VvfVvCEsLst7PfbGa-AdhxpqIKRxZzLU2cuSSJtS5kLKyTwmvjhaHa4dOpPD7PvlyIiyX419fCUFpl7xODo3aNpTvyESvwqKSqynRUdWkRZ4fj3dnvmDpI0Z_Wvp1GC5ET__cPhm_zz5NDXOt3jI2Pvh8cx12HgdhmCNZY5mmVFlpYjM10QUWi2rrSscQhL7Bc69TnPuWSp6LKcymqsspSazjPS28rTR0j0P0v5xQVDWB5_2h69m1xw0PiYMgeFpqobISYYZ9SIvl3TsHQLOAOw73Nk8NBN34OKx1DjfZaSK3Ckq_X4Nkt3cJ12D0NfafnH6OQ3kXy4zjWtYuaGfH56zrotEZNFSEhbjEedRKtJAv9As4fxU4vYVA3tX8Fkc18gpSMZznFcp4bkbvSOiYtieR6PYT3vWWU7WTKqVvGL9UKLDNFVlTBikN4u5g7a8U57p21TwZezCBB7fCgufypuv2pkNVI5gufCPrFrdHRZQXHYDIzRem9cUPY7JdHdbt8rm4wOYQPYcke-Aw1mY5ZGG08_K5teILIVl8n05PX8JTa27cJh5swuLq89m-QBF2ZrQ5tEfx4bID_B_HgGBk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods%2C+progresses%2C+and+opportunities+of+materials+informatics&rft.jtitle=InfoMat&rft.au=Li%2C+Chen&rft.au=Zheng%2C+Kun&rft.date=2023-08-01&rft.issn=2567-3165&rft.eissn=2567-3165&rft.volume=5&rft.issue=8&rft_id=info:doi/10.1002%2Finf2.12425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_inf2_12425 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon |