Trading on the arbuscular mycorrhiza market from arbuscules to common mycorrhizal networks
Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the c...
Saved in:
Published in | The New phytologist Vol. 223; no. 3; pp. 1127 - 1142 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.08.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed. |
---|---|
AbstractList | Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed. Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed. Summary Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed. Arbuscular mycorrhizal symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most of land plants. The exchange of nutrients between host plants and arbuscular mycorrhizal fungi is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during arbuscular mycorrhizal symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed by arbuscular mycorrhizal fungi, which inter-connect plants from similar and/or different species. Then the best way to integrate this knowledge and the ensuing potential benefits of arbuscular mycorrhiza in a sustainable agriculture is discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved. |
Author | Wipf, Daniel Courty, Pierre-Emmanuel Recorbet, Ghislaine Krajinski, Franziska van Tuinen, Diederik |
Author_xml | – sequence: 1 givenname: Daniel surname: Wipf fullname: Wipf, Daniel – sequence: 2 givenname: Franziska surname: Krajinski fullname: Krajinski, Franziska – sequence: 3 givenname: Diederik surname: van Tuinen fullname: van Tuinen, Diederik – sequence: 4 givenname: Ghislaine surname: Recorbet fullname: Recorbet, Ghislaine – sequence: 5 givenname: Pierre-Emmanuel surname: Courty fullname: Courty, Pierre-Emmanuel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30843207$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02627273$$DView record in HAL |
BookMark | eNqFkV1rFDEUhoO02G31wh-gDHjTItMmOfmay1KqKyzqRQXvQibJullnJ2syo6y_3rT7URDFcxM4PO97cs57io762HuEXhB8SUpd9evFJeFS8idoQphoakVAHqEJxlTVgokvJ-g05yXGuOGCPkUngBUDiuUEvblLxoX-axX7alj4yqR2zHbsTKpWGxtTWoRfplqZ9M0Pz9Dx3HTZP9-9Z-jz29u7m2k9-_ju_c31rLaMUV5zYQh3WIGlmFEqWse8k8LxRnJorQNlWtoqZkDZFvAcHBgDrDTd3AiQcIYutr4L0-l1CmX6RkcT9PR6pu97mAoqqYQfpLDnW3ad4vfR50GvQra-60zv45g1BczLabho_o8SpRrFCeCCvv4DXcYx9WVpTWlxAyIbXqhXO2psV94dvrq_bgGutoBNMefk59qGwQwh9kMyodME6_v8dMlPP-T3uPpBsTf9G7tz_xk6v_k3qD98mu4VL7eKZR5iOiiokLxhgsJvc9SvaA |
CitedBy_id | crossref_primary_10_1038_s41598_025_88416_3 crossref_primary_10_1016_j_scitotenv_2023_168430 crossref_primary_10_1016_j_jplph_2021_153591 crossref_primary_10_51372_bioagro341_7 crossref_primary_10_1111_tpj_15434 crossref_primary_10_1128_msystems_01216_21 crossref_primary_10_3389_fmicb_2020_591697 crossref_primary_10_1038_s41598_025_90595_y crossref_primary_10_1146_annurev_arplant_102820_124504 crossref_primary_10_1016_j_scienta_2022_111591 crossref_primary_10_3390_agriculture14030358 crossref_primary_10_3390_microorganisms11020334 crossref_primary_10_1016_j_apsoil_2021_104308 crossref_primary_10_1016_j_tplants_2019_12_024 crossref_primary_10_1111_pce_14426 crossref_primary_10_1016_j_jhazmat_2024_133579 crossref_primary_10_7717_peerj_8991 crossref_primary_10_3390_plants11233237 crossref_primary_10_1016_j_fcr_2025_109762 crossref_primary_10_3389_fmicb_2022_953097 crossref_primary_10_1038_s41598_022_25834_7 crossref_primary_10_1007_s00572_023_01117_5 crossref_primary_10_1111_oik_09213 crossref_primary_10_1111_nph_19873 crossref_primary_10_3389_fpls_2021_721614 crossref_primary_10_1111_nph_16367 crossref_primary_10_1007_s00442_023_05362_5 crossref_primary_10_1007_s11104_024_06925_y crossref_primary_10_1371_journal_pone_0293906 crossref_primary_10_1021_acsnano_4c04145 crossref_primary_10_1007_s11104_019_04340_2 crossref_primary_10_1002_etc_5400 crossref_primary_10_3390_ijms231911027 crossref_primary_10_1088_1755_1315_1075_1_012005 crossref_primary_10_1016_j_jhazmat_2024_134777 crossref_primary_10_1016_j_plaphy_2024_108808 crossref_primary_10_3389_fpls_2022_1080416 crossref_primary_10_1111_1365_2745_14420 crossref_primary_10_1007_s00572_025_01181_z crossref_primary_10_1016_j_jplph_2022_153646 crossref_primary_10_1007_s12355_024_01414_z crossref_primary_10_1111_ppl_13845 crossref_primary_10_1007_s00572_021_01051_4 crossref_primary_10_3389_fpls_2021_696450 crossref_primary_10_1111_1365_2435_14514 crossref_primary_10_1007_s13199_021_00756_6 crossref_primary_10_1134_S1062359022060140 crossref_primary_10_1002_ppp3_10178 crossref_primary_10_1016_j_apsoil_2024_105344 crossref_primary_10_1016_j_cub_2023_05_033 crossref_primary_10_1093_lambio_ovaf009 crossref_primary_10_1094_MPMI_34_10 crossref_primary_10_1016_j_stress_2024_100656 crossref_primary_10_1038_s41579_024_01073_7 crossref_primary_10_1111_ppl_13857 crossref_primary_10_1016_j_ecoenv_2021_112252 crossref_primary_10_3390_ijms232012585 crossref_primary_10_1007_s00572_024_01150_y crossref_primary_10_15446_caldasia_v46n1_98555 crossref_primary_10_3389_fpls_2022_1064058 crossref_primary_10_1029_2020WR027721 crossref_primary_10_1093_treephys_tpab132 crossref_primary_10_1016_j_scitotenv_2023_163632 crossref_primary_10_3389_fmicb_2024_1432637 crossref_primary_10_3389_fpls_2022_855090 crossref_primary_10_1016_j_scienta_2022_111219 crossref_primary_10_1080_13416979_2022_2043516 crossref_primary_10_1007_s11356_022_23919_4 crossref_primary_10_1186_s40538_023_00526_0 crossref_primary_10_1007_s12355_023_01303_x crossref_primary_10_1016_j_micres_2025_128081 crossref_primary_10_3389_ffunb_2021_735299 crossref_primary_10_1016_j_apsoil_2023_105206 crossref_primary_10_1007_s11104_019_04181_z crossref_primary_10_1016_j_pedobi_2024_151006 crossref_primary_10_15407_agrisp10_01_054 crossref_primary_10_1146_annurev_phyto_121423_042014 crossref_primary_10_1111_1365_2745_14357 crossref_primary_10_1186_s12870_024_05359_z crossref_primary_10_1007_s00572_025_01197_5 crossref_primary_10_1016_j_apsoil_2019_08_006 crossref_primary_10_1007_s11738_021_03321_2 crossref_primary_10_1007_s12298_023_01369_7 crossref_primary_10_1186_s12866_024_03453_8 crossref_primary_10_1016_j_tplants_2019_06_004 crossref_primary_10_1093_aob_mcae212 crossref_primary_10_3390_agronomy14102342 crossref_primary_10_1016_j_tplants_2022_08_014 crossref_primary_10_1016_j_baae_2023_11_004 crossref_primary_10_1007_s00572_023_01119_3 crossref_primary_10_1016_j_tplants_2019_06_008 crossref_primary_10_1016_j_envexpbot_2022_104897 crossref_primary_10_1111_1462_2920_15542 crossref_primary_10_3389_fpls_2022_898286 crossref_primary_10_3389_fpls_2021_804861 crossref_primary_10_1007_s11104_024_06927_w crossref_primary_10_1080_01490451_2024_2331111 crossref_primary_10_1016_j_microb_2025_100260 crossref_primary_10_1016_j_cell_2021_09_030 crossref_primary_10_1016_j_apsoil_2023_104908 crossref_primary_10_1007_s00572_025_01186_8 crossref_primary_10_1111_ppl_14572 crossref_primary_10_1111_ppl_70149 crossref_primary_10_1016_j_apsoil_2024_105387 crossref_primary_10_1007_s13199_023_00904_0 crossref_primary_10_1038_s41586_023_05791_5 crossref_primary_10_3390_plants9111468 crossref_primary_10_15302_J_FASE_2020347 crossref_primary_10_3390_agronomy11102019 crossref_primary_10_1021_acsomega_3c02489 crossref_primary_10_3389_fsufs_2025_1504761 crossref_primary_10_3389_fevo_2023_1152213 crossref_primary_10_1007_s11104_024_07043_5 crossref_primary_10_3390_su132313081 crossref_primary_10_1093_hr_uhae195 crossref_primary_10_1111_plb_13613 crossref_primary_10_1016_j_soilbio_2023_109243 crossref_primary_10_1094_MPMI_35_3 crossref_primary_10_1016_j_envexpbot_2023_105584 crossref_primary_10_1016_j_apsoil_2021_104089 crossref_primary_10_3389_fpls_2023_1129738 crossref_primary_10_1111_gcb_70057 crossref_primary_10_1007_s00425_023_04214_z crossref_primary_10_1111_1365_2435_14723 crossref_primary_10_1016_j_ecoenv_2022_113390 crossref_primary_10_1007_s00572_022_01070_9 crossref_primary_10_1007_s42729_023_01229_z crossref_primary_10_1016_j_scienta_2022_111426 crossref_primary_10_3389_fmicb_2024_1183024 crossref_primary_10_1002_fes3_369 crossref_primary_10_1007_s11104_022_05375_8 crossref_primary_10_3390_plants9091105 crossref_primary_10_1111_jam_14609 crossref_primary_10_3389_fpls_2019_01617 crossref_primary_10_1038_s41438_021_00671_3 crossref_primary_10_1007_s11104_024_06624_8 crossref_primary_10_1007_s13199_023_00905_z crossref_primary_10_1007_s11104_023_06458_w crossref_primary_10_3389_fmicb_2022_1024128 crossref_primary_10_3389_fmicb_2022_991781 crossref_primary_10_3390_agriculture12010001 crossref_primary_10_3389_fpls_2022_1044896 crossref_primary_10_3390_ijms241612628 crossref_primary_10_1016_j_apsoil_2022_104793 crossref_primary_10_3389_fpls_2023_1140267 crossref_primary_10_1080_17429145_2024_2323991 crossref_primary_10_1111_nph_70051 crossref_primary_10_1016_j_envpol_2023_122990 crossref_primary_10_1016_j_jhazmat_2020_123919 crossref_primary_10_1111_ppl_13318 crossref_primary_10_3390_jof8060631 crossref_primary_10_1080_17429145_2022_2086307 crossref_primary_10_1093_plphys_kiae645 crossref_primary_10_1111_1365_2745_14393 crossref_primary_10_1111_ppl_14521 crossref_primary_10_3389_fpls_2023_1321885 crossref_primary_10_1007_s13199_023_00954_4 crossref_primary_10_1111_1365_2435_14349 crossref_primary_10_3390_plants13091231 crossref_primary_10_1111_nph_17973 crossref_primary_10_3389_fevo_2023_1224540 crossref_primary_10_1016_j_cub_2024_09_019 crossref_primary_10_3389_fpls_2022_1015947 crossref_primary_10_3390_su15076082 crossref_primary_10_1007_s00572_020_00987_3 crossref_primary_10_1002_saj2_20679 crossref_primary_10_1016_j_ecoenv_2023_114849 crossref_primary_10_3390_agronomy9120840 crossref_primary_10_1016_j_funeco_2021_101070 crossref_primary_10_1186_s43008_024_00165_6 crossref_primary_10_1016_j_apsoil_2021_104034 crossref_primary_10_1016_j_jhazmat_2021_127430 crossref_primary_10_1007_s42729_023_01262_y crossref_primary_10_1016_j_plaphy_2024_108648 crossref_primary_10_1016_j_foreco_2024_122470 crossref_primary_10_1007_s00572_024_01166_4 crossref_primary_10_1111_nph_17979 crossref_primary_10_1016_j_scienta_2021_110808 crossref_primary_10_1016_j_pld_2021_06_005 crossref_primary_10_1002_ppp3_10212 crossref_primary_10_1111_nph_18499 crossref_primary_10_1371_journal_pone_0224938 crossref_primary_10_1007_s11627_023_10345_5 crossref_primary_10_1007_s00203_020_01915_x crossref_primary_10_1111_nph_16190 crossref_primary_10_1016_j_apsoil_2024_105507 crossref_primary_10_3390_agronomy14112699 crossref_primary_10_3390_plants13121678 crossref_primary_10_1111_sum_13130 crossref_primary_10_3389_fmicb_2024_1289022 crossref_primary_10_1111_nph_18933 crossref_primary_10_1016_j_ncrops_2023_11_002 crossref_primary_10_1016_j_apsoil_2021_104060 crossref_primary_10_1016_j_scienta_2024_113722 crossref_primary_10_1007_s00374_025_01891_8 crossref_primary_10_1016_j_envexpbot_2020_104096 crossref_primary_10_1111_nph_19338 crossref_primary_10_1093_pcp_pcac113 crossref_primary_10_1038_s41396_020_00786_w crossref_primary_10_1007_s00374_022_01636_x crossref_primary_10_1038_s41598_020_72985_6 crossref_primary_10_3389_fpls_2022_1094194 crossref_primary_10_1007_s00374_024_01849_2 crossref_primary_10_1007_s42729_022_00900_1 crossref_primary_10_1094_MPMI_04_21_0097_R crossref_primary_10_1038_s41586_025_08614_x crossref_primary_10_1002_ppp3_10213 crossref_primary_10_1007_s00425_024_04492_1 crossref_primary_10_1007_s00572_021_01033_6 crossref_primary_10_1002_ppp3_10151 crossref_primary_10_1016_j_plaphy_2025_109488 crossref_primary_10_1111_nph_17424 crossref_primary_10_1016_j_scitotenv_2023_168994 crossref_primary_10_3390_jof9040479 crossref_primary_10_3390_foods11223612 crossref_primary_10_31594_commagene_1449187 crossref_primary_10_1371_journal_pone_0286285 crossref_primary_10_1007_s00572_020_00967_7 crossref_primary_10_3390_jof7090719 crossref_primary_10_1007_s00572_025_01193_9 crossref_primary_10_1002_ecm_1634 crossref_primary_10_1111_gcb_17034 crossref_primary_10_7717_peerj_17849 crossref_primary_10_3390_jof10010011 crossref_primary_10_1016_j_bcab_2021_102256 crossref_primary_10_3390_microorganisms10010075 crossref_primary_10_1007_s00572_020_00981_9 crossref_primary_10_3389_fpls_2022_989155 crossref_primary_10_3389_fpls_2023_1169310 crossref_primary_10_1016_j_rhisph_2020_100230 crossref_primary_10_1038_s41396_021_01112_8 crossref_primary_10_1016_j_funeco_2022_101211 crossref_primary_10_1007_s00572_021_01053_2 crossref_primary_10_3390_land12061209 crossref_primary_10_3390_f13030421 crossref_primary_10_3390_ijerph19095029 crossref_primary_10_3390_microorganisms13030661 crossref_primary_10_3390_su141610220 crossref_primary_10_1093_pcp_pcad077 crossref_primary_10_1093_jxb_erae210 crossref_primary_10_1093_jpe_rtac081 crossref_primary_10_3390_plants11212875 crossref_primary_10_1016_j_apsoil_2021_104127 crossref_primary_10_1016_j_biocontrol_2025_105729 crossref_primary_10_1038_s41598_021_92837_1 crossref_primary_10_3390_microorganisms12071281 crossref_primary_10_1111_nph_18858 crossref_primary_10_1094_MPMI_04_21_0084_R crossref_primary_10_1007_s13593_020_00647_y crossref_primary_10_1007_s00572_024_01152_w crossref_primary_10_1111_nph_18289 crossref_primary_10_1016_j_hpj_2023_04_006 crossref_primary_10_3389_fpls_2024_1464547 crossref_primary_10_3390_f16010024 crossref_primary_10_3389_fpls_2022_853435 crossref_primary_10_1007_s11104_023_06426_4 crossref_primary_10_1016_j_envpol_2023_121597 crossref_primary_10_3390_plants9091067 crossref_primary_10_1038_s41467_022_30218_6 crossref_primary_10_1002_imo2_46 crossref_primary_10_1016_j_apsoil_2020_103782 crossref_primary_10_1080_03650340_2021_1928088 crossref_primary_10_3389_fpls_2022_900231 crossref_primary_10_1038_s41467_024_45026_3 crossref_primary_10_3390_plants13060826 crossref_primary_10_1007_s00572_021_01039_0 crossref_primary_10_1093_aob_mcad095 crossref_primary_10_3390_ijms242316774 crossref_primary_10_3389_fpls_2024_1385245 crossref_primary_10_1007_s00572_021_01031_8 crossref_primary_10_1111_1365_2435_14689 |
Cites_doi | 10.1016/j.tplants.2006.04.005 10.1074/mcp.M600044-MCP200 10.1111/j.1365-2672.2009.04414.x 10.1073/pnas.0608136104 10.3389/fpls.2017.00817 10.1093/jxb/eri163 10.2136/sssaj1999.6351055x 10.1016/j.pbi.2007.05.004 10.1111/j.1365-313X.2010.04385.x 10.7554/eLife.25114 10.1105/tpc.004861 10.1111/nph.14533 10.1111/j.1469-8137.1994.tb04004.x 10.1016/j.tplants.2013.05.001 10.1016/j.fgb.2011.08.003 10.1073/pnas.202474599 10.1104/pp.104.056572 10.1074/jbc.M403938200 10.1038/nature22009 10.1126/science.aam9970 10.1111/j.1469-8137.2011.03948.x 10.1042/bj20031672 10.1046/j.0028-646x.2001.00200.x 10.1007/s00425-002-0921-3 10.1017/S0021859618000126 10.1016/j.devcel.2010.05.008 10.1093/pcp/pcq099 10.1007/s10725-008-9266-7 10.1016/j.fgb.2005.10.005 10.1111/j.1469-8137.2008.02574.x 10.1016/j.phytochem.2006.09.033 10.1093/pcp/pcx044 10.1111/pce.13471 10.1016/j.soilbio.2017.05.018 10.1111/j.1365-313X.2011.04810.x 10.1016/j.tplants.2012.06.007 10.1080/09583150120076120 10.1111/nph.14465 10.1093/gbe/evr089 10.1104/pp.124.3.949 10.1094/MPMI.2001.14.2.255 10.1046/j.1469-8137.1997.00646.x 10.1105/tpc.114.131144 10.1038/ismej.2011.110 10.1038/35106601 10.1111/j.1462-2920.2009.02099.x 10.1104/pp.109.149823 10.3389/fpls.2015.00786 10.1007/s00572-017-0802-z 10.1007/s00572-010-0333-3 10.1126/science.1208473 10.1104/pp.120.2.587 10.1016/j.funeco.2009.07.003 10.1016/j.tplants.2013.08.008 10.1016/j.tree.2006.07.003 10.1007/s00425-013-1842-z 10.3852/16-042 10.2307/2261676 10.1104/pp.104.053041 10.1080/15592324.2015.1131372 10.1094/MPMI-20-9-1055 10.1093/jxb/erh147 10.1038/nplants.2015.159 10.1371/journal.pone.0090841 10.1016/j.still.2012.01.012 10.1007/s004250000323 10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2 10.1074/mcp.M900090-MCP200 10.1016/S0014-5793(02)03271-4 10.1111/j.1365-313X.2011.04746.x 10.1093/mp/sss079 10.1007/978-3-0348-8117-3_3 10.1128/AEM.69.1.616-624.2003 10.1007/s00572-013-0496-9 10.1016/j.febslet.2010.09.033 10.1016/j.tplants.2016.01.003 10.1111/j.1461-0248.2009.01430.x 10.1111/j.1469-8137.2005.01536.x 10.1111/j.1469-8137.2006.01935.x 10.1111/j.1399-3054.2004.00414.x 10.1016/j.pbi.2017.05.008 10.1051/agro:19921021 10.1111/j.1469-8137.1990.tb00393.x 10.1007/s00572-018-0853-9 10.1016/0167-8809(90)90276-J 10.1007/s00374-014-0989-5 10.1111/j.1471-4159.2010.06661.x 10.1016/j.tplants.2016.07.010 10.1016/j.phytochem.2016.01.002 10.1093/jxb/erm096 10.1038/nplants.2015.208 10.1016/S0007-1536(68)80015-4 10.1016/S1874-5334(02)80014-4 10.1104/pp.108.117820 10.1007/s00572-015-0671-2 10.1105/tpc.111.089813 10.1055/s-2002-37407 10.1371/journal.pone.0072126 10.1128/AEM.71.9.5341-5347.2005 10.7554/eLife.29107 10.1371/journal.pone.0195345 10.1080/713608315 10.1007/s11738-002-0031-7 10.1146/annurev.arplant.55.031903.141758 10.1371/journal.pone.0013324 10.1046/j.1469-8137.1997.00729.x 10.1016/j.tplants.2012.03.009 10.1046/j.1365-313X.1996.09040491.x 10.1111/nph.12199 10.1016/j.tplants.2017.05.008 10.1073/pnas.1200407109 10.3390/agronomy5040587 10.1016/S0304-4238(02)00210-8 10.1128/AEM.71.11.6673-6679.2005 10.1111/j.1469-8137.2008.02623.x 10.1016/S0167-1987(02)00158-7 10.1046/j.0028-646x.2001.00216.x 10.3389/fpls.2014.00436 10.1038/nature03610 10.1016/j.jplph.2011.01.026 10.1139/m95-015 10.1104/pp.109.136390 10.1016/S0007-1536(87)80018-9 10.3389/fpls.2018.01611 10.1126/science.289.5486.1920 10.1111/nph.13292 10.1104/pp.108.1.7 10.1093/pcp/pcn202 10.2307/3566048 10.1016/j.molp.2017.07.012 10.1093/pcp/pcy094 10.1111/j.1461-0248.2004.00577.x 10.1111/pce.12659 10.1007/s00572-006-0094-1 10.1016/j.pbi.2017.08.008 10.1111/j.1469-8137.2005.01374.x 10.1038/286885a0 10.1371/journal.ppat.1002600 10.1007/s00572-015-0644-5 10.1016/j.tplants.2013.06.004 10.1111/nph.12125 10.1046/j.1469-8137.1997.00810.x 10.1038/nature05364 10.1111/j.1469-8137.1985.tb03672.x 10.1016/j.soilbio.2010.09.011 10.1074/jbc.M403440200 10.1111/nph.12188 10.1126/science.aan0081 10.5962/bhl.title.41248 10.1046/j.1469-8137.2000.00615.x 10.1105/tpc.113.120527 10.1093/jxb/eru283 10.1111/j.1469-8137.2004.01145.x 10.1111/nph.12351 10.1073/pnas.1721868115 10.1104/pp.106.094102 10.1046/j.1469-8137.1997.00757.x 10.1073/pnas.1118650109 10.1186/1471-2229-9-10 10.1105/tpc.113.120436 10.1093/jxb/ers126 10.1111/j.1469-8137.2008.02726.x 10.1104/pp.112.195727 10.1111/j.1469-8137.2005.01532.x 10.1890/05-0755 10.1111/j.1469-8137.2004.01236.x 10.1007/s11104-012-1583-y 10.1111/ele.12115 10.1007/s00572-017-0786-8 10.1111/j.1365-313X.2005.02364.x 10.1111/nph.13172 10.1093/jexbot/53.370.825 10.1111/j.1365-2745.2009.01570.x 10.1111/j.1469-8137.2004.01169.x 10.3389/fpls.2018.00897 10.1016/j.soilbio.2015.03.003 10.1104/pp.010466 10.1111/j.1365-313X.2005.02384.x 10.1016/j.plaphy.2016.06.023 10.1111/nph.12445 10.1111/j.1461-0248.2007.01113.x 10.1002/jsfa.3998 10.1073/pnas.1501676112 10.1007/s11104-011-1047-9 10.3389/fpls.2016.00679 10.1007/s00572-015-0631-x 10.1242/jcs.01681 10.1080/07352689.2014.897897 10.1038/ismej.2015.91 |
ContentType | Journal Article |
Copyright | 2019 The Authors © 2019 New Phytologist Trust 2019 The Authors. New Phytologist © 2019 New Phytologist Trust 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. Copyright © 2019 New Phytologist Trust Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 The Authors © 2019 New Phytologist Trust – notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust – notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. – notice: Copyright © 2019 New Phytologist Trust – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC |
DOI | 10.1111/nph.15775 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Agriculture Environmental Sciences |
EISSN | 1469-8137 |
EndPage | 1142 |
ExternalDocumentID | oai_HAL_hal_02627273v1 30843207 10_1111_nph_15775 NPH15775 26759462 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Institut National de la Recherche Agronomique – fundername: Plan national Dépérissement du vignoble – fundername: H2020 ERA‐net project – fundername: The Burgundy Franche Comté Regional Council – fundername: CORE Organic Cofund – fundername: Germaine de Stael Program funderid: TRANSBIO 26510SG – fundername: European Commission |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC UMC |
ID | FETCH-LOGICAL-c4425-56a15d083c204226bd4ed76d59753bcd38ab2b84a38cb30f3d3aa34ab2dfa6373 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri May 09 12:16:52 EDT 2025 Fri Jul 11 18:26:28 EDT 2025 Thu Jul 10 19:30:36 EDT 2025 Fri Jul 25 10:25:36 EDT 2025 Wed Feb 19 02:31:00 EST 2025 Thu Apr 24 23:07:04 EDT 2025 Tue Jul 01 03:09:30 EDT 2025 Wed Jan 22 16:41:01 EST 2025 Thu Jul 03 22:07:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | membrane lipids common mycorrhizal networks transporters carbon supply arbuscular mycorrhizal symbiosis plant-plant interactions mineral nutrition |
Language | English |
License | 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4425-56a15d083c204226bd4ed76d59753bcd38ab2b84a38cb30f3d3aa34ab2dfa6373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2789-7818 0000-0001-7197-5612 0000-0003-4668-4201 0000-0002-1723-3164 |
PMID | 30843207 |
PQID | 2257531795 |
PQPubID | 2026848 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_02627273v1 proquest_miscellaneous_2305157569 proquest_miscellaneous_2188985130 proquest_journals_2257531795 pubmed_primary_30843207 crossref_citationtrail_10_1111_nph_15775 crossref_primary_10_1111_nph_15775 wiley_primary_10_1111_nph_15775_NPH15775 jstor_primary_26759462 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2019 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2010; 12 2007; 104 2002; 14 2004; 164 1973; 224 2012; 121 2010; 13 2010; 108 2010; 18 2004; 7 2002; 99 2010; 584 2014; 26 2012; 17 2013; 363 2013; 8 2016; 39 2018; 42 2017b; 10 2018; 9 2010; 20 2009; 97 2000; 124 2007; 173 2006; 21 2013; 237 2015; 86 2010; 113 2011; 68 2014; 19 2013; 198 2005; 71 2010; 3 1985; 99 1968; 51 2010; 5 2007; 68 2001; 414 2006; 444 2007; 17 2018; 28 1990; 37 2015; 51 2009; 181 2005; 118 2016; 10 2002; 2 2002; 4 1995 2008; 55 2001; 28 2007; 10 2011; 3 2012; 109 2016; 11 1995; 41 2004; 55 2016; 7 2010; 42 2001; 151 2016; 2 2004; 279 1990; 114 2012; 354 2017; 58 2006; 43 1990; 29 2015; 112 2018; 115 2012; 193 2002; 128 2016; 21 2002; 528 2016; 26 2017; 543 2010; 51 2003; 22 2018; 13 2017; 40 2017; 6 2015; 34 2004; 122 2017a; 8 2002; 53 2016; 108 2016; 107 2013; 23 2005; 137 2007; 144 2013; 200 1999; 120 2009; 150 2008; 147 2000; 211 2017; 112 2017; 356 1992; 12 2003; 98 2014; 65 2013; 18 1987; 88 2011; 168 2010; 64 2014; 5 2004; 378 2013; 16 2000; 289 2000 2009; 50 2017; 39 1986; 47 2010; 152 2011; 23 2007; 20 2001; 11 2012; 69 2014; 9 2003; 84 1966; 21 2001; 14 1996; 9 2012; 63 2014; 201 1997; 135 1997; 136 2015; 1 1997; 137 2011; 333 2015; 6 2015; 5 2017; 28 2010 2006; 11 1993; 81 2017; 27 2015; 169 2017; 22 2005; 435 1999; 69 2002; 216 2016; 123 2008 2005; 42 2006; 5 1999; 63 2002 2015; 205 2003; 71 2015; 7 2017; 214 2007; 58 2008; 180 2015; 27 1994; 128 2012a; 17 2005; 165 2000; 146 2005; 166 2006; 87 2005; 168 2018; 156 2002; 24 1995; 108 2003; 69 1843 2009; 9 2009; 8 2011; 48 2012; 6 2012; 159 2010; 90 1980; 286 2012b; 5 2018; 59 2005; 56 2012; 8 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 Schüßler A (e_1_2_7_162_1) 2010 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 Mayr E (e_1_2_7_124_1) 2000 Smith SE (e_1_2_7_168_1) 2001; 28 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_177_1 Simon‐Plas F (e_1_2_7_167_1) 2010 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 Smith SE (e_1_2_7_170_1) 2008 e_1_2_7_67_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_166_1 Ho I (e_1_2_7_79_1) 1973; 224 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 Lanowska J (e_1_2_7_109_1) 1966; 21 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_194_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_157_1 Marschner H (e_1_2_7_123_1) 1995 e_1_2_7_108_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 Park HJ (e_1_2_7_143_1) 2015; 169 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_48_1 e_1_2_7_147_1 e_1_2_7_113_1 Hegde DM (e_1_2_7_75_1) 1999; 69 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_197_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_186_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_198_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_164_1 e_1_2_7_187_1 Morton JB (e_1_2_7_132_1) 1990; 37 e_1_2_7_149_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_138_1 |
References_xml | – volume: 6 start-page: 786 year: 2015 article-title: Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus publication-title: Frontiers in Plant Science – volume: 7 start-page: 679 year: 2016 article-title: GintAMT3 – a low‐affinity ammonium transporter of the arbuscular mycorrhizal publication-title: Frontiers in Plant Science – volume: 356 start-page: 1175 year: 2017 end-page: 1178 article-title: Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant publication-title: Science – volume: 146 start-page: 155 year: 2000 end-page: 161 article-title: Transport of N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 71 start-page: 6673 year: 2005 end-page: 6679 article-title: Bacteria associated with spores of the arbuscular mycorrhizal fungi and publication-title: Applied and Environmental Microbiology – volume: 414 start-page: 462 year: 2001 end-page: 470 article-title: A phosphate transporter expressed in arbuscule‐containing cells in potato publication-title: Nature – volume: 12 start-page: 2165 year: 2010 end-page: 2179 article-title: Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land‐use gradient using a pyrosequencing approach publication-title: Environmental Microbiology – volume: 51 start-page: 379 year: 2015 end-page: 389 article-title: Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates publication-title: Biology and Fertility of Soils – volume: 71 start-page: 15 year: 2003 end-page: 23 article-title: Soil microbial properties under permanent grass, conventional tillage, and no‐till management in South Dakota publication-title: Soil and Tillage Research – volume: 122 start-page: 397 year: 2004 end-page: 403 article-title: Receptor kinases with leucine‐rich repeats are enriched in Triton X‐100 insoluble plasma membrane microdomains from plants publication-title: Physiologia Plantarum – volume: 144 start-page: 402 year: 2007 end-page: 418 article-title: Characterization of lipid rafts from root plasma membranes: a proteomic study reveals the presence of a raft associated redox system publication-title: Plant Physiology – volume: 200 start-page: 229 year: 2013 end-page: 240 article-title: Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants publication-title: New Phytologist – volume: 50 start-page: 341 year: 2009 end-page: 359 article-title: Alterations in detergent‐resistant plasma membrane microdomains in during cold acclimatation publication-title: Plant & Cell Physiology – volume: 124 start-page: 949 year: 2000 end-page: 958 article-title: Carbon metabolism and transport in arbuscular mycorrhizas publication-title: Plant Physiology – volume: 356 start-page: 1172 year: 2017 end-page: 1175 article-title: Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi publication-title: Science – volume: 27 start-page: 695 year: 2017 end-page: 708 article-title: Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses publication-title: Mycorrhiza – volume: 216 start-page: 23 year: 2002 end-page: 37 article-title: Molecular mechanisms of phosphate transport in plants publication-title: Planta – volume: 135 start-page: 575 year: 1997 end-page: 586 article-title: Functioning of mycorrhizal associations along the mutualism‐parasitism continuum publication-title: New Phytologist – volume: 6 start-page: e29107 year: 2017 article-title: Lipid transfer from plants to arbuscular mycorrhiza fungi publication-title: eLife – volume: 29 start-page: 193 year: 1990 end-page: 197 article-title: Influence of inoculation with VA mycorrhizal fungus sp. on growth of strawberries and runner formation publication-title: Agriculture, Ecosystems & Environment – volume: 16 start-page: 835 year: 2013 end-page: 843 article-title: Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack publication-title: Ecology Letters – volume: 71 start-page: 5341 year: 2005 end-page: 5347 article-title: Dependence of arbuscular‐mycorrhizal fungi on their plant host for palmitic acid synthesis publication-title: Applied and Environmental Microbiology – volume: 9 start-page: 491 year: 1996 end-page: 503 article-title: A sugar transporter from : altered expression pattern in roots during vesicular arbuscular (VA) mycorrhizal associations publication-title: The Plant Journal – year: 2008 – volume: 26 start-page: 1818 year: 2014 end-page: 1830 article-title: A H ‐ATPase that energizes nutrient uptake during mycorrhizal symbioses in rice and publication-title: Plant Cell – volume: 14 start-page: 2413 year: 2002 end-page: 2429 article-title: A phosphate transporter from involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi publication-title: Plant Cell – volume: 37 start-page: 471 year: 1990 end-page: 491 article-title: Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae publication-title: Mycotaxon – volume: 363 start-page: 7 year: 2013 end-page: 18 article-title: How useful is the mutualism‐parasitism continuum of arbuscular mycorrhizal functioning? publication-title: Plant and Soil – volume: 65 start-page: 5231 year: 2014 end-page: 5241 article-title: Increasing phosphorus supply is not the mechanism by which arbuscular mycorrhiza increase attractiveness of bean ( ) to aphids publication-title: Journal of Experimental Botany – volume: 137 start-page: 104 year: 2005 end-page: 116 article-title: Analysis of detergent‐resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts publication-title: Plant Physiology – volume: 108 start-page: 1028 year: 2016 end-page: 1046 article-title: A phylum‐level phylogenetic classification of zygomycete fungi based on genome‐scale data publication-title: Mycologia – volume: 168 start-page: 687 year: 2005 end-page: 696 article-title: The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis publication-title: New Phytologist – volume: 99 start-page: 449 year: 1985 end-page: 462 article-title: The nature of growth depressions in sunflower caused by vesicular‐arbuscular mycorrhizal infection publication-title: New Phytologist – volume: 4 start-page: 754 year: 2002 end-page: 761 article-title: Mtha1, a plasma membrane H ‐ATPase gene from , shows arbuscule‐specific induced expression in mycorrhizal tissue publication-title: Plant Biology – volume: 109 start-page: 2666 year: 2012 end-page: 2671 article-title: Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis publication-title: Proceedings of the National Academy of Science, USA – volume: 5 start-page: 1346 year: 2012b end-page: 1358 article-title: The sucrose transporter family. Characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi publication-title: Molecular Plant – volume: 98 start-page: 173 year: 2003 end-page: 183 article-title: Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum publication-title: Horticultural Science – volume: 279 start-page: 36277 year: 2004 end-page: 36286 article-title: Lipid rafts in higher plant cells: purification and characterization of Triton X‐100‐insoluble microdomains from tobacco plasma membrane publication-title: Journal of Biological Chemistry – volume: 10 start-page: 393 year: 2007 end-page: 398 article-title: Unraveling mycorrhiza‐induced resistance publication-title: Current Opinion in Plant Biology – volume: 166 start-page: 981 year: 2005 end-page: 992 article-title: Nitrogen supply affects arbuscular mycorrhizal colonization of in a phosphate‐polluted field site publication-title: New Phytologist – volume: 165 start-page: 261 year: 2005 end-page: 271 article-title: Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenetic groups publication-title: New Phytologist – volume: 42 start-page: 1087 year: 2018 end-page: 1103 article-title: Physiological and molecular mechanisms of heavy metals accumulation in nonmycorrhizal versus mycorrhizal plants publication-title: Plant, Cell & Environment – volume: 543 start-page: 328 year: 2017 end-page: 336 article-title: Plant signalling in symbiosis and immunity publication-title: Nature – volume: 168 start-page: 677 year: 2005 end-page: 686 article-title: The influence of external nitrogen on carbon allocation to in monoxenic arbuscular mycorrhiza publication-title: New Phytologist – volume: 9 start-page: 987 year: 2018 article-title: Arbuscular mycorrhizal symbiosis as a promising resource for improving berry quality in grapevines under changing environments publication-title: Frontiers in Plant Science – volume: 13 start-page: e0195345 year: 2018 article-title: Fungal community profiles in agricultural soils of a long‐term field trial under different tillage, fertilization and crop rotation conditions analyzed by high‐throughput ITS‐amplicon sequencing publication-title: PLoS ONE – volume: 97 start-page: 1139 year: 2009 end-page: 1150 article-title: Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems publication-title: Journal of Ecology – volume: 18 start-page: 484 year: 2013 end-page: 491 article-title: A trait‐based framework to understand life history of mycorrhizal fungi publication-title: Trends in Plant Science – volume: 435 start-page: 819 year: 2005 end-page: 823 article-title: Nitrogen transfer in the arbuscular mycorrhizal symbiosis publication-title: Nature – volume: 51 start-page: 1411 year: 2010 end-page: 1415 article-title: Localized expression of arbuscular mycorrhiza‐inducible ammonium transporters in soybean publication-title: Plant and Cell Physiology – volume: 26 start-page: 1808 year: 2014 end-page: 1817 article-title: The H ‐ATPase HA1 of is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis publication-title: Plant Cell – volume: 26 start-page: 33 year: 2016 end-page: 46 article-title: Arbuscular mycorrhizal fungal communities and populations shift in response to short term ploughing and fertilisation in a buffer strip publication-title: Mycorrhiza – volume: 113 start-page: 978 year: 2010 end-page: 989 article-title: Increased expression of cholesterol 24S‐hydroxylase results in disruption of glial glutamate transporter EAAT2 association with lipid rafts: a potential role in Alzheimer's disease publication-title: Journal of Neurochemistry – volume: 69 start-page: 614 year: 2003 end-page: 624 article-title: Genetic diversity of isolates of from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis publication-title: Applied and Environmental Microbiology – volume: 115 start-page: 5289 year: 2018 end-page: 5294 article-title: ymbiotic root infections in require remorin‐mediated receptor stabilization in membrane nanodomains publication-title: Proceedings of the National Academy of Sciences, USA – volume: 201 start-page: 1150 year: 2014 end-page: 1155 article-title: SWEET sugar transporters for phloem transport and pathogen nutrition publication-title: New Phytologist – volume: 112 start-page: 7791 year: 2015 end-page: 7796 article-title: Minimal genomes of mycoplasma‐related endobacteria are plastic and contain host‐derived genes for sustained life within Glomeromycota publication-title: Proceedings of the National Academy of Science, USA – volume: 10 start-page: 130 year: 2016 end-page: 144 article-title: Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential publication-title: ISME Journal – volume: 211 start-page: 609 year: 2000 end-page: 613 article-title: Differential activation of H ‐ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco publication-title: Planta – volume: 22 start-page: 531 year: 2003 end-page: 567 article-title: Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs) publication-title: Critical Reviewers in Plant Science – year: 1995 – volume: 120 start-page: 587 year: 1999 end-page: 598 article-title: Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza publication-title: Plant Physiology – volume: 53 start-page: 825 year: 2002 end-page: 833 article-title: Nitrate transport in plants: which gene and which control? publication-title: Journal of Experimental Botany – volume: 198 start-page: 853 year: 2013 end-page: 865 article-title: The family of ammonium transporters (AMT) in : two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 8 start-page: 2186 year: 2009 end-page: 2198 article-title: Quantitative proteomics reveals a dynamic association of proteins to detergent‐resistant membranes upon elicitor signalling in tobacco publication-title: Molecular & Cell Proteomics – volume: 286 start-page: 885 year: 1980 end-page: 886 article-title: Enhanced plant growth by siderophores produced by plant growth‐promoting rhizobacteria publication-title: Nature – volume: 58 start-page: 2491 year: 2007 end-page: 2501 article-title: Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza‐enhanced expression publication-title: Journal of Experimental Botany – volume: 237 start-page: 1267 year: 2013 end-page: 1277 article-title: The expression of GintPT, the phosphate transporter of , depends on the symbiotic status and phosphate availability publication-title: Planta – volume: 64 start-page: 1002 year: 2010 end-page: 1017 article-title: Phosphate systemically inhibits development of arbuscular mycorrhiza in and represses genes involved in mycorrhizal functioning publication-title: The Plant Journal – volume: 7 start-page: 533 year: 2015 end-page: 546 article-title: High functional diversity within arbuscular mycorrhizal fungal species is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism publication-title: Mycorrhiza – volume: 13 start-page: 394 year: 2010 end-page: 407 article-title: A meta‐analysis of context‐dependency in plant response to inoculation with mycorrhizal fungi publication-title: Ecology Letters – volume: 6 start-page: e25114 year: 2017 article-title: Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains publication-title: eLife – volume: 128 start-page: 211 year: 1994 end-page: 218 article-title: The effects of mycorrhizal infection on components of plant growth and reproduction publication-title: New Phytologist – volume: 151 start-page: 725 year: 2001 end-page: 734 article-title: Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil publication-title: New Phytologist – volume: 147 start-page: 429 year: 2008 end-page: 437 article-title: Characterization of an amino acid permease from the endomycorrhizal fungus publication-title: Plant Physiology – volume: 198 start-page: 203 year: 2013 end-page: 213 article-title: Common mycorrhizal networks amplify size inequality in populations publication-title: New Phytologist – volume: 34 start-page: 4 year: 2015 end-page: 16 article-title: Inorganic nitrogen uptake and transport in beneficial plant root‐microbe interactions publication-title: Critical Reviews in Plant Sciences – volume: 88 start-page: 411 year: 1987 end-page: 413 article-title: Spore germination and viability of a vesicular arbuscular mycorrhizal fungus, publication-title: Transactions of the British Mycological Society B – volume: 23 start-page: 597 year: 2013 end-page: 625 article-title: Biotrophic transportome in mutualistic plant‐fungal interactions publication-title: Mycorrhiza – volume: 444 start-page: 933 year: 2006 end-page: 936 article-title: Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi publication-title: Nature – volume: 28 start-page: 779 year: 2018 end-page: 785 article-title: Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by under drought publication-title: Mycorrhiza – volume: 123 start-page: 4 year: 2016 end-page: 15 article-title: Arbuscular mycorrhizal fungal responses to abiotic stresses: a review publication-title: Phytochemistry – start-page: 353 year: 2010 end-page: 378 – volume: 11 start-page: 2 year: 2016 article-title: Regulation of plants’ phosphate uptake in common mycorrhizal networks: role of intraradical fungal phosphate transporters publication-title: Plant Signaling and Behavior – volume: 68 start-page: 954 year: 2011 end-page: 965 article-title: mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis publication-title: The Plant Journal – volume: 156 start-page: 680 year: 2018 end-page: 688 article-title: Improvement of plant performance under water deficit with the employment of biological and chemical priming agents publication-title: Journal of Agricultural Science – volume: 42 start-page: 236 year: 2005 end-page: 250 article-title: The characterization of novel mycorrhizaspecific phosphate transporters from and uncovers functional redundancy in symbiotic phosphate transport in solanaceous species publication-title: The Plant Journal – volume: 22 start-page: 652 year: 2017 end-page: 660 article-title: Diet of arbuscular mycorrhizal fungi: bread and butter? publication-title: Trends Plant Science – volume: 168 start-page: 1256 year: 2011 end-page: 1263 article-title: Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza publication-title: Journal of Plant Physiology – volume: 39 start-page: 50 year: 2017 end-page: 56 article-title: Plant carbon nourishment of arbuscular mycorrhizal fungi publication-title: Current Opinion in Plant Biology – volume: 107 start-page: 354 year: 2016 end-page: 363 article-title: Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner publication-title: Plant Physiology and Biochemistry – volume: 205 start-page: 1632 year: 2015 end-page: 1645 article-title: Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax publication-title: New Phytologist – volume: 86 start-page: 159 year: 2015 end-page: 163 article-title: The effect of different nitrogen sources on the symbiotic interaction between and : expression of plant and fungal genes involved in nitrogen assimilation publication-title: Soil Biology and Biochemistry – volume: 55 start-page: 1293 year: 2004 end-page: 1305 article-title: Regulatory levels for the transport of ammonium in plant roots publication-title: Journal of Experimental Botany – volume: 137 start-page: 1283 year: 2005 end-page: 1301 article-title: Overlaps in the transcriptional profiles of roots inoculated with two different glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza publication-title: Plant Physiology – volume: 137 start-page: 345 year: 1997 end-page: 349 article-title: Effect of the arbuscular mycorrhizal fungus on the uptake of amino nitrogen by publication-title: New Phytologist – volume: 43 start-page: 102 year: 2006 end-page: 110 article-title: GintAMT1 encodes a functional high‐affinity ammonium transporter that is expressed in the extraradical mycelium of publication-title: Fungal Genetics and Biology – volume: 17 start-page: 75 year: 2007 end-page: 91 article-title: Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas publication-title: Mycorrhiza – volume: 14 start-page: 255 year: 2001 end-page: 260 article-title: Mucoid mutants of the biocontrol strain CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots publication-title: Molecular Plant–Microbe Interactions – volume: 55 start-page: 341 year: 2004 end-page: 372 article-title: Transport mechanisms for organic forms of carbon and nitrogen between source and sink publication-title: Annual Review of Plant Biology – volume: 90 start-page: 1774 year: 2010 end-page: 1782 article-title: Root colonisation by the arbuscular mycorrhizal fungus alters the quality of strawberry fruits ( x Duch.) at different nitrogen levels publication-title: Journal of the Science of Food and Agriculture – volume: 19 start-page: 5 year: 2014 end-page: 9 article-title: A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants publication-title: Trends in Plant Science – volume: 159 start-page: 789 year: 2012 end-page: 797 article-title: Mycorrhizal networks: common goods of plants shared under unequal terms of trade publication-title: Plant Physiology – volume: 8 start-page: e1002600 year: 2012 article-title: The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection publication-title: PLoS Pathogen – volume: 40 start-page: 82 year: 2017 end-page: 88 article-title: Membrane nanodomains and microdomains in plant‐microbe interactions publication-title: Current Opinion in Plant Biology – volume: 42 start-page: 433 year: 2005 end-page: 443 article-title: An essential function of phosphatidylinositol phosphates in activation of plant shaker‐type K channels publication-title: The Plant Journal – volume: 354 start-page: 97 year: 2012 end-page: 106 article-title: Differences in the AMF diversity in soil and roots between two annual and perennial gramineous plants co‐occurring in a Mediterranean, semiarid degraded area publication-title: Plant and Soil – volume: 11 start-page: 263 year: 2006 end-page: 266 article-title: Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface publication-title: Trends in Plant Science – volume: 136 start-page: 533 year: 1997 end-page: 538 article-title: Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry publication-title: New Phytologist – volume: 528 start-page: 119 year: 2002 end-page: 124 article-title: Characterization of a general amino acid permease from publication-title: FEBS Letters – year: 1843 – volume: 121 start-page: 63 year: 2012 end-page: 67 article-title: Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions publication-title: Soil Tillage Research – volume: 6 start-page: 136 year: 2012 end-page: 145 article-title: The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions publication-title: ISME Journal – volume: 23 start-page: 3812 year: 2011 end-page: 3823 article-title: A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus sp is crucial for the symbiotic relationship with plants publication-title: Plant Cell – volume: 99 start-page: 13324 year: 2002 end-page: 13329 article-title: Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 47 start-page: 211 year: 1986 end-page: 222 article-title: Size variability and competition in plant monocultures publication-title: Oikos – volume: 279 start-page: 34388 year: 2004 end-page: 34396 article-title: Association of excitatory amino acid transporters, especially EAAT2 with cholesterol‐rich lipid raft microdomains: importance for excitatory amino acid transporter localization and function publication-title: Journal of Biological Chemistry – volume: 164 start-page: 175 year: 2004 end-page: 181 article-title: Patterns of below‐ground plant interconnections established by means of arbuscular mycorrhizal networks publication-title: New Phytologist – volume: 63 start-page: 4033 year: 2012 end-page: 4044 article-title: Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies publication-title: Journal of Experimental Botany – volume: 378 start-page: 281 year: 2004 end-page: 292 article-title: Lipid rafts: heterogeneity on the high seas publication-title: Biochemical Journal – volume: 181 start-page: 924 year: 2009 end-page: 937 article-title: Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus publication-title: New Phytologist – volume: 69 start-page: 510 year: 2012 end-page: 528 article-title: Arbuscule containing and non‐colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development publication-title: The Plant Journal – volume: 118 start-page: 1099 year: 2005 end-page: 1102 article-title: Lipid rafts and membrane dynamics publication-title: Journal of Cell Sciences – volume: 41 start-page: 109 year: 1995 end-page: 117 article-title: The enhancement of plant growth by free‐living bacteria publication-title: Canadian Journal of Microbiology – volume: 112 start-page: 237 year: 2017 end-page: 247 article-title: Management of the biological diversity of AM fungi by combination of host plant succession and integrity of extraradical mycelium publication-title: Soil Biology and Biochemistry – volume: 21 start-page: 937 year: 2016 end-page: 950 article-title: Take a trip through the plant and fungal transportome of mycorrhiza publication-title: Trends in Plant Science – volume: 108 start-page: 7 year: 1995 end-page: 15 article-title: Partitioning of intermediate carbon metabolism in VAM colonized leek publication-title: Plant Physiology – start-page: 17 year: 2000 end-page: 29 – volume: 9 start-page: 10 year: 2009 article-title: and gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis publication-title: BMC Plant Biology – volume: 104 start-page: 1720 year: 2007 end-page: 1725 article-title: A phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis publication-title: Proceedings of the National Academy of Sciences USA – volume: 20 start-page: 519 year: 2010 end-page: 530 article-title: Agroecology: the key role of arbuscular mycorrhizas in ecosystem services publication-title: Mycorrhiza – volume: 289 start-page: 1920 year: 2000 end-page: 1921 article-title: Glomalean fungi from the Ordovician publication-title: Science – volume: 20 start-page: 1055 year: 2007 end-page: 1062 article-title: Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells publication-title: Molecular Plant–Microbe Interaction – volume: 8 start-page: 817 year: 2017a article-title: Roles, regulation, and agricultural application of plant phosphate transporters publication-title: Frontiers in Plant Science – volume: 56 start-page: 1665 year: 2005 end-page: 1674 article-title: Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of Ca and membrane secretion publication-title: Journal of Experimental Botany – volume: 151 start-page: 717 year: 2001 end-page: 724 article-title: The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks publication-title: New Phytologist – year: 2010 – volume: 42 start-page: 2325 year: 2010 end-page: 2330 article-title: Nitrogen compounds in soil solutions of agricultural land publication-title: Soil Biology and Biochemistry – volume: 51 start-page: 485 year: 1968 end-page: 492 article-title: The distribution of Endogone spores in some Australian and New Zealand soils, and in an experimental field soil at Rothamsted publication-title: Transactions of the British Mycological Society B – volume: 5 start-page: 436 year: 2014 article-title: A dipeptide transporter from the arbuscular mycorrhizal fungus is upregulated in the intraradical phase publication-title: Frontiers in Plant Science – volume: 135 start-page: 325 year: 1997 end-page: 334 article-title: Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol strain WCS417r publication-title: New Phytologist – volume: 8 start-page: e72126 year: 2013 article-title: The nitrate transporter (NRT) gene family in poplar publication-title: PLoS ONE – volume: 3 start-page: 1 year: 2010 end-page: 8 article-title: Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorous nutrition and symbiotic efficiency publication-title: Fungal Ecology – volume: 164 start-page: 357 year: 2004 end-page: 364 article-title: High functional diversity within species of arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 10 start-page: 1147 year: 2017b end-page: 1158 article-title: Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis publication-title: Molecular Plant – volume: 7 start-page: 293 year: 2004 end-page: 303 article-title: Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland publication-title: Ecology Letters – volume: 26 start-page: 325 year: 2016 end-page: 332 article-title: Different levels of hyphal self‐incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae publication-title: Mycorrhiza – volume: 39 start-page: 660 year: 2016 end-page: 671 article-title: The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots publication-title: Plant, Cell & Environment – volume: 224 start-page: 30 year: 1973 end-page: 31 article-title: Translocation of C from Festuca plants to their endomycorrhizal fungi publication-title: Nature – volume: 114 start-page: 217 year: 1990 end-page: 225 article-title: Mycorrhizas formed by and on subterranean clover in relation to soluble carbohydrate concentrations in roots publication-title: New Phytologist – volume: 18 start-page: 539 year: 2013 end-page: 545 article-title: Mycorrhiza‐induced resistance: more than the sum of its parts? publication-title: Trends in Plant Science – volume: 12 start-page: 859 year: 1992 end-page: 863 article-title: Effect of the rhizosphere bacterium , arbuscular mycorrhizal fungi and substrate composition on the growth of strawberry publication-title: Agronomy – volume: 3 start-page: 950 year: 2011 end-page: 958 article-title: Conserved meiotic machinery in spp., a putatively ancient asexual fungal lineage publication-title: Genome Biology and Evolution – volume: 48 start-page: 1044 year: 2011 end-page: 1055 article-title: GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus publication-title: Fungal Genetics and Biology – volume: 28 start-page: 683 year: 2001 end-page: 694 article-title: Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? publication-title: Australian Journal of Plant Physiology – volume: 150 start-page: 73 year: 2009 end-page: 83 article-title: A mycorrhizal‐specific ammonium transporter from acquires nitrogen released by arbuscular mycorrhizal fungi publication-title: Plant Physiology – volume: 2 start-page: 275 year: 2002 end-page: 310 article-title: Biotechnology of arbuscular mycorrhizas publication-title: Applied Mycology and Biotechnology – volume: 584 start-page: 4339 year: 2010 end-page: 4343 article-title: Ammonia permeability of the soybean nodulin 26 channel publication-title: FEBS Letters – volume: 180 start-page: 890 year: 2008 end-page: 898 article-title: Underground resource allocation between individual networks of mycorrhizal fungi publication-title: New Phytologist – volume: 21 start-page: 621 year: 2006 end-page: 628 article-title: Mycorrhizal networks: des liaisons dangereuses? publication-title: Trends in Ecology & Evolution – volume: 5 start-page: e13324 year: 2010 article-title: Interplant communication of tomato plants through underground common mycorrhizal networks publication-title: PLoS ONE – volume: 27 start-page: 1352 year: 2015 end-page: 1366 article-title: Suppression of arbuscule degeneration in phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3 publication-title: Plant Cell – volume: 1 start-page: 15159 year: 2015 article-title: Regulation of resource exchange in the arbuscular mycorrhizal symbiosis publication-title: Nature Plants – volume: 205 start-page: 1473 year: 2015 end-page: 1484 article-title: Mycorrhizal phenotypes and the Law of the Minimum publication-title: New Phytologist – volume: 10 start-page: 1135 year: 2007 end-page: 1142 article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems publication-title: Ecology Letters – volume: 193 start-page: 755 year: 2012 end-page: 769 article-title: The transcriptome of the arbuscular mycorrhizal fungus (DAOM 197198) reveals functional tradeoffs in an obligate symbiont publication-title: New Phytologist – volume: 24 start-page: 365 year: 2002 end-page: 370 article-title: Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endomycorrhizal fungi and growing under drought stress publication-title: Acta Physiologia Plantarum – volume: 173 start-page: 11 year: 2007 end-page: 26 article-title: Functional biology of plant phosphate uptake at root and mycorrhiza interfaces publication-title: New Phytologist – volume: 5 start-page: 587 year: 2015 end-page: 612 article-title: Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps publication-title: Agronomy – volume: 21 start-page: 230 year: 2016 end-page: 242 article-title: Impact of bacterial–fungal interactions on the colonization of the endosphere publication-title: Trends in Plant Science – volume: 21 start-page: 365 year: 1966 end-page: 386 article-title: Influence of different sources of nitrogen on the development of mycorrhiza in publication-title: Pamietnik Pulawski – volume: 214 start-page: 1330 year: 2017 end-page: 1337 article-title: Evolutionary assymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not pretict host plant growth publication-title: New Phytologist – volume: 17 start-page: 633 year: 2012 end-page: 637 article-title: Fungal superhighways: do common mycorrhizal networks enhance below ground communication? publication-title: Trends in Plant Sciences – volume: 59 start-page: 1683 year: 2018 end-page: 1694 article-title: Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation publication-title: Plant & Cell Physiology – volume: 108 start-page: 236 year: 2010 end-page: 245 article-title: Interactions between UW4 and BEG9 and their consequences for the growth of cucumber under salt‐stress conditions publication-title: Journal of Applied Microbiology – volume: 214 start-page: 1631 year: 2017 end-page: 1645 article-title: Arbuscular mycorrhiza‐specific enzymes FatM and RAM2 fine‐tune lipid biosynthesis to promote development of arbuscular mycorrhiza publication-title: New Phytologist – volume: 18 start-page: 927 year: 2010 end-page: 937 article-title: Nitrate‐regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants publication-title: Developmental Cell – volume: 17 start-page: 413 year: 2012a end-page: 422 article-title: Sugar transporters in plants and in their interactions with fungi publication-title: Trends in Plant Science – volume: 55 start-page: 115 year: 2008 end-page: 123 article-title: Tomato sugar transporter genes associated with mycorrhiza and phosphate publication-title: Plant Growth and Regulation – volume: 180 start-page: 452 year: 2008 end-page: 465 article-title: Genetic diversity of the arbuscular mycorrhizal fungus as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected publication-title: New Phytologist – volume: 2 start-page: 15208 year: 2016 article-title: Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics publication-title: Nature Plants – volume: 5 start-page: 1396 year: 2006 end-page: 1411 article-title: Proteomics of plant detergent resistant membranes publication-title: Molecular and Cell Proteomics – volume: 84 start-page: 1895 year: 2003 end-page: 1908 article-title: Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands publication-title: Ecology – volume: 169 start-page: 2774 year: 2015 end-page: 2788 article-title: Hyphal branching during arbuscule development requires publication-title: Plant Physiology – volume: 109 start-page: 8316 year: 2012 end-page: 8321 article-title: Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation publication-title: Proceeding of the National Academy of Sciences, USA – volume: 58 start-page: 1003 year: 2017 end-page: 1017 article-title: Transcriptome analysis of the ‐ mycorrhizal symbiosis: regulation of plant and fungal transportomes under nitrogen starvation publication-title: Plant Cell Physiology – volume: 9 start-page: e90841 year: 2014 article-title: Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in publication-title: PLoS ONE – volume: 81 start-page: 787 year: 1993 end-page: 795 article-title: Mycorrhizal influence on intra‐ and interspecific neighbour interactions among co‐occurring prairie grasses publication-title: Journal of Ecology – volume: 333 start-page: 880 year: 2011 end-page: 882 article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis publication-title: Science – volume: 68 start-page: 122 year: 2007 end-page: 129 article-title: Arbuscular mycorrhizal symbiosis and plant aquaporin expression publication-title: Phytochemistry – volume: 11 start-page: 557 year: 2001 end-page: 5674 article-title: Root colonization by inoculated plant growth‐promoting rhizobacteria publication-title: Biocontrol Science and Technology – start-page: 33 year: 2002 end-page: 48 – volume: 9 start-page: 1611 year: 2018 article-title: Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality and volatilome publication-title: Frontiers in Plant Science – volume: 63 start-page: 1055 year: 1999 end-page: 1062 article-title: On the origin of the theory of mineral nutrition of plants and the law of the minimum publication-title: Soil Science Society American Journal – volume: 128 start-page: 108 year: 2002 end-page: 124 article-title: Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis publication-title: Plant Physiology – volume: 69 start-page: 73 year: 1999 end-page: 83 article-title: Biofertilizers for cereal production in India‐ a review publication-title: Indian Journal of Agriculture Sciences – volume: 152 start-page: 2173 year: 2010 end-page: 2187 article-title: Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane publication-title: Plant Physiology – volume: 198 start-page: 836 year: 2013 end-page: 852 article-title: Functional analysis of the novel mycorrhiza‐specific phosphate transporter AsPT1 and PHT1 family from during the arbuscular mycorrhizal symbiosis publication-title: New Phytologist – volume: 28 start-page: 93 year: 2017 end-page: 100 article-title: Identification of arbuscular mycorrhiza‐inducible Nitrate Transporter1/Peptide Transporter Family (NPF) genes in rice publication-title: Mycorrhiza – volume: 87 start-page: 563 year: 2006 end-page: 569 article-title: Carbon allocation to ectomycorrhizal fungi correlates with below‐ground allocation in culture studies publication-title: Ecology – ident: e_1_2_7_39_1 doi: 10.1016/j.tplants.2006.04.005 – ident: e_1_2_7_131_1 doi: 10.1074/mcp.M600044-MCP200 – ident: e_1_2_7_55_1 doi: 10.1111/j.1365-2672.2009.04414.x – ident: e_1_2_7_90_1 doi: 10.1073/pnas.0608136104 – ident: e_1_2_7_193_1 doi: 10.3389/fpls.2017.00817 – ident: e_1_2_7_130_1 doi: 10.1093/jxb/eri163 – ident: e_1_2_7_151_1 doi: 10.2136/sssaj1999.6351055x – ident: e_1_2_7_150_1 doi: 10.1016/j.pbi.2007.05.004 – ident: e_1_2_7_23_1 doi: 10.1111/j.1365-313X.2010.04385.x – ident: e_1_2_7_28_1 doi: 10.7554/eLife.25114 – ident: e_1_2_7_72_1 doi: 10.1105/tpc.004861 – ident: e_1_2_7_21_1 doi: 10.1111/nph.14533 – ident: e_1_2_7_119_1 doi: 10.1111/j.1469-8137.1994.tb04004.x – ident: e_1_2_7_38_1 doi: 10.1016/j.tplants.2013.05.001 – ident: e_1_2_7_146_1 doi: 10.1016/j.fgb.2011.08.003 – ident: e_1_2_7_144_1 doi: 10.1073/pnas.202474599 – ident: e_1_2_7_83_1 doi: 10.1104/pp.104.056572 – ident: e_1_2_7_30_1 doi: 10.1074/jbc.M403938200 – ident: e_1_2_7_201_1 doi: 10.1038/nature22009 – ident: e_1_2_7_91_1 doi: 10.1126/science.aam9970 – ident: e_1_2_7_181_1 doi: 10.1111/j.1469-8137.2011.03948.x – ident: e_1_2_7_149_1 doi: 10.1042/bj20031672 – ident: e_1_2_7_81_1 doi: 10.1046/j.0028-646x.2001.00200.x – ident: e_1_2_7_153_1 doi: 10.1007/s00425-002-0921-3 – ident: e_1_2_7_10_1 doi: 10.1017/S0021859618000126 – ident: e_1_2_7_107_1 doi: 10.1016/j.devcel.2010.05.008 – ident: e_1_2_7_99_1 doi: 10.1093/pcp/pcq099 – ident: e_1_2_7_58_1 doi: 10.1007/s10725-008-9266-7 – ident: e_1_2_7_117_1 doi: 10.1016/j.fgb.2005.10.005 – ident: e_1_2_7_20_1 doi: 10.1111/j.1469-8137.2008.02574.x – ident: e_1_2_7_186_1 doi: 10.1016/j.phytochem.2006.09.033 – ident: e_1_2_7_31_1 doi: 10.1093/pcp/pcx044 – ident: e_1_2_7_166_1 doi: 10.1111/pce.13471 – ident: e_1_2_7_25_1 doi: 10.1016/j.soilbio.2017.05.018 – ident: e_1_2_7_57_1 doi: 10.1111/j.1365-313X.2011.04810.x – ident: e_1_2_7_12_1 doi: 10.1016/j.tplants.2012.06.007 – ident: e_1_2_7_14_1 doi: 10.1080/09583150120076120 – ident: e_1_2_7_100_1 doi: 10.1111/nph.14465 – ident: e_1_2_7_70_1 doi: 10.1093/gbe/evr089 – ident: e_1_2_7_7_1 doi: 10.1104/pp.124.3.949 – ident: e_1_2_7_15_1 doi: 10.1094/MPMI.2001.14.2.255 – ident: e_1_2_7_49_1 doi: 10.1046/j.1469-8137.1997.00646.x – ident: e_1_2_7_24_1 doi: 10.1105/tpc.114.131144 – ident: e_1_2_7_59_1 doi: 10.1038/ismej.2011.110 – ident: e_1_2_7_154_1 doi: 10.1038/35106601 – ident: e_1_2_7_121_1 doi: 10.1111/j.1462-2920.2009.02099.x – ident: e_1_2_7_54_1 doi: 10.1104/pp.109.149823 – ident: e_1_2_7_174_1 doi: 10.3389/fpls.2015.00786 – ident: e_1_2_7_48_1 doi: 10.1007/s00572-017-0802-z – ident: e_1_2_7_60_1 doi: 10.1007/s00572-010-0333-3 – ident: e_1_2_7_97_1 doi: 10.1126/science.1208473 – ident: e_1_2_7_148_1 doi: 10.1104/pp.120.2.587 – ident: e_1_2_7_51_1 doi: 10.1016/j.funeco.2009.07.003 – ident: e_1_2_7_112_1 doi: 10.1016/j.tplants.2013.08.008 – ident: e_1_2_7_163_1 doi: 10.1016/j.tree.2006.07.003 – ident: e_1_2_7_53_1 doi: 10.1007/s00425-013-1842-z – ident: e_1_2_7_176_1 doi: 10.3852/16-042 – ident: e_1_2_7_73_1 doi: 10.2307/2261676 – ident: e_1_2_7_19_1 doi: 10.1104/pp.104.053041 – ident: e_1_2_7_189_1 doi: 10.1080/15592324.2015.1131372 – ident: e_1_2_7_11_1 doi: 10.1094/MPMI-20-9-1055 – ident: e_1_2_7_118_1 doi: 10.1093/jxb/erh147 – ident: e_1_2_7_191_1 doi: 10.1038/nplants.2015.159 – ident: e_1_2_7_138_1 doi: 10.1371/journal.pone.0090841 – ident: e_1_2_7_26_1 doi: 10.1016/j.still.2012.01.012 – volume-title: Mineral nutrition of higher plants year: 1995 ident: e_1_2_7_123_1 – ident: e_1_2_7_61_1 doi: 10.1007/s004250000323 – ident: e_1_2_7_94_1 doi: 10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2 – ident: e_1_2_7_177_1 doi: 10.1074/mcp.M900090-MCP200 – ident: e_1_2_7_198_1 doi: 10.1016/S0014-5793(02)03271-4 – ident: e_1_2_7_89_1 doi: 10.1111/j.1365-313X.2011.04746.x – ident: e_1_2_7_47_1 doi: 10.1093/mp/sss079 – ident: e_1_2_7_6_1 doi: 10.1007/978-3-0348-8117-3_3 – ident: e_1_2_7_65_1 doi: 10.1128/AEM.69.1.616-624.2003 – volume-title: Mycorrhizal symbiosis year: 2008 ident: e_1_2_7_170_1 – ident: e_1_2_7_36_1 doi: 10.1007/s00572-013-0496-9 – ident: e_1_2_7_85_1 doi: 10.1016/j.febslet.2010.09.033 – ident: e_1_2_7_142_1 doi: 10.1016/j.tplants.2016.01.003 – ident: e_1_2_7_82_1 doi: 10.1111/j.1461-0248.2009.01430.x – ident: e_1_2_7_92_1 doi: 10.1111/j.1469-8137.2005.01536.x – ident: e_1_2_7_27_1 doi: 10.1111/j.1469-8137.2006.01935.x – ident: e_1_2_7_165_1 doi: 10.1111/j.1399-3054.2004.00414.x – ident: e_1_2_7_158_1 doi: 10.1016/j.pbi.2017.05.008 – ident: e_1_2_7_188_1 doi: 10.1051/agro:19921021 – ident: e_1_2_7_179_1 doi: 10.1111/j.1469-8137.1990.tb00393.x – ident: e_1_2_7_178_1 doi: 10.1007/s00572-018-0853-9 – ident: e_1_2_7_84_1 doi: 10.1016/0167-8809(90)90276-J – ident: e_1_2_7_2_1 doi: 10.1007/s00374-014-0989-5 – ident: e_1_2_7_180_1 doi: 10.1111/j.1471-4159.2010.06661.x – ident: e_1_2_7_56_1 doi: 10.1016/j.tplants.2016.07.010 – ident: e_1_2_7_111_1 doi: 10.1016/j.phytochem.2016.01.002 – ident: e_1_2_7_200_1 doi: 10.1093/jxb/erm096 – ident: e_1_2_7_22_1 doi: 10.1038/nplants.2015.208 – ident: e_1_2_7_133_1 doi: 10.1016/S0007-1536(68)80015-4 – ident: e_1_2_7_62_1 doi: 10.1016/S1874-5334(02)80014-4 – ident: e_1_2_7_34_1 doi: 10.1104/pp.108.117820 – ident: e_1_2_7_145_1 doi: 10.1007/s00572-015-0671-2 – ident: e_1_2_7_78_1 doi: 10.1105/tpc.111.089813 – ident: e_1_2_7_106_1 doi: 10.1055/s-2002-37407 – start-page: 353 volume-title: Transporters and pumps in plant signaling year: 2010 ident: e_1_2_7_167_1 – ident: e_1_2_7_9_1 doi: 10.1371/journal.pone.0072126 – volume: 37 start-page: 471 year: 1990 ident: e_1_2_7_132_1 article-title: Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae publication-title: Mycotaxon – ident: e_1_2_7_185_1 doi: 10.1128/AEM.71.9.5341-5347.2005 – ident: e_1_2_7_96_1 doi: 10.7554/eLife.29107 – ident: e_1_2_7_173_1 doi: 10.1371/journal.pone.0195345 – ident: e_1_2_7_74_1 doi: 10.1080/713608315 – ident: e_1_2_7_18_1 doi: 10.1007/s11738-002-0031-7 – ident: e_1_2_7_108_1 doi: 10.1146/annurev.arplant.55.031903.141758 – ident: e_1_2_7_175_1 doi: 10.1371/journal.pone.0013324 – ident: e_1_2_7_93_1 doi: 10.1046/j.1469-8137.1997.00729.x – ident: e_1_2_7_46_1 doi: 10.1016/j.tplants.2012.03.009 – ident: e_1_2_7_71_1 doi: 10.1046/j.1365-313X.1996.09040491.x – ident: e_1_2_7_101_1 doi: 10.1111/nph.12199 – start-page: 17 volume-title: Species concepts and phylogenetic theory: a debate year: 2000 ident: e_1_2_7_124_1 – ident: e_1_2_7_156_1 doi: 10.1016/j.tplants.2017.05.008 – ident: e_1_2_7_86_1 doi: 10.1073/pnas.1200407109 – ident: e_1_2_7_29_1 doi: 10.3390/agronomy5040587 – ident: e_1_2_7_171_1 doi: 10.1016/S0304-4238(02)00210-8 – ident: e_1_2_7_157_1 doi: 10.1128/AEM.71.11.6673-6679.2005 – ident: e_1_2_7_127_1 doi: 10.1111/j.1469-8137.2008.02623.x – ident: e_1_2_7_35_1 doi: 10.1016/S0167-1987(02)00158-7 – ident: e_1_2_7_63_1 doi: 10.1046/j.0028-646x.2001.00216.x – ident: e_1_2_7_13_1 doi: 10.3389/fpls.2014.00436 – ident: e_1_2_7_68_1 doi: 10.1038/nature03610 – ident: e_1_2_7_17_1 doi: 10.1016/j.jplph.2011.01.026 – ident: e_1_2_7_66_1 doi: 10.1139/m95-015 – volume: 69 start-page: 73 year: 1999 ident: e_1_2_7_75_1 article-title: Biofertilizers for cereal production in India‐ a review publication-title: Indian Journal of Agriculture Sciences – ident: e_1_2_7_69_1 doi: 10.1104/pp.109.136390 – ident: e_1_2_7_134_1 doi: 10.1016/S0007-1536(87)80018-9 – ident: e_1_2_7_182_1 doi: 10.3389/fpls.2018.01611 – ident: e_1_2_7_155_1 doi: 10.1126/science.289.5486.1920 – ident: e_1_2_7_190_1 doi: 10.1111/nph.13292 – ident: e_1_2_7_164_1 doi: 10.1104/pp.108.1.7 – ident: e_1_2_7_128_1 doi: 10.1093/pcp/pcn202 – ident: e_1_2_7_196_1 doi: 10.2307/3566048 – ident: e_1_2_7_195_1 doi: 10.1016/j.molp.2017.07.012 – ident: e_1_2_7_115_1 doi: 10.1093/pcp/pcy094 – ident: e_1_2_7_76_1 doi: 10.1111/j.1461-0248.2004.00577.x – ident: e_1_2_7_187_1 doi: 10.1111/pce.12659 – ident: e_1_2_7_88_1 doi: 10.1007/s00572-006-0094-1 – ident: e_1_2_7_141_1 doi: 10.1016/j.pbi.2017.08.008 – ident: e_1_2_7_16_1 doi: 10.1111/j.1469-8137.2005.01374.x – volume: 169 start-page: 2774 year: 2015 ident: e_1_2_7_143_1 article-title: Hyphal branching during arbuscule development requires Reduced Arbuscular Mycorrhiza1 publication-title: Plant Physiology – ident: e_1_2_7_98_1 doi: 10.1038/286885a0 – ident: e_1_2_7_42_1 doi: 10.1371/journal.ppat.1002600 – ident: e_1_2_7_147_1 doi: 10.1007/s00572-015-0644-5 – ident: e_1_2_7_33_1 doi: 10.1016/j.tplants.2013.06.004 – ident: e_1_2_7_197_1 doi: 10.1111/nph.12125 – ident: e_1_2_7_41_1 doi: 10.1046/j.1469-8137.1997.00810.x – ident: e_1_2_7_161_1 doi: 10.1038/nature05364 – ident: e_1_2_7_104_1 doi: 10.1111/j.1469-8137.1985.tb03672.x – volume-title: The Glomeromycota. A species list with new families and new genera year: 2010 ident: e_1_2_7_162_1 – ident: e_1_2_7_87_1 doi: 10.1016/j.soilbio.2010.09.011 – ident: e_1_2_7_129_1 doi: 10.1074/jbc.M403440200 – ident: e_1_2_7_199_1 doi: 10.1111/nph.12188 – ident: e_1_2_7_120_1 doi: 10.1126/science.aan0081 – ident: e_1_2_7_114_1 doi: 10.5962/bhl.title.41248 – volume: 224 start-page: 30 year: 1973 ident: e_1_2_7_79_1 article-title: Translocation of 14C from Festuca plants to their endomycorrhizal fungi publication-title: Nature – ident: e_1_2_7_122_1 doi: 10.1046/j.1469-8137.2000.00615.x – ident: e_1_2_7_194_1 doi: 10.1105/tpc.113.120527 – ident: e_1_2_7_5_1 doi: 10.1093/jxb/eru283 – ident: e_1_2_7_64_1 doi: 10.1111/j.1469-8137.2004.01145.x – ident: e_1_2_7_126_1 doi: 10.1111/nph.12351 – ident: e_1_2_7_113_1 doi: 10.1073/pnas.1721868115 – ident: e_1_2_7_110_1 doi: 10.1104/pp.106.094102 – ident: e_1_2_7_172_1 doi: 10.1046/j.1469-8137.1997.00757.x – ident: e_1_2_7_52_1 doi: 10.1073/pnas.1118650109 – ident: e_1_2_7_67_1 doi: 10.1186/1471-2229-9-10 – ident: e_1_2_7_105_1 doi: 10.1105/tpc.113.120436 – ident: e_1_2_7_159_1 doi: 10.1093/jxb/ers126 – ident: e_1_2_7_44_1 doi: 10.1111/j.1469-8137.2008.02726.x – ident: e_1_2_7_192_1 doi: 10.1104/pp.112.195727 – ident: e_1_2_7_139_1 doi: 10.1111/j.1469-8137.2005.01532.x – ident: e_1_2_7_80_1 doi: 10.1890/05-0755 – ident: e_1_2_7_45_1 doi: 10.1111/j.1469-8137.2004.01236.x – ident: e_1_2_7_169_1 doi: 10.1007/s11104-012-1583-y – ident: e_1_2_7_4_1 doi: 10.1111/ele.12115 – volume: 21 start-page: 365 year: 1966 ident: e_1_2_7_109_1 article-title: Influence of different sources of nitrogen on the development of mycorrhiza in Pisum sativum publication-title: Pamietnik Pulawski – ident: e_1_2_7_103_1 doi: 10.1007/s00572-017-0786-8 – ident: e_1_2_7_136_1 doi: 10.1111/j.1365-313X.2005.02364.x – ident: e_1_2_7_95_1 doi: 10.1111/nph.13172 – ident: e_1_2_7_140_1 doi: 10.1093/jexbot/53.370.825 – ident: e_1_2_7_77_1 doi: 10.1111/j.1365-2745.2009.01570.x – ident: e_1_2_7_135_1 doi: 10.1111/j.1469-8137.2004.01169.x – volume: 28 start-page: 683 year: 2001 ident: e_1_2_7_168_1 article-title: Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? publication-title: Australian Journal of Plant Physiology – ident: e_1_2_7_184_1 doi: 10.3389/fpls.2018.00897 – ident: e_1_2_7_102_1 doi: 10.1016/j.soilbio.2015.03.003 – ident: e_1_2_7_8_1 doi: 10.1104/pp.010466 – ident: e_1_2_7_116_1 doi: 10.1111/j.1365-313X.2005.02384.x – ident: e_1_2_7_3_1 doi: 10.1016/j.plaphy.2016.06.023 – ident: e_1_2_7_40_1 doi: 10.1111/nph.12445 – ident: e_1_2_7_50_1 doi: 10.1111/j.1461-0248.2007.01113.x – ident: e_1_2_7_37_1 doi: 10.1002/jsfa.3998 – ident: e_1_2_7_137_1 doi: 10.1073/pnas.1501676112 – ident: e_1_2_7_183_1 doi: 10.1007/s11104-011-1047-9 – ident: e_1_2_7_32_1 doi: 10.3389/fpls.2016.00679 – ident: e_1_2_7_125_1 doi: 10.1007/s00572-015-0631-x – ident: e_1_2_7_152_1 doi: 10.1242/jcs.01681 – ident: e_1_2_7_43_1 doi: 10.1080/07352689.2014.897897 – ident: e_1_2_7_160_1 doi: 10.1038/ismej.2015.91 |
SSID | ssj0009562 |
Score | 2.68046 |
SecondaryResourceType | review_article |
Snippet | Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients... Summary Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of... Arbuscular mycorrhizal symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most of land plants. The exchange of nutrients... |
SourceID | hal proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1127 |
SubjectTerms | Agriculture arbuscular mycorrhizal symbiosis Arbuscular mycorrhizas carbon Carbon compounds carbon supply Commerce common mycorrhizal networks embryophytes Environmental Sciences Exchanging Fungi Glomeromycota Host plants Life Sciences markets membrane lipids Mineral nutrients mineral nutrition Mycorrhizae - physiology mycorrhizal fungi Nitrogen Nutrient dynamics Nutrients Nutrition Phosphorus Plants (botany) plant–plant interactions Sustainable agriculture Sustainable Development Symbionts Symbiosis Tansley review transporters Vegetal Biology vesicular arbuscular mycorrhizae |
Subtitle | from arbuscules to common mycorrhizal networks |
Title | Trading on the arbuscular mycorrhiza market |
URI | https://www.jstor.org/stable/26759462 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15775 https://www.ncbi.nlm.nih.gov/pubmed/30843207 https://www.proquest.com/docview/2257531795 https://www.proquest.com/docview/2188985130 https://www.proquest.com/docview/2305157569 https://hal.inrae.fr/hal-02627273 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9z-OCLc-q0c5MoPvjSS5ukSapPUxwX0SHi4IJCyVe5sq0du_cOtr_ec5q23MkU8a0kpyUf5yS_05zzCyGvcqmly8syxSOqVFgwKa18lmbK-0x7w2qHycmfj-T0WHycFbMN8nbIhYn8EOMPN7SMbr1GAzd2sWbkzfl8khdKYYI5xmohIPrK1gh3JRsYmKWQs55VCKN4xjdv7EV35hgJGYMSb4ObN9Frt_0cbpEfQ8Nj1MnJZLW0E3f9G6fjf_bsAbnfw1J6EPVom2yE5iG5-64F6Hj1iHyHHQ33ONo2FAAjNTAVMYCVnl2B-3ox_3lt6FmXQP2GYsbKKBIWdNlSaAGo-5rwKW1i_PniMTk-_PDt_TTtb2VInQADTwtp8gLmkTuG_GHSehG8kr7AFF3rPNfGMquF4dpZntXcc2O4gEJfG8kV3yGbTduEp4TWtS6tE8rnSgqL155bGWTwtchZ0EYk5PUwP5XrKcvx5ozTanBdYKiqbqgS8nIUPY88HbcKwSSP9cisPT34VGEZuKIModxlnpCdTgdGMQY-VSkkS8jeoBRVb-iLCpZD6DasavDxF2M1mCieu5gmtCuQybUuAdny7C8yHC_bUYUsE_IkKtzYAJ5pwVmmYDg6tflzB6ujL9PuYfffRZ-RewACyxjUuEc2lxersA9Aa2mfdxb1C8GwImY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQkuvAuBAgaBxCWrxHYcB4lDoVQp3a4QaqWVegh27GgRbVJ1d0Hb38Rf4T8xzktbVBCXHrhFySjy45vxTDLzDcCLUEiRh0niu19UPteoUjI2gR_ExgTSKFrkrjh5byTSA_5hHI1X4EdXC9PwQ_Qf3Jxm1PbaKbj7IL2k5eXJZBBGcdylVO7axXcM2KZvdrZwd19Suv1-_13qtz0F_JwjPP1IqDDCUbCcOvYroQ23JhYmcgWmOjdMKk215IrJXLOgYIYpxTjeNIUSLGb43lW44jqIO6b-rU90ieJX0I7zWXAxbnmMXN5QP9Rzp9_qxOVeNmmQFzm45_3l-sDbvgk_u6Vq8ly-DuYzPcjPfmOR_F_W8hbcaD1vstmoym1YseUduPq2Qu94cRcO8dB2xzipSoI-MVGItiZHlxwvMEI_nXw5U-S4rhF_TVxRTi9ip2RWEZwyavSS8BEpmxT76T04uJSJrcNaWZX2AZCikInOeWzCWHDtOrtrYYU1BQ-plYp78KoDRJa3rOyuOchR1kVnuDVZvTUePO9FTxoqkguFEFX9c0cenm4OM3cPo23qvNVvoQfrNeh6MYphY8IF9WCjQ2HW2rJphhYfp42GG1_-rH-MVsj9WlKlreYoE0qZoPPOgr_IMNdPKI5E4sH9BuH9AFggOaNBjMtR4_TPE8xGH9P64uG_iz6Fa-n-3jAb7ox2H8F19HmTJodzA9Zmp3P7GP3KmX5SqzOBz5eN-V_lBYBs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BSEuvAuBAgaBxCWrxHYcB4lDYVltaVlViEorcQh27Girtsmquwva_iX-Cj-KcV7aooK49MAtSkaRH9-Mv0nmAfAiFFJkYZL47heVzzWqlIxN4AexMYE0iuaZS07-OBLDA_5hHI3X4EebC1PXh-g-uDnNqOy1U_CpyVeUvJhOemEUx21E5a5dfkd_bfZmp4-b-5LSwfvP74Z-01LAzzii04-ECiMcBMuoK34ltOHWxMJELr9UZ4ZJpamWXDGZaRbkzDClGMebJleCxQzfuw5XuAgS1yei_4muVPgVtC35LLgYN2WMXNhQN9Rzh9_6xIVe1lGQF_Hb83S5Ou8GN-Fnu1J1mMtRbzHXvezstyKS_8lS3oIbDe8m27Wi3IY1W9yBq29L5MbLu_AFj2x3iJOyIMiIiUKs1RG65GSJ_vnp5PBMkZMqQ_w1cSk5nYidkXlJcMaozyvCx6SoA-xn9-DgUia2CRtFWdgHQPJcJjrjsQljwbXr666FFdbkPKRWKu7BqxYPadbUZHetQY7T1jfDrUmrrfHgeSc6rQuRXCiEoOqeu9Lhw-291N1DX5s6rvot9GCzwlwnRtFpTLigHmy1IEwbSzZL0d7jtNFs48ufdY_RBrkfS6qw5QJlQikTpO4s-IsMc92E4kgkHtyvAd4NgAWSMxrEuBwVTP88wXS0P6wuHv676FO4tt8fpHs7o91HcB0Jb1IHcG7Bxvx0YR8jqZzrJ5UyE_h62ZD_BdE9fxs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trading+on+the+arbuscular+mycorrhiza+market%3A+from+arbuscules+to+common+mycorrhizal+networks&rft.jtitle=The+New+phytologist&rft.au=Wipf%2C+Daniel&rft.au=Krajinski%2C+Franziska&rft.au=van+Tuinen%2C+Diederik&rft.au=Recorbet%2C+Ghislaine&rft.date=2019-08-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=223&rft.issue=3&rft.spage=1127&rft_id=info:doi/10.1111%2Fnph.15775&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |