A lightweight tomato leaf disease identification method based on shared‐twin neural networks

Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of data, multiple training and heavy computation. In this study, a lightweight shared Siamese neural network method was proposed for tomato leaf di...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 18; no. 9; pp. 2291 - 2303
Main Authors Linfeng, Wang, Jiayao, Liu, Yong, Liu, Yunsheng, Wang, Shipu, Xu
Format Journal Article
LanguageEnglish
Published Wiley 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of data, multiple training and heavy computation. In this study, a lightweight shared Siamese neural network method was proposed for tomato leaf disease identification, which is suitable for resource‐limited environments. Experiments on Plant‐Village, Taiwan and Taiwan ++ datasets show that the accuracy fluctuates very little even when trained with only 60% of the data, which confirms the effectiveness of the proposed method in the small data environment. In addition, compared with the mainstream algorithms, it improves the accuracy by up to 35.3%on Plant‐Village and two Taiwan datasets respectively. The experimental results also show that the proposed method still performs well when the data is imbalanced and the sample size is small. A lightweight tomato leaf disease identification method based on shared‐twin neural networks, for rapid detection of tomato diseases
AbstractList Abstract Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of data, multiple training and heavy computation. In this study, a lightweight shared Siamese neural network method was proposed for tomato leaf disease identification, which is suitable for resource‐limited environments. Experiments on Plant‐Village, Taiwan and Taiwan ++ datasets show that the accuracy fluctuates very little even when trained with only 60% of the data, which confirms the effectiveness of the proposed method in the small data environment. In addition, compared with the mainstream algorithms, it improves the accuracy by up to 35.3%on Plant‐Village and two Taiwan datasets respectively. The experimental results also show that the proposed method still performs well when the data is imbalanced and the sample size is small.
Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of data, multiple training and heavy computation. In this study, a lightweight shared Siamese neural network method was proposed for tomato leaf disease identification, which is suitable for resource‐limited environments. Experiments on Plant‐Village, Taiwan and Taiwan ++ datasets show that the accuracy fluctuates very little even when trained with only 60% of the data, which confirms the effectiveness of the proposed method in the small data environment. In addition, compared with the mainstream algorithms, it improves the accuracy by up to 35.3%on Plant‐Village and two Taiwan datasets respectively. The experimental results also show that the proposed method still performs well when the data is imbalanced and the sample size is small. A lightweight tomato leaf disease identification method based on shared‐twin neural networks, for rapid detection of tomato diseases
Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of data, multiple training and heavy computation. In this study, a lightweight shared Siamese neural network method was proposed for tomato leaf disease identification, which is suitable for resource‐limited environments. Experiments on Plant‐Village, Taiwan and Taiwan ++ datasets show that the accuracy fluctuates very little even when trained with only 60% of the data, which confirms the effectiveness of the proposed method in the small data environment. In addition, compared with the mainstream algorithms, it improves the accuracy by up to 35.3%on Plant‐Village and two Taiwan datasets respectively. The experimental results also show that the proposed method still performs well when the data is imbalanced and the sample size is small.
Author Yong, Liu
Jiayao, Liu
Yunsheng, Wang
Shipu, Xu
Linfeng, Wang
Author_xml – sequence: 1
  givenname: Wang
  surname: Linfeng
  fullname: Linfeng, Wang
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 2
  givenname: Liu
  surname: Jiayao
  fullname: Jiayao, Liu
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 3
  givenname: Liu
  surname: Yong
  fullname: Yong, Liu
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 4
  givenname: Wang
  orcidid: 0000-0002-0701-833X
  surname: Yunsheng
  fullname: Yunsheng, Wang
  email: wanglinfeng60@163.com
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 5
  givenname: Xu
  surname: Shipu
  fullname: Shipu, Xu
  email: 1216450124@qq.com
  organization: Shanghai Academy of Agricultural Sciences
BookMark eNp9kM1OGzEUha2KSgXKpk_gdaVQX9vjiZcIFRopEqiCLZZ_ronpZIxso4gdj8Az9kk6SSoWVcXmnvt3vsU5IgdjHpGQL8BOgUn9LT0WfgqCafmBHELfwUwr1R-89Z3-RI5qfWCs02zeHZK7Mzqk-1Xb4LbSlte2ZTqgjTSkirYiTQHHlmLytqU80jW2VQ7UTadAp7mubMHw--W1bdJIR3wqdpikbXL5VT-Tj9EOFU_-6jG5vfh-c_5jtry6XJyfLWdeSi5nSnqIDKDvFXegQUcWdA8KOOtABCGcl0Jz5xjH6GTgTGLvfNDaBy4AxTFZ7Lkh2wfzWNLalmeTbTK7RS73xpaW_ICGodAyxqDmbi6tmlsuNOuEUH3PnLIwsb7uWb7kWgvGNx4ws03ZbFM2u5SnZ_bPs09tF1QrNg3_t8DeskkDPr8DN4vrn3zv-QPww5Iz
CitedBy_id crossref_primary_10_1016_j_compag_2025_110128
crossref_primary_10_1109_ACCESS_2025_3547416
Cites_doi 10.1109/ACCESS.2020.2982456
10.32604/cmc.2023.041819
10.1016/j.inpa.2020.04.004
10.1109/ICoICT52021.2021.9527425
10.3390/agriculture12020228
10.1109/CVPR.2006.100
10.1016/j.compag.2022.107054
10.3390/electronics11060951
10.1109/ACCESS.2020.3021487
10.1016/j.compag.2020.105730
10.3390/s21237987
10.13031/aea.14507
10.3390/agriculture11070651
10.1016/j.asoc.2022.108969
10.1117/12.2557180
10.1007/s11042-022-11915-2
10.1016/j.procs.2018.07.070
10.1016/j.procs.2020.03.225
10.1109/CVPR.2015.7298594
10.1007/978-981-16-9873-6_54
10.1109/CVPR.2018.00745
10.1016/j.compag.2022.107486
10.3390/plants9101302
10.3389/fpls.2022.846767
10.1109/ACCESS.2021.3069646
10.1146/annurev.phyto.43.113004.133839
10.1016/j.eswa.2022.118117
10.1186/s13007-020-00624-2
10.1016/j.compag.2022.107423
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.13094
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Botany
EISSN 1751-9667
EndPage 2303
ExternalDocumentID oai_doaj_org_article_0e394ffd68b84a68a23905336770b6a1
10_1049_ipr2_13094
IPR213094
Genre article
GrantInformation_xml – fundername: Application Foundation project of Shanghai Academy of Agricultural Sciences 2024 (07)
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
8VB
AAHHS
AAHJG
AAJGR
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
GROUPED_DOAJ
HZ~
IAO
IDLOA
IPLJI
ITC
LAI
MCNEO
MS~
O9-
OK1
P2P
QWB
RNS
ROL
RUI
ZL0
4.4
8FE
8FG
AAMMB
AAYXX
ABJCF
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
K1G
L6V
M43
M7S
P62
PHGZM
PHGZT
PTHSS
S0W
WIN
ID FETCH-LOGICAL-c4424-64c1f0117762b1919f0d9716120513d33bc4392bb02efb4d204e7bcd99cd231e3
IEDL.DBID DOA
ISSN 1751-9659
IngestDate Wed Aug 27 01:26:31 EDT 2025
Sun Jul 06 05:02:18 EDT 2025
Thu Apr 24 22:51:44 EDT 2025
Wed Jun 11 08:25:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4424-64c1f0117762b1919f0d9716120513d33bc4392bb02efb4d204e7bcd99cd231e3
ORCID 0000-0002-0701-833X
OpenAccessLink https://doaj.org/article/0e394ffd68b84a68a23905336770b6a1
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_0e394ffd68b84a68a23905336770b6a1
crossref_primary_10_1049_ipr2_13094
crossref_citationtrail_10_1049_ipr2_13094
wiley_primary_10_1049_ipr2_13094_IPR213094
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 9
2021; 8
2022; 198
2021; 43
2021; 21
2023; 77
2021; 22
2019; 31
2022; 72
2020; 16
2005; 43
2006
2020; 167
2021; 52
1993; 6
2020; 8
2022; 123
2018; 133
2021; 37
2021; 11
2022; 81
2022
2021
2020
2020; 9
2022; 12
2019
2022; 13
2018
2017
2015
2020; 178
2022; 11
2022; 208
2021; 40
2022; 203
2022; 202
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
Kim S.K. (e_1_2_9_8_1) 2021; 22
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_33_1
Zhaoyu Z. (e_1_2_9_2_1) 2021; 52
Yanxiang W. (e_1_2_9_12_1) 2019; 31
Vadivel T. (e_1_2_9_5_1) 2022; 72
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
FAO I. (e_1_2_9_7_1) 2019
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
Zaki S.Z.M. (e_1_2_9_35_1) 2020; 9
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
Bromley J. (e_1_2_9_36_1) 1993; 6
Haiyan C. (e_1_2_9_20_1) 2021; 43
e_1_2_9_28_1
Jialing H. (e_1_2_9_22_1) 2021; 40
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 21
  start-page: 7987
  year: 2021
  article-title: Early detection and classification of tomato leaf disease using high‐performance deep neural network
  publication-title: Sensors
– volume: 13
  year: 2022
  article-title: CASM‐AMFMNet: A network based on coordinate attention shuffle mechanism and asymmetric multi‐scale fusion module for classification of grape leaf diseases
  publication-title: Front. Plant Sci.
– volume: 8
  start-page: 56607
  year: 2020
  end-page: 56614
  article-title: Deep learning‐based object detection improvement for tomato disease
  publication-title: IEEE Access
– start-page: 10096
  year: 2021
  end-page: 10106
  article-title: Efficientnetv2:Smaller models and faster training
– volume: 72
  start-page: 312
  year: 2022
  end-page: 324
  article-title: Automatic recognition of tomato leaf disease using fast enhanced learning with image processing
  publication-title: Acta Agric. Scand. Sect B
– volume: 22
  start-page: 7
  year: 2021
  end-page: 14
  article-title: Tomato crop diseases classification models using deep cnn‐based architectures
  publication-title: J. Korea Acad. Ind. Cooperation Soc.
– volume: 9
  start-page: 56683
  year: 2021
  end-page: 56698
  article-title: Plant disease detection and classification by deep learning—A review
  publication-title: IEEE Access
– volume: 52
  start-page: 1
  issue: 07
  year: 2021
  end-page: 18
  article-title: A review of key technologies for identification of crop pests and diseases
  publication-title: J. Agric. Mach.
– volume: 40
  start-page: 102
  issue: 03
  year: 2021
  end-page: 105
  article-title: Improved MobileNet face recognition system based on Jetson nano
  publication-title: Sens. Microsyst.
– start-page: 6105
  year: 2019
  end-page: 6114
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– volume: 11
  start-page: 951
  year: 2022
  article-title: Alexnet convolutional neural network for disease detection and classification of tomato leaf
  publication-title: Electronics
– start-page: 7132
  year: 2018
  end-page: 7141
  article-title: Squeeze‐and‐excitation networks
– volume: 81
  start-page: 7759
  year: 2022
  end-page: 7782
  article-title: Apple leaf disease recognition method with improved residual network
  publication-title: Multimedia Tools Appl.
– volume: 12
  start-page: 228
  year: 2022
  article-title: A lightweight attention‐based convolutional neural networks for tomato leaf disease classification
  publication-title: Agriculture
– volume: 9
  start-page: 1302
  year: 2020
  article-title: Review of the state of the art of deep learning for plant diseases: A broad analysis and discussion
  publication-title: Plants
– volume: 208
  year: 2022
  article-title: Trends in vision‐based machine learning techniques for plant disease identification: A systematic review
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 737
  year: 1993
  end-page: 744
  article-title: Signature verification using a“ Siamese” time delay neural network
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 669
  issue: 04
  year: 2019
  end-page: 676
  article-title: Advances in image recognition technology of crop diseases based on deep learning
  publication-title: Zhejiang Agricultural Journal
– volume: 8
  start-page: 162588
  year: 2020
  end-page: 162600
  article-title: Deep metric learning based citrus disease classification with sparse data
  publication-title: IEEE Access
– volume: 202
  year: 2022
  article-title: Social density detection for suckling piglets based on convolutional neural network combined with local outlier factor algorithm
  publication-title: Comput. Electron. Agric.
– volume: 178
  year: 2020
  article-title: Identification of tomato leaf diseases based on combination of ABCK‐BWTR and B‐ARNet
  publication-title: Comput. Electron. Agric.
– volume: 123
  year: 2022
  article-title: MMDGAN: A fusion data augmentation method for tomato‐leaf disease identification
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: 83
  year: 2005
  end-page: 116
  article-title: Plant disease: A threat to global food security
  publication-title: Annu. Rev. Phytopathol.
– start-page: 1
  year: 2015
  end-page: 9
  article-title: Going deeper with convolutions
– volume: 37
  start-page: 793
  year: 2021
  end-page: 804
  article-title: Rapid recognition of tomato's disease stages based on the kernel mutual subspace method
  publication-title: Appl. Eng. Agric.
– volume: 167
  start-page: 293
  year: 2020
  end-page: 301
  article-title: Toled: Tomato leaf disease detection using convolution neural network
  publication-title: Procedia Comput. Sci.
– volume: 43
  start-page: 1
  year: 2021
  end-page: 98
  article-title: Target detection of Ochotona curzoniae based on embedded Jetson TX2
  publication-title: J. Comput. Appl.
– volume: 16
  start-page: 1
  year: 2020
  end-page: 16
  article-title: Early recognition of tomato grey leaf spot disease based on mobilenetv2‐yolov3 model
  publication-title: Plant Methods
– volume: 11
  start-page: 651
  year: 2021
  article-title: Tomato leaf disease diagnosis based on improved convolution neural network by attention module
  publication-title: Agriculture
– volume: 133
  start-page: 1040
  year: 2018
  end-page: 1047
  article-title: Tomato crop disease classification using pre‐trained deep learning algorithm
  publication-title: Procedia Comput. Sci.
– start-page: 2
  year: 2019
  end-page: 13
– start-page: 595
  year: 2022
  end-page: 606
– start-page: 320
  year: 2021
  end-page: 325
  article-title: Tomato plant disease identification through leaf image using convolutional neural network
– volume: 8
  start-page: 27
  year: 2021
  end-page: 51
  article-title: Recent advances in image processing techniques for automated leaf pest and disease recognition—A review
  publication-title: Inf. Process. Agric.
– start-page: 1735
  year: 2006
  end-page: 1742
  article-title: Dimensionality reduction by learning an invariant mapping
– year: 2017
– volume: 203
  year: 2022
  article-title: Multi‐channel feature fusion networks with hard coordinate attention mechanism for maize disease identification under complex backgrounds
  publication-title: Comput. Electron. Agric.
– year: 2020
  article-title: Lightweight compressed depth neural network for tomato disease diagnosis
– volume: 198
  year: 2022
  article-title: A diverse ensemble classifier for tomato disease recognition
  publication-title: Comput. Electron. Agric.
– volume: 77
  start-page: 3969
  issue: 3
  year: 2023
  end-page: 3992
  article-title: A lightweight deep learning‐based model for tomato leaf disease classification
  publication-title: Comput. Mater. Continua
– volume: 9
  start-page: 290
  year: 2020
  article-title: Classification of tomato leaf diseases using Mobilenet V2
  publication-title: IAES Int. J. Artif. Intell.
– ident: e_1_2_9_6_1
  doi: 10.1109/ACCESS.2020.2982456
– ident: e_1_2_9_45_1
  doi: 10.32604/cmc.2023.041819
– ident: e_1_2_9_23_1
  doi: 10.1016/j.inpa.2020.04.004
– ident: e_1_2_9_17_1
– ident: e_1_2_9_10_1
  doi: 10.1109/ICoICT52021.2021.9527425
– ident: e_1_2_9_15_1
  doi: 10.3390/agriculture12020228
– ident: e_1_2_9_37_1
  doi: 10.1109/CVPR.2006.100
– volume: 43
  start-page: 1
  year: 2021
  ident: e_1_2_9_20_1
  article-title: Target detection of Ochotona curzoniae based on embedded Jetson TX2
  publication-title: J. Comput. Appl.
– volume: 72
  start-page: 312
  year: 2022
  ident: e_1_2_9_5_1
  article-title: Automatic recognition of tomato leaf disease using fast enhanced learning with image processing
  publication-title: Acta Agric. Scand. Sect B
– ident: e_1_2_9_40_1
  doi: 10.1016/j.compag.2022.107054
– ident: e_1_2_9_44_1
  doi: 10.3390/agriculture12020228
– ident: e_1_2_9_11_1
  doi: 10.3390/electronics11060951
– volume: 52
  start-page: 1
  issue: 07
  year: 2021
  ident: e_1_2_9_2_1
  article-title: A review of key technologies for identification of crop pests and diseases
  publication-title: J. Agric. Mach.
– ident: e_1_2_9_24_1
  doi: 10.1109/ACCESS.2020.3021487
– ident: e_1_2_9_31_1
  doi: 10.1016/j.compag.2020.105730
– ident: e_1_2_9_39_1
  doi: 10.3390/s21237987
– ident: e_1_2_9_29_1
  doi: 10.13031/aea.14507
– ident: e_1_2_9_16_1
– ident: e_1_2_9_28_1
  doi: 10.3390/agriculture11070651
– ident: e_1_2_9_43_1
  doi: 10.1016/j.asoc.2022.108969
– ident: e_1_2_9_14_1
  doi: 10.1117/12.2557180
– ident: e_1_2_9_25_1
  doi: 10.1007/s11042-022-11915-2
– ident: e_1_2_9_30_1
  doi: 10.1016/j.procs.2018.07.070
– ident: e_1_2_9_32_1
  doi: 10.1016/j.procs.2020.03.225
– ident: e_1_2_9_38_1
  doi: 10.1109/CVPR.2015.7298594
– volume: 6
  start-page: 737
  year: 1993
  ident: e_1_2_9_36_1
  article-title: Signature verification using a“ Siamese” time delay neural network
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_9_4_1
  doi: 10.1007/978-981-16-9873-6_54
– ident: e_1_2_9_13_1
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_9_19_1
  doi: 10.1109/CVPR.2018.00745
– ident: e_1_2_9_33_1
– ident: e_1_2_9_41_1
  doi: 10.1016/j.compag.2022.107486
– ident: e_1_2_9_26_1
  doi: 10.3390/plants9101302
– ident: e_1_2_9_42_1
  doi: 10.3389/fpls.2022.846767
– ident: e_1_2_9_18_1
– ident: e_1_2_9_27_1
  doi: 10.1109/ACCESS.2021.3069646
– ident: e_1_2_9_3_1
  doi: 10.1146/annurev.phyto.43.113004.133839
– volume: 31
  start-page: 669
  issue: 04
  year: 2019
  ident: e_1_2_9_12_1
  article-title: Advances in image recognition technology of crop diseases based on deep learning
  publication-title: Zhejiang Agricultural Journal
– ident: e_1_2_9_34_1
  doi: 10.1016/j.eswa.2022.118117
– start-page: 2
  volume-title: The State of Food and Agriculture
  year: 2019
  ident: e_1_2_9_7_1
– volume: 22
  start-page: 7
  year: 2021
  ident: e_1_2_9_8_1
  article-title: Tomato crop diseases classification models using deep cnn‐based architectures
  publication-title: J. Korea Acad. Ind. Cooperation Soc.
– ident: e_1_2_9_9_1
  doi: 10.1186/s13007-020-00624-2
– volume: 40
  start-page: 102
  issue: 03
  year: 2021
  ident: e_1_2_9_22_1
  article-title: Improved MobileNet face recognition system based on Jetson nano
  publication-title: Sens. Microsyst.
– volume: 9
  start-page: 290
  year: 2020
  ident: e_1_2_9_35_1
  article-title: Classification of tomato leaf diseases using Mobilenet V2
  publication-title: IAES Int. J. Artif. Intell.
– ident: e_1_2_9_21_1
  doi: 10.1016/j.compag.2022.107423
SSID ssj0059085
Score 2.3259275
Snippet Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of...
Abstract Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 2291
SubjectTerms botany
computer vision
convolutional neural nets
data visualisation
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSuRAEC7Gn4OX3XVUdtxVGvSiEEw6nU4a9qKyooIiouDJ0L86MCTDzIh48xF8Rp_Erk5mRBDBWxKqSahKVX_dXfUVwLaIjclNXES5ZGnEhEkjpazBYJjJRGmaayxOPjvnx9fs9Ca76cC_aS1Mww8x23BDzwjxGh1cqqYLiQe13oj94YhiL2PB5mABa2sxoY-yi2kcxmbeWSiHxEbyPBNTclIm9t7HfpiOAmv_R5QappmjX_CjxYdkvzHoMnRs1YWfLVYkrSeOu7B4UHtY97QCt_tkgAvsx7DHSSa1h6A1GVjpSHv4QvqmTQkKViBN02iC85ch_n58j0nor88vk8d-RZDg0n9A1aSHj1fh-uj_1eFx1DZNiDRjlEWc6cQh0ZuPcsovxoSLDdJEJdS7X2rSVGmPQahSMbVOMUNjZnOljRDaeKxn0zWYr-rK_gZiilxyj5c0jZUfYwUvCmmzxCaOMulcD3amuit1yyiOjS0GZTjZZqJEPZdBzz3YmskOGx6NT6UO0AQzCeS-Dg_q0V3ZulIZ21Qw5wwvVMEkLyRNBVYU8zyPFZdJD3aDAb94T3lycUnD1fp3hP_AEvWYpsnW_Qvzk9GD3fCYZKI2w6_3Bn9P3BA
  priority: 102
  providerName: Wiley-Blackwell
Title A lightweight tomato leaf disease identification method based on shared‐twin neural networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13094
https://doaj.org/article/0e394ffd68b84a68a23905336770b6a1
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC587MGLr93FcXVoWC8KwaTT6aSPoygquAziiOxhQz9xYMgMMyODt_0J-xv3l1jdyQwKohdvSejQobq666t09fcBHIjYmNzERZRLlkZMmDRSyhq_GGYyUZrm2h9Ovv7FL3rs6j67fyH15WvCanrg2nDHsU0Fc87wQhVM8kJSzNIRo_A8jxWXIfHBmDdPpuo12At5Z-EopBeR55mYE5MycdwfjanXQBbsVSgKjP2vEWoIMeebsN5gQ9Kpv2kLlmy1DRsNTiTNLJxsw5eTIUK6p6_wp0MGPrmehf-bZDpE-DkkAysdaTZeSN805UBhBEgtGE187DIE7ycPvgD9_99_01m_Ip7cEj-gqkvDJ9-gd352e3oRNYIJkWaMsogznThP8oYrnMJETLjYeIqohOLUS02aKo34gyoVU-sUMzRmNlfaCKEN4jybfoeValjZHSCmyCVHrKRprPAdK3hRSJslNnGUSedacDi3XakbNnEvajEow642E6W3cxns3IKfi7ajmkPjzVYnfggWLTzvdXiA3lA23lB-5A0tOAoD-E4_5WX3hoar3c_o8QesUcQ5dQXvHqxMx492H3HKVLVhmbJuG1Y7d73fvXZw0GfKc-VO
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VFgkuLRQQCwUsAQeQIhLHceIDhy1Q7dIfIdRFFYcG_8JKq6Ta3WrVG4_Ai_BSPAkex7uoEkLi0FsSTRJr7Bl_tme-AXgmUmNKk1ZJKVmeMGHyRClr0BkWMlOalhqTkw-P-GDE3p8UJ2vwc5kL0_FDrDbc0DKCv0YDxw3pbsHJkCRzfDalWMxYsBhTuW8vFn7FNns9fOu79zmle--O3wySWFQg0YxRlnCmM4dEaN4LKL9YES41SKOUUT88c5PnSvs5miqVUusUMzRltlTaCKGNx0I299-9BhsIo7wRbfQ_jT6Plq4f64cXIQMTa9fzQiz5UJl49ae1l2bAUCjgMjAOM9veLdiMkJT0uzF0G9Zssw1bEZ6SaPyzbbi-23okeXEHTvtkgmv6RdhWJfPWo96WTKx0JJ73kLGJUUih40lXp5rglGmIv599w7j3X99_zBfjhiCnpm9A00Wkz-7C6EpUeg_Wm7ax94GYqpTcQzRNU-XfsYJXlbRFZjNHmXSuBy-Wuqt1JDHHWhqTOhymM1Gjnuug5x48XcmeddQdf5XaxS5YSSDddnjQTr_W0Xrr1OaCOWd4pSomeSVpLjCJmZdlqrjMevAydOA__lMPP3yk4erB_wg_gRuD48OD-mB4tP8QblIPqbpg4R1Yn0_P7SMPiebqcRyIBL5c9dj_DVb4GVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tXYS48LOAKL-WgANIEY7jOPGBQ5el2rKwWiGKVhwIdmzvVqqSqi2q9sYj8CA8FU-Cx3GLVkJIHPaWRJPE8ow9n-2ZbwCeSmpMYWiZFIpnCZcmS7S2BifDXKW6ZkWNycnvD8X-mL89zo-34Oc6F6bjh9hsuOHICPM1DvCZcd16kyNH5mQ2Z1jLWPIYUnlgz1Z-wbZ4Ndrz2n3G2PDNx9f7SawpkNScM54IXqcOedD8JKD9WkU6apBFKWXeOjOTZbr2LpppTZl1mhtGuS10baSsjYdCNvPfvQTbuXeDtAfbg0_jz-P1zI_lw_OQgIml60Uu13SoXL7809pzDjDUCTiPi4NjG96AaxGRkkFnQjdhyzY7cD2iUxLH_mIHLu-2Hkie3YIvAzLFJf0q7KqSZetBb0umVjkSj3vIxMQgpKB30pWpJugxDfH3i1MMe__1_cdyNWkIUmr6BjRdQPriNowvpEvvQK9pG3sXiCkLJTxCqxnV_h0rRVkqm6c2dYwr5_rwfN13VR05zLGUxrQKZ-lcVtjPVejnPjzZyM465o6_Su2iCjYSyLYdHrTzkyoO3oraTHLnjCh1yZUoFcsk5jCLoqBaqLQPL4IC__GfanT0gYWre_8j_BiuHO0Nq3ejw4P7cJV5QNWFCj-A3nL-zT70gGipH0U7JPD1ok3_N0fPGHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lightweight+tomato+leaf+disease+identification+method+based+on+shared%E2%80%90twin+neural+networks&rft.jtitle=IET+image+processing&rft.au=Linfeng%2C+Wang&rft.au=Jiayao%2C+Liu&rft.au=Yong%2C+Liu&rft.au=Yunsheng%2C+Wang&rft.date=2024-07-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=9&rft.spage=2291&rft.epage=2303&rft_id=info:doi/10.1049%2Fipr2.13094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_13094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon