A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li–S batteries
The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li2S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on...
Saved in:
Published in | InfoMat Vol. 3; no. 7; pp. 790 - 803 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons, Inc
01.07.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li2S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on electrocatalyzed cathodes made of interfacial engineered TiC nanofibers and in situ grown vertical graphene are developed. Integrated 1D/2D heterostructured electrocatalysts are realized to enable highly improved Li+ and electron transportation together with significantly enhanced affinity to LiPS, which effectively accelerate the conversion kinetics between sulfur species, and thus induce homogeneous deposition of Li2S in the catalyzed cathodes. Consequently, highly active electro‐electrocatalysts‐based cells exhibit remarkable rate capability at 2C with a high specific capacity of 971 mAh g−1. Even at ultra‐high sulfur loading and low E/S ratio, the battery still delivers a high areal capacity of 9.1 mAh cm−2, with a flexible pouch cell being demonstrated to power a LED array at different bending angles with a high capacity over 100 cycles. This work puts forward a novel pathway for the rational design of effective nanofiber electrocatalysts for cathodes of high‐performance Li–S batteries.
Novel method was developed for in situ growth of vertical graphene with simultaneous conversion of the substrate TiO2 nanofibers into TiC ones, with well‐interconnected interfaces within the metallic VG/TiC 1D/2D heterostructured electrocatalyst enabling fast redox kinetics essential for Li–S cells. This work offers a novel avenue for the fabrication of high‐performance cathode critical to practical high‐energy‐density Li–S batteries. |
---|---|
AbstractList | The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li2S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on electrocatalyzed cathodes made of interfacial engineered TiC nanofibers and in situ grown vertical graphene are developed. Integrated 1D/2D heterostructured electrocatalysts are realized to enable highly improved Li+ and electron transportation together with significantly enhanced affinity to LiPS, which effectively accelerate the conversion kinetics between sulfur species, and thus induce homogeneous deposition of Li2S in the catalyzed cathodes. Consequently, highly active electro‐electrocatalysts‐based cells exhibit remarkable rate capability at 2C with a high specific capacity of 971 mAh g−1. Even at ultra‐high sulfur loading and low E/S ratio, the battery still delivers a high areal capacity of 9.1 mAh cm−2, with a flexible pouch cell being demonstrated to power a LED array at different bending angles with a high capacity over 100 cycles. This work puts forward a novel pathway for the rational design of effective nanofiber electrocatalysts for cathodes of high‐performance Li–S batteries. Abstract The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li2S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on electrocatalyzed cathodes made of interfacial engineered TiC nanofibers and in situ grown vertical graphene are developed. Integrated 1D/2D heterostructured electrocatalysts are realized to enable highly improved Li+ and electron transportation together with significantly enhanced affinity to LiPS, which effectively accelerate the conversion kinetics between sulfur species, and thus induce homogeneous deposition of Li2S in the catalyzed cathodes. Consequently, highly active electro‐electrocatalysts‐based cells exhibit remarkable rate capability at 2C with a high specific capacity of 971 mAh g−1. Even at ultra‐high sulfur loading and low E/S ratio, the battery still delivers a high areal capacity of 9.1 mAh cm−2, with a flexible pouch cell being demonstrated to power a LED array at different bending angles with a high capacity over 100 cycles. This work puts forward a novel pathway for the rational design of effective nanofiber electrocatalysts for cathodes of high‐performance Li–S batteries. The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li2S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on electrocatalyzed cathodes made of interfacial engineered TiC nanofibers and in situ grown vertical graphene are developed. Integrated 1D/2D heterostructured electrocatalysts are realized to enable highly improved Li+ and electron transportation together with significantly enhanced affinity to LiPS, which effectively accelerate the conversion kinetics between sulfur species, and thus induce homogeneous deposition of Li2S in the catalyzed cathodes. Consequently, highly active electro‐electrocatalysts‐based cells exhibit remarkable rate capability at 2C with a high specific capacity of 971 mAh g−1. Even at ultra‐high sulfur loading and low E/S ratio, the battery still delivers a high areal capacity of 9.1 mAh cm−2, with a flexible pouch cell being demonstrated to power a LED array at different bending angles with a high capacity over 100 cycles. This work puts forward a novel pathway for the rational design of effective nanofiber electrocatalysts for cathodes of high‐performance Li–S batteries. Novel method was developed for in situ growth of vertical graphene with simultaneous conversion of the substrate TiO2 nanofibers into TiC ones, with well‐interconnected interfaces within the metallic VG/TiC 1D/2D heterostructured electrocatalyst enabling fast redox kinetics essential for Li–S cells. This work offers a novel avenue for the fabrication of high‐performance cathode critical to practical high‐energy‐density Li–S batteries. The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li 2 S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on electrocatalyzed cathodes made of interfacial engineered TiC nanofibers and in situ grown vertical graphene are developed. Integrated 1D/2D heterostructured electrocatalysts are realized to enable highly improved Li + and electron transportation together with significantly enhanced affinity to LiPS, which effectively accelerate the conversion kinetics between sulfur species, and thus induce homogeneous deposition of Li 2 S in the catalyzed cathodes. Consequently, highly active electro‐electrocatalysts‐based cells exhibit remarkable rate capability at 2C with a high specific capacity of 971 mAh g −1 . Even at ultra‐high sulfur loading and low E/S ratio, the battery still delivers a high areal capacity of 9.1 mAh cm −2 , with a flexible pouch cell being demonstrated to power a LED array at different bending angles with a high capacity over 100 cycles. This work puts forward a novel pathway for the rational design of effective nanofiber electrocatalysts for cathodes of high‐performance Li–S batteries. |
Author | Zhang, Shijie Silva, S. Ravi P. Zhang, Peng Li, Neng Wang, Zheng Shao, Guosheng Zhang, Yongshang |
Author_xml | – sequence: 1 givenname: Yongshang surname: Zhang fullname: Zhang, Yongshang organization: Zhengzhou Materials Genome Institute (ZMGI) – sequence: 2 givenname: Peng orcidid: 0000-0001-9505-3858 surname: Zhang fullname: Zhang, Peng email: zhangp@zzu.edu.cn organization: Zhengzhou Materials Genome Institute (ZMGI) – sequence: 3 givenname: Shijie surname: Zhang fullname: Zhang, Shijie organization: Zhengzhou Materials Genome Institute (ZMGI) – sequence: 4 givenname: Zheng surname: Wang fullname: Wang, Zheng organization: Wuhan University of Technology – sequence: 5 givenname: Neng surname: Li fullname: Li, Neng organization: Wuhan University of Technology – sequence: 6 givenname: S. Ravi P. surname: Silva fullname: Silva, S. Ravi P. organization: University of Surrey – sequence: 7 givenname: Guosheng orcidid: 0000-0003-1498-7929 surname: Shao fullname: Shao, Guosheng email: gsshao@zzu.edu.cn organization: Zhengzhou Materials Genome Institute (ZMGI) |
BookMark | eNp9kc1uEzEYRUeolShtNzyBJXZIaWyPf2aWVUohUgQLytr6xvNN68gdB9tJyQ7xCrwhT4LTQQihqitb9rnHP_dVdTSGEavqNaMXjFI-d-PALxjnTLyoTrhUelYzJY_-mb-szlNa0wJLKrhkJ9WPSzJ4_OY6j-QeM3jvLLlxCzLCGAbXYZzvMGZnwZPbCJs7HJGwqzm_IneYMYaU49bmbcSeQCJgs9shQY82x2ChCPcpkyFEAv0ORluwlfv1_edn0kEueYfprDoewCc8_zOeVl-u390sPsxWn94vF5ermRWCi5niNQ6iE3WjWhCW0t7WGlndt6h5Lyl2rWyQDmVP6AYbIRQwaLTSVmkOqj6tlpO3D7A2m-juIe5NAGceF0K8NXB4qUcDAqVGrVulpYBOdy1tedMoXbS27eviejO5NjF83WLKZh22cSzXN1wKzXijBC3U24my5Z9SxOHvqYyaQ2XmUJl5rKzA9D_YugzZhTFHcP7pCJsiD87j_hm5WX685lPmNzGNqrw |
CitedBy_id | crossref_primary_10_1039_D1TC03217H crossref_primary_10_1016_j_cej_2023_142397 crossref_primary_10_1016_j_electacta_2022_141185 crossref_primary_10_1007_s12274_023_6230_0 crossref_primary_10_1016_j_jmst_2024_03_078 crossref_primary_10_1016_j_apsusc_2023_158850 crossref_primary_10_1016_j_apsusc_2021_151020 crossref_primary_10_1021_acssuschemeng_2c04294 crossref_primary_10_1016_j_cej_2022_140813 crossref_primary_10_2139_ssrn_4135021 crossref_primary_10_1016_j_est_2023_109021 crossref_primary_10_1002_adfm_202200302 crossref_primary_10_1002_batt_202100359 crossref_primary_10_3390_app12094155 crossref_primary_10_1016_j_electacta_2022_141506 crossref_primary_10_1021_acsaem_3c00896 crossref_primary_10_1002_inf2_12294 crossref_primary_10_1016_j_cej_2022_134814 crossref_primary_10_1016_j_electacta_2022_139891 crossref_primary_10_1002_aenm_202102805 crossref_primary_10_1002_smtd_202201177 crossref_primary_10_1016_j_cclet_2024_110551 crossref_primary_10_1016_j_cej_2022_138182 crossref_primary_10_1002_chem_202303451 crossref_primary_10_1021_acsanm_1c03419 crossref_primary_10_1016_j_ensm_2021_09_011 crossref_primary_10_1016_j_jechem_2024_04_012 crossref_primary_10_1016_j_jechem_2022_08_033 crossref_primary_10_1016_j_cej_2021_134001 crossref_primary_10_1016_j_jpowsour_2023_233975 crossref_primary_10_1016_j_mattod_2021_10_026 crossref_primary_10_1016_S1872_2067_21_63898_6 crossref_primary_10_1002_aenm_202202432 crossref_primary_10_1016_j_cej_2021_132587 crossref_primary_10_1002_inf2_12343 crossref_primary_10_1016_j_ceramint_2022_08_306 crossref_primary_10_1002_eem2_12444 crossref_primary_10_1039_D1TA05693J crossref_primary_10_1021_acsami_2c12114 crossref_primary_10_1002_anie_202211448 crossref_primary_10_1002_advs_202103879 crossref_primary_10_1016_j_jcis_2021_09_077 crossref_primary_10_1002_anie_202303363 crossref_primary_10_1021_acs_iecr_1c03182 crossref_primary_10_1021_acscatal_2c05546 crossref_primary_10_3390_batteries8120269 crossref_primary_10_1007_s11696_022_02422_7 crossref_primary_10_1016_j_cej_2021_132091 crossref_primary_10_1002_smll_202310801 crossref_primary_10_1016_j_jcis_2024_11_091 crossref_primary_10_1007_s42765_024_00419_3 crossref_primary_10_1063_5_0179107 crossref_primary_10_1016_j_ifacol_2025_01_114 crossref_primary_10_1039_D1NR07173D crossref_primary_10_1002_inf2_12359 crossref_primary_10_1016_j_cej_2022_138115 crossref_primary_10_1002_cey2_255 crossref_primary_10_1002_sus2_42 crossref_primary_10_1002_aenm_202302295 crossref_primary_10_1016_j_ceramint_2022_01_194 crossref_primary_10_1016_j_jcis_2022_05_067 crossref_primary_10_1021_acsnano_2c05745 crossref_primary_10_3390_app112110223 crossref_primary_10_1002_admi_202202058 crossref_primary_10_1002_ange_202211448 crossref_primary_10_1021_acsnano_3c11903 crossref_primary_10_1016_j_apcatb_2024_124223 crossref_primary_10_1007_s12274_022_5215_4 crossref_primary_10_1021_acssuschemeng_2c05999 crossref_primary_10_1002_batt_202300145 crossref_primary_10_1007_s00339_022_05920_3 crossref_primary_10_1002_adma_202200102 crossref_primary_10_1016_S1872_2067_24_60003_3 crossref_primary_10_1002_advs_202206786 crossref_primary_10_1002_ejic_202400002 crossref_primary_10_1002_sstr_202100170 crossref_primary_10_1021_acsanm_3c02410 crossref_primary_10_1021_acs_nanolett_4c01618 crossref_primary_10_1002_batt_202100229 crossref_primary_10_1016_j_jpowsour_2023_233754 crossref_primary_10_34133_energymatadv_0032 crossref_primary_10_1002_aenm_202203621 crossref_primary_10_1007_s12274_024_6902_4 crossref_primary_10_1002_smll_202205470 crossref_primary_10_1016_j_desal_2024_117312 crossref_primary_10_1021_acsnano_2c03059 crossref_primary_10_1016_j_cej_2023_145862 crossref_primary_10_1002_advs_202404328 crossref_primary_10_1021_acs_energyfuels_2c02881 crossref_primary_10_2139_ssrn_4092244 crossref_primary_10_1002_advs_202106049 crossref_primary_10_1016_j_apsusc_2022_155782 crossref_primary_10_1016_j_jmst_2022_06_004 crossref_primary_10_1002_adem_202400061 crossref_primary_10_1016_j_scib_2024_09_032 crossref_primary_10_1002_adfm_202211124 crossref_primary_10_1016_j_jpowsour_2022_232034 crossref_primary_10_1016_j_seppur_2023_123170 crossref_primary_10_1002_ente_202100669 crossref_primary_10_1021_acsaem_2c02306 crossref_primary_10_1016_j_cej_2024_154347 crossref_primary_10_1007_s12274_022_4983_1 crossref_primary_10_1021_acsaem_1c03785 crossref_primary_10_1002_ange_202303363 crossref_primary_10_1016_j_apcatb_2023_122461 crossref_primary_10_1016_j_psep_2022_12_017 crossref_primary_10_1016_j_susmat_2023_e00814 crossref_primary_10_1021_acsaem_1c01806 crossref_primary_10_20517_energymater_2024_123 crossref_primary_10_1016_j_electacta_2023_143330 crossref_primary_10_1016_j_cej_2022_137050 crossref_primary_10_1016_j_ccr_2024_216022 crossref_primary_10_1016_j_jallcom_2022_168576 crossref_primary_10_1039_D3NR06143D crossref_primary_10_1016_j_cej_2021_132381 crossref_primary_10_1016_j_jcis_2022_12_147 crossref_primary_10_1021_acsanm_3c00770 crossref_primary_10_1002_inf2_12304 crossref_primary_10_1016_j_apcatb_2021_120691 crossref_primary_10_1016_j_est_2024_112003 crossref_primary_10_1002_smll_202411838 crossref_primary_10_1016_j_cej_2024_153126 crossref_primary_10_1016_j_cej_2021_134205 crossref_primary_10_1002_aenm_202202232 crossref_primary_10_1002_inf2_12387 crossref_primary_10_1016_j_ccr_2022_214879 crossref_primary_10_1002_adma_202211168 crossref_primary_10_1016_j_apsusc_2022_152498 crossref_primary_10_1002_smll_202104349 crossref_primary_10_1016_j_jhazmat_2023_131249 crossref_primary_10_1016_j_seppur_2022_120976 crossref_primary_10_1016_j_jallcom_2023_173252 crossref_primary_10_1002_advs_202205020 crossref_primary_10_1016_j_electacta_2023_142096 crossref_primary_10_1016_j_apsusc_2022_153185 crossref_primary_10_1002_smll_202303192 crossref_primary_10_1002_eom2_12291 crossref_primary_10_1002_advs_202402448 crossref_primary_10_1016_j_apsusc_2022_153222 crossref_primary_10_1002_bkcs_12833 crossref_primary_10_1016_j_cej_2022_138310 crossref_primary_10_1016_j_jmrt_2022_12_076 crossref_primary_10_1016_j_nanoen_2021_106708 crossref_primary_10_1039_D2CP03582K crossref_primary_10_1002_celc_202101099 crossref_primary_10_1016_j_est_2024_112259 crossref_primary_10_1039_D4TA01997K crossref_primary_10_1002_cnma_202300633 crossref_primary_10_1002_cey2_572 crossref_primary_10_1016_j_cej_2022_136256 crossref_primary_10_1007_s11581_023_05287_2 crossref_primary_10_1002_smll_202106657 crossref_primary_10_1007_s12274_022_4584_z crossref_primary_10_1016_j_cej_2021_132698 crossref_primary_10_1016_j_cclet_2021_11_032 crossref_primary_10_1016_j_jallcom_2021_161746 crossref_primary_10_1021_acsomega_1c05891 crossref_primary_10_26599_JAC_2024_9220936 crossref_primary_10_1021_acsami_3c03743 crossref_primary_10_1002_asia_202200377 crossref_primary_10_1016_j_cej_2023_143378 crossref_primary_10_1016_j_cej_2022_135170 crossref_primary_10_1021_acsnano_1c01250 crossref_primary_10_1016_j_cej_2022_136540 crossref_primary_10_1002_smll_202303867 crossref_primary_10_1007_s12274_022_4972_4 crossref_primary_10_1016_j_jpowsour_2024_235598 crossref_primary_10_1016_j_seppur_2023_123365 crossref_primary_10_1002_admt_202200238 crossref_primary_10_1016_j_apsusc_2022_155109 |
Cites_doi | 10.1039/D0TA07633C 10.1016/j.ensm.2019.12.032 10.1016/j.apsusc.2019.144361 10.1002/jrs.1250070606 10.1002/aenm.201901940 10.1002/inf2.12046 10.1002/inf2.12056 10.1002/adma.201604724 10.1002/aenm.202001017 10.1016/j.jallcom.2019.153207 10.1002/aenm.202000091 10.1038/ncomms14627 10.1039/C9TA05527D 10.1002/adma.201706895 10.1039/C8TA06869K 10.1002/aenm.201500117 10.1016/j.nanoen.2020.104555 10.1002/anie.201915928 10.1016/j.tsf.2011.01.200 10.1002/eem2.12169 10.1016/j.nanoen.2017.07.012 10.1016/j.jechem.2020.03.065 10.1002/anie.201605676 10.1002/smll.201901584 10.1002/anie.201506972 10.1016/j.ensm.2018.06.009 10.1016/j.nanoen.2020.104881 10.1038/nmat3191 10.1002/advs.201903088 10.1016/j.ensm.2020.01.029 10.1016/j.ensm.2019.12.036 10.1002/adfm.200700146 10.1002/admi.202000854 10.1002/smll.202005998 10.1002/adfm.201808994 10.1039/D0TA06695H 10.1016/j.cej.2020.125602 10.1016/j.jechem.2020.01.033 10.1016/j.ensm.2018.12.020 10.1002/adfm.201706391 10.1038/ncomms2163 10.1002/aenm.201903891 10.1039/C9EE01338E 10.1002/inf2.12080 10.1002/aenm.201800564 10.1002/smtd.202000214 10.1038/s41560-020-0640-7 10.1021/acsenergylett.0c01564 10.1016/j.cej.2020.127917 10.1002/adfm.201707234 10.1002/aenm.201500285 10.1002/eem2.12001 10.1039/C8EE01879K 10.1021/acs.nanolett.5b04189 10.1002/adma.201905658 10.1038/nenergy.2017.69 10.1002/aenm.202002271 10.1002/adma.202000315 10.1016/j.jallcom.2006.08.216 10.1038/nmat2460 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1002/inf2.12214 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection ProQuest Materials Science Database ProQuest Engineering Collection ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3165 |
EndPage | 803 |
ExternalDocumentID | oai_doaj_org_article_a4e57e7796754ab7b90928867e84c9d3 10_1002_inf2_12214 INF212214 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U2004172; 51972287; 51502269 – fundername: Foundation for University Key Teachers of Henan Province funderid: 2020GGJS009 – fundername: Natural Science Foundation of Henan Province funderid: 202300410368 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC KB. M7S OK1 PDBOC PIMPY PTHSS WIN AAYXX ADMLS CITATION PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c4424-623ef4b43869a4c00dc37e13d9e72d50eb958e0fa4c478e8446a1a8767c672a63 |
IEDL.DBID | BENPR |
ISSN | 2567-3165 |
IngestDate | Wed Aug 27 01:29:35 EDT 2025 Wed Aug 13 04:11:03 EDT 2025 Tue Jul 01 01:33:43 EDT 2025 Thu Apr 24 23:12:47 EDT 2025 Wed Jan 22 16:57:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4424-623ef4b43869a4c00dc37e13d9e72d50eb958e0fa4c478e8446a1a8767c672a63 |
Notes | Funding information Foundation for University Key Teachers of Henan Province, Grant/Award Number: 2020GGJS009; National Natural Science Foundation of China, Grant/Award Numbers: U2004172, 51972287, 51502269; Natural Science Foundation of Henan Province, Grant/Award Number: 202300410368 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9505-3858 0000-0003-1498-7929 |
OpenAccessLink | https://www.proquest.com/docview/2547128640?pq-origsite=%requestingapplication% |
PQID | 2547128640 |
PQPubID | 5068510 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a4e57e7796754ab7b90928867e84c9d3 proquest_journals_2547128640 crossref_primary_10_1002_inf2_12214 crossref_citationtrail_10_1002_inf2_12214 wiley_primary_10_1002_inf2_12214_INF212214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: Beijing |
PublicationTitle | InfoMat |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2007; 17 2019; 7 2017; 8 2019; 9 2018; 28 2017; 2 2015; 5 2011; 519 2019; 1 2019; 12 2019; 15 2015; 54 2020; 16 2020; 59 2020; 821 2017; 29 2020; 32 2020; 10 2007; 434–435 2016; 16 2012; 11 2020; 504 2016; 55 1978; 7 2020; 8 2018; 6 2020; 7 2020; 5 2018; 8 2020; 4 2012; 3 2020; 2 2020; 75 2020; 51 2021 2019; 22 2017; 39 2018; 1 2020; 70 2020; 27 2020; 26 2009; 8 2020; 47 2019; 29 2018; 30 2020; 398 2020; 417 2018; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Liu K (e_1_2_7_26_1) 2021 Zhang S (e_1_2_7_29_1) 2021 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 7 start-page: 321 year: 1978 end-page: 324 article-title: Raman spectrum of anatase, TiO publication-title: J Raman Spectrosc – volume: 12 start-page: 177 year: 2019 end-page: 186 article-title: Nanomat Li–S batteries based on all‐fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility publication-title: Energy Environ Sci – volume: 5 start-page: 534 year: 2020 end-page: 542 article-title: Low‐temperature and high‐rate‐charging lithium metal batteries enabled by an electrochemically active monolayer‐regulated interface publication-title: Nat Energy – volume: 39 start-page: 291 year: 2017 end-page: 296 article-title: An in‐plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement publication-title: Nano Energy – volume: 434–435 start-page: 405 year: 2007 end-page: 409 article-title: Raman spectroscopy sheds new light on TiC formation during the controlled milling of titanium and carbon publication-title: J Alloys Compd – volume: 2 year: 2017 article-title: Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X‐ray diffraction publication-title: Nat Energy – volume: 417 year: 2020 article-title: The assembling principle and strategies of high‐density atomically dispersed catalysts publication-title: Chem Eng J – volume: 2 start-page: 379 year: 2020 end-page: 388 article-title: A compact inorganic layer for robust anode protection in lithium–sulfur batteries publication-title: InfoMat – volume: 27 start-page: 159 year: 2020 end-page: 168 article-title: Vertically aligned graphene nanosheets on multi‐yolk/shell structured TiC@C nanofibers for stable Li–S batteries publication-title: Energy Storage Mater – volume: 519 start-page: 3982 year: 2011 end-page: 3985 article-title: XPS study of the surface composition modification of nc‐TiC/C nanocomposite films under in situ argon ion bombardment publication-title: Thin Solid Films – year: 2021 article-title: In situ electrochemical intercalation‐induced phase transition to enhance catalytic performance for lithium–sulfur battery publication-title: Small – volume: 26 start-page: 65 year: 2020 end-page: 72 article-title: Genetic engineering of porous sulfur species with molecular target prevents host passivation in lithium sulfur batteries publication-title: Energy Storage Mater – volume: 26 start-page: 40 year: 2020 end-page: 45 article-title: Facet‐tailoring five‐coordinated Ti sites and structure‐optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li S ‐based lithium–sulfur batteries publication-title: Energy Storage Mater – volume: 15 year: 2019 article-title: In situ fabrication of branched TiO /C nanofibers as binder‐free and free‐standing anodes for high‐performance sodium‐ion batteries publication-title: Small – volume: 16 year: 2020 article-title: Immobilizing polysulfide by in situ topochemical oxidation derivative TiC@carbon‐included TiO core–shell sulfur hosts for advanced lithium–sulfur batteries publication-title: Small – volume: 8 start-page: 25255 year: 2020 end-page: 25267 article-title: Ti C MXene as an “energy band bridge” to regulate the heterointerface mass transfer and electron reversible exchange process for Li–S batteries publication-title: J Mater Chem A – volume: 30 year: 2018 article-title: Superhierarchical cobalt‐embedded nitrogen‐doped porous carbon nanosheets as two‐in‐one hosts for high‐performance lithium–sulfur batteries publication-title: Adv Mater – volume: 8 year: 2017 article-title: Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium‐sulfur batteries publication-title: Nat Commun – volume: 3 year: 2012 article-title: Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer publication-title: Nat Commun – volume: 1 start-page: 533 year: 2019 end-page: 541 article-title: Expediting redox kinetics of sulfur species by atomic‐scale electrocatalysts in lithium–sulfur batteries publication-title: InfoMat – volume: 5 year: 2015 article-title: Recent advances in electrolytes for lithium–sulfur batteries publication-title: Adv Energy Mater – volume: 7 start-page: 18404 year: 2019 end-page: 18416 article-title: Bubble‐linking‐bubble” hybrid fibers filled with ultrafine TiN: a robust and efficient platform achieving fast kinetics, strong ion anchoring and high areal loading for selenium sulfide publication-title: J Mater Chem A – volume: 10 year: 2020 article-title: Dual‐functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries publication-title: Adv Energy Mater – volume: 51 start-page: 378 year: 2020 end-page: 387 article-title: Confining sulfur in intact freestanding scaffold of yolk‐shell nanofibers with high sulfur content for lithium–sulfur batteries publication-title: J Energy Chem – volume: 398 year: 2020 article-title: Effective promotion of spacial charge separation in direct Z‐scheme WO /CdS/WS tandem heterojunction with enhanced visible‐light‐driven photocatalytic H evolution publication-title: Chem Eng J – volume: 55 start-page: 12990 year: 2016 end-page: 12995 article-title: Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries publication-title: Angew Chem Int Ed – volume: 12 start-page: 3144 year: 2019 end-page: 3155 article-title: Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries publication-title: Energy Environ Sci – volume: 29 year: 2019 article-title: Multidimension‐controllable synthesis of ant nest‐structural electrode materials with unique 3D hierarchical porous features toward electrochemical applications publication-title: Adv Funct Mater – volume: 59 start-page: 11969 year: 2020 end-page: 11976 article-title: High‐efficiency perovskite solar cells enabled by Anatase TiO nanopyramid arrays with an oriented electric field publication-title: Angew Chem Int Ed – volume: 10 year: 2020 article-title: Optimized catalytic WS –WO heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries publication-title: Adv Energy Mater – volume: 821 year: 2020 article-title: High‐quality rGO/MoS composite via a facile “prereduction‐microwave” strategy for enhanced lithium and sodium storage publication-title: J Alloys Compd – volume: 54 start-page: 12886 year: 2015 end-page: 12890 article-title: Hollow carbon nanofibers filled with MnO nanosheets as efficient sulfur hosts for lithium–sulfur batteries publication-title: Angew Chem Int Ed – volume: 2 start-page: 613 year: 2020 end-page: 638 article-title: Two‐dimensional MXenes for lithium‐sulfur batteries publication-title: InfoMat – volume: 29 year: 2017 article-title: Ferroelectric‐enhanced polysulfide trapping for lithium–sulfur battery improvement publication-title: Adv Mater – volume: 1 start-page: 5 year: 2018 end-page: 12 article-title: Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage publication-title: Energy Environ Mater – volume: 6 start-page: 22555 year: 2018 end-page: 22565 article-title: Construction of a low‐defect and highly conductive 3D graphene network to enable a high sulphur content cathode for high performance Li–S/graphene batteries publication-title: J Mater Chem A – volume: 16 start-page: 549 year: 2016 end-page: 554 article-title: Three‐dimensional growth of Li S in lithium–sulfur batteries promoted by a redox mediator publication-title: Nano Lett – volume: 17 start-page: 2133 year: 2007 end-page: 2138 article-title: Photoemission electron microscopy of TiO anatase films embedded with rutile nanocrystals publication-title: Adv Funct Mater – volume: 14 start-page: 383 year: 2018 end-page: 391 article-title: Metal‐organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries publication-title: Energy Storage Mater – volume: 4 year: 2020 article-title: Photogenerated electron transfer process in heterojunctions: in situ irradiation XPS publication-title: Small Methods – volume: 8 year: 2018 article-title: Vertically grown edge‐rich graphene nanosheets for spatial control of Li nucleation publication-title: Adv Energy Mater – volume: 10 year: 2020 article-title: 1T′‐ReS nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li–S batteries publication-title: Adv Energy Mater – volume: 5 year: 2015 article-title: Characterization of polysulfide radicals present in an ether‐based electrolyte of a lithium–sulfur battery during initial discharge using in situ X‐ray absorption spectroscopy experiments and first‐principles calculations publication-title: Adv Energy Mater – volume: 5 start-page: 3041 year: 2020 end-page: 3050 article-title: Nitrogen‐doped CoSe as a bifunctional catalyst for high areal capacity and lean electrolyte of Li–S battery publication-title: Acs Energy Lett – volume: 22 start-page: 29 year: 2019 end-page: 39 article-title: PECVD‐derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries publication-title: Energy Storage Mater – volume: 47 start-page: 281 year: 2020 end-page: 290 article-title: In situ sulfur‐doped graphene nanofiber network as efficient metal‐free electrocatalyst for polysulfides redox reactions in lithium–sulfur batteries publication-title: J Energy Chem – volume: 8 start-page: 23248 year: 2020 end-page: 23256 article-title: Nitrogen‐doped vertical graphene nanosheets by high‐flux plasma enhanced chemical vapor deposition as efficient oxygen reduction catalysts for Zn–air batteries publication-title: J Mater Chem A – volume: 28 year: 2018 article-title: Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high‐performance lithium–sulfur batteries publication-title: Adv Funct Mater – volume: 7 year: 2020 article-title: Heater‐free and substrate‐independent growth of vertically standing graphene using a high‐flux plasma‐enhanced chemical vapor deposition publication-title: Adv Mater Interfaces – volume: 28 year: 2018 article-title: Addressing passivation in lithium–sulfur battery under lean electrolyte condition publication-title: Adv Funct Mater – volume: 7 year: 2020 article-title: Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries publication-title: Adv Sci – volume: 75 year: 2020 article-title: Boron‐rich environment boosting ruthenium boride on B, N doped carbon outperforms platinum for hydrogen evolution reaction in a universal pH range publication-title: Nano Energy – volume: 11 start-page: 19 year: 2012 end-page: 29 article-title: Li–O and Li–S batteries with high energy storage publication-title: Nat Mater – volume: 32 year: 2020 article-title: A dual‐functional conductive framework embedded with TiN‐VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li–S full batteries publication-title: Adv Mater – volume: 9 year: 2019 article-title: MoN supported on graphene as a bifunctional interlayer for advanced Li–S batteries publication-title: Adv Energy Mater – volume: 10 year: 2020 article-title: Interface engineering of hierarchical branched Mo‐doped Ni S /Ni Py hollow heterostructure nanorods for efficient overall water splitting publication-title: Adv Energy Mater – year: 2021 article-title: Bio‐inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions publication-title: Nano Res – year: 2021 article-title: Atomic layer coated Al O on nitrogen doped vertical graphene nanosheets for high performance sodium ion batteries publication-title: Energy Environ Mater – volume: 32 year: 2020 article-title: Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries publication-title: Adv Mater – volume: 8 start-page: 500 year: 2009 end-page: 506 article-title: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries publication-title: Nat Mater – volume: 504 year: 2020 article-title: Direct evidence of 2D/1D heterojunction enhancement on photocatalytic activity through assembling MoS nanosheets onto super‐long TiO nanofibers publication-title: Appl Surf Sci – volume: 70 year: 2020 article-title: Rational design of porous nitrogen‐doped Ti C MXene as a multifunctional electrocatalyst for Li–S chemistry publication-title: Nano Energy – ident: e_1_2_7_33_1 doi: 10.1039/D0TA07633C – ident: e_1_2_7_30_1 doi: 10.1016/j.ensm.2019.12.032 – ident: e_1_2_7_60_1 doi: 10.1016/j.apsusc.2019.144361 – ident: e_1_2_7_53_1 doi: 10.1002/jrs.1250070606 – ident: e_1_2_7_13_1 doi: 10.1002/aenm.201901940 – ident: e_1_2_7_17_1 doi: 10.1002/inf2.12046 – ident: e_1_2_7_39_1 doi: 10.1002/inf2.12056 – ident: e_1_2_7_41_1 doi: 10.1002/adma.201604724 – ident: e_1_2_7_21_1 doi: 10.1002/aenm.202001017 – ident: e_1_2_7_32_1 doi: 10.1016/j.jallcom.2019.153207 – ident: e_1_2_7_34_1 doi: 10.1002/aenm.202000091 – ident: e_1_2_7_12_1 doi: 10.1038/ncomms14627 – ident: e_1_2_7_25_1 doi: 10.1039/C9TA05527D – ident: e_1_2_7_27_1 doi: 10.1002/adma.201706895 – ident: e_1_2_7_8_1 doi: 10.1039/C8TA06869K – ident: e_1_2_7_9_1 doi: 10.1002/aenm.201500117 – ident: e_1_2_7_42_1 doi: 10.1016/j.nanoen.2020.104555 – year: 2021 ident: e_1_2_7_29_1 article-title: Bio‐inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions publication-title: Nano Res – ident: e_1_2_7_45_1 doi: 10.1002/anie.201915928 – ident: e_1_2_7_59_1 doi: 10.1016/j.tsf.2011.01.200 – ident: e_1_2_7_51_1 doi: 10.1002/eem2.12169 – ident: e_1_2_7_55_1 doi: 10.1016/j.nanoen.2017.07.012 – ident: e_1_2_7_24_1 doi: 10.1016/j.jechem.2020.03.065 – ident: e_1_2_7_28_1 doi: 10.1002/anie.201605676 – ident: e_1_2_7_58_1 doi: 10.1002/smll.201901584 – ident: e_1_2_7_19_1 doi: 10.1002/anie.201506972 – ident: e_1_2_7_16_1 doi: 10.1016/j.ensm.2018.06.009 – ident: e_1_2_7_50_1 doi: 10.1016/j.nanoen.2020.104881 – ident: e_1_2_7_2_1 doi: 10.1038/nmat3191 – ident: e_1_2_7_20_1 doi: 10.1002/advs.201903088 – ident: e_1_2_7_23_1 doi: 10.1016/j.ensm.2020.01.029 – ident: e_1_2_7_14_1 doi: 10.1016/j.ensm.2019.12.036 – ident: e_1_2_7_63_1 doi: 10.1002/adfm.200700146 – ident: e_1_2_7_47_1 doi: 10.1002/admi.202000854 – ident: e_1_2_7_54_1 doi: 10.1002/smll.202005998 – ident: e_1_2_7_56_1 doi: 10.1002/adfm.201808994 – ident: e_1_2_7_7_1 doi: 10.1039/D0TA06695H – ident: e_1_2_7_61_1 doi: 10.1016/j.cej.2020.125602 – ident: e_1_2_7_46_1 doi: 10.1016/j.jechem.2020.01.033 – ident: e_1_2_7_48_1 doi: 10.1016/j.ensm.2018.12.020 – ident: e_1_2_7_22_1 doi: 10.1002/adfm.201706391 – ident: e_1_2_7_11_1 doi: 10.1038/ncomms2163 – ident: e_1_2_7_49_1 doi: 10.1002/aenm.201903891 – ident: e_1_2_7_31_1 doi: 10.1039/C9EE01338E – ident: e_1_2_7_43_1 doi: 10.1002/inf2.12080 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201800564 – ident: e_1_2_7_36_1 doi: 10.1002/smtd.202000214 – ident: e_1_2_7_4_1 doi: 10.1038/s41560-020-0640-7 – ident: e_1_2_7_44_1 doi: 10.1021/acsenergylett.0c01564 – ident: e_1_2_7_62_1 doi: 10.1016/j.cej.2020.127917 – ident: e_1_2_7_38_1 doi: 10.1002/adfm.201707234 – ident: e_1_2_7_40_1 doi: 10.1002/aenm.201500285 – ident: e_1_2_7_57_1 doi: 10.1002/eem2.12001 – ident: e_1_2_7_6_1 doi: 10.1039/C8EE01879K – ident: e_1_2_7_10_1 doi: 10.1021/acs.nanolett.5b04189 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201905658 – ident: e_1_2_7_3_1 doi: 10.1038/nenergy.2017.69 – ident: e_1_2_7_37_1 doi: 10.1002/aenm.202002271 – year: 2021 ident: e_1_2_7_26_1 article-title: In situ electrochemical intercalation‐induced phase transition to enhance catalytic performance for lithium–sulfur battery publication-title: Small – ident: e_1_2_7_35_1 doi: 10.1002/adma.202000315 – ident: e_1_2_7_52_1 doi: 10.1016/j.jallcom.2006.08.216 – ident: e_1_2_7_5_1 doi: 10.1038/nmat2460 |
SSID | ssj0002504251 |
Score | 2.5475554 |
Snippet | The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and... Abstract The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 790 |
SubjectTerms | Cathodes Chemical vapor deposition Conversion Deposition electrocatalysis Electrocatalysts Electrolytic cells electrospinning Graphene interface engineering Kinetics Lithium sulfur batteries Morphology nanofiber Nanofibers Sulfur content vertical graphene |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3iSQ_iJ1arBPSisHY3m2w2R7-KinhRobeQZGexUFex9eBN_Av-Q3-Jk-y2tCB68Va2OYR5szNvlscbQvYTbHEGrI0KCWXEcYSoRQBWptZv285zF9QWN9nFPb_qid7Uqi-vCavtgevAdQwHIUFKhcyWGyutihXL80xCzp0qgs8n9rypYcrXYG_MhZ174kfKOogXO0oYS_hMBwpG_TPscpqjhibTXSZLDTukx_WtVsgcVKtkccozcI18HNPSm1jaAdBHQOo86Dt61z-llakwUSy8dMKKZYw9DW7UWMxoctZhZ_TBS1-easfY1xcoqBlSE-odbbbhhI85b8MRRSpLx_IAet3_ev-8pTZYceJkvU7uu-d3pxdRs0ghcpwzHiHFgZJbDH2mDHdxXLhUQpIWCiQrRAxWiRziEv_jMsfA8swkBuukdJlkJks3yHz1VMEmoRh4kwqFRM-V3AmXl0LIUhgjlJ9kZIscjIOrXeMy7pddDHTtj8y0B0IHIFpkb3L2ufbW-PHUicdocsL7YYcHmCW6yRL9V5a0SHuMsG5e0qHG2Vhie8543CKHAfVfrqEvb7os_Nr6jwttkwXm1TFB-Nsm8wg97CC9GdndkMnfypj2GQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access (Activated by CARLI) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZhc0kPpXmUbpoEQXNpwLEtS5YFueTRZRNCKGQDuQlJHrcLW2_YTQ-9lf6F_sP-kozkxyZQCr0ZewyyP82T0TeEHKbo4gxYG5USqohjCtE0AViZWT9tuyhc6La4ycd3_Ope3K-Rk-4sTMMP0RfcvGYEe-0V3NhlvCINRQDYccqYn2K97s_W-oY-xj_3FRZPzsXC_EV0674Yl4uen5TFq9dfeKRA3P8i2nweswanM3pDXrfRIj1t4N0ka1BvkVfPOAS3ya9TWnlSSzsD-g0wlJ5NHZ1Mz2ltatw4FhZxGLmMWNDATo3GjaYXMbugX30rzLxhkP2-gJKaJTXB_tF2Ok4o7vxYPlIMbWnXLkCvp39-_r6lNlBzYqa9Q-5Gnybn46gdrBA5zhmPMOSBiluEIleGuyQpXSYhzUoFkpUiAatEAUmFz7gsoMCU0aQG7aZ0uWQmz96SQT2v4R2hRS5NJhQGfq7iTriiEkJWwhihfGYjh-Rj93O1a1nH_fCLmW74kpn2QOgAxJB86GUfGq6Nv0qdeYx6Cc-PHW7MF190q27acBASpFSYD3FjpVWJYgUuFj_GqTIbkr0OYd0q7VJjrizRXec8GZKjgPo_lqEvb0YsXO3-j_B7ssF8V0xo-N0jA4QY9jGsebQHYfc-AaGj8Lg priority: 102 providerName: Wiley-Blackwell |
Title | A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li–S batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12214 https://www.proquest.com/docview/2547128640 https://doaj.org/article/a4e57e7796754ab7b90928867e84c9d3 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB2SzaU9lH7SbZNF0F5acNeWJUs6lXxtklKW0CaQm5BkOVnYeNPd9NBb6V_oP-wvyUjWbhMIuRhjC2P7jWfejIc3AO8LDHHGW5vVwjcZwxSiawKworRh2raULnZbjKvDU_bljJ-lgtsitVUufWJ01PXMhRr5EBMZgb60Yvnnqx9ZmBoV_q6mERrrsIEuWMoebOzsj4-_raosQaALI_hKl5QOETf6qaC0YHciURTsv8Myb3PVGGxGT-FJYolku4P1Gaz59jk8vqUd-AL-bJMmiFnaqSeXHin0dOLIyWSXtKZFg7F-PoyjlhEDElWp0amRYm9I98hFaIGZdcqxP-e-JmZBTPR7JE3FiUWdX4trgpSWLNsEyNfJv99_vxMbJTkxw34Jp6P9k93DLA1UyBxjlGVIdXzDLEJQKcNcnteuFL4oa-UFrXnureLS5w2eY0J6iamiKQz6S-EqQU1VvoJeO2v9ayCyEqbkCgmfa5jjTjaci4Ybw1XIaEQfPixfrnZJbTwMvZjqTieZ6gCEjkD04d1q7VWnsXHvqp2A0WpF0MWOB2bzc50-M22Y58ILoTAPYsYKq3KFdlEJfBin6rIPm0uEdfpYF_q_afXhY0T9gdvQR-MRjXtvHr7WW3hEQ_9LbO3dhB6C6reQwFzbAaxTdoxbOToYJIsdxGLADW5f8mU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF-xbQFLwAGksIljx_EBodJl2aXLXthKvbm248BK22y7W1T1VvEKvAcPxZMwdpKllVBvvUWJFTmeycw3zuT7AF4mmOK0MyYqhCsjhiVE3QRgRGq82nae29BtMc4Ge-zzPt9fg9_tvzC-rbKNiSFQF3Pr98i7WMgIjKUZi98fHUdeNcp_XW0lNGq32HVnp1iyLd8Ne2jfV5T2P052BlGjKhBZxiiLMN-7khmcRyY1s3Fc2FS4JC2kE7TgsTOS5y4u8RoTucuxXtKJxqAhbCaozlK87w24yVLM5P7P9P6n1Z6OpwNDvLBiQaVd9BL6NqE0YZfyXpAHuIRpLyLjkNr69-Bug0nJdu1E92HNVQ_gzgWmwofwc5uUnjrTzBw5dAjYZ1NLJtMdUukK3dO4RTcIO6PFSeDAxhBKkl6X9sh333Azr3lqfyxcQfSS6BBlSaPBE7aQzpYnBAE0aZsSyGj65_zXV2ICASjW849g71oW-jGsV_PKPQGSZ0KnXCK8tCWz3OYl56LkWnPp6yfRgdft4irbcJt7iY2ZqlmZqfKGUMEQHXixGntUM3r8d9QHb6PVCM_CHU7MF99U81IrzRwXTgiJVRfTRhgZS5rjZPFhrCzSDmy1FlZNaFiqf47cgTfB6ldMQw3HfRqONq6-13O4NZh8GanRcLy7Cbep77wJTcVbsI4Gdk8ROp2YZ8FfCRxc9wvyF8tUKeY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPgVWwpYAg4ghSSOHccHhNpuV11arSpopd5c23FgpW227Bah3hCvwNvwODwJYydZWgn11luUWJbjbzz-xpl8A_AyxS1OO2OiUrgqYhhCNEkARmTGV9suChuyLcb5ziH7cMSPVuB39y-MT6vsfGJw1OXM-jPyGAMZgb40Z0lctWkR-4Ph-9Ovka8g5b-0duU0GhPZdeffMXxbvBsNEOtXlA63D7Z2orbCQGQZoyzCvd9VzOCYcqmZTZLSZsKlWSmdoCVPnJG8cEmFz5goXIGxk041OhBhc0F1nmG_N2BV-KioB6ub2-P9j8sTHi8OhuxhqYlKY7QZ-jalNGWXdsFQLOASw73Ik8NGN7wLd1qGSjYak7oHK66-D7cv6BY-gJ8bpPJCmmbqyIlD-j6dWHIw2SK1rtFYjZvHocwz4k-CIjY6VJIOYjogX3z6zaxRrf02dyXRC6KDzyVtRZ5woHS-OCNIp0mXokD2Jn9-_PpETJADxej-IRxey1Q_gl49q91jIEUudMYlkk1bMcttUXEuKq41lz6aEn143U2usq3SuS-4MVWNRjNVHggVgOjDi2Xb00bf47-tNj1GyxZekzvcmM0_q3aJK80cF04IiTEY00YYmUha4GDxZawssz6sdwir1lEs1D-z7sObgPoVw1Cj8ZCGq7Wr-3oON3FxqL3RePcJ3KI-DSdkGK9DD_F1T5FHnZlnrcESOL7uNfIXn7EveA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+flexible+metallic+TiC+nanofiber%2Fvertical+graphene+1D%2F2D+heterostructured+as+active+electrocatalyst+for+advanced+Li%E2%80%93S+batteries&rft.jtitle=InfoMat&rft.au=Zhang%2C+Yongshang&rft.au=Zhang%2C+Peng&rft.au=Zhang%2C+Shijie&rft.au=Wang%2C+Zheng&rft.date=2021-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2567-3165&rft.volume=3&rft.issue=7&rft.spage=790&rft.epage=803&rft_id=info:doi/10.1002%2Finf2.12214&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon |