Trading on the arbuscular mycorrhiza market from arbuscules to common mycorrhizal networks

Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the c...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 223; no. 3; pp. 1127 - 1142
Main Authors Wipf, Daniel, Krajinski, Franziska, van Tuinen, Diederik, Recorbet, Ghislaine, Courty, Pierre-Emmanuel
Format Journal Article
LanguageEnglish
Published England Wiley 01.08.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.
AbstractList Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.
Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.
Summary Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.
Arbuscular mycorrhizal symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most of land plants. The exchange of nutrients between host plants and arbuscular mycorrhizal fungi is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during arbuscular mycorrhizal symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed by arbuscular mycorrhizal fungi, which inter-connect plants from similar and/or different species. Then the best way to integrate this knowledge and the ensuing potential benefits of arbuscular mycorrhiza in a sustainable agriculture is discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Author Wipf, Daniel
Courty, Pierre-Emmanuel
Recorbet, Ghislaine
Krajinski, Franziska
van Tuinen, Diederik
Author_xml – sequence: 1
  givenname: Daniel
  surname: Wipf
  fullname: Wipf, Daniel
– sequence: 2
  givenname: Franziska
  surname: Krajinski
  fullname: Krajinski, Franziska
– sequence: 3
  givenname: Diederik
  surname: van Tuinen
  fullname: van Tuinen, Diederik
– sequence: 4
  givenname: Ghislaine
  surname: Recorbet
  fullname: Recorbet, Ghislaine
– sequence: 5
  givenname: Pierre-Emmanuel
  surname: Courty
  fullname: Courty, Pierre-Emmanuel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30843207$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02627273$$DView record in HAL
BookMark eNqFkV1rFDEUhoO02G31wh-gDHjTItMmOfmay1KqKyzqRQXvQibJullnJ2syo6y_3rT7URDFcxM4PO97cs57io762HuEXhB8SUpd9evFJeFS8idoQphoakVAHqEJxlTVgokvJ-g05yXGuOGCPkUngBUDiuUEvblLxoX-axX7alj4yqR2zHbsTKpWGxtTWoRfplqZ9M0Pz9Dx3HTZP9-9Z-jz29u7m2k9-_ju_c31rLaMUV5zYQh3WIGlmFEqWse8k8LxRnJorQNlWtoqZkDZFvAcHBgDrDTd3AiQcIYutr4L0-l1CmX6RkcT9PR6pu97mAoqqYQfpLDnW3ad4vfR50GvQra-60zv45g1BczLabho_o8SpRrFCeCCvv4DXcYx9WVpTWlxAyIbXqhXO2psV94dvrq_bgGutoBNMefk59qGwQwh9kMyodME6_v8dMlPP-T3uPpBsTf9G7tz_xk6v_k3qD98mu4VL7eKZR5iOiiokLxhgsJvc9SvaA
CitedBy_id crossref_primary_10_1038_s41598_025_88416_3
crossref_primary_10_1016_j_scitotenv_2023_168430
crossref_primary_10_1016_j_jplph_2021_153591
crossref_primary_10_51372_bioagro341_7
crossref_primary_10_1111_tpj_15434
crossref_primary_10_1128_msystems_01216_21
crossref_primary_10_3389_fmicb_2020_591697
crossref_primary_10_1038_s41598_025_90595_y
crossref_primary_10_1146_annurev_arplant_102820_124504
crossref_primary_10_1016_j_scienta_2022_111591
crossref_primary_10_3390_agriculture14030358
crossref_primary_10_3390_microorganisms11020334
crossref_primary_10_1016_j_apsoil_2021_104308
crossref_primary_10_1016_j_tplants_2019_12_024
crossref_primary_10_1111_pce_14426
crossref_primary_10_1016_j_jhazmat_2024_133579
crossref_primary_10_7717_peerj_8991
crossref_primary_10_3390_plants11233237
crossref_primary_10_1016_j_fcr_2025_109762
crossref_primary_10_3389_fmicb_2022_953097
crossref_primary_10_1038_s41598_022_25834_7
crossref_primary_10_1007_s00572_023_01117_5
crossref_primary_10_1111_oik_09213
crossref_primary_10_1111_nph_19873
crossref_primary_10_3389_fpls_2021_721614
crossref_primary_10_1111_nph_16367
crossref_primary_10_1007_s00442_023_05362_5
crossref_primary_10_1007_s11104_024_06925_y
crossref_primary_10_1371_journal_pone_0293906
crossref_primary_10_1021_acsnano_4c04145
crossref_primary_10_1007_s11104_019_04340_2
crossref_primary_10_1002_etc_5400
crossref_primary_10_3390_ijms231911027
crossref_primary_10_1088_1755_1315_1075_1_012005
crossref_primary_10_1016_j_jhazmat_2024_134777
crossref_primary_10_1016_j_plaphy_2024_108808
crossref_primary_10_3389_fpls_2022_1080416
crossref_primary_10_1111_1365_2745_14420
crossref_primary_10_1007_s00572_025_01181_z
crossref_primary_10_1016_j_jplph_2022_153646
crossref_primary_10_1007_s12355_024_01414_z
crossref_primary_10_1111_ppl_13845
crossref_primary_10_1007_s00572_021_01051_4
crossref_primary_10_3389_fpls_2021_696450
crossref_primary_10_1111_1365_2435_14514
crossref_primary_10_1007_s13199_021_00756_6
crossref_primary_10_1134_S1062359022060140
crossref_primary_10_1002_ppp3_10178
crossref_primary_10_1016_j_apsoil_2024_105344
crossref_primary_10_1016_j_cub_2023_05_033
crossref_primary_10_1093_lambio_ovaf009
crossref_primary_10_1094_MPMI_34_10
crossref_primary_10_1016_j_stress_2024_100656
crossref_primary_10_1038_s41579_024_01073_7
crossref_primary_10_1111_ppl_13857
crossref_primary_10_1016_j_ecoenv_2021_112252
crossref_primary_10_3390_ijms232012585
crossref_primary_10_1007_s00572_024_01150_y
crossref_primary_10_15446_caldasia_v46n1_98555
crossref_primary_10_3389_fpls_2022_1064058
crossref_primary_10_1029_2020WR027721
crossref_primary_10_1093_treephys_tpab132
crossref_primary_10_1016_j_scitotenv_2023_163632
crossref_primary_10_3389_fmicb_2024_1432637
crossref_primary_10_3389_fpls_2022_855090
crossref_primary_10_1016_j_scienta_2022_111219
crossref_primary_10_1080_13416979_2022_2043516
crossref_primary_10_1007_s11356_022_23919_4
crossref_primary_10_1186_s40538_023_00526_0
crossref_primary_10_1007_s12355_023_01303_x
crossref_primary_10_1016_j_micres_2025_128081
crossref_primary_10_3389_ffunb_2021_735299
crossref_primary_10_1016_j_apsoil_2023_105206
crossref_primary_10_1007_s11104_019_04181_z
crossref_primary_10_1016_j_pedobi_2024_151006
crossref_primary_10_15407_agrisp10_01_054
crossref_primary_10_1146_annurev_phyto_121423_042014
crossref_primary_10_1111_1365_2745_14357
crossref_primary_10_1186_s12870_024_05359_z
crossref_primary_10_1007_s00572_025_01197_5
crossref_primary_10_1016_j_apsoil_2019_08_006
crossref_primary_10_1007_s11738_021_03321_2
crossref_primary_10_1007_s12298_023_01369_7
crossref_primary_10_1186_s12866_024_03453_8
crossref_primary_10_1016_j_tplants_2019_06_004
crossref_primary_10_1093_aob_mcae212
crossref_primary_10_3390_agronomy14102342
crossref_primary_10_1016_j_tplants_2022_08_014
crossref_primary_10_1016_j_baae_2023_11_004
crossref_primary_10_1007_s00572_023_01119_3
crossref_primary_10_1016_j_tplants_2019_06_008
crossref_primary_10_1016_j_envexpbot_2022_104897
crossref_primary_10_1111_1462_2920_15542
crossref_primary_10_3389_fpls_2022_898286
crossref_primary_10_3389_fpls_2021_804861
crossref_primary_10_1007_s11104_024_06927_w
crossref_primary_10_1080_01490451_2024_2331111
crossref_primary_10_1016_j_microb_2025_100260
crossref_primary_10_1016_j_cell_2021_09_030
crossref_primary_10_1016_j_apsoil_2023_104908
crossref_primary_10_1007_s00572_025_01186_8
crossref_primary_10_1111_ppl_14572
crossref_primary_10_1111_ppl_70149
crossref_primary_10_1016_j_apsoil_2024_105387
crossref_primary_10_1007_s13199_023_00904_0
crossref_primary_10_1038_s41586_023_05791_5
crossref_primary_10_3390_plants9111468
crossref_primary_10_15302_J_FASE_2020347
crossref_primary_10_3390_agronomy11102019
crossref_primary_10_1021_acsomega_3c02489
crossref_primary_10_3389_fsufs_2025_1504761
crossref_primary_10_3389_fevo_2023_1152213
crossref_primary_10_1007_s11104_024_07043_5
crossref_primary_10_3390_su132313081
crossref_primary_10_1093_hr_uhae195
crossref_primary_10_1111_plb_13613
crossref_primary_10_1016_j_soilbio_2023_109243
crossref_primary_10_1094_MPMI_35_3
crossref_primary_10_1016_j_envexpbot_2023_105584
crossref_primary_10_1016_j_apsoil_2021_104089
crossref_primary_10_3389_fpls_2023_1129738
crossref_primary_10_1111_gcb_70057
crossref_primary_10_1007_s00425_023_04214_z
crossref_primary_10_1111_1365_2435_14723
crossref_primary_10_1016_j_ecoenv_2022_113390
crossref_primary_10_1007_s00572_022_01070_9
crossref_primary_10_1007_s42729_023_01229_z
crossref_primary_10_1016_j_scienta_2022_111426
crossref_primary_10_3389_fmicb_2024_1183024
crossref_primary_10_1002_fes3_369
crossref_primary_10_1007_s11104_022_05375_8
crossref_primary_10_3390_plants9091105
crossref_primary_10_1111_jam_14609
crossref_primary_10_3389_fpls_2019_01617
crossref_primary_10_1038_s41438_021_00671_3
crossref_primary_10_1007_s11104_024_06624_8
crossref_primary_10_1007_s13199_023_00905_z
crossref_primary_10_1007_s11104_023_06458_w
crossref_primary_10_3389_fmicb_2022_1024128
crossref_primary_10_3389_fmicb_2022_991781
crossref_primary_10_3390_agriculture12010001
crossref_primary_10_3389_fpls_2022_1044896
crossref_primary_10_3390_ijms241612628
crossref_primary_10_1016_j_apsoil_2022_104793
crossref_primary_10_3389_fpls_2023_1140267
crossref_primary_10_1080_17429145_2024_2323991
crossref_primary_10_1111_nph_70051
crossref_primary_10_1016_j_envpol_2023_122990
crossref_primary_10_1016_j_jhazmat_2020_123919
crossref_primary_10_1111_ppl_13318
crossref_primary_10_3390_jof8060631
crossref_primary_10_1080_17429145_2022_2086307
crossref_primary_10_1093_plphys_kiae645
crossref_primary_10_1111_1365_2745_14393
crossref_primary_10_1111_ppl_14521
crossref_primary_10_3389_fpls_2023_1321885
crossref_primary_10_1007_s13199_023_00954_4
crossref_primary_10_1111_1365_2435_14349
crossref_primary_10_3390_plants13091231
crossref_primary_10_1111_nph_17973
crossref_primary_10_3389_fevo_2023_1224540
crossref_primary_10_1016_j_cub_2024_09_019
crossref_primary_10_3389_fpls_2022_1015947
crossref_primary_10_3390_su15076082
crossref_primary_10_1007_s00572_020_00987_3
crossref_primary_10_1002_saj2_20679
crossref_primary_10_1016_j_ecoenv_2023_114849
crossref_primary_10_3390_agronomy9120840
crossref_primary_10_1016_j_funeco_2021_101070
crossref_primary_10_1186_s43008_024_00165_6
crossref_primary_10_1016_j_apsoil_2021_104034
crossref_primary_10_1016_j_jhazmat_2021_127430
crossref_primary_10_1007_s42729_023_01262_y
crossref_primary_10_1016_j_plaphy_2024_108648
crossref_primary_10_1016_j_foreco_2024_122470
crossref_primary_10_1007_s00572_024_01166_4
crossref_primary_10_1111_nph_17979
crossref_primary_10_1016_j_scienta_2021_110808
crossref_primary_10_1016_j_pld_2021_06_005
crossref_primary_10_1002_ppp3_10212
crossref_primary_10_1111_nph_18499
crossref_primary_10_1371_journal_pone_0224938
crossref_primary_10_1007_s11627_023_10345_5
crossref_primary_10_1007_s00203_020_01915_x
crossref_primary_10_1111_nph_16190
crossref_primary_10_1016_j_apsoil_2024_105507
crossref_primary_10_3390_agronomy14112699
crossref_primary_10_3390_plants13121678
crossref_primary_10_1111_sum_13130
crossref_primary_10_3389_fmicb_2024_1289022
crossref_primary_10_1111_nph_18933
crossref_primary_10_1016_j_ncrops_2023_11_002
crossref_primary_10_1016_j_apsoil_2021_104060
crossref_primary_10_1016_j_scienta_2024_113722
crossref_primary_10_1007_s00374_025_01891_8
crossref_primary_10_1016_j_envexpbot_2020_104096
crossref_primary_10_1111_nph_19338
crossref_primary_10_1093_pcp_pcac113
crossref_primary_10_1038_s41396_020_00786_w
crossref_primary_10_1007_s00374_022_01636_x
crossref_primary_10_1038_s41598_020_72985_6
crossref_primary_10_3389_fpls_2022_1094194
crossref_primary_10_1007_s00374_024_01849_2
crossref_primary_10_1007_s42729_022_00900_1
crossref_primary_10_1094_MPMI_04_21_0097_R
crossref_primary_10_1038_s41586_025_08614_x
crossref_primary_10_1002_ppp3_10213
crossref_primary_10_1007_s00425_024_04492_1
crossref_primary_10_1007_s00572_021_01033_6
crossref_primary_10_1002_ppp3_10151
crossref_primary_10_1016_j_plaphy_2025_109488
crossref_primary_10_1111_nph_17424
crossref_primary_10_1016_j_scitotenv_2023_168994
crossref_primary_10_3390_jof9040479
crossref_primary_10_3390_foods11223612
crossref_primary_10_31594_commagene_1449187
crossref_primary_10_1371_journal_pone_0286285
crossref_primary_10_1007_s00572_020_00967_7
crossref_primary_10_3390_jof7090719
crossref_primary_10_1007_s00572_025_01193_9
crossref_primary_10_1002_ecm_1634
crossref_primary_10_1111_gcb_17034
crossref_primary_10_7717_peerj_17849
crossref_primary_10_3390_jof10010011
crossref_primary_10_1016_j_bcab_2021_102256
crossref_primary_10_3390_microorganisms10010075
crossref_primary_10_1007_s00572_020_00981_9
crossref_primary_10_3389_fpls_2022_989155
crossref_primary_10_3389_fpls_2023_1169310
crossref_primary_10_1016_j_rhisph_2020_100230
crossref_primary_10_1038_s41396_021_01112_8
crossref_primary_10_1016_j_funeco_2022_101211
crossref_primary_10_1007_s00572_021_01053_2
crossref_primary_10_3390_land12061209
crossref_primary_10_3390_f13030421
crossref_primary_10_3390_ijerph19095029
crossref_primary_10_3390_microorganisms13030661
crossref_primary_10_3390_su141610220
crossref_primary_10_1093_pcp_pcad077
crossref_primary_10_1093_jxb_erae210
crossref_primary_10_1093_jpe_rtac081
crossref_primary_10_3390_plants11212875
crossref_primary_10_1016_j_apsoil_2021_104127
crossref_primary_10_1016_j_biocontrol_2025_105729
crossref_primary_10_1038_s41598_021_92837_1
crossref_primary_10_3390_microorganisms12071281
crossref_primary_10_1111_nph_18858
crossref_primary_10_1094_MPMI_04_21_0084_R
crossref_primary_10_1007_s13593_020_00647_y
crossref_primary_10_1007_s00572_024_01152_w
crossref_primary_10_1111_nph_18289
crossref_primary_10_1016_j_hpj_2023_04_006
crossref_primary_10_3389_fpls_2024_1464547
crossref_primary_10_3390_f16010024
crossref_primary_10_3389_fpls_2022_853435
crossref_primary_10_1007_s11104_023_06426_4
crossref_primary_10_1016_j_envpol_2023_121597
crossref_primary_10_3390_plants9091067
crossref_primary_10_1038_s41467_022_30218_6
crossref_primary_10_1002_imo2_46
crossref_primary_10_1016_j_apsoil_2020_103782
crossref_primary_10_1080_03650340_2021_1928088
crossref_primary_10_3389_fpls_2022_900231
crossref_primary_10_1038_s41467_024_45026_3
crossref_primary_10_3390_plants13060826
crossref_primary_10_1007_s00572_021_01039_0
crossref_primary_10_1093_aob_mcad095
crossref_primary_10_3390_ijms242316774
crossref_primary_10_3389_fpls_2024_1385245
crossref_primary_10_1007_s00572_021_01031_8
crossref_primary_10_1111_1365_2435_14689
Cites_doi 10.1016/j.tplants.2006.04.005
10.1074/mcp.M600044-MCP200
10.1111/j.1365-2672.2009.04414.x
10.1073/pnas.0608136104
10.3389/fpls.2017.00817
10.1093/jxb/eri163
10.2136/sssaj1999.6351055x
10.1016/j.pbi.2007.05.004
10.1111/j.1365-313X.2010.04385.x
10.7554/eLife.25114
10.1105/tpc.004861
10.1111/nph.14533
10.1111/j.1469-8137.1994.tb04004.x
10.1016/j.tplants.2013.05.001
10.1016/j.fgb.2011.08.003
10.1073/pnas.202474599
10.1104/pp.104.056572
10.1074/jbc.M403938200
10.1038/nature22009
10.1126/science.aam9970
10.1111/j.1469-8137.2011.03948.x
10.1042/bj20031672
10.1046/j.0028-646x.2001.00200.x
10.1007/s00425-002-0921-3
10.1017/S0021859618000126
10.1016/j.devcel.2010.05.008
10.1093/pcp/pcq099
10.1007/s10725-008-9266-7
10.1016/j.fgb.2005.10.005
10.1111/j.1469-8137.2008.02574.x
10.1016/j.phytochem.2006.09.033
10.1093/pcp/pcx044
10.1111/pce.13471
10.1016/j.soilbio.2017.05.018
10.1111/j.1365-313X.2011.04810.x
10.1016/j.tplants.2012.06.007
10.1080/09583150120076120
10.1111/nph.14465
10.1093/gbe/evr089
10.1104/pp.124.3.949
10.1094/MPMI.2001.14.2.255
10.1046/j.1469-8137.1997.00646.x
10.1105/tpc.114.131144
10.1038/ismej.2011.110
10.1038/35106601
10.1111/j.1462-2920.2009.02099.x
10.1104/pp.109.149823
10.3389/fpls.2015.00786
10.1007/s00572-017-0802-z
10.1007/s00572-010-0333-3
10.1126/science.1208473
10.1104/pp.120.2.587
10.1016/j.funeco.2009.07.003
10.1016/j.tplants.2013.08.008
10.1016/j.tree.2006.07.003
10.1007/s00425-013-1842-z
10.3852/16-042
10.2307/2261676
10.1104/pp.104.053041
10.1080/15592324.2015.1131372
10.1094/MPMI-20-9-1055
10.1093/jxb/erh147
10.1038/nplants.2015.159
10.1371/journal.pone.0090841
10.1016/j.still.2012.01.012
10.1007/s004250000323
10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2
10.1074/mcp.M900090-MCP200
10.1016/S0014-5793(02)03271-4
10.1111/j.1365-313X.2011.04746.x
10.1093/mp/sss079
10.1007/978-3-0348-8117-3_3
10.1128/AEM.69.1.616-624.2003
10.1007/s00572-013-0496-9
10.1016/j.febslet.2010.09.033
10.1016/j.tplants.2016.01.003
10.1111/j.1461-0248.2009.01430.x
10.1111/j.1469-8137.2005.01536.x
10.1111/j.1469-8137.2006.01935.x
10.1111/j.1399-3054.2004.00414.x
10.1016/j.pbi.2017.05.008
10.1051/agro:19921021
10.1111/j.1469-8137.1990.tb00393.x
10.1007/s00572-018-0853-9
10.1016/0167-8809(90)90276-J
10.1007/s00374-014-0989-5
10.1111/j.1471-4159.2010.06661.x
10.1016/j.tplants.2016.07.010
10.1016/j.phytochem.2016.01.002
10.1093/jxb/erm096
10.1038/nplants.2015.208
10.1016/S0007-1536(68)80015-4
10.1016/S1874-5334(02)80014-4
10.1104/pp.108.117820
10.1007/s00572-015-0671-2
10.1105/tpc.111.089813
10.1055/s-2002-37407
10.1371/journal.pone.0072126
10.1128/AEM.71.9.5341-5347.2005
10.7554/eLife.29107
10.1371/journal.pone.0195345
10.1080/713608315
10.1007/s11738-002-0031-7
10.1146/annurev.arplant.55.031903.141758
10.1371/journal.pone.0013324
10.1046/j.1469-8137.1997.00729.x
10.1016/j.tplants.2012.03.009
10.1046/j.1365-313X.1996.09040491.x
10.1111/nph.12199
10.1016/j.tplants.2017.05.008
10.1073/pnas.1200407109
10.3390/agronomy5040587
10.1016/S0304-4238(02)00210-8
10.1128/AEM.71.11.6673-6679.2005
10.1111/j.1469-8137.2008.02623.x
10.1016/S0167-1987(02)00158-7
10.1046/j.0028-646x.2001.00216.x
10.3389/fpls.2014.00436
10.1038/nature03610
10.1016/j.jplph.2011.01.026
10.1139/m95-015
10.1104/pp.109.136390
10.1016/S0007-1536(87)80018-9
10.3389/fpls.2018.01611
10.1126/science.289.5486.1920
10.1111/nph.13292
10.1104/pp.108.1.7
10.1093/pcp/pcn202
10.2307/3566048
10.1016/j.molp.2017.07.012
10.1093/pcp/pcy094
10.1111/j.1461-0248.2004.00577.x
10.1111/pce.12659
10.1007/s00572-006-0094-1
10.1016/j.pbi.2017.08.008
10.1111/j.1469-8137.2005.01374.x
10.1038/286885a0
10.1371/journal.ppat.1002600
10.1007/s00572-015-0644-5
10.1016/j.tplants.2013.06.004
10.1111/nph.12125
10.1046/j.1469-8137.1997.00810.x
10.1038/nature05364
10.1111/j.1469-8137.1985.tb03672.x
10.1016/j.soilbio.2010.09.011
10.1074/jbc.M403440200
10.1111/nph.12188
10.1126/science.aan0081
10.5962/bhl.title.41248
10.1046/j.1469-8137.2000.00615.x
10.1105/tpc.113.120527
10.1093/jxb/eru283
10.1111/j.1469-8137.2004.01145.x
10.1111/nph.12351
10.1073/pnas.1721868115
10.1104/pp.106.094102
10.1046/j.1469-8137.1997.00757.x
10.1073/pnas.1118650109
10.1186/1471-2229-9-10
10.1105/tpc.113.120436
10.1093/jxb/ers126
10.1111/j.1469-8137.2008.02726.x
10.1104/pp.112.195727
10.1111/j.1469-8137.2005.01532.x
10.1890/05-0755
10.1111/j.1469-8137.2004.01236.x
10.1007/s11104-012-1583-y
10.1111/ele.12115
10.1007/s00572-017-0786-8
10.1111/j.1365-313X.2005.02364.x
10.1111/nph.13172
10.1093/jexbot/53.370.825
10.1111/j.1365-2745.2009.01570.x
10.1111/j.1469-8137.2004.01169.x
10.3389/fpls.2018.00897
10.1016/j.soilbio.2015.03.003
10.1104/pp.010466
10.1111/j.1365-313X.2005.02384.x
10.1016/j.plaphy.2016.06.023
10.1111/nph.12445
10.1111/j.1461-0248.2007.01113.x
10.1002/jsfa.3998
10.1073/pnas.1501676112
10.1007/s11104-011-1047-9
10.3389/fpls.2016.00679
10.1007/s00572-015-0631-x
10.1242/jcs.01681
10.1080/07352689.2014.897897
10.1038/ismej.2015.91
ContentType Journal Article
Copyright 2019 The Authors © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Copyright © 2019 New Phytologist Trust
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 The Authors © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
– notice: Copyright © 2019 New Phytologist Trust
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
DOI 10.1111/nph.15775
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
MEDLINE


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Agriculture
Environmental Sciences
EISSN 1469-8137
EndPage 1142
ExternalDocumentID oai_HAL_hal_02627273v1
30843207
10_1111_nph_15775
NPH15775
26759462
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Institut National de la Recherche Agronomique
– fundername: Plan national Dépérissement du vignoble
– fundername: H2020 ERA‐net project
– fundername: The Burgundy Franche Comté Regional Council
– fundername: CORE Organic Cofund
– fundername: Germaine de Stael Program
  funderid: TRANSBIO 26510SG
– fundername: European Commission
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
UMC
ID FETCH-LOGICAL-c4425-56a15d083c204226bd4ed76d59753bcd38ab2b84a38cb30f3d3aa34ab2dfa6373
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri May 09 12:16:52 EDT 2025
Fri Jul 11 18:26:28 EDT 2025
Thu Jul 10 19:30:36 EDT 2025
Fri Jul 25 10:25:36 EDT 2025
Wed Feb 19 02:31:00 EST 2025
Thu Apr 24 23:07:04 EDT 2025
Tue Jul 01 03:09:30 EDT 2025
Wed Jan 22 16:41:01 EST 2025
Thu Jul 03 22:07:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords membrane lipids
common mycorrhizal networks
transporters
carbon supply
arbuscular mycorrhizal symbiosis
plant-plant interactions
mineral nutrition
Language English
License 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4425-56a15d083c204226bd4ed76d59753bcd38ab2b84a38cb30f3d3aa34ab2dfa6373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2789-7818
0000-0001-7197-5612
0000-0003-4668-4201
0000-0002-1723-3164
PMID 30843207
PQID 2257531795
PQPubID 2026848
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_02627273v1
proquest_miscellaneous_2305157569
proquest_miscellaneous_2188985130
proquest_journals_2257531795
pubmed_primary_30843207
crossref_citationtrail_10_1111_nph_15775
crossref_primary_10_1111_nph_15775
wiley_primary_10_1111_nph_15775_NPH15775
jstor_primary_26759462
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2019
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2010; 12
2007; 104
2002; 14
2004; 164
1973; 224
2012; 121
2010; 13
2010; 108
2010; 18
2004; 7
2002; 99
2010; 584
2014; 26
2012; 17
2013; 363
2013; 8
2016; 39
2018; 42
2017b; 10
2018; 9
2010; 20
2009; 97
2000; 124
2007; 173
2006; 21
2013; 237
2015; 86
2010; 113
2011; 68
2014; 19
2013; 198
2005; 71
2010; 3
1985; 99
1968; 51
2010; 5
2007; 68
2001; 414
2006; 444
2007; 17
2018; 28
1990; 37
2015; 51
2009; 181
2005; 118
2016; 10
2002; 2
2002; 4
1995
2008; 55
2001; 28
2007; 10
2011; 3
2012; 109
2016; 11
1995; 41
2004; 55
2016; 7
2010; 42
2001; 151
2016; 2
2004; 279
1990; 114
2012; 354
2017; 58
2006; 43
1990; 29
2015; 112
2018; 115
2012; 193
2002; 128
2016; 21
2002; 528
2016; 26
2017; 543
2010; 51
2003; 22
2018; 13
2017; 40
2017; 6
2015; 34
2004; 122
2017a; 8
2002; 53
2016; 108
2016; 107
2013; 23
2005; 137
2007; 144
2013; 200
1999; 120
2009; 150
2008; 147
2000; 211
2017; 112
2017; 356
1992; 12
2003; 98
2014; 65
2013; 18
1987; 88
2011; 168
2010; 64
2014; 5
2004; 378
2013; 16
2000; 289
2000
2009; 50
2017; 39
1986; 47
2010; 152
2011; 23
2007; 20
2001; 11
2012; 69
2014; 9
2003; 84
1966; 21
2001; 14
1996; 9
2012; 63
2014; 201
1997; 135
1997; 136
2015; 1
1997; 137
2011; 333
2015; 6
2015; 5
2017; 28
2010
2006; 11
1993; 81
2017; 27
2015; 169
2017; 22
2005; 435
1999; 69
2002; 216
2016; 123
2008
2005; 42
2006; 5
1999; 63
2002
2015; 205
2003; 71
2015; 7
2017; 214
2007; 58
2008; 180
2015; 27
1994; 128
2012a; 17
2005; 165
2000; 146
2005; 166
2006; 87
2005; 168
2018; 156
2002; 24
1995; 108
2003; 69
1843
2009; 9
2009; 8
2011; 48
2012; 6
2012; 159
2010; 90
1980; 286
2012b; 5
2018; 59
2005; 56
2012; 8
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
Schüßler A (e_1_2_7_162_1) 2010
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
Mayr E (e_1_2_7_124_1) 2000
Smith SE (e_1_2_7_168_1) 2001; 28
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_177_1
Simon‐Plas F (e_1_2_7_167_1) 2010
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
Smith SE (e_1_2_7_170_1) 2008
e_1_2_7_67_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_166_1
Ho I (e_1_2_7_79_1) 1973; 224
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
Lanowska J (e_1_2_7_109_1) 1966; 21
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_118_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_194_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_157_1
Marschner H (e_1_2_7_123_1) 1995
e_1_2_7_108_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_146_1
e_1_2_7_169_1
Park HJ (e_1_2_7_143_1) 2015; 169
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_48_1
e_1_2_7_147_1
e_1_2_7_113_1
Hegde DM (e_1_2_7_75_1) 1999; 69
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_197_1
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_186_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_198_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_164_1
e_1_2_7_187_1
Morton JB (e_1_2_7_132_1) 1990; 37
e_1_2_7_149_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_138_1
References_xml – volume: 6
  start-page: 786
  year: 2015
  article-title: Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus
  publication-title: Frontiers in Plant Science
– volume: 7
  start-page: 679
  year: 2016
  article-title: GintAMT3 – a low‐affinity ammonium transporter of the arbuscular mycorrhizal
  publication-title: Frontiers in Plant Science
– volume: 356
  start-page: 1175
  year: 2017
  end-page: 1178
  article-title: Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant
  publication-title: Science
– volume: 146
  start-page: 155
  year: 2000
  end-page: 161
  article-title: Transport of N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 71
  start-page: 6673
  year: 2005
  end-page: 6679
  article-title: Bacteria associated with spores of the arbuscular mycorrhizal fungi and
  publication-title: Applied and Environmental Microbiology
– volume: 414
  start-page: 462
  year: 2001
  end-page: 470
  article-title: A phosphate transporter expressed in arbuscule‐containing cells in potato
  publication-title: Nature
– volume: 12
  start-page: 2165
  year: 2010
  end-page: 2179
  article-title: Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land‐use gradient using a pyrosequencing approach
  publication-title: Environmental Microbiology
– volume: 51
  start-page: 379
  year: 2015
  end-page: 389
  article-title: Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates
  publication-title: Biology and Fertility of Soils
– volume: 71
  start-page: 15
  year: 2003
  end-page: 23
  article-title: Soil microbial properties under permanent grass, conventional tillage, and no‐till management in South Dakota
  publication-title: Soil and Tillage Research
– volume: 122
  start-page: 397
  year: 2004
  end-page: 403
  article-title: Receptor kinases with leucine‐rich repeats are enriched in Triton X‐100 insoluble plasma membrane microdomains from plants
  publication-title: Physiologia Plantarum
– volume: 144
  start-page: 402
  year: 2007
  end-page: 418
  article-title: Characterization of lipid rafts from root plasma membranes: a proteomic study reveals the presence of a raft associated redox system
  publication-title: Plant Physiology
– volume: 200
  start-page: 229
  year: 2013
  end-page: 240
  article-title: Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants
  publication-title: New Phytologist
– volume: 50
  start-page: 341
  year: 2009
  end-page: 359
  article-title: Alterations in detergent‐resistant plasma membrane microdomains in during cold acclimatation
  publication-title: Plant & Cell Physiology
– volume: 124
  start-page: 949
  year: 2000
  end-page: 958
  article-title: Carbon metabolism and transport in arbuscular mycorrhizas
  publication-title: Plant Physiology
– volume: 356
  start-page: 1172
  year: 2017
  end-page: 1175
  article-title: Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi
  publication-title: Science
– volume: 27
  start-page: 695
  year: 2017
  end-page: 708
  article-title: Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses
  publication-title: Mycorrhiza
– volume: 216
  start-page: 23
  year: 2002
  end-page: 37
  article-title: Molecular mechanisms of phosphate transport in plants
  publication-title: Planta
– volume: 135
  start-page: 575
  year: 1997
  end-page: 586
  article-title: Functioning of mycorrhizal associations along the mutualism‐parasitism continuum
  publication-title: New Phytologist
– volume: 6
  start-page: e29107
  year: 2017
  article-title: Lipid transfer from plants to arbuscular mycorrhiza fungi
  publication-title: eLife
– volume: 29
  start-page: 193
  year: 1990
  end-page: 197
  article-title: Influence of inoculation with VA mycorrhizal fungus sp. on growth of strawberries and runner formation
  publication-title: Agriculture, Ecosystems & Environment
– volume: 16
  start-page: 835
  year: 2013
  end-page: 843
  article-title: Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack
  publication-title: Ecology Letters
– volume: 71
  start-page: 5341
  year: 2005
  end-page: 5347
  article-title: Dependence of arbuscular‐mycorrhizal fungi on their plant host for palmitic acid synthesis
  publication-title: Applied and Environmental Microbiology
– volume: 9
  start-page: 491
  year: 1996
  end-page: 503
  article-title: A sugar transporter from : altered expression pattern in roots during vesicular arbuscular (VA) mycorrhizal associations
  publication-title: The Plant Journal
– year: 2008
– volume: 26
  start-page: 1818
  year: 2014
  end-page: 1830
  article-title: A H ‐ATPase that energizes nutrient uptake during mycorrhizal symbioses in rice and
  publication-title: Plant Cell
– volume: 14
  start-page: 2413
  year: 2002
  end-page: 2429
  article-title: A phosphate transporter from involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi
  publication-title: Plant Cell
– volume: 37
  start-page: 471
  year: 1990
  end-page: 491
  article-title: Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae
  publication-title: Mycotaxon
– volume: 363
  start-page: 7
  year: 2013
  end-page: 18
  article-title: How useful is the mutualism‐parasitism continuum of arbuscular mycorrhizal functioning?
  publication-title: Plant and Soil
– volume: 65
  start-page: 5231
  year: 2014
  end-page: 5241
  article-title: Increasing phosphorus supply is not the mechanism by which arbuscular mycorrhiza increase attractiveness of bean ( ) to aphids
  publication-title: Journal of Experimental Botany
– volume: 137
  start-page: 104
  year: 2005
  end-page: 116
  article-title: Analysis of detergent‐resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts
  publication-title: Plant Physiology
– volume: 108
  start-page: 1028
  year: 2016
  end-page: 1046
  article-title: A phylum‐level phylogenetic classification of zygomycete fungi based on genome‐scale data
  publication-title: Mycologia
– volume: 168
  start-page: 687
  year: 2005
  end-page: 696
  article-title: The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis
  publication-title: New Phytologist
– volume: 99
  start-page: 449
  year: 1985
  end-page: 462
  article-title: The nature of growth depressions in sunflower caused by vesicular‐arbuscular mycorrhizal infection
  publication-title: New Phytologist
– volume: 4
  start-page: 754
  year: 2002
  end-page: 761
  article-title: Mtha1, a plasma membrane H ‐ATPase gene from , shows arbuscule‐specific induced expression in mycorrhizal tissue
  publication-title: Plant Biology
– volume: 109
  start-page: 2666
  year: 2012
  end-page: 2671
  article-title: Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis
  publication-title: Proceedings of the National Academy of Science, USA
– volume: 5
  start-page: 1346
  year: 2012b
  end-page: 1358
  article-title: The sucrose transporter family. Characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi
  publication-title: Molecular Plant
– volume: 98
  start-page: 173
  year: 2003
  end-page: 183
  article-title: Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum
  publication-title: Horticultural Science
– volume: 279
  start-page: 36277
  year: 2004
  end-page: 36286
  article-title: Lipid rafts in higher plant cells: purification and characterization of Triton X‐100‐insoluble microdomains from tobacco plasma membrane
  publication-title: Journal of Biological Chemistry
– volume: 10
  start-page: 393
  year: 2007
  end-page: 398
  article-title: Unraveling mycorrhiza‐induced resistance
  publication-title: Current Opinion in Plant Biology
– volume: 166
  start-page: 981
  year: 2005
  end-page: 992
  article-title: Nitrogen supply affects arbuscular mycorrhizal colonization of in a phosphate‐polluted field site
  publication-title: New Phytologist
– volume: 165
  start-page: 261
  year: 2005
  end-page: 271
  article-title: Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenetic groups
  publication-title: New Phytologist
– volume: 42
  start-page: 1087
  year: 2018
  end-page: 1103
  article-title: Physiological and molecular mechanisms of heavy metals accumulation in nonmycorrhizal versus mycorrhizal plants
  publication-title: Plant, Cell & Environment
– volume: 543
  start-page: 328
  year: 2017
  end-page: 336
  article-title: Plant signalling in symbiosis and immunity
  publication-title: Nature
– volume: 168
  start-page: 677
  year: 2005
  end-page: 686
  article-title: The influence of external nitrogen on carbon allocation to in monoxenic arbuscular mycorrhiza
  publication-title: New Phytologist
– volume: 9
  start-page: 987
  year: 2018
  article-title: Arbuscular mycorrhizal symbiosis as a promising resource for improving berry quality in grapevines under changing environments
  publication-title: Frontiers in Plant Science
– volume: 13
  start-page: e0195345
  year: 2018
  article-title: Fungal community profiles in agricultural soils of a long‐term field trial under different tillage, fertilization and crop rotation conditions analyzed by high‐throughput ITS‐amplicon sequencing
  publication-title: PLoS ONE
– volume: 97
  start-page: 1139
  year: 2009
  end-page: 1150
  article-title: Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems
  publication-title: Journal of Ecology
– volume: 18
  start-page: 484
  year: 2013
  end-page: 491
  article-title: A trait‐based framework to understand life history of mycorrhizal fungi
  publication-title: Trends in Plant Science
– volume: 435
  start-page: 819
  year: 2005
  end-page: 823
  article-title: Nitrogen transfer in the arbuscular mycorrhizal symbiosis
  publication-title: Nature
– volume: 51
  start-page: 1411
  year: 2010
  end-page: 1415
  article-title: Localized expression of arbuscular mycorrhiza‐inducible ammonium transporters in soybean
  publication-title: Plant and Cell Physiology
– volume: 26
  start-page: 1808
  year: 2014
  end-page: 1817
  article-title: The H ‐ATPase HA1 of is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis
  publication-title: Plant Cell
– volume: 26
  start-page: 33
  year: 2016
  end-page: 46
  article-title: Arbuscular mycorrhizal fungal communities and populations shift in response to short term ploughing and fertilisation in a buffer strip
  publication-title: Mycorrhiza
– volume: 113
  start-page: 978
  year: 2010
  end-page: 989
  article-title: Increased expression of cholesterol 24S‐hydroxylase results in disruption of glial glutamate transporter EAAT2 association with lipid rafts: a potential role in Alzheimer's disease
  publication-title: Journal of Neurochemistry
– volume: 69
  start-page: 614
  year: 2003
  end-page: 624
  article-title: Genetic diversity of isolates of from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis
  publication-title: Applied and Environmental Microbiology
– volume: 115
  start-page: 5289
  year: 2018
  end-page: 5294
  article-title: ymbiotic root infections in require remorin‐mediated receptor stabilization in membrane nanodomains
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 201
  start-page: 1150
  year: 2014
  end-page: 1155
  article-title: SWEET sugar transporters for phloem transport and pathogen nutrition
  publication-title: New Phytologist
– volume: 112
  start-page: 7791
  year: 2015
  end-page: 7796
  article-title: Minimal genomes of mycoplasma‐related endobacteria are plastic and contain host‐derived genes for sustained life within Glomeromycota
  publication-title: Proceedings of the National Academy of Science, USA
– volume: 10
  start-page: 130
  year: 2016
  end-page: 144
  article-title: Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential
  publication-title: ISME Journal
– volume: 211
  start-page: 609
  year: 2000
  end-page: 613
  article-title: Differential activation of H ‐ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco
  publication-title: Planta
– volume: 22
  start-page: 531
  year: 2003
  end-page: 567
  article-title: Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs)
  publication-title: Critical Reviewers in Plant Science
– year: 1995
– volume: 120
  start-page: 587
  year: 1999
  end-page: 598
  article-title: Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza
  publication-title: Plant Physiology
– volume: 53
  start-page: 825
  year: 2002
  end-page: 833
  article-title: Nitrate transport in plants: which gene and which control?
  publication-title: Journal of Experimental Botany
– volume: 198
  start-page: 853
  year: 2013
  end-page: 865
  article-title: The family of ammonium transporters (AMT) in : two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 8
  start-page: 2186
  year: 2009
  end-page: 2198
  article-title: Quantitative proteomics reveals a dynamic association of proteins to detergent‐resistant membranes upon elicitor signalling in tobacco
  publication-title: Molecular & Cell Proteomics
– volume: 286
  start-page: 885
  year: 1980
  end-page: 886
  article-title: Enhanced plant growth by siderophores produced by plant growth‐promoting rhizobacteria
  publication-title: Nature
– volume: 58
  start-page: 2491
  year: 2007
  end-page: 2501
  article-title: Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza‐enhanced expression
  publication-title: Journal of Experimental Botany
– volume: 237
  start-page: 1267
  year: 2013
  end-page: 1277
  article-title: The expression of GintPT, the phosphate transporter of  , depends on the symbiotic status and phosphate availability
  publication-title: Planta
– volume: 64
  start-page: 1002
  year: 2010
  end-page: 1017
  article-title: Phosphate systemically inhibits development of arbuscular mycorrhiza in and represses genes involved in mycorrhizal functioning
  publication-title: The Plant Journal
– volume: 7
  start-page: 533
  year: 2015
  end-page: 546
  article-title: High functional diversity within arbuscular mycorrhizal fungal species is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism
  publication-title: Mycorrhiza
– volume: 13
  start-page: 394
  year: 2010
  end-page: 407
  article-title: A meta‐analysis of context‐dependency in plant response to inoculation with mycorrhizal fungi
  publication-title: Ecology Letters
– volume: 6
  start-page: e25114
  year: 2017
  article-title: Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains
  publication-title: eLife
– volume: 128
  start-page: 211
  year: 1994
  end-page: 218
  article-title: The effects of mycorrhizal infection on components of plant growth and reproduction
  publication-title: New Phytologist
– volume: 151
  start-page: 725
  year: 2001
  end-page: 734
  article-title: Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil
  publication-title: New Phytologist
– volume: 147
  start-page: 429
  year: 2008
  end-page: 437
  article-title: Characterization of an amino acid permease from the endomycorrhizal fungus
  publication-title: Plant Physiology
– volume: 198
  start-page: 203
  year: 2013
  end-page: 213
  article-title: Common mycorrhizal networks amplify size inequality in populations
  publication-title: New Phytologist
– volume: 34
  start-page: 4
  year: 2015
  end-page: 16
  article-title: Inorganic nitrogen uptake and transport in beneficial plant root‐microbe interactions
  publication-title: Critical Reviews in Plant Sciences
– volume: 88
  start-page: 411
  year: 1987
  end-page: 413
  article-title: Spore germination and viability of a vesicular arbuscular mycorrhizal fungus,
  publication-title: Transactions of the British Mycological Society B
– volume: 23
  start-page: 597
  year: 2013
  end-page: 625
  article-title: Biotrophic transportome in mutualistic plant‐fungal interactions
  publication-title: Mycorrhiza
– volume: 444
  start-page: 933
  year: 2006
  end-page: 936
  article-title: Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi
  publication-title: Nature
– volume: 28
  start-page: 779
  year: 2018
  end-page: 785
  article-title: Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by under drought
  publication-title: Mycorrhiza
– volume: 123
  start-page: 4
  year: 2016
  end-page: 15
  article-title: Arbuscular mycorrhizal fungal responses to abiotic stresses: a review
  publication-title: Phytochemistry
– start-page: 353
  year: 2010
  end-page: 378
– volume: 11
  start-page: 2
  year: 2016
  article-title: Regulation of plants’ phosphate uptake in common mycorrhizal networks: role of intraradical fungal phosphate transporters
  publication-title: Plant Signaling and Behavior
– volume: 68
  start-page: 954
  year: 2011
  end-page: 965
  article-title: mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis
  publication-title: The Plant Journal
– volume: 156
  start-page: 680
  year: 2018
  end-page: 688
  article-title: Improvement of plant performance under water deficit with the employment of biological and chemical priming agents
  publication-title: Journal of Agricultural Science
– volume: 42
  start-page: 236
  year: 2005
  end-page: 250
  article-title: The characterization of novel mycorrhizaspecific phosphate transporters from and uncovers functional redundancy in symbiotic phosphate transport in solanaceous species
  publication-title: The Plant Journal
– volume: 22
  start-page: 652
  year: 2017
  end-page: 660
  article-title: Diet of arbuscular mycorrhizal fungi: bread and butter?
  publication-title: Trends Plant Science
– volume: 168
  start-page: 1256
  year: 2011
  end-page: 1263
  article-title: Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza
  publication-title: Journal of Plant Physiology
– volume: 39
  start-page: 50
  year: 2017
  end-page: 56
  article-title: Plant carbon nourishment of arbuscular mycorrhizal fungi
  publication-title: Current Opinion in Plant Biology
– volume: 107
  start-page: 354
  year: 2016
  end-page: 363
  article-title: Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner
  publication-title: Plant Physiology and Biochemistry
– volume: 205
  start-page: 1632
  year: 2015
  end-page: 1645
  article-title: Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax
  publication-title: New Phytologist
– volume: 86
  start-page: 159
  year: 2015
  end-page: 163
  article-title: The effect of different nitrogen sources on the symbiotic interaction between and : expression of plant and fungal genes involved in nitrogen assimilation
  publication-title: Soil Biology and Biochemistry
– volume: 55
  start-page: 1293
  year: 2004
  end-page: 1305
  article-title: Regulatory levels for the transport of ammonium in plant roots
  publication-title: Journal of Experimental Botany
– volume: 137
  start-page: 1283
  year: 2005
  end-page: 1301
  article-title: Overlaps in the transcriptional profiles of roots inoculated with two different glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza
  publication-title: Plant Physiology
– volume: 137
  start-page: 345
  year: 1997
  end-page: 349
  article-title: Effect of the arbuscular mycorrhizal fungus   on the uptake of amino nitrogen by
  publication-title: New Phytologist
– volume: 43
  start-page: 102
  year: 2006
  end-page: 110
  article-title: GintAMT1 encodes a functional high‐affinity ammonium transporter that is expressed in the extraradical mycelium of
  publication-title: Fungal Genetics and Biology
– volume: 17
  start-page: 75
  year: 2007
  end-page: 91
  article-title: Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas
  publication-title: Mycorrhiza
– volume: 14
  start-page: 255
  year: 2001
  end-page: 260
  article-title: Mucoid mutants of the biocontrol strain CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots
  publication-title: Molecular Plant–Microbe Interactions
– volume: 55
  start-page: 341
  year: 2004
  end-page: 372
  article-title: Transport mechanisms for organic forms of carbon and nitrogen between source and sink
  publication-title: Annual Review of Plant Biology
– volume: 90
  start-page: 1774
  year: 2010
  end-page: 1782
  article-title: Root colonisation by the arbuscular mycorrhizal fungus alters the quality of strawberry fruits ( x Duch.) at different nitrogen levels
  publication-title: Journal of the Science of Food and Agriculture
– volume: 19
  start-page: 5
  year: 2014
  end-page: 9
  article-title: A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants
  publication-title: Trends in Plant Science
– volume: 159
  start-page: 789
  year: 2012
  end-page: 797
  article-title: Mycorrhizal networks: common goods of plants shared under unequal terms of trade
  publication-title: Plant Physiology
– volume: 8
  start-page: e1002600
  year: 2012
  article-title: The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection
  publication-title: PLoS Pathogen
– volume: 40
  start-page: 82
  year: 2017
  end-page: 88
  article-title: Membrane nanodomains and microdomains in plant‐microbe interactions
  publication-title: Current Opinion in Plant Biology
– volume: 42
  start-page: 433
  year: 2005
  end-page: 443
  article-title: An essential function of phosphatidylinositol phosphates in activation of plant shaker‐type K  channels
  publication-title: The Plant Journal
– volume: 354
  start-page: 97
  year: 2012
  end-page: 106
  article-title: Differences in the AMF diversity in soil and roots between two annual and perennial gramineous plants co‐occurring in a Mediterranean, semiarid degraded area
  publication-title: Plant and Soil
– volume: 11
  start-page: 263
  year: 2006
  end-page: 266
  article-title: Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface
  publication-title: Trends in Plant Science
– volume: 136
  start-page: 533
  year: 1997
  end-page: 538
  article-title: Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry
  publication-title: New Phytologist
– volume: 528
  start-page: 119
  year: 2002
  end-page: 124
  article-title: Characterization of a general amino acid permease from
  publication-title: FEBS Letters
– year: 1843
– volume: 121
  start-page: 63
  year: 2012
  end-page: 67
  article-title: Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions
  publication-title: Soil Tillage Research
– volume: 6
  start-page: 136
  year: 2012
  end-page: 145
  article-title: The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions
  publication-title: ISME Journal
– volume: 23
  start-page: 3812
  year: 2011
  end-page: 3823
  article-title: A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus sp is crucial for the symbiotic relationship with plants
  publication-title: Plant Cell
– volume: 99
  start-page: 13324
  year: 2002
  end-page: 13329
  article-title: Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 47
  start-page: 211
  year: 1986
  end-page: 222
  article-title: Size variability and competition in plant monocultures
  publication-title: Oikos
– volume: 279
  start-page: 34388
  year: 2004
  end-page: 34396
  article-title: Association of excitatory amino acid transporters, especially EAAT2 with cholesterol‐rich lipid raft microdomains: importance for excitatory amino acid transporter localization and function
  publication-title: Journal of Biological Chemistry
– volume: 164
  start-page: 175
  year: 2004
  end-page: 181
  article-title: Patterns of below‐ground plant interconnections established by means of arbuscular mycorrhizal networks
  publication-title: New Phytologist
– volume: 63
  start-page: 4033
  year: 2012
  end-page: 4044
  article-title: Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies
  publication-title: Journal of Experimental Botany
– volume: 378
  start-page: 281
  year: 2004
  end-page: 292
  article-title: Lipid rafts: heterogeneity on the high seas
  publication-title: Biochemical Journal
– volume: 181
  start-page: 924
  year: 2009
  end-page: 937
  article-title: Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus
  publication-title: New Phytologist
– volume: 69
  start-page: 510
  year: 2012
  end-page: 528
  article-title: Arbuscule containing and non‐colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development
  publication-title: The Plant Journal
– volume: 118
  start-page: 1099
  year: 2005
  end-page: 1102
  article-title: Lipid rafts and membrane dynamics
  publication-title: Journal of Cell Sciences
– volume: 41
  start-page: 109
  year: 1995
  end-page: 117
  article-title: The enhancement of plant growth by free‐living bacteria
  publication-title: Canadian Journal of Microbiology
– volume: 112
  start-page: 237
  year: 2017
  end-page: 247
  article-title: Management of the biological diversity of AM fungi by combination of host plant succession and integrity of extraradical mycelium
  publication-title: Soil Biology and Biochemistry
– volume: 21
  start-page: 937
  year: 2016
  end-page: 950
  article-title: Take a trip through the plant and fungal transportome of mycorrhiza
  publication-title: Trends in Plant Science
– volume: 108
  start-page: 7
  year: 1995
  end-page: 15
  article-title: Partitioning of intermediate carbon metabolism in VAM colonized leek
  publication-title: Plant Physiology
– start-page: 17
  year: 2000
  end-page: 29
– volume: 9
  start-page: 10
  year: 2009
  article-title: and gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis
  publication-title: BMC Plant Biology
– volume: 104
  start-page: 1720
  year: 2007
  end-page: 1725
  article-title: A phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 20
  start-page: 519
  year: 2010
  end-page: 530
  article-title: Agroecology: the key role of arbuscular mycorrhizas in ecosystem services
  publication-title: Mycorrhiza
– volume: 289
  start-page: 1920
  year: 2000
  end-page: 1921
  article-title: Glomalean fungi from the Ordovician
  publication-title: Science
– volume: 20
  start-page: 1055
  year: 2007
  end-page: 1062
  article-title: Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells
  publication-title: Molecular Plant–Microbe Interaction
– volume: 8
  start-page: 817
  year: 2017a
  article-title: Roles, regulation, and agricultural application of plant phosphate transporters
  publication-title: Frontiers in Plant Science
– volume: 56
  start-page: 1665
  year: 2005
  end-page: 1674
  article-title: Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of Ca and membrane secretion
  publication-title: Journal of Experimental Botany
– volume: 151
  start-page: 717
  year: 2001
  end-page: 724
  article-title: The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks
  publication-title: New Phytologist
– year: 2010
– volume: 42
  start-page: 2325
  year: 2010
  end-page: 2330
  article-title: Nitrogen compounds in soil solutions of agricultural land
  publication-title: Soil Biology and Biochemistry
– volume: 51
  start-page: 485
  year: 1968
  end-page: 492
  article-title: The distribution of Endogone spores in some Australian and New Zealand soils, and in an experimental field soil at Rothamsted
  publication-title: Transactions of the British Mycological Society B
– volume: 5
  start-page: 436
  year: 2014
  article-title: A dipeptide transporter from the arbuscular mycorrhizal fungus is upregulated in the intraradical phase
  publication-title: Frontiers in Plant Science
– volume: 135
  start-page: 325
  year: 1997
  end-page: 334
  article-title: Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol strain WCS417r
  publication-title: New Phytologist
– volume: 8
  start-page: e72126
  year: 2013
  article-title: The nitrate transporter (NRT) gene family in poplar
  publication-title: PLoS ONE
– volume: 3
  start-page: 1
  year: 2010
  end-page: 8
  article-title: Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorous nutrition and symbiotic efficiency
  publication-title: Fungal Ecology
– volume: 164
  start-page: 357
  year: 2004
  end-page: 364
  article-title: High functional diversity within species of arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 10
  start-page: 1147
  year: 2017b
  end-page: 1158
  article-title: Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis
  publication-title: Molecular Plant
– volume: 7
  start-page: 293
  year: 2004
  end-page: 303
  article-title: Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland
  publication-title: Ecology Letters
– volume: 26
  start-page: 325
  year: 2016
  end-page: 332
  article-title: Different levels of hyphal self‐incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae
  publication-title: Mycorrhiza
– volume: 39
  start-page: 660
  year: 2016
  end-page: 671
  article-title: The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots
  publication-title: Plant, Cell & Environment
– volume: 224
  start-page: 30
  year: 1973
  end-page: 31
  article-title: Translocation of C from Festuca plants to their endomycorrhizal fungi
  publication-title: Nature
– volume: 114
  start-page: 217
  year: 1990
  end-page: 225
  article-title: Mycorrhizas formed by and on subterranean clover in relation to soluble carbohydrate concentrations in roots
  publication-title: New Phytologist
– volume: 18
  start-page: 539
  year: 2013
  end-page: 545
  article-title: Mycorrhiza‐induced resistance: more than the sum of its parts?
  publication-title: Trends in Plant Science
– volume: 12
  start-page: 859
  year: 1992
  end-page: 863
  article-title: Effect of the rhizosphere bacterium , arbuscular mycorrhizal fungi and substrate composition on the growth of strawberry
  publication-title: Agronomy
– volume: 3
  start-page: 950
  year: 2011
  end-page: 958
  article-title: Conserved meiotic machinery in spp., a putatively ancient asexual fungal lineage
  publication-title: Genome Biology and Evolution
– volume: 48
  start-page: 1044
  year: 2011
  end-page: 1055
  article-title: GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus
  publication-title: Fungal Genetics and Biology
– volume: 28
  start-page: 683
  year: 2001
  end-page: 694
  article-title: Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated?
  publication-title: Australian Journal of Plant Physiology
– volume: 150
  start-page: 73
  year: 2009
  end-page: 83
  article-title: A mycorrhizal‐specific ammonium transporter from acquires nitrogen released by arbuscular mycorrhizal fungi
  publication-title: Plant Physiology
– volume: 2
  start-page: 275
  year: 2002
  end-page: 310
  article-title: Biotechnology of arbuscular mycorrhizas
  publication-title: Applied Mycology and Biotechnology
– volume: 584
  start-page: 4339
  year: 2010
  end-page: 4343
  article-title: Ammonia permeability of the soybean nodulin 26 channel
  publication-title: FEBS Letters
– volume: 180
  start-page: 890
  year: 2008
  end-page: 898
  article-title: Underground resource allocation between individual networks of mycorrhizal fungi
  publication-title: New Phytologist
– volume: 21
  start-page: 621
  year: 2006
  end-page: 628
  article-title: Mycorrhizal networks: des liaisons dangereuses?
  publication-title: Trends in Ecology & Evolution
– volume: 5
  start-page: e13324
  year: 2010
  article-title: Interplant communication of tomato plants through underground common mycorrhizal networks
  publication-title: PLoS ONE
– volume: 27
  start-page: 1352
  year: 2015
  end-page: 1366
  article-title: Suppression of arbuscule degeneration in phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3
  publication-title: Plant Cell
– volume: 1
  start-page: 15159
  year: 2015
  article-title: Regulation of resource exchange in the arbuscular mycorrhizal symbiosis
  publication-title: Nature Plants
– volume: 205
  start-page: 1473
  year: 2015
  end-page: 1484
  article-title: Mycorrhizal phenotypes and the Law of the Minimum
  publication-title: New Phytologist
– volume: 10
  start-page: 1135
  year: 2007
  end-page: 1142
  article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 193
  start-page: 755
  year: 2012
  end-page: 769
  article-title: The transcriptome of the arbuscular mycorrhizal fungus (DAOM 197198) reveals functional tradeoffs in an obligate symbiont
  publication-title: New Phytologist
– volume: 24
  start-page: 365
  year: 2002
  end-page: 370
  article-title: Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endomycorrhizal fungi and growing under drought stress
  publication-title: Acta Physiologia Plantarum
– volume: 173
  start-page: 11
  year: 2007
  end-page: 26
  article-title: Functional biology of plant phosphate uptake at root and mycorrhiza interfaces
  publication-title: New Phytologist
– volume: 5
  start-page: 587
  year: 2015
  end-page: 612
  article-title: Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps
  publication-title: Agronomy
– volume: 21
  start-page: 230
  year: 2016
  end-page: 242
  article-title: Impact of bacterial–fungal interactions on the colonization of the endosphere
  publication-title: Trends in Plant Science
– volume: 21
  start-page: 365
  year: 1966
  end-page: 386
  article-title: Influence of different sources of nitrogen on the development of mycorrhiza in
  publication-title: Pamietnik Pulawski
– volume: 214
  start-page: 1330
  year: 2017
  end-page: 1337
  article-title: Evolutionary assymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not pretict host plant growth
  publication-title: New Phytologist
– volume: 17
  start-page: 633
  year: 2012
  end-page: 637
  article-title: Fungal superhighways: do common mycorrhizal networks enhance below ground communication?
  publication-title: Trends in Plant Sciences
– volume: 59
  start-page: 1683
  year: 2018
  end-page: 1694
  article-title: Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation
  publication-title: Plant & Cell Physiology
– volume: 108
  start-page: 236
  year: 2010
  end-page: 245
  article-title: Interactions between UW4 and BEG9 and their consequences for the growth of cucumber under salt‐stress conditions
  publication-title: Journal of Applied Microbiology
– volume: 214
  start-page: 1631
  year: 2017
  end-page: 1645
  article-title: Arbuscular mycorrhiza‐specific enzymes FatM and RAM2 fine‐tune lipid biosynthesis to promote development of arbuscular mycorrhiza
  publication-title: New Phytologist
– volume: 18
  start-page: 927
  year: 2010
  end-page: 937
  article-title: Nitrate‐regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants
  publication-title: Developmental Cell
– volume: 17
  start-page: 413
  year: 2012a
  end-page: 422
  article-title: Sugar transporters in plants and in their interactions with fungi
  publication-title: Trends in Plant Science
– volume: 55
  start-page: 115
  year: 2008
  end-page: 123
  article-title: Tomato sugar transporter genes associated with mycorrhiza and phosphate
  publication-title: Plant Growth and Regulation
– volume: 180
  start-page: 452
  year: 2008
  end-page: 465
  article-title: Genetic diversity of the arbuscular mycorrhizal fungus as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected
  publication-title: New Phytologist
– volume: 2
  start-page: 15208
  year: 2016
  article-title: Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics
  publication-title: Nature Plants
– volume: 5
  start-page: 1396
  year: 2006
  end-page: 1411
  article-title: Proteomics of plant detergent resistant membranes
  publication-title: Molecular and Cell Proteomics
– volume: 84
  start-page: 1895
  year: 2003
  end-page: 1908
  article-title: Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands
  publication-title: Ecology
– volume: 169
  start-page: 2774
  year: 2015
  end-page: 2788
  article-title: Hyphal branching during arbuscule development requires
  publication-title: Plant Physiology
– volume: 109
  start-page: 8316
  year: 2012
  end-page: 8321
  article-title: Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation
  publication-title: Proceeding of the National Academy of Sciences, USA
– volume: 58
  start-page: 1003
  year: 2017
  end-page: 1017
  article-title: Transcriptome analysis of the ‐ mycorrhizal symbiosis: regulation of plant and fungal transportomes under nitrogen starvation
  publication-title: Plant Cell Physiology
– volume: 9
  start-page: e90841
  year: 2014
  article-title: Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in
  publication-title: PLoS ONE
– volume: 81
  start-page: 787
  year: 1993
  end-page: 795
  article-title: Mycorrhizal influence on intra‐ and interspecific neighbour interactions among co‐occurring prairie grasses
  publication-title: Journal of Ecology
– volume: 333
  start-page: 880
  year: 2011
  end-page: 882
  article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis
  publication-title: Science
– volume: 68
  start-page: 122
  year: 2007
  end-page: 129
  article-title: Arbuscular mycorrhizal symbiosis and plant aquaporin expression
  publication-title: Phytochemistry
– volume: 11
  start-page: 557
  year: 2001
  end-page: 5674
  article-title: Root colonization by inoculated plant growth‐promoting rhizobacteria
  publication-title: Biocontrol Science and Technology
– start-page: 33
  year: 2002
  end-page: 48
– volume: 9
  start-page: 1611
  year: 2018
  article-title: Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality and volatilome
  publication-title: Frontiers in Plant Science
– volume: 63
  start-page: 1055
  year: 1999
  end-page: 1062
  article-title: On the origin of the theory of mineral nutrition of plants and the law of the minimum
  publication-title: Soil Science Society American Journal
– volume: 128
  start-page: 108
  year: 2002
  end-page: 124
  article-title: Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis
  publication-title: Plant Physiology
– volume: 69
  start-page: 73
  year: 1999
  end-page: 83
  article-title: Biofertilizers for cereal production in India‐ a review
  publication-title: Indian Journal of Agriculture Sciences
– volume: 152
  start-page: 2173
  year: 2010
  end-page: 2187
  article-title: Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane
  publication-title: Plant Physiology
– volume: 198
  start-page: 836
  year: 2013
  end-page: 852
  article-title: Functional analysis of the novel mycorrhiza‐specific phosphate transporter AsPT1 and PHT1 family from during the arbuscular mycorrhizal symbiosis
  publication-title: New Phytologist
– volume: 28
  start-page: 93
  year: 2017
  end-page: 100
  article-title: Identification of arbuscular mycorrhiza‐inducible Nitrate Transporter1/Peptide Transporter Family (NPF) genes in rice
  publication-title: Mycorrhiza
– volume: 87
  start-page: 563
  year: 2006
  end-page: 569
  article-title: Carbon allocation to ectomycorrhizal fungi correlates with below‐ground allocation in culture studies
  publication-title: Ecology
– ident: e_1_2_7_39_1
  doi: 10.1016/j.tplants.2006.04.005
– ident: e_1_2_7_131_1
  doi: 10.1074/mcp.M600044-MCP200
– ident: e_1_2_7_55_1
  doi: 10.1111/j.1365-2672.2009.04414.x
– ident: e_1_2_7_90_1
  doi: 10.1073/pnas.0608136104
– ident: e_1_2_7_193_1
  doi: 10.3389/fpls.2017.00817
– ident: e_1_2_7_130_1
  doi: 10.1093/jxb/eri163
– ident: e_1_2_7_151_1
  doi: 10.2136/sssaj1999.6351055x
– ident: e_1_2_7_150_1
  doi: 10.1016/j.pbi.2007.05.004
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1365-313X.2010.04385.x
– ident: e_1_2_7_28_1
  doi: 10.7554/eLife.25114
– ident: e_1_2_7_72_1
  doi: 10.1105/tpc.004861
– ident: e_1_2_7_21_1
  doi: 10.1111/nph.14533
– ident: e_1_2_7_119_1
  doi: 10.1111/j.1469-8137.1994.tb04004.x
– ident: e_1_2_7_38_1
  doi: 10.1016/j.tplants.2013.05.001
– ident: e_1_2_7_146_1
  doi: 10.1016/j.fgb.2011.08.003
– ident: e_1_2_7_144_1
  doi: 10.1073/pnas.202474599
– ident: e_1_2_7_83_1
  doi: 10.1104/pp.104.056572
– ident: e_1_2_7_30_1
  doi: 10.1074/jbc.M403938200
– ident: e_1_2_7_201_1
  doi: 10.1038/nature22009
– ident: e_1_2_7_91_1
  doi: 10.1126/science.aam9970
– ident: e_1_2_7_181_1
  doi: 10.1111/j.1469-8137.2011.03948.x
– ident: e_1_2_7_149_1
  doi: 10.1042/bj20031672
– ident: e_1_2_7_81_1
  doi: 10.1046/j.0028-646x.2001.00200.x
– ident: e_1_2_7_153_1
  doi: 10.1007/s00425-002-0921-3
– ident: e_1_2_7_10_1
  doi: 10.1017/S0021859618000126
– ident: e_1_2_7_107_1
  doi: 10.1016/j.devcel.2010.05.008
– ident: e_1_2_7_99_1
  doi: 10.1093/pcp/pcq099
– ident: e_1_2_7_58_1
  doi: 10.1007/s10725-008-9266-7
– ident: e_1_2_7_117_1
  doi: 10.1016/j.fgb.2005.10.005
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1469-8137.2008.02574.x
– ident: e_1_2_7_186_1
  doi: 10.1016/j.phytochem.2006.09.033
– ident: e_1_2_7_31_1
  doi: 10.1093/pcp/pcx044
– ident: e_1_2_7_166_1
  doi: 10.1111/pce.13471
– ident: e_1_2_7_25_1
  doi: 10.1016/j.soilbio.2017.05.018
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1365-313X.2011.04810.x
– ident: e_1_2_7_12_1
  doi: 10.1016/j.tplants.2012.06.007
– ident: e_1_2_7_14_1
  doi: 10.1080/09583150120076120
– ident: e_1_2_7_100_1
  doi: 10.1111/nph.14465
– ident: e_1_2_7_70_1
  doi: 10.1093/gbe/evr089
– ident: e_1_2_7_7_1
  doi: 10.1104/pp.124.3.949
– ident: e_1_2_7_15_1
  doi: 10.1094/MPMI.2001.14.2.255
– ident: e_1_2_7_49_1
  doi: 10.1046/j.1469-8137.1997.00646.x
– ident: e_1_2_7_24_1
  doi: 10.1105/tpc.114.131144
– ident: e_1_2_7_59_1
  doi: 10.1038/ismej.2011.110
– ident: e_1_2_7_154_1
  doi: 10.1038/35106601
– ident: e_1_2_7_121_1
  doi: 10.1111/j.1462-2920.2009.02099.x
– ident: e_1_2_7_54_1
  doi: 10.1104/pp.109.149823
– ident: e_1_2_7_174_1
  doi: 10.3389/fpls.2015.00786
– ident: e_1_2_7_48_1
  doi: 10.1007/s00572-017-0802-z
– ident: e_1_2_7_60_1
  doi: 10.1007/s00572-010-0333-3
– ident: e_1_2_7_97_1
  doi: 10.1126/science.1208473
– ident: e_1_2_7_148_1
  doi: 10.1104/pp.120.2.587
– ident: e_1_2_7_51_1
  doi: 10.1016/j.funeco.2009.07.003
– ident: e_1_2_7_112_1
  doi: 10.1016/j.tplants.2013.08.008
– ident: e_1_2_7_163_1
  doi: 10.1016/j.tree.2006.07.003
– ident: e_1_2_7_53_1
  doi: 10.1007/s00425-013-1842-z
– ident: e_1_2_7_176_1
  doi: 10.3852/16-042
– ident: e_1_2_7_73_1
  doi: 10.2307/2261676
– ident: e_1_2_7_19_1
  doi: 10.1104/pp.104.053041
– ident: e_1_2_7_189_1
  doi: 10.1080/15592324.2015.1131372
– ident: e_1_2_7_11_1
  doi: 10.1094/MPMI-20-9-1055
– ident: e_1_2_7_118_1
  doi: 10.1093/jxb/erh147
– ident: e_1_2_7_191_1
  doi: 10.1038/nplants.2015.159
– ident: e_1_2_7_138_1
  doi: 10.1371/journal.pone.0090841
– ident: e_1_2_7_26_1
  doi: 10.1016/j.still.2012.01.012
– volume-title: Mineral nutrition of higher plants
  year: 1995
  ident: e_1_2_7_123_1
– ident: e_1_2_7_61_1
  doi: 10.1007/s004250000323
– ident: e_1_2_7_94_1
  doi: 10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2
– ident: e_1_2_7_177_1
  doi: 10.1074/mcp.M900090-MCP200
– ident: e_1_2_7_198_1
  doi: 10.1016/S0014-5793(02)03271-4
– ident: e_1_2_7_89_1
  doi: 10.1111/j.1365-313X.2011.04746.x
– ident: e_1_2_7_47_1
  doi: 10.1093/mp/sss079
– ident: e_1_2_7_6_1
  doi: 10.1007/978-3-0348-8117-3_3
– ident: e_1_2_7_65_1
  doi: 10.1128/AEM.69.1.616-624.2003
– volume-title: Mycorrhizal symbiosis
  year: 2008
  ident: e_1_2_7_170_1
– ident: e_1_2_7_36_1
  doi: 10.1007/s00572-013-0496-9
– ident: e_1_2_7_85_1
  doi: 10.1016/j.febslet.2010.09.033
– ident: e_1_2_7_142_1
  doi: 10.1016/j.tplants.2016.01.003
– ident: e_1_2_7_82_1
  doi: 10.1111/j.1461-0248.2009.01430.x
– ident: e_1_2_7_92_1
  doi: 10.1111/j.1469-8137.2005.01536.x
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1469-8137.2006.01935.x
– ident: e_1_2_7_165_1
  doi: 10.1111/j.1399-3054.2004.00414.x
– ident: e_1_2_7_158_1
  doi: 10.1016/j.pbi.2017.05.008
– ident: e_1_2_7_188_1
  doi: 10.1051/agro:19921021
– ident: e_1_2_7_179_1
  doi: 10.1111/j.1469-8137.1990.tb00393.x
– ident: e_1_2_7_178_1
  doi: 10.1007/s00572-018-0853-9
– ident: e_1_2_7_84_1
  doi: 10.1016/0167-8809(90)90276-J
– ident: e_1_2_7_2_1
  doi: 10.1007/s00374-014-0989-5
– ident: e_1_2_7_180_1
  doi: 10.1111/j.1471-4159.2010.06661.x
– ident: e_1_2_7_56_1
  doi: 10.1016/j.tplants.2016.07.010
– ident: e_1_2_7_111_1
  doi: 10.1016/j.phytochem.2016.01.002
– ident: e_1_2_7_200_1
  doi: 10.1093/jxb/erm096
– ident: e_1_2_7_22_1
  doi: 10.1038/nplants.2015.208
– ident: e_1_2_7_133_1
  doi: 10.1016/S0007-1536(68)80015-4
– ident: e_1_2_7_62_1
  doi: 10.1016/S1874-5334(02)80014-4
– ident: e_1_2_7_34_1
  doi: 10.1104/pp.108.117820
– ident: e_1_2_7_145_1
  doi: 10.1007/s00572-015-0671-2
– ident: e_1_2_7_78_1
  doi: 10.1105/tpc.111.089813
– ident: e_1_2_7_106_1
  doi: 10.1055/s-2002-37407
– start-page: 353
  volume-title: Transporters and pumps in plant signaling
  year: 2010
  ident: e_1_2_7_167_1
– ident: e_1_2_7_9_1
  doi: 10.1371/journal.pone.0072126
– volume: 37
  start-page: 471
  year: 1990
  ident: e_1_2_7_132_1
  article-title: Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae
  publication-title: Mycotaxon
– ident: e_1_2_7_185_1
  doi: 10.1128/AEM.71.9.5341-5347.2005
– ident: e_1_2_7_96_1
  doi: 10.7554/eLife.29107
– ident: e_1_2_7_173_1
  doi: 10.1371/journal.pone.0195345
– ident: e_1_2_7_74_1
  doi: 10.1080/713608315
– ident: e_1_2_7_18_1
  doi: 10.1007/s11738-002-0031-7
– ident: e_1_2_7_108_1
  doi: 10.1146/annurev.arplant.55.031903.141758
– ident: e_1_2_7_175_1
  doi: 10.1371/journal.pone.0013324
– ident: e_1_2_7_93_1
  doi: 10.1046/j.1469-8137.1997.00729.x
– ident: e_1_2_7_46_1
  doi: 10.1016/j.tplants.2012.03.009
– ident: e_1_2_7_71_1
  doi: 10.1046/j.1365-313X.1996.09040491.x
– ident: e_1_2_7_101_1
  doi: 10.1111/nph.12199
– start-page: 17
  volume-title: Species concepts and phylogenetic theory: a debate
  year: 2000
  ident: e_1_2_7_124_1
– ident: e_1_2_7_156_1
  doi: 10.1016/j.tplants.2017.05.008
– ident: e_1_2_7_86_1
  doi: 10.1073/pnas.1200407109
– ident: e_1_2_7_29_1
  doi: 10.3390/agronomy5040587
– ident: e_1_2_7_171_1
  doi: 10.1016/S0304-4238(02)00210-8
– ident: e_1_2_7_157_1
  doi: 10.1128/AEM.71.11.6673-6679.2005
– ident: e_1_2_7_127_1
  doi: 10.1111/j.1469-8137.2008.02623.x
– ident: e_1_2_7_35_1
  doi: 10.1016/S0167-1987(02)00158-7
– ident: e_1_2_7_63_1
  doi: 10.1046/j.0028-646x.2001.00216.x
– ident: e_1_2_7_13_1
  doi: 10.3389/fpls.2014.00436
– ident: e_1_2_7_68_1
  doi: 10.1038/nature03610
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jplph.2011.01.026
– ident: e_1_2_7_66_1
  doi: 10.1139/m95-015
– volume: 69
  start-page: 73
  year: 1999
  ident: e_1_2_7_75_1
  article-title: Biofertilizers for cereal production in India‐ a review
  publication-title: Indian Journal of Agriculture Sciences
– ident: e_1_2_7_69_1
  doi: 10.1104/pp.109.136390
– ident: e_1_2_7_134_1
  doi: 10.1016/S0007-1536(87)80018-9
– ident: e_1_2_7_182_1
  doi: 10.3389/fpls.2018.01611
– ident: e_1_2_7_155_1
  doi: 10.1126/science.289.5486.1920
– ident: e_1_2_7_190_1
  doi: 10.1111/nph.13292
– ident: e_1_2_7_164_1
  doi: 10.1104/pp.108.1.7
– ident: e_1_2_7_128_1
  doi: 10.1093/pcp/pcn202
– ident: e_1_2_7_196_1
  doi: 10.2307/3566048
– ident: e_1_2_7_195_1
  doi: 10.1016/j.molp.2017.07.012
– ident: e_1_2_7_115_1
  doi: 10.1093/pcp/pcy094
– ident: e_1_2_7_76_1
  doi: 10.1111/j.1461-0248.2004.00577.x
– ident: e_1_2_7_187_1
  doi: 10.1111/pce.12659
– ident: e_1_2_7_88_1
  doi: 10.1007/s00572-006-0094-1
– ident: e_1_2_7_141_1
  doi: 10.1016/j.pbi.2017.08.008
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1469-8137.2005.01374.x
– volume: 169
  start-page: 2774
  year: 2015
  ident: e_1_2_7_143_1
  article-title: Hyphal branching during arbuscule development requires Reduced Arbuscular Mycorrhiza1
  publication-title: Plant Physiology
– ident: e_1_2_7_98_1
  doi: 10.1038/286885a0
– ident: e_1_2_7_42_1
  doi: 10.1371/journal.ppat.1002600
– ident: e_1_2_7_147_1
  doi: 10.1007/s00572-015-0644-5
– ident: e_1_2_7_33_1
  doi: 10.1016/j.tplants.2013.06.004
– ident: e_1_2_7_197_1
  doi: 10.1111/nph.12125
– ident: e_1_2_7_41_1
  doi: 10.1046/j.1469-8137.1997.00810.x
– ident: e_1_2_7_161_1
  doi: 10.1038/nature05364
– ident: e_1_2_7_104_1
  doi: 10.1111/j.1469-8137.1985.tb03672.x
– volume-title: The Glomeromycota. A species list with new families and new genera
  year: 2010
  ident: e_1_2_7_162_1
– ident: e_1_2_7_87_1
  doi: 10.1016/j.soilbio.2010.09.011
– ident: e_1_2_7_129_1
  doi: 10.1074/jbc.M403440200
– ident: e_1_2_7_199_1
  doi: 10.1111/nph.12188
– ident: e_1_2_7_120_1
  doi: 10.1126/science.aan0081
– ident: e_1_2_7_114_1
  doi: 10.5962/bhl.title.41248
– volume: 224
  start-page: 30
  year: 1973
  ident: e_1_2_7_79_1
  article-title: Translocation of 14C from Festuca plants to their endomycorrhizal fungi
  publication-title: Nature
– ident: e_1_2_7_122_1
  doi: 10.1046/j.1469-8137.2000.00615.x
– ident: e_1_2_7_194_1
  doi: 10.1105/tpc.113.120527
– ident: e_1_2_7_5_1
  doi: 10.1093/jxb/eru283
– ident: e_1_2_7_64_1
  doi: 10.1111/j.1469-8137.2004.01145.x
– ident: e_1_2_7_126_1
  doi: 10.1111/nph.12351
– ident: e_1_2_7_113_1
  doi: 10.1073/pnas.1721868115
– ident: e_1_2_7_110_1
  doi: 10.1104/pp.106.094102
– ident: e_1_2_7_172_1
  doi: 10.1046/j.1469-8137.1997.00757.x
– ident: e_1_2_7_52_1
  doi: 10.1073/pnas.1118650109
– ident: e_1_2_7_67_1
  doi: 10.1186/1471-2229-9-10
– ident: e_1_2_7_105_1
  doi: 10.1105/tpc.113.120436
– ident: e_1_2_7_159_1
  doi: 10.1093/jxb/ers126
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1469-8137.2008.02726.x
– ident: e_1_2_7_192_1
  doi: 10.1104/pp.112.195727
– ident: e_1_2_7_139_1
  doi: 10.1111/j.1469-8137.2005.01532.x
– ident: e_1_2_7_80_1
  doi: 10.1890/05-0755
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1469-8137.2004.01236.x
– ident: e_1_2_7_169_1
  doi: 10.1007/s11104-012-1583-y
– ident: e_1_2_7_4_1
  doi: 10.1111/ele.12115
– volume: 21
  start-page: 365
  year: 1966
  ident: e_1_2_7_109_1
  article-title: Influence of different sources of nitrogen on the development of mycorrhiza in Pisum sativum
  publication-title: Pamietnik Pulawski
– ident: e_1_2_7_103_1
  doi: 10.1007/s00572-017-0786-8
– ident: e_1_2_7_136_1
  doi: 10.1111/j.1365-313X.2005.02364.x
– ident: e_1_2_7_95_1
  doi: 10.1111/nph.13172
– ident: e_1_2_7_140_1
  doi: 10.1093/jexbot/53.370.825
– ident: e_1_2_7_77_1
  doi: 10.1111/j.1365-2745.2009.01570.x
– ident: e_1_2_7_135_1
  doi: 10.1111/j.1469-8137.2004.01169.x
– volume: 28
  start-page: 683
  year: 2001
  ident: e_1_2_7_168_1
  article-title: Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated?
  publication-title: Australian Journal of Plant Physiology
– ident: e_1_2_7_184_1
  doi: 10.3389/fpls.2018.00897
– ident: e_1_2_7_102_1
  doi: 10.1016/j.soilbio.2015.03.003
– ident: e_1_2_7_8_1
  doi: 10.1104/pp.010466
– ident: e_1_2_7_116_1
  doi: 10.1111/j.1365-313X.2005.02384.x
– ident: e_1_2_7_3_1
  doi: 10.1016/j.plaphy.2016.06.023
– ident: e_1_2_7_40_1
  doi: 10.1111/nph.12445
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1461-0248.2007.01113.x
– ident: e_1_2_7_37_1
  doi: 10.1002/jsfa.3998
– ident: e_1_2_7_137_1
  doi: 10.1073/pnas.1501676112
– ident: e_1_2_7_183_1
  doi: 10.1007/s11104-011-1047-9
– ident: e_1_2_7_32_1
  doi: 10.3389/fpls.2016.00679
– ident: e_1_2_7_125_1
  doi: 10.1007/s00572-015-0631-x
– ident: e_1_2_7_152_1
  doi: 10.1242/jcs.01681
– ident: e_1_2_7_43_1
  doi: 10.1080/07352689.2014.897897
– ident: e_1_2_7_160_1
  doi: 10.1038/ismej.2015.91
SSID ssj0009562
Score 2.68046
SecondaryResourceType review_article
Snippet Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients...
Summary Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of...
Arbuscular mycorrhizal symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most of land plants. The exchange of nutrients...
SourceID hal
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1127
SubjectTerms Agriculture
arbuscular mycorrhizal symbiosis
Arbuscular mycorrhizas
carbon
Carbon compounds
carbon supply
Commerce
common mycorrhizal networks
embryophytes
Environmental Sciences
Exchanging
Fungi
Glomeromycota
Host plants
Life Sciences
markets
membrane lipids
Mineral nutrients
mineral nutrition
Mycorrhizae - physiology
mycorrhizal fungi
Nitrogen
Nutrient dynamics
Nutrients
Nutrition
Phosphorus
Plants (botany)
plant–plant interactions
Sustainable agriculture
Sustainable Development
Symbionts
Symbiosis
Tansley review
transporters
Vegetal Biology
vesicular arbuscular mycorrhizae
Subtitle from arbuscules to common mycorrhizal networks
Title Trading on the arbuscular mycorrhiza market
URI https://www.jstor.org/stable/26759462
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15775
https://www.ncbi.nlm.nih.gov/pubmed/30843207
https://www.proquest.com/docview/2257531795
https://www.proquest.com/docview/2188985130
https://www.proquest.com/docview/2305157569
https://hal.inrae.fr/hal-02627273
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9z-OCLc-q0c5MoPvjSS5ukSapPUxwX0SHi4IJCyVe5sq0du_cOtr_ec5q23MkU8a0kpyUf5yS_05zzCyGvcqmly8syxSOqVFgwKa18lmbK-0x7w2qHycmfj-T0WHycFbMN8nbIhYn8EOMPN7SMbr1GAzd2sWbkzfl8khdKYYI5xmohIPrK1gh3JRsYmKWQs55VCKN4xjdv7EV35hgJGYMSb4ObN9Frt_0cbpEfQ8Nj1MnJZLW0E3f9G6fjf_bsAbnfw1J6EPVom2yE5iG5-64F6Hj1iHyHHQ33ONo2FAAjNTAVMYCVnl2B-3ox_3lt6FmXQP2GYsbKKBIWdNlSaAGo-5rwKW1i_PniMTk-_PDt_TTtb2VInQADTwtp8gLmkTuG_GHSehG8kr7AFF3rPNfGMquF4dpZntXcc2O4gEJfG8kV3yGbTduEp4TWtS6tE8rnSgqL155bGWTwtchZ0EYk5PUwP5XrKcvx5ozTanBdYKiqbqgS8nIUPY88HbcKwSSP9cisPT34VGEZuKIModxlnpCdTgdGMQY-VSkkS8jeoBRVb-iLCpZD6DasavDxF2M1mCieu5gmtCuQybUuAdny7C8yHC_bUYUsE_IkKtzYAJ5pwVmmYDg6tflzB6ujL9PuYfffRZ-RewACyxjUuEc2lxersA9Aa2mfdxb1C8GwImY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQkuvAuBAgaBxCWrxHYcB4lDoVQp3a4QaqWVegh27GgRbVJ1d0Hb38Rf4T8xzktbVBCXHrhFySjy45vxTDLzDcCLUEiRh0niu19UPteoUjI2gR_ExgTSKFrkrjh5byTSA_5hHI1X4EdXC9PwQ_Qf3Jxm1PbaKbj7IL2k5eXJZBBGcdylVO7axXcM2KZvdrZwd19Suv1-_13qtz0F_JwjPP1IqDDCUbCcOvYroQ23JhYmcgWmOjdMKk215IrJXLOgYIYpxTjeNIUSLGb43lW44jqIO6b-rU90ieJX0I7zWXAxbnmMXN5QP9Rzp9_qxOVeNmmQFzm45_3l-sDbvgk_u6Vq8ly-DuYzPcjPfmOR_F_W8hbcaD1vstmoym1YseUduPq2Qu94cRcO8dB2xzipSoI-MVGItiZHlxwvMEI_nXw5U-S4rhF_TVxRTi9ip2RWEZwyavSS8BEpmxT76T04uJSJrcNaWZX2AZCikInOeWzCWHDtOrtrYYU1BQ-plYp78KoDRJa3rOyuOchR1kVnuDVZvTUePO9FTxoqkguFEFX9c0cenm4OM3cPo23qvNVvoQfrNeh6MYphY8IF9WCjQ2HW2rJphhYfp42GG1_-rH-MVsj9WlKlreYoE0qZoPPOgr_IMNdPKI5E4sH9BuH9AFggOaNBjMtR4_TPE8xGH9P64uG_iz6Fa-n-3jAb7ox2H8F19HmTJodzA9Zmp3P7GP3KmX5SqzOBz5eN-V_lBYBs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BSEuvAuBAgaBxCWrxHYcB4lDYVltaVlViEorcQh27Girtsmquwva_iX-Cj-KcV7aooK49MAtSkaRH9-Mv0nmAfAiFFJkYZL47heVzzWqlIxN4AexMYE0iuaZS07-OBLDA_5hHI3X4EebC1PXh-g-uDnNqOy1U_CpyVeUvJhOemEUx21E5a5dfkd_bfZmp4-b-5LSwfvP74Z-01LAzzii04-ECiMcBMuoK34ltOHWxMJELr9UZ4ZJpamWXDGZaRbkzDClGMebJleCxQzfuw5XuAgS1yei_4muVPgVtC35LLgYN2WMXNhQN9Rzh9_6xIVe1lGQF_Hb83S5Ou8GN-Fnu1J1mMtRbzHXvezstyKS_8lS3oIbDe8m27Wi3IY1W9yBq29L5MbLu_AFj2x3iJOyIMiIiUKs1RG65GSJ_vnp5PBMkZMqQ_w1cSk5nYidkXlJcMaozyvCx6SoA-xn9-DgUia2CRtFWdgHQPJcJjrjsQljwbXr666FFdbkPKRWKu7BqxYPadbUZHetQY7T1jfDrUmrrfHgeSc6rQuRXCiEoOqeu9Lhw-291N1DX5s6rvot9GCzwlwnRtFpTLigHmy1IEwbSzZL0d7jtNFs48ufdY_RBrkfS6qw5QJlQikTpO4s-IsMc92E4kgkHtyvAd4NgAWSMxrEuBwVTP88wXS0P6wuHv676FO4tt8fpHs7o91HcB0Jb1IHcG7Bxvx0YR8jqZzrJ5UyE_h62ZD_BdE9fxs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trading+on+the+arbuscular+mycorrhiza+market%3A+from+arbuscules+to+common+mycorrhizal+networks&rft.jtitle=The+New+phytologist&rft.au=Wipf%2C+Daniel&rft.au=Krajinski%2C+Franziska&rft.au=van+Tuinen%2C+Diederik&rft.au=Recorbet%2C+Ghislaine&rft.date=2019-08-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=223&rft.issue=3&rft.spage=1127&rft_id=info:doi/10.1111%2Fnph.15775&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon