A lightweight tomato leaf disease identification method based on shared‐twin neural networks
Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of data, multiple training and heavy computation. In this study, a lightweight shared Siamese neural network method was proposed for tomato leaf di...
Saved in:
Published in | IET image processing Vol. 18; no. 9; pp. 2291 - 2303 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of data, multiple training and heavy computation. In this study, a lightweight shared Siamese neural network method was proposed for tomato leaf disease identification, which is suitable for resource‐limited environments. Experiments on Plant‐Village, Taiwan and Taiwan ++ datasets show that the accuracy fluctuates very little even when trained with only 60% of the data, which confirms the effectiveness of the proposed method in the small data environment. In addition, compared with the mainstream algorithms, it improves the accuracy by up to 35.3%on Plant‐Village and two Taiwan datasets respectively. The experimental results also show that the proposed method still performs well when the data is imbalanced and the sample size is small.
A lightweight tomato leaf disease identification method based on shared‐twin neural networks, for rapid detection of tomato diseases |
---|---|
AbstractList | Abstract Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of data, multiple training and heavy computation. In this study, a lightweight shared Siamese neural network method was proposed for tomato leaf disease identification, which is suitable for resource‐limited environments. Experiments on Plant‐Village, Taiwan and Taiwan ++ datasets show that the accuracy fluctuates very little even when trained with only 60% of the data, which confirms the effectiveness of the proposed method in the small data environment. In addition, compared with the mainstream algorithms, it improves the accuracy by up to 35.3%on Plant‐Village and two Taiwan datasets respectively. The experimental results also show that the proposed method still performs well when the data is imbalanced and the sample size is small. Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of data, multiple training and heavy computation. In this study, a lightweight shared Siamese neural network method was proposed for tomato leaf disease identification, which is suitable for resource‐limited environments. Experiments on Plant‐Village, Taiwan and Taiwan ++ datasets show that the accuracy fluctuates very little even when trained with only 60% of the data, which confirms the effectiveness of the proposed method in the small data environment. In addition, compared with the mainstream algorithms, it improves the accuracy by up to 35.3%on Plant‐Village and two Taiwan datasets respectively. The experimental results also show that the proposed method still performs well when the data is imbalanced and the sample size is small. A lightweight tomato leaf disease identification method based on shared‐twin neural networks, for rapid detection of tomato diseases Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of data, multiple training and heavy computation. In this study, a lightweight shared Siamese neural network method was proposed for tomato leaf disease identification, which is suitable for resource‐limited environments. Experiments on Plant‐Village, Taiwan and Taiwan ++ datasets show that the accuracy fluctuates very little even when trained with only 60% of the data, which confirms the effectiveness of the proposed method in the small data environment. In addition, compared with the mainstream algorithms, it improves the accuracy by up to 35.3%on Plant‐Village and two Taiwan datasets respectively. The experimental results also show that the proposed method still performs well when the data is imbalanced and the sample size is small. |
Author | Yong, Liu Jiayao, Liu Yunsheng, Wang Shipu, Xu Linfeng, Wang |
Author_xml | – sequence: 1 givenname: Wang surname: Linfeng fullname: Linfeng, Wang organization: Shanghai Academy of Agricultural Sciences – sequence: 2 givenname: Liu surname: Jiayao fullname: Jiayao, Liu organization: Shanghai Academy of Agricultural Sciences – sequence: 3 givenname: Liu surname: Yong fullname: Yong, Liu organization: Shanghai Academy of Agricultural Sciences – sequence: 4 givenname: Wang orcidid: 0000-0002-0701-833X surname: Yunsheng fullname: Yunsheng, Wang email: wanglinfeng60@163.com organization: Shanghai Academy of Agricultural Sciences – sequence: 5 givenname: Xu surname: Shipu fullname: Shipu, Xu email: 1216450124@qq.com organization: Shanghai Academy of Agricultural Sciences |
BookMark | eNp9kM1OGzEUha2KSgXKpk_gdaVQX9vjiZcIFRopEqiCLZZ_ronpZIxso4gdj8Az9kk6SSoWVcXmnvt3vsU5IgdjHpGQL8BOgUn9LT0WfgqCafmBHELfwUwr1R-89Z3-RI5qfWCs02zeHZK7Mzqk-1Xb4LbSlte2ZTqgjTSkirYiTQHHlmLytqU80jW2VQ7UTadAp7mubMHw--W1bdJIR3wqdpikbXL5VT-Tj9EOFU_-6jG5vfh-c_5jtry6XJyfLWdeSi5nSnqIDKDvFXegQUcWdA8KOOtABCGcl0Jz5xjH6GTgTGLvfNDaBy4AxTFZ7Lkh2wfzWNLalmeTbTK7RS73xpaW_ICGodAyxqDmbi6tmlsuNOuEUH3PnLIwsb7uWb7kWgvGNx4ws03ZbFM2u5SnZ_bPs09tF1QrNg3_t8DeskkDPr8DN4vrn3zv-QPww5Iz |
CitedBy_id | crossref_primary_10_1016_j_compag_2025_110128 crossref_primary_10_1109_ACCESS_2025_3547416 |
Cites_doi | 10.1109/ACCESS.2020.2982456 10.32604/cmc.2023.041819 10.1016/j.inpa.2020.04.004 10.1109/ICoICT52021.2021.9527425 10.3390/agriculture12020228 10.1109/CVPR.2006.100 10.1016/j.compag.2022.107054 10.3390/electronics11060951 10.1109/ACCESS.2020.3021487 10.1016/j.compag.2020.105730 10.3390/s21237987 10.13031/aea.14507 10.3390/agriculture11070651 10.1016/j.asoc.2022.108969 10.1117/12.2557180 10.1007/s11042-022-11915-2 10.1016/j.procs.2018.07.070 10.1016/j.procs.2020.03.225 10.1109/CVPR.2015.7298594 10.1007/978-981-16-9873-6_54 10.1109/CVPR.2018.00745 10.1016/j.compag.2022.107486 10.3390/plants9101302 10.3389/fpls.2022.846767 10.1109/ACCESS.2021.3069646 10.1146/annurev.phyto.43.113004.133839 10.1016/j.eswa.2022.118117 10.1186/s13007-020-00624-2 10.1016/j.compag.2022.107423 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/ipr2.13094 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Botany |
EISSN | 1751-9667 |
EndPage | 2303 |
ExternalDocumentID | oai_doaj_org_article_0e394ffd68b84a68a23905336770b6a1 10_1049_ipr2_13094 IPR213094 |
Genre | article |
GrantInformation_xml | – fundername: Application Foundation project of Shanghai Academy of Agricultural Sciences 2024 (07) |
GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK 8VB AAHHS AAHJG AAJGR ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS GROUPED_DOAJ HZ~ IAO IDLOA IPLJI ITC LAI MCNEO MS~ O9- OK1 P2P QWB RNS ROL RUI ZL0 4.4 8FE 8FG AAMMB AAYXX ABJCF AEFGJ AFKRA AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ K1G L6V M43 M7S P62 PHGZM PHGZT PTHSS S0W WIN |
ID | FETCH-LOGICAL-c4424-64c1f0117762b1919f0d9716120513d33bc4392bb02efb4d204e7bcd99cd231e3 |
IEDL.DBID | DOA |
ISSN | 1751-9659 |
IngestDate | Wed Aug 27 01:26:31 EDT 2025 Sun Jul 06 05:02:18 EDT 2025 Thu Apr 24 22:51:44 EDT 2025 Wed Jun 11 08:25:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4424-64c1f0117762b1919f0d9716120513d33bc4392bb02efb4d204e7bcd99cd231e3 |
ORCID | 0000-0002-0701-833X |
OpenAccessLink | https://doaj.org/article/0e394ffd68b84a68a23905336770b6a1 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0e394ffd68b84a68a23905336770b6a1 crossref_primary_10_1049_ipr2_13094 crossref_citationtrail_10_1049_ipr2_13094 wiley_primary_10_1049_ipr2_13094_IPR213094 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IET image processing |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2021; 9 2021; 8 2022; 198 2021; 43 2021; 21 2023; 77 2021; 22 2019; 31 2022; 72 2020; 16 2005; 43 2006 2020; 167 2021; 52 1993; 6 2020; 8 2022; 123 2018; 133 2021; 37 2021; 11 2022; 81 2022 2021 2020 2020; 9 2022; 12 2019 2022; 13 2018 2017 2015 2020; 178 2022; 11 2022; 208 2021; 40 2022; 203 2022; 202 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 Kim S.K. (e_1_2_9_8_1) 2021; 22 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_33_1 Zhaoyu Z. (e_1_2_9_2_1) 2021; 52 Yanxiang W. (e_1_2_9_12_1) 2019; 31 Vadivel T. (e_1_2_9_5_1) 2022; 72 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 FAO I. (e_1_2_9_7_1) 2019 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_3_1 Zaki S.Z.M. (e_1_2_9_35_1) 2020; 9 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 Bromley J. (e_1_2_9_36_1) 1993; 6 Haiyan C. (e_1_2_9_20_1) 2021; 43 e_1_2_9_28_1 Jialing H. (e_1_2_9_22_1) 2021; 40 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 21 start-page: 7987 year: 2021 article-title: Early detection and classification of tomato leaf disease using high‐performance deep neural network publication-title: Sensors – volume: 13 year: 2022 article-title: CASM‐AMFMNet: A network based on coordinate attention shuffle mechanism and asymmetric multi‐scale fusion module for classification of grape leaf diseases publication-title: Front. Plant Sci. – volume: 8 start-page: 56607 year: 2020 end-page: 56614 article-title: Deep learning‐based object detection improvement for tomato disease publication-title: IEEE Access – start-page: 10096 year: 2021 end-page: 10106 article-title: Efficientnetv2:Smaller models and faster training – volume: 72 start-page: 312 year: 2022 end-page: 324 article-title: Automatic recognition of tomato leaf disease using fast enhanced learning with image processing publication-title: Acta Agric. Scand. Sect B – volume: 22 start-page: 7 year: 2021 end-page: 14 article-title: Tomato crop diseases classification models using deep cnn‐based architectures publication-title: J. Korea Acad. Ind. Cooperation Soc. – volume: 9 start-page: 56683 year: 2021 end-page: 56698 article-title: Plant disease detection and classification by deep learning—A review publication-title: IEEE Access – volume: 52 start-page: 1 issue: 07 year: 2021 end-page: 18 article-title: A review of key technologies for identification of crop pests and diseases publication-title: J. Agric. Mach. – volume: 40 start-page: 102 issue: 03 year: 2021 end-page: 105 article-title: Improved MobileNet face recognition system based on Jetson nano publication-title: Sens. Microsyst. – start-page: 6105 year: 2019 end-page: 6114 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks – volume: 11 start-page: 951 year: 2022 article-title: Alexnet convolutional neural network for disease detection and classification of tomato leaf publication-title: Electronics – start-page: 7132 year: 2018 end-page: 7141 article-title: Squeeze‐and‐excitation networks – volume: 81 start-page: 7759 year: 2022 end-page: 7782 article-title: Apple leaf disease recognition method with improved residual network publication-title: Multimedia Tools Appl. – volume: 12 start-page: 228 year: 2022 article-title: A lightweight attention‐based convolutional neural networks for tomato leaf disease classification publication-title: Agriculture – volume: 9 start-page: 1302 year: 2020 article-title: Review of the state of the art of deep learning for plant diseases: A broad analysis and discussion publication-title: Plants – volume: 208 year: 2022 article-title: Trends in vision‐based machine learning techniques for plant disease identification: A systematic review publication-title: Expert Syst. Appl. – volume: 6 start-page: 737 year: 1993 end-page: 744 article-title: Signature verification using a“ Siamese” time delay neural network publication-title: Adv. Neural Inf. Process. Syst. – volume: 31 start-page: 669 issue: 04 year: 2019 end-page: 676 article-title: Advances in image recognition technology of crop diseases based on deep learning publication-title: Zhejiang Agricultural Journal – volume: 8 start-page: 162588 year: 2020 end-page: 162600 article-title: Deep metric learning based citrus disease classification with sparse data publication-title: IEEE Access – volume: 202 year: 2022 article-title: Social density detection for suckling piglets based on convolutional neural network combined with local outlier factor algorithm publication-title: Comput. Electron. Agric. – volume: 178 year: 2020 article-title: Identification of tomato leaf diseases based on combination of ABCK‐BWTR and B‐ARNet publication-title: Comput. Electron. Agric. – volume: 123 year: 2022 article-title: MMDGAN: A fusion data augmentation method for tomato‐leaf disease identification publication-title: Appl. Soft Comput. – volume: 43 start-page: 83 year: 2005 end-page: 116 article-title: Plant disease: A threat to global food security publication-title: Annu. Rev. Phytopathol. – start-page: 1 year: 2015 end-page: 9 article-title: Going deeper with convolutions – volume: 37 start-page: 793 year: 2021 end-page: 804 article-title: Rapid recognition of tomato's disease stages based on the kernel mutual subspace method publication-title: Appl. Eng. Agric. – volume: 167 start-page: 293 year: 2020 end-page: 301 article-title: Toled: Tomato leaf disease detection using convolution neural network publication-title: Procedia Comput. Sci. – volume: 43 start-page: 1 year: 2021 end-page: 98 article-title: Target detection of Ochotona curzoniae based on embedded Jetson TX2 publication-title: J. Comput. Appl. – volume: 16 start-page: 1 year: 2020 end-page: 16 article-title: Early recognition of tomato grey leaf spot disease based on mobilenetv2‐yolov3 model publication-title: Plant Methods – volume: 11 start-page: 651 year: 2021 article-title: Tomato leaf disease diagnosis based on improved convolution neural network by attention module publication-title: Agriculture – volume: 133 start-page: 1040 year: 2018 end-page: 1047 article-title: Tomato crop disease classification using pre‐trained deep learning algorithm publication-title: Procedia Comput. Sci. – start-page: 2 year: 2019 end-page: 13 – start-page: 595 year: 2022 end-page: 606 – start-page: 320 year: 2021 end-page: 325 article-title: Tomato plant disease identification through leaf image using convolutional neural network – volume: 8 start-page: 27 year: 2021 end-page: 51 article-title: Recent advances in image processing techniques for automated leaf pest and disease recognition—A review publication-title: Inf. Process. Agric. – start-page: 1735 year: 2006 end-page: 1742 article-title: Dimensionality reduction by learning an invariant mapping – year: 2017 – volume: 203 year: 2022 article-title: Multi‐channel feature fusion networks with hard coordinate attention mechanism for maize disease identification under complex backgrounds publication-title: Comput. Electron. Agric. – year: 2020 article-title: Lightweight compressed depth neural network for tomato disease diagnosis – volume: 198 year: 2022 article-title: A diverse ensemble classifier for tomato disease recognition publication-title: Comput. Electron. Agric. – volume: 77 start-page: 3969 issue: 3 year: 2023 end-page: 3992 article-title: A lightweight deep learning‐based model for tomato leaf disease classification publication-title: Comput. Mater. Continua – volume: 9 start-page: 290 year: 2020 article-title: Classification of tomato leaf diseases using Mobilenet V2 publication-title: IAES Int. J. Artif. Intell. – ident: e_1_2_9_6_1 doi: 10.1109/ACCESS.2020.2982456 – ident: e_1_2_9_45_1 doi: 10.32604/cmc.2023.041819 – ident: e_1_2_9_23_1 doi: 10.1016/j.inpa.2020.04.004 – ident: e_1_2_9_17_1 – ident: e_1_2_9_10_1 doi: 10.1109/ICoICT52021.2021.9527425 – ident: e_1_2_9_15_1 doi: 10.3390/agriculture12020228 – ident: e_1_2_9_37_1 doi: 10.1109/CVPR.2006.100 – volume: 43 start-page: 1 year: 2021 ident: e_1_2_9_20_1 article-title: Target detection of Ochotona curzoniae based on embedded Jetson TX2 publication-title: J. Comput. Appl. – volume: 72 start-page: 312 year: 2022 ident: e_1_2_9_5_1 article-title: Automatic recognition of tomato leaf disease using fast enhanced learning with image processing publication-title: Acta Agric. Scand. Sect B – ident: e_1_2_9_40_1 doi: 10.1016/j.compag.2022.107054 – ident: e_1_2_9_44_1 doi: 10.3390/agriculture12020228 – ident: e_1_2_9_11_1 doi: 10.3390/electronics11060951 – volume: 52 start-page: 1 issue: 07 year: 2021 ident: e_1_2_9_2_1 article-title: A review of key technologies for identification of crop pests and diseases publication-title: J. Agric. Mach. – ident: e_1_2_9_24_1 doi: 10.1109/ACCESS.2020.3021487 – ident: e_1_2_9_31_1 doi: 10.1016/j.compag.2020.105730 – ident: e_1_2_9_39_1 doi: 10.3390/s21237987 – ident: e_1_2_9_29_1 doi: 10.13031/aea.14507 – ident: e_1_2_9_16_1 – ident: e_1_2_9_28_1 doi: 10.3390/agriculture11070651 – ident: e_1_2_9_43_1 doi: 10.1016/j.asoc.2022.108969 – ident: e_1_2_9_14_1 doi: 10.1117/12.2557180 – ident: e_1_2_9_25_1 doi: 10.1007/s11042-022-11915-2 – ident: e_1_2_9_30_1 doi: 10.1016/j.procs.2018.07.070 – ident: e_1_2_9_32_1 doi: 10.1016/j.procs.2020.03.225 – ident: e_1_2_9_38_1 doi: 10.1109/CVPR.2015.7298594 – volume: 6 start-page: 737 year: 1993 ident: e_1_2_9_36_1 article-title: Signature verification using a“ Siamese” time delay neural network publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_9_4_1 doi: 10.1007/978-981-16-9873-6_54 – ident: e_1_2_9_13_1 doi: 10.1109/CVPR.2015.7298594 – ident: e_1_2_9_19_1 doi: 10.1109/CVPR.2018.00745 – ident: e_1_2_9_33_1 – ident: e_1_2_9_41_1 doi: 10.1016/j.compag.2022.107486 – ident: e_1_2_9_26_1 doi: 10.3390/plants9101302 – ident: e_1_2_9_42_1 doi: 10.3389/fpls.2022.846767 – ident: e_1_2_9_18_1 – ident: e_1_2_9_27_1 doi: 10.1109/ACCESS.2021.3069646 – ident: e_1_2_9_3_1 doi: 10.1146/annurev.phyto.43.113004.133839 – volume: 31 start-page: 669 issue: 04 year: 2019 ident: e_1_2_9_12_1 article-title: Advances in image recognition technology of crop diseases based on deep learning publication-title: Zhejiang Agricultural Journal – ident: e_1_2_9_34_1 doi: 10.1016/j.eswa.2022.118117 – start-page: 2 volume-title: The State of Food and Agriculture year: 2019 ident: e_1_2_9_7_1 – volume: 22 start-page: 7 year: 2021 ident: e_1_2_9_8_1 article-title: Tomato crop diseases classification models using deep cnn‐based architectures publication-title: J. Korea Acad. Ind. Cooperation Soc. – ident: e_1_2_9_9_1 doi: 10.1186/s13007-020-00624-2 – volume: 40 start-page: 102 issue: 03 year: 2021 ident: e_1_2_9_22_1 article-title: Improved MobileNet face recognition system based on Jetson nano publication-title: Sens. Microsyst. – volume: 9 start-page: 290 year: 2020 ident: e_1_2_9_35_1 article-title: Classification of tomato leaf diseases using Mobilenet V2 publication-title: IAES Int. J. Artif. Intell. – ident: e_1_2_9_21_1 doi: 10.1016/j.compag.2022.107423 |
SSID | ssj0059085 |
Score | 2.3259275 |
Snippet | Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large amount of... Abstract Automatic detection of tomato leaf spot disease is essential for control and loss reduction. Traditional algorithms face challenges such as large... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 2291 |
SubjectTerms | botany computer vision convolutional neural nets data visualisation |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSuRAEC7Gn4OX3XVUdtxVGvSiEEw6nU4a9qKyooIiouDJ0L86MCTDzIh48xF8Rp_Erk5mRBDBWxKqSahKVX_dXfUVwLaIjclNXES5ZGnEhEkjpazBYJjJRGmaayxOPjvnx9fs9Ca76cC_aS1Mww8x23BDzwjxGh1cqqYLiQe13oj94YhiL2PB5mABa2sxoY-yi2kcxmbeWSiHxEbyPBNTclIm9t7HfpiOAmv_R5QappmjX_CjxYdkvzHoMnRs1YWfLVYkrSeOu7B4UHtY97QCt_tkgAvsx7DHSSa1h6A1GVjpSHv4QvqmTQkKViBN02iC85ch_n58j0nor88vk8d-RZDg0n9A1aSHj1fh-uj_1eFx1DZNiDRjlEWc6cQh0ZuPcsovxoSLDdJEJdS7X2rSVGmPQahSMbVOMUNjZnOljRDaeKxn0zWYr-rK_gZiilxyj5c0jZUfYwUvCmmzxCaOMulcD3amuit1yyiOjS0GZTjZZqJEPZdBzz3YmskOGx6NT6UO0AQzCeS-Dg_q0V3ZulIZ21Qw5wwvVMEkLyRNBVYU8zyPFZdJD3aDAb94T3lycUnD1fp3hP_AEvWYpsnW_Qvzk9GD3fCYZKI2w6_3Bn9P3BA priority: 102 providerName: Wiley-Blackwell |
Title | A lightweight tomato leaf disease identification method based on shared‐twin neural networks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13094 https://doaj.org/article/0e394ffd68b84a68a23905336770b6a1 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC587MGLr93FcXVoWC8KwaTT6aSPoygquAziiOxhQz9xYMgMMyODt_0J-xv3l1jdyQwKohdvSejQobq666t09fcBHIjYmNzERZRLlkZMmDRSyhq_GGYyUZrm2h9Ovv7FL3rs6j67fyH15WvCanrg2nDHsU0Fc87wQhVM8kJSzNIRo_A8jxWXIfHBmDdPpuo12At5Z-EopBeR55mYE5MycdwfjanXQBbsVSgKjP2vEWoIMeebsN5gQ9Kpv2kLlmy1DRsNTiTNLJxsw5eTIUK6p6_wp0MGPrmehf-bZDpE-DkkAysdaTZeSN805UBhBEgtGE187DIE7ycPvgD9_99_01m_Ip7cEj-gqkvDJ9-gd352e3oRNYIJkWaMsogznThP8oYrnMJETLjYeIqohOLUS02aKo34gyoVU-sUMzRmNlfaCKEN4jybfoeValjZHSCmyCVHrKRprPAdK3hRSJslNnGUSedacDi3XakbNnEvajEow642E6W3cxns3IKfi7ajmkPjzVYnfggWLTzvdXiA3lA23lB-5A0tOAoD-E4_5WX3hoar3c_o8QesUcQ5dQXvHqxMx492H3HKVLVhmbJuG1Y7d73fvXZw0GfKc-VO |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VFgkuLRQQCwUsAQeQIhLHceIDhy1Q7dIfIdRFFYcG_8JKq6Ta3WrVG4_Ai_BSPAkex7uoEkLi0FsSTRJr7Bl_tme-AXgmUmNKk1ZJKVmeMGHyRClr0BkWMlOalhqTkw-P-GDE3p8UJ2vwc5kL0_FDrDbc0DKCv0YDxw3pbsHJkCRzfDalWMxYsBhTuW8vFn7FNns9fOu79zmle--O3wySWFQg0YxRlnCmM4dEaN4LKL9YES41SKOUUT88c5PnSvs5miqVUusUMzRltlTaCKGNx0I299-9BhsIo7wRbfQ_jT6Plq4f64cXIQMTa9fzQiz5UJl49ae1l2bAUCjgMjAOM9veLdiMkJT0uzF0G9Zssw1bEZ6SaPyzbbi-23okeXEHTvtkgmv6RdhWJfPWo96WTKx0JJ73kLGJUUih40lXp5rglGmIv599w7j3X99_zBfjhiCnpm9A00Wkz-7C6EpUeg_Wm7ax94GYqpTcQzRNU-XfsYJXlbRFZjNHmXSuBy-Wuqt1JDHHWhqTOhymM1Gjnuug5x48XcmeddQdf5XaxS5YSSDddnjQTr_W0Xrr1OaCOWd4pSomeSVpLjCJmZdlqrjMevAydOA__lMPP3yk4erB_wg_gRuD48OD-mB4tP8QblIPqbpg4R1Yn0_P7SMPiebqcRyIBL5c9dj_DVb4GVg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tXYS48LOAKL-WgANIEY7jOPGBQ5el2rKwWiGKVhwIdmzvVqqSqi2q9sYj8CA8FU-Cx3GLVkJIHPaWRJPE8ow9n-2ZbwCeSmpMYWiZFIpnCZcmS7S2BifDXKW6ZkWNycnvD8X-mL89zo-34Oc6F6bjh9hsuOHICPM1DvCZcd16kyNH5mQ2Z1jLWPIYUnlgz1Z-wbZ4Ndrz2n3G2PDNx9f7SawpkNScM54IXqcOedD8JKD9WkU6apBFKWXeOjOTZbr2LpppTZl1mhtGuS10baSsjYdCNvPfvQTbuXeDtAfbg0_jz-P1zI_lw_OQgIml60Uu13SoXL7809pzDjDUCTiPi4NjG96AaxGRkkFnQjdhyzY7cD2iUxLH_mIHLu-2Hkie3YIvAzLFJf0q7KqSZetBb0umVjkSj3vIxMQgpKB30pWpJugxDfH3i1MMe__1_cdyNWkIUmr6BjRdQPriNowvpEvvQK9pG3sXiCkLJTxCqxnV_h0rRVkqm6c2dYwr5_rwfN13VR05zLGUxrQKZ-lcVtjPVejnPjzZyM465o6_Su2iCjYSyLYdHrTzkyoO3oraTHLnjCh1yZUoFcsk5jCLoqBaqLQPL4IC__GfanT0gYWre_8j_BiuHO0Nq3ejw4P7cJV5QNWFCj-A3nL-zT70gGipH0U7JPD1ok3_N0fPGHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lightweight+tomato+leaf+disease+identification+method+based+on+shared%E2%80%90twin+neural+networks&rft.jtitle=IET+image+processing&rft.au=Linfeng%2C+Wang&rft.au=Jiayao%2C+Liu&rft.au=Yong%2C+Liu&rft.au=Yunsheng%2C+Wang&rft.date=2024-07-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=9&rft.spage=2291&rft.epage=2303&rft_id=info:doi/10.1049%2Fipr2.13094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_13094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |