A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li–S batteries

The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li2S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on...

Full description

Saved in:
Bibliographic Details
Published inInfoMat Vol. 3; no. 7; pp. 790 - 803
Main Authors Zhang, Yongshang, Zhang, Peng, Zhang, Shijie, Wang, Zheng, Li, Neng, Silva, S. Ravi P., Shao, Guosheng
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons, Inc 01.07.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li2S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on electrocatalyzed cathodes made of interfacial engineered TiC nanofibers and in situ grown vertical graphene are developed. Integrated 1D/2D heterostructured electrocatalysts are realized to enable highly improved Li+ and electron transportation together with significantly enhanced affinity to LiPS, which effectively accelerate the conversion kinetics between sulfur species, and thus induce homogeneous deposition of Li2S in the catalyzed cathodes. Consequently, highly active electro‐electrocatalysts‐based cells exhibit remarkable rate capability at 2C with a high specific capacity of 971 mAh g−1. Even at ultra‐high sulfur loading and low E/S ratio, the battery still delivers a high areal capacity of 9.1 mAh cm−2, with a flexible pouch cell being demonstrated to power a LED array at different bending angles with a high capacity over 100 cycles. This work puts forward a novel pathway for the rational design of effective nanofiber electrocatalysts for cathodes of high‐performance Li–S batteries. Novel method was developed for in situ growth of vertical graphene with simultaneous conversion of the substrate TiO2 nanofibers into TiC ones, with well‐interconnected interfaces within the metallic VG/TiC 1D/2D heterostructured electrocatalyst enabling fast redox kinetics essential for Li–S cells. This work offers a novel avenue for the fabrication of high‐performance cathode critical to practical high‐energy‐density Li–S batteries.
AbstractList The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li2S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on electrocatalyzed cathodes made of interfacial engineered TiC nanofibers and in situ grown vertical graphene are developed. Integrated 1D/2D heterostructured electrocatalysts are realized to enable highly improved Li+ and electron transportation together with significantly enhanced affinity to LiPS, which effectively accelerate the conversion kinetics between sulfur species, and thus induce homogeneous deposition of Li2S in the catalyzed cathodes. Consequently, highly active electro‐electrocatalysts‐based cells exhibit remarkable rate capability at 2C with a high specific capacity of 971 mAh g−1. Even at ultra‐high sulfur loading and low E/S ratio, the battery still delivers a high areal capacity of 9.1 mAh cm−2, with a flexible pouch cell being demonstrated to power a LED array at different bending angles with a high capacity over 100 cycles. This work puts forward a novel pathway for the rational design of effective nanofiber electrocatalysts for cathodes of high‐performance Li–S batteries.
Abstract The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li2S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on electrocatalyzed cathodes made of interfacial engineered TiC nanofibers and in situ grown vertical graphene are developed. Integrated 1D/2D heterostructured electrocatalysts are realized to enable highly improved Li+ and electron transportation together with significantly enhanced affinity to LiPS, which effectively accelerate the conversion kinetics between sulfur species, and thus induce homogeneous deposition of Li2S in the catalyzed cathodes. Consequently, highly active electro‐electrocatalysts‐based cells exhibit remarkable rate capability at 2C with a high specific capacity of 971 mAh g−1. Even at ultra‐high sulfur loading and low E/S ratio, the battery still delivers a high areal capacity of 9.1 mAh cm−2, with a flexible pouch cell being demonstrated to power a LED array at different bending angles with a high capacity over 100 cycles. This work puts forward a novel pathway for the rational design of effective nanofiber electrocatalysts for cathodes of high‐performance Li–S batteries.
The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li2S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on electrocatalyzed cathodes made of interfacial engineered TiC nanofibers and in situ grown vertical graphene are developed. Integrated 1D/2D heterostructured electrocatalysts are realized to enable highly improved Li+ and electron transportation together with significantly enhanced affinity to LiPS, which effectively accelerate the conversion kinetics between sulfur species, and thus induce homogeneous deposition of Li2S in the catalyzed cathodes. Consequently, highly active electro‐electrocatalysts‐based cells exhibit remarkable rate capability at 2C with a high specific capacity of 971 mAh g−1. Even at ultra‐high sulfur loading and low E/S ratio, the battery still delivers a high areal capacity of 9.1 mAh cm−2, with a flexible pouch cell being demonstrated to power a LED array at different bending angles with a high capacity over 100 cycles. This work puts forward a novel pathway for the rational design of effective nanofiber electrocatalysts for cathodes of high‐performance Li–S batteries. Novel method was developed for in situ growth of vertical graphene with simultaneous conversion of the substrate TiO2 nanofibers into TiC ones, with well‐interconnected interfaces within the metallic VG/TiC 1D/2D heterostructured electrocatalyst enabling fast redox kinetics essential for Li–S cells. This work offers a novel avenue for the fabrication of high‐performance cathode critical to practical high‐energy‐density Li–S batteries.
The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li 2 S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on electrocatalyzed cathodes made of interfacial engineered TiC nanofibers and in situ grown vertical graphene are developed. Integrated 1D/2D heterostructured electrocatalysts are realized to enable highly improved Li + and electron transportation together with significantly enhanced affinity to LiPS, which effectively accelerate the conversion kinetics between sulfur species, and thus induce homogeneous deposition of Li 2 S in the catalyzed cathodes. Consequently, highly active electro‐electrocatalysts‐based cells exhibit remarkable rate capability at 2C with a high specific capacity of 971 mAh g −1 . Even at ultra‐high sulfur loading and low E/S ratio, the battery still delivers a high areal capacity of 9.1 mAh cm −2 , with a flexible pouch cell being demonstrated to power a LED array at different bending angles with a high capacity over 100 cycles. This work puts forward a novel pathway for the rational design of effective nanofiber electrocatalysts for cathodes of high‐performance Li–S batteries.
Author Zhang, Shijie
Silva, S. Ravi P.
Zhang, Peng
Li, Neng
Wang, Zheng
Shao, Guosheng
Zhang, Yongshang
Author_xml – sequence: 1
  givenname: Yongshang
  surname: Zhang
  fullname: Zhang, Yongshang
  organization: Zhengzhou Materials Genome Institute (ZMGI)
– sequence: 2
  givenname: Peng
  orcidid: 0000-0001-9505-3858
  surname: Zhang
  fullname: Zhang, Peng
  email: zhangp@zzu.edu.cn
  organization: Zhengzhou Materials Genome Institute (ZMGI)
– sequence: 3
  givenname: Shijie
  surname: Zhang
  fullname: Zhang, Shijie
  organization: Zhengzhou Materials Genome Institute (ZMGI)
– sequence: 4
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
  organization: Wuhan University of Technology
– sequence: 5
  givenname: Neng
  surname: Li
  fullname: Li, Neng
  organization: Wuhan University of Technology
– sequence: 6
  givenname: S. Ravi P.
  surname: Silva
  fullname: Silva, S. Ravi P.
  organization: University of Surrey
– sequence: 7
  givenname: Guosheng
  orcidid: 0000-0003-1498-7929
  surname: Shao
  fullname: Shao, Guosheng
  email: gsshao@zzu.edu.cn
  organization: Zhengzhou Materials Genome Institute (ZMGI)
BookMark eNp9kc1uEzEYRUeolShtNzyBJXZIaWyPf2aWVUohUgQLytr6xvNN68gdB9tJyQ7xCrwhT4LTQQihqitb9rnHP_dVdTSGEavqNaMXjFI-d-PALxjnTLyoTrhUelYzJY_-mb-szlNa0wJLKrhkJ9WPSzJ4_OY6j-QeM3jvLLlxCzLCGAbXYZzvMGZnwZPbCJs7HJGwqzm_IneYMYaU49bmbcSeQCJgs9shQY82x2ChCPcpkyFEAv0ORluwlfv1_edn0kEueYfprDoewCc8_zOeVl-u390sPsxWn94vF5ermRWCi5niNQ6iE3WjWhCW0t7WGlndt6h5Lyl2rWyQDmVP6AYbIRQwaLTSVmkOqj6tlpO3D7A2m-juIe5NAGceF0K8NXB4qUcDAqVGrVulpYBOdy1tedMoXbS27eviejO5NjF83WLKZh22cSzXN1wKzXijBC3U24my5Z9SxOHvqYyaQ2XmUJl5rKzA9D_YugzZhTFHcP7pCJsiD87j_hm5WX685lPmNzGNqrw
CitedBy_id crossref_primary_10_1039_D1TC03217H
crossref_primary_10_1016_j_cej_2023_142397
crossref_primary_10_1016_j_electacta_2022_141185
crossref_primary_10_1007_s12274_023_6230_0
crossref_primary_10_1016_j_jmst_2024_03_078
crossref_primary_10_1016_j_apsusc_2023_158850
crossref_primary_10_1016_j_apsusc_2021_151020
crossref_primary_10_1021_acssuschemeng_2c04294
crossref_primary_10_1016_j_cej_2022_140813
crossref_primary_10_2139_ssrn_4135021
crossref_primary_10_1016_j_est_2023_109021
crossref_primary_10_1002_adfm_202200302
crossref_primary_10_1002_batt_202100359
crossref_primary_10_3390_app12094155
crossref_primary_10_1016_j_electacta_2022_141506
crossref_primary_10_1021_acsaem_3c00896
crossref_primary_10_1002_inf2_12294
crossref_primary_10_1016_j_cej_2022_134814
crossref_primary_10_1016_j_electacta_2022_139891
crossref_primary_10_1002_aenm_202102805
crossref_primary_10_1002_smtd_202201177
crossref_primary_10_1016_j_cclet_2024_110551
crossref_primary_10_1016_j_cej_2022_138182
crossref_primary_10_1002_chem_202303451
crossref_primary_10_1021_acsanm_1c03419
crossref_primary_10_1016_j_ensm_2021_09_011
crossref_primary_10_1016_j_jechem_2024_04_012
crossref_primary_10_1016_j_jechem_2022_08_033
crossref_primary_10_1016_j_cej_2021_134001
crossref_primary_10_1016_j_jpowsour_2023_233975
crossref_primary_10_1016_j_mattod_2021_10_026
crossref_primary_10_1016_S1872_2067_21_63898_6
crossref_primary_10_1002_aenm_202202432
crossref_primary_10_1016_j_cej_2021_132587
crossref_primary_10_1002_inf2_12343
crossref_primary_10_1016_j_ceramint_2022_08_306
crossref_primary_10_1002_eem2_12444
crossref_primary_10_1039_D1TA05693J
crossref_primary_10_1021_acsami_2c12114
crossref_primary_10_1002_anie_202211448
crossref_primary_10_1002_advs_202103879
crossref_primary_10_1016_j_jcis_2021_09_077
crossref_primary_10_1002_anie_202303363
crossref_primary_10_1021_acs_iecr_1c03182
crossref_primary_10_1021_acscatal_2c05546
crossref_primary_10_3390_batteries8120269
crossref_primary_10_1007_s11696_022_02422_7
crossref_primary_10_1016_j_cej_2021_132091
crossref_primary_10_1002_smll_202310801
crossref_primary_10_1016_j_jcis_2024_11_091
crossref_primary_10_1007_s42765_024_00419_3
crossref_primary_10_1063_5_0179107
crossref_primary_10_1016_j_ifacol_2025_01_114
crossref_primary_10_1039_D1NR07173D
crossref_primary_10_1002_inf2_12359
crossref_primary_10_1016_j_cej_2022_138115
crossref_primary_10_1002_cey2_255
crossref_primary_10_1002_sus2_42
crossref_primary_10_1002_aenm_202302295
crossref_primary_10_1016_j_ceramint_2022_01_194
crossref_primary_10_1016_j_jcis_2022_05_067
crossref_primary_10_1021_acsnano_2c05745
crossref_primary_10_3390_app112110223
crossref_primary_10_1002_admi_202202058
crossref_primary_10_1002_ange_202211448
crossref_primary_10_1021_acsnano_3c11903
crossref_primary_10_1016_j_apcatb_2024_124223
crossref_primary_10_1007_s12274_022_5215_4
crossref_primary_10_1021_acssuschemeng_2c05999
crossref_primary_10_1002_batt_202300145
crossref_primary_10_1007_s00339_022_05920_3
crossref_primary_10_1002_adma_202200102
crossref_primary_10_1016_S1872_2067_24_60003_3
crossref_primary_10_1002_advs_202206786
crossref_primary_10_1002_ejic_202400002
crossref_primary_10_1002_sstr_202100170
crossref_primary_10_1021_acsanm_3c02410
crossref_primary_10_1021_acs_nanolett_4c01618
crossref_primary_10_1002_batt_202100229
crossref_primary_10_1016_j_jpowsour_2023_233754
crossref_primary_10_34133_energymatadv_0032
crossref_primary_10_1002_aenm_202203621
crossref_primary_10_1007_s12274_024_6902_4
crossref_primary_10_1002_smll_202205470
crossref_primary_10_1016_j_desal_2024_117312
crossref_primary_10_1021_acsnano_2c03059
crossref_primary_10_1016_j_cej_2023_145862
crossref_primary_10_1002_advs_202404328
crossref_primary_10_1021_acs_energyfuels_2c02881
crossref_primary_10_2139_ssrn_4092244
crossref_primary_10_1002_advs_202106049
crossref_primary_10_1016_j_apsusc_2022_155782
crossref_primary_10_1016_j_jmst_2022_06_004
crossref_primary_10_1002_adem_202400061
crossref_primary_10_1016_j_scib_2024_09_032
crossref_primary_10_1002_adfm_202211124
crossref_primary_10_1016_j_jpowsour_2022_232034
crossref_primary_10_1016_j_seppur_2023_123170
crossref_primary_10_1002_ente_202100669
crossref_primary_10_1021_acsaem_2c02306
crossref_primary_10_1016_j_cej_2024_154347
crossref_primary_10_1007_s12274_022_4983_1
crossref_primary_10_1021_acsaem_1c03785
crossref_primary_10_1002_ange_202303363
crossref_primary_10_1016_j_apcatb_2023_122461
crossref_primary_10_1016_j_psep_2022_12_017
crossref_primary_10_1016_j_susmat_2023_e00814
crossref_primary_10_1021_acsaem_1c01806
crossref_primary_10_20517_energymater_2024_123
crossref_primary_10_1016_j_electacta_2023_143330
crossref_primary_10_1016_j_cej_2022_137050
crossref_primary_10_1016_j_ccr_2024_216022
crossref_primary_10_1016_j_jallcom_2022_168576
crossref_primary_10_1039_D3NR06143D
crossref_primary_10_1016_j_cej_2021_132381
crossref_primary_10_1016_j_jcis_2022_12_147
crossref_primary_10_1021_acsanm_3c00770
crossref_primary_10_1002_inf2_12304
crossref_primary_10_1016_j_apcatb_2021_120691
crossref_primary_10_1016_j_est_2024_112003
crossref_primary_10_1002_smll_202411838
crossref_primary_10_1016_j_cej_2024_153126
crossref_primary_10_1016_j_cej_2021_134205
crossref_primary_10_1002_aenm_202202232
crossref_primary_10_1002_inf2_12387
crossref_primary_10_1016_j_ccr_2022_214879
crossref_primary_10_1002_adma_202211168
crossref_primary_10_1016_j_apsusc_2022_152498
crossref_primary_10_1002_smll_202104349
crossref_primary_10_1016_j_jhazmat_2023_131249
crossref_primary_10_1016_j_seppur_2022_120976
crossref_primary_10_1016_j_jallcom_2023_173252
crossref_primary_10_1002_advs_202205020
crossref_primary_10_1016_j_electacta_2023_142096
crossref_primary_10_1016_j_apsusc_2022_153185
crossref_primary_10_1002_smll_202303192
crossref_primary_10_1002_eom2_12291
crossref_primary_10_1002_advs_202402448
crossref_primary_10_1016_j_apsusc_2022_153222
crossref_primary_10_1002_bkcs_12833
crossref_primary_10_1016_j_cej_2022_138310
crossref_primary_10_1016_j_jmrt_2022_12_076
crossref_primary_10_1016_j_nanoen_2021_106708
crossref_primary_10_1039_D2CP03582K
crossref_primary_10_1002_celc_202101099
crossref_primary_10_1016_j_est_2024_112259
crossref_primary_10_1039_D4TA01997K
crossref_primary_10_1002_cnma_202300633
crossref_primary_10_1002_cey2_572
crossref_primary_10_1016_j_cej_2022_136256
crossref_primary_10_1007_s11581_023_05287_2
crossref_primary_10_1002_smll_202106657
crossref_primary_10_1007_s12274_022_4584_z
crossref_primary_10_1016_j_cej_2021_132698
crossref_primary_10_1016_j_cclet_2021_11_032
crossref_primary_10_1016_j_jallcom_2021_161746
crossref_primary_10_1021_acsomega_1c05891
crossref_primary_10_26599_JAC_2024_9220936
crossref_primary_10_1021_acsami_3c03743
crossref_primary_10_1002_asia_202200377
crossref_primary_10_1016_j_cej_2023_143378
crossref_primary_10_1016_j_cej_2022_135170
crossref_primary_10_1021_acsnano_1c01250
crossref_primary_10_1016_j_cej_2022_136540
crossref_primary_10_1002_smll_202303867
crossref_primary_10_1007_s12274_022_4972_4
crossref_primary_10_1016_j_jpowsour_2024_235598
crossref_primary_10_1016_j_seppur_2023_123365
crossref_primary_10_1002_admt_202200238
crossref_primary_10_1016_j_apsusc_2022_155109
Cites_doi 10.1039/D0TA07633C
10.1016/j.ensm.2019.12.032
10.1016/j.apsusc.2019.144361
10.1002/jrs.1250070606
10.1002/aenm.201901940
10.1002/inf2.12046
10.1002/inf2.12056
10.1002/adma.201604724
10.1002/aenm.202001017
10.1016/j.jallcom.2019.153207
10.1002/aenm.202000091
10.1038/ncomms14627
10.1039/C9TA05527D
10.1002/adma.201706895
10.1039/C8TA06869K
10.1002/aenm.201500117
10.1016/j.nanoen.2020.104555
10.1002/anie.201915928
10.1016/j.tsf.2011.01.200
10.1002/eem2.12169
10.1016/j.nanoen.2017.07.012
10.1016/j.jechem.2020.03.065
10.1002/anie.201605676
10.1002/smll.201901584
10.1002/anie.201506972
10.1016/j.ensm.2018.06.009
10.1016/j.nanoen.2020.104881
10.1038/nmat3191
10.1002/advs.201903088
10.1016/j.ensm.2020.01.029
10.1016/j.ensm.2019.12.036
10.1002/adfm.200700146
10.1002/admi.202000854
10.1002/smll.202005998
10.1002/adfm.201808994
10.1039/D0TA06695H
10.1016/j.cej.2020.125602
10.1016/j.jechem.2020.01.033
10.1016/j.ensm.2018.12.020
10.1002/adfm.201706391
10.1038/ncomms2163
10.1002/aenm.201903891
10.1039/C9EE01338E
10.1002/inf2.12080
10.1002/aenm.201800564
10.1002/smtd.202000214
10.1038/s41560-020-0640-7
10.1021/acsenergylett.0c01564
10.1016/j.cej.2020.127917
10.1002/adfm.201707234
10.1002/aenm.201500285
10.1002/eem2.12001
10.1039/C8EE01879K
10.1021/acs.nanolett.5b04189
10.1002/adma.201905658
10.1038/nenergy.2017.69
10.1002/aenm.202002271
10.1002/adma.202000315
10.1016/j.jallcom.2006.08.216
10.1038/nmat2460
ContentType Journal Article
Copyright 2021 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/inf2.12214
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
ProQuest Materials Science Database
ProQuest Engineering Collection
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3165
EndPage 803
ExternalDocumentID oai_doaj_org_article_a4e57e7796754ab7b90928867e84c9d3
10_1002_inf2_12214
INF212214
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U2004172; 51972287; 51502269
– fundername: Foundation for University Key Teachers of Henan Province
  funderid: 2020GGJS009
– fundername: Natural Science Foundation of Henan Province
  funderid: 202300410368
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KB.
M7S
OK1
PDBOC
PIMPY
PTHSS
WIN
AAYXX
ADMLS
CITATION
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c4424-623ef4b43869a4c00dc37e13d9e72d50eb958e0fa4c478e8446a1a8767c672a63
IEDL.DBID BENPR
ISSN 2567-3165
IngestDate Wed Aug 27 01:29:35 EDT 2025
Wed Aug 13 04:11:03 EDT 2025
Tue Jul 01 01:33:43 EDT 2025
Thu Apr 24 23:12:47 EDT 2025
Wed Jan 22 16:57:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4424-623ef4b43869a4c00dc37e13d9e72d50eb958e0fa4c478e8446a1a8767c672a63
Notes Funding information
Foundation for University Key Teachers of Henan Province, Grant/Award Number: 2020GGJS009; National Natural Science Foundation of China, Grant/Award Numbers: U2004172, 51972287, 51502269; Natural Science Foundation of Henan Province, Grant/Award Number: 202300410368
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9505-3858
0000-0003-1498-7929
OpenAccessLink https://www.proquest.com/docview/2547128640?pq-origsite=%requestingapplication%
PQID 2547128640
PQPubID 5068510
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_a4e57e7796754ab7b90928867e84c9d3
proquest_journals_2547128640
crossref_primary_10_1002_inf2_12214
crossref_citationtrail_10_1002_inf2_12214
wiley_primary_10_1002_inf2_12214_INF212214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: Beijing
PublicationTitle InfoMat
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2007; 17
2019; 7
2017; 8
2019; 9
2018; 28
2017; 2
2015; 5
2011; 519
2019; 1
2019; 12
2019; 15
2015; 54
2020; 16
2020; 59
2020; 821
2017; 29
2020; 32
2020; 10
2007; 434–435
2016; 16
2012; 11
2020; 504
2016; 55
1978; 7
2020; 8
2018; 6
2020; 7
2020; 5
2018; 8
2020; 4
2012; 3
2020; 2
2020; 75
2020; 51
2021
2019; 22
2017; 39
2018; 1
2020; 70
2020; 27
2020; 26
2009; 8
2020; 47
2019; 29
2018; 30
2020; 398
2020; 417
2018; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Liu K (e_1_2_7_26_1) 2021
Zhang S (e_1_2_7_29_1) 2021
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 7
  start-page: 321
  year: 1978
  end-page: 324
  article-title: Raman spectrum of anatase, TiO
  publication-title: J Raman Spectrosc
– volume: 12
  start-page: 177
  year: 2019
  end-page: 186
  article-title: Nanomat Li–S batteries based on all‐fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility
  publication-title: Energy Environ Sci
– volume: 5
  start-page: 534
  year: 2020
  end-page: 542
  article-title: Low‐temperature and high‐rate‐charging lithium metal batteries enabled by an electrochemically active monolayer‐regulated interface
  publication-title: Nat Energy
– volume: 39
  start-page: 291
  year: 2017
  end-page: 296
  article-title: An in‐plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement
  publication-title: Nano Energy
– volume: 434–435
  start-page: 405
  year: 2007
  end-page: 409
  article-title: Raman spectroscopy sheds new light on TiC formation during the controlled milling of titanium and carbon
  publication-title: J Alloys Compd
– volume: 2
  year: 2017
  article-title: Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X‐ray diffraction
  publication-title: Nat Energy
– volume: 417
  year: 2020
  article-title: The assembling principle and strategies of high‐density atomically dispersed catalysts
  publication-title: Chem Eng J
– volume: 2
  start-page: 379
  year: 2020
  end-page: 388
  article-title: A compact inorganic layer for robust anode protection in lithium–sulfur batteries
  publication-title: InfoMat
– volume: 27
  start-page: 159
  year: 2020
  end-page: 168
  article-title: Vertically aligned graphene nanosheets on multi‐yolk/shell structured TiC@C nanofibers for stable Li–S batteries
  publication-title: Energy Storage Mater
– volume: 519
  start-page: 3982
  year: 2011
  end-page: 3985
  article-title: XPS study of the surface composition modification of nc‐TiC/C nanocomposite films under in situ argon ion bombardment
  publication-title: Thin Solid Films
– year: 2021
  article-title: In situ electrochemical intercalation‐induced phase transition to enhance catalytic performance for lithium–sulfur battery
  publication-title: Small
– volume: 26
  start-page: 65
  year: 2020
  end-page: 72
  article-title: Genetic engineering of porous sulfur species with molecular target prevents host passivation in lithium sulfur batteries
  publication-title: Energy Storage Mater
– volume: 26
  start-page: 40
  year: 2020
  end-page: 45
  article-title: Facet‐tailoring five‐coordinated Ti sites and structure‐optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li S ‐based lithium–sulfur batteries
  publication-title: Energy Storage Mater
– volume: 15
  year: 2019
  article-title: In situ fabrication of branched TiO /C nanofibers as binder‐free and free‐standing anodes for high‐performance sodium‐ion batteries
  publication-title: Small
– volume: 16
  year: 2020
  article-title: Immobilizing polysulfide by in situ topochemical oxidation derivative TiC@carbon‐included TiO core–shell sulfur hosts for advanced lithium–sulfur batteries
  publication-title: Small
– volume: 8
  start-page: 25255
  year: 2020
  end-page: 25267
  article-title: Ti C MXene as an “energy band bridge” to regulate the heterointerface mass transfer and electron reversible exchange process for Li–S batteries
  publication-title: J Mater Chem A
– volume: 30
  year: 2018
  article-title: Superhierarchical cobalt‐embedded nitrogen‐doped porous carbon nanosheets as two‐in‐one hosts for high‐performance lithium–sulfur batteries
  publication-title: Adv Mater
– volume: 8
  year: 2017
  article-title: Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium‐sulfur batteries
  publication-title: Nat Commun
– volume: 3
  year: 2012
  article-title: Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer
  publication-title: Nat Commun
– volume: 1
  start-page: 533
  year: 2019
  end-page: 541
  article-title: Expediting redox kinetics of sulfur species by atomic‐scale electrocatalysts in lithium–sulfur batteries
  publication-title: InfoMat
– volume: 5
  year: 2015
  article-title: Recent advances in electrolytes for lithium–sulfur batteries
  publication-title: Adv Energy Mater
– volume: 7
  start-page: 18404
  year: 2019
  end-page: 18416
  article-title: Bubble‐linking‐bubble” hybrid fibers filled with ultrafine TiN: a robust and efficient platform achieving fast kinetics, strong ion anchoring and high areal loading for selenium sulfide
  publication-title: J Mater Chem A
– volume: 10
  year: 2020
  article-title: Dual‐functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries
  publication-title: Adv Energy Mater
– volume: 51
  start-page: 378
  year: 2020
  end-page: 387
  article-title: Confining sulfur in intact freestanding scaffold of yolk‐shell nanofibers with high sulfur content for lithium–sulfur batteries
  publication-title: J Energy Chem
– volume: 398
  year: 2020
  article-title: Effective promotion of spacial charge separation in direct Z‐scheme WO /CdS/WS tandem heterojunction with enhanced visible‐light‐driven photocatalytic H evolution
  publication-title: Chem Eng J
– volume: 55
  start-page: 12990
  year: 2016
  end-page: 12995
  article-title: Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries
  publication-title: Angew Chem Int Ed
– volume: 12
  start-page: 3144
  year: 2019
  end-page: 3155
  article-title: Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries
  publication-title: Energy Environ Sci
– volume: 29
  year: 2019
  article-title: Multidimension‐controllable synthesis of ant nest‐structural electrode materials with unique 3D hierarchical porous features toward electrochemical applications
  publication-title: Adv Funct Mater
– volume: 59
  start-page: 11969
  year: 2020
  end-page: 11976
  article-title: High‐efficiency perovskite solar cells enabled by Anatase TiO nanopyramid arrays with an oriented electric field
  publication-title: Angew Chem Int Ed
– volume: 10
  year: 2020
  article-title: Optimized catalytic WS –WO heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries
  publication-title: Adv Energy Mater
– volume: 821
  year: 2020
  article-title: High‐quality rGO/MoS composite via a facile “prereduction‐microwave” strategy for enhanced lithium and sodium storage
  publication-title: J Alloys Compd
– volume: 54
  start-page: 12886
  year: 2015
  end-page: 12890
  article-title: Hollow carbon nanofibers filled with MnO nanosheets as efficient sulfur hosts for lithium–sulfur batteries
  publication-title: Angew Chem Int Ed
– volume: 2
  start-page: 613
  year: 2020
  end-page: 638
  article-title: Two‐dimensional MXenes for lithium‐sulfur batteries
  publication-title: InfoMat
– volume: 29
  year: 2017
  article-title: Ferroelectric‐enhanced polysulfide trapping for lithium–sulfur battery improvement
  publication-title: Adv Mater
– volume: 1
  start-page: 5
  year: 2018
  end-page: 12
  article-title: Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage
  publication-title: Energy Environ Mater
– volume: 6
  start-page: 22555
  year: 2018
  end-page: 22565
  article-title: Construction of a low‐defect and highly conductive 3D graphene network to enable a high sulphur content cathode for high performance Li–S/graphene batteries
  publication-title: J Mater Chem A
– volume: 16
  start-page: 549
  year: 2016
  end-page: 554
  article-title: Three‐dimensional growth of Li S in lithium–sulfur batteries promoted by a redox mediator
  publication-title: Nano Lett
– volume: 17
  start-page: 2133
  year: 2007
  end-page: 2138
  article-title: Photoemission electron microscopy of TiO anatase films embedded with rutile nanocrystals
  publication-title: Adv Funct Mater
– volume: 14
  start-page: 383
  year: 2018
  end-page: 391
  article-title: Metal‐organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries
  publication-title: Energy Storage Mater
– volume: 4
  year: 2020
  article-title: Photogenerated electron transfer process in heterojunctions: in situ irradiation XPS
  publication-title: Small Methods
– volume: 8
  year: 2018
  article-title: Vertically grown edge‐rich graphene nanosheets for spatial control of Li nucleation
  publication-title: Adv Energy Mater
– volume: 10
  year: 2020
  article-title: 1T′‐ReS nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li–S batteries
  publication-title: Adv Energy Mater
– volume: 5
  year: 2015
  article-title: Characterization of polysulfide radicals present in an ether‐based electrolyte of a lithium–sulfur battery during initial discharge using in situ X‐ray absorption spectroscopy experiments and first‐principles calculations
  publication-title: Adv Energy Mater
– volume: 5
  start-page: 3041
  year: 2020
  end-page: 3050
  article-title: Nitrogen‐doped CoSe as a bifunctional catalyst for high areal capacity and lean electrolyte of Li–S battery
  publication-title: Acs Energy Lett
– volume: 22
  start-page: 29
  year: 2019
  end-page: 39
  article-title: PECVD‐derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries
  publication-title: Energy Storage Mater
– volume: 47
  start-page: 281
  year: 2020
  end-page: 290
  article-title: In situ sulfur‐doped graphene nanofiber network as efficient metal‐free electrocatalyst for polysulfides redox reactions in lithium–sulfur batteries
  publication-title: J Energy Chem
– volume: 8
  start-page: 23248
  year: 2020
  end-page: 23256
  article-title: Nitrogen‐doped vertical graphene nanosheets by high‐flux plasma enhanced chemical vapor deposition as efficient oxygen reduction catalysts for Zn–air batteries
  publication-title: J Mater Chem A
– volume: 28
  year: 2018
  article-title: Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high‐performance lithium–sulfur batteries
  publication-title: Adv Funct Mater
– volume: 7
  year: 2020
  article-title: Heater‐free and substrate‐independent growth of vertically standing graphene using a high‐flux plasma‐enhanced chemical vapor deposition
  publication-title: Adv Mater Interfaces
– volume: 28
  year: 2018
  article-title: Addressing passivation in lithium–sulfur battery under lean electrolyte condition
  publication-title: Adv Funct Mater
– volume: 7
  year: 2020
  article-title: Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries
  publication-title: Adv Sci
– volume: 75
  year: 2020
  article-title: Boron‐rich environment boosting ruthenium boride on B, N doped carbon outperforms platinum for hydrogen evolution reaction in a universal pH range
  publication-title: Nano Energy
– volume: 11
  start-page: 19
  year: 2012
  end-page: 29
  article-title: Li–O and Li–S batteries with high energy storage
  publication-title: Nat Mater
– volume: 32
  year: 2020
  article-title: A dual‐functional conductive framework embedded with TiN‐VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li–S full batteries
  publication-title: Adv Mater
– volume: 9
  year: 2019
  article-title: MoN supported on graphene as a bifunctional interlayer for advanced Li–S batteries
  publication-title: Adv Energy Mater
– volume: 10
  year: 2020
  article-title: Interface engineering of hierarchical branched Mo‐doped Ni S /Ni Py hollow heterostructure nanorods for efficient overall water splitting
  publication-title: Adv Energy Mater
– year: 2021
  article-title: Bio‐inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions
  publication-title: Nano Res
– year: 2021
  article-title: Atomic layer coated Al O on nitrogen doped vertical graphene nanosheets for high performance sodium ion batteries
  publication-title: Energy Environ Mater
– volume: 32
  year: 2020
  article-title: Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries
  publication-title: Adv Mater
– volume: 8
  start-page: 500
  year: 2009
  end-page: 506
  article-title: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
  publication-title: Nat Mater
– volume: 504
  year: 2020
  article-title: Direct evidence of 2D/1D heterojunction enhancement on photocatalytic activity through assembling MoS nanosheets onto super‐long TiO nanofibers
  publication-title: Appl Surf Sci
– volume: 70
  year: 2020
  article-title: Rational design of porous nitrogen‐doped Ti C MXene as a multifunctional electrocatalyst for Li–S chemistry
  publication-title: Nano Energy
– ident: e_1_2_7_33_1
  doi: 10.1039/D0TA07633C
– ident: e_1_2_7_30_1
  doi: 10.1016/j.ensm.2019.12.032
– ident: e_1_2_7_60_1
  doi: 10.1016/j.apsusc.2019.144361
– ident: e_1_2_7_53_1
  doi: 10.1002/jrs.1250070606
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.201901940
– ident: e_1_2_7_17_1
  doi: 10.1002/inf2.12046
– ident: e_1_2_7_39_1
  doi: 10.1002/inf2.12056
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201604724
– ident: e_1_2_7_21_1
  doi: 10.1002/aenm.202001017
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jallcom.2019.153207
– ident: e_1_2_7_34_1
  doi: 10.1002/aenm.202000091
– ident: e_1_2_7_12_1
  doi: 10.1038/ncomms14627
– ident: e_1_2_7_25_1
  doi: 10.1039/C9TA05527D
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201706895
– ident: e_1_2_7_8_1
  doi: 10.1039/C8TA06869K
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.201500117
– ident: e_1_2_7_42_1
  doi: 10.1016/j.nanoen.2020.104555
– year: 2021
  ident: e_1_2_7_29_1
  article-title: Bio‐inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions
  publication-title: Nano Res
– ident: e_1_2_7_45_1
  doi: 10.1002/anie.201915928
– ident: e_1_2_7_59_1
  doi: 10.1016/j.tsf.2011.01.200
– ident: e_1_2_7_51_1
  doi: 10.1002/eem2.12169
– ident: e_1_2_7_55_1
  doi: 10.1016/j.nanoen.2017.07.012
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jechem.2020.03.065
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.201605676
– ident: e_1_2_7_58_1
  doi: 10.1002/smll.201901584
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.201506972
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ensm.2018.06.009
– ident: e_1_2_7_50_1
  doi: 10.1016/j.nanoen.2020.104881
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat3191
– ident: e_1_2_7_20_1
  doi: 10.1002/advs.201903088
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ensm.2020.01.029
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ensm.2019.12.036
– ident: e_1_2_7_63_1
  doi: 10.1002/adfm.200700146
– ident: e_1_2_7_47_1
  doi: 10.1002/admi.202000854
– ident: e_1_2_7_54_1
  doi: 10.1002/smll.202005998
– ident: e_1_2_7_56_1
  doi: 10.1002/adfm.201808994
– ident: e_1_2_7_7_1
  doi: 10.1039/D0TA06695H
– ident: e_1_2_7_61_1
  doi: 10.1016/j.cej.2020.125602
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jechem.2020.01.033
– ident: e_1_2_7_48_1
  doi: 10.1016/j.ensm.2018.12.020
– ident: e_1_2_7_22_1
  doi: 10.1002/adfm.201706391
– ident: e_1_2_7_11_1
  doi: 10.1038/ncomms2163
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.201903891
– ident: e_1_2_7_31_1
  doi: 10.1039/C9EE01338E
– ident: e_1_2_7_43_1
  doi: 10.1002/inf2.12080
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201800564
– ident: e_1_2_7_36_1
  doi: 10.1002/smtd.202000214
– ident: e_1_2_7_4_1
  doi: 10.1038/s41560-020-0640-7
– ident: e_1_2_7_44_1
  doi: 10.1021/acsenergylett.0c01564
– ident: e_1_2_7_62_1
  doi: 10.1016/j.cej.2020.127917
– ident: e_1_2_7_38_1
  doi: 10.1002/adfm.201707234
– ident: e_1_2_7_40_1
  doi: 10.1002/aenm.201500285
– ident: e_1_2_7_57_1
  doi: 10.1002/eem2.12001
– ident: e_1_2_7_6_1
  doi: 10.1039/C8EE01879K
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.nanolett.5b04189
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201905658
– ident: e_1_2_7_3_1
  doi: 10.1038/nenergy.2017.69
– ident: e_1_2_7_37_1
  doi: 10.1002/aenm.202002271
– year: 2021
  ident: e_1_2_7_26_1
  article-title: In situ electrochemical intercalation‐induced phase transition to enhance catalytic performance for lithium–sulfur battery
  publication-title: Small
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.202000315
– ident: e_1_2_7_52_1
  doi: 10.1016/j.jallcom.2006.08.216
– ident: e_1_2_7_5_1
  doi: 10.1038/nmat2460
SSID ssj0002504251
Score 2.5475554
Snippet The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and...
Abstract The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 790
SubjectTerms Cathodes
Chemical vapor deposition
Conversion
Deposition
electrocatalysis
Electrocatalysts
Electrolytic cells
electrospinning
Graphene
interface engineering
Kinetics
Lithium sulfur batteries
Morphology
nanofiber
Nanofibers
Sulfur content
vertical graphene
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3iSQ_iJ1arBPSisHY3m2w2R7-KinhRobeQZGexUFex9eBN_Av-Q3-Jk-y2tCB68Va2OYR5szNvlscbQvYTbHEGrI0KCWXEcYSoRQBWptZv285zF9QWN9nFPb_qid7Uqi-vCavtgevAdQwHIUFKhcyWGyutihXL80xCzp0qgs8n9rypYcrXYG_MhZ174kfKOogXO0oYS_hMBwpG_TPscpqjhibTXSZLDTukx_WtVsgcVKtkccozcI18HNPSm1jaAdBHQOo86Dt61z-llakwUSy8dMKKZYw9DW7UWMxoctZhZ_TBS1-easfY1xcoqBlSE-odbbbhhI85b8MRRSpLx_IAet3_ev-8pTZYceJkvU7uu-d3pxdRs0ghcpwzHiHFgZJbDH2mDHdxXLhUQpIWCiQrRAxWiRziEv_jMsfA8swkBuukdJlkJks3yHz1VMEmoRh4kwqFRM-V3AmXl0LIUhgjlJ9kZIscjIOrXeMy7pddDHTtj8y0B0IHIFpkb3L2ufbW-PHUicdocsL7YYcHmCW6yRL9V5a0SHuMsG5e0qHG2Vhie8543CKHAfVfrqEvb7os_Nr6jwttkwXm1TFB-Nsm8wg97CC9GdndkMnfypj2GQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access (Activated by CARLI)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZhc0kPpXmUbpoEQXNpwLEtS5YFueTRZRNCKGQDuQlJHrcLW2_YTQ-9lf6F_sP-kozkxyZQCr0ZewyyP82T0TeEHKbo4gxYG5USqohjCtE0AViZWT9tuyhc6La4ycd3_Ope3K-Rk-4sTMMP0RfcvGYEe-0V3NhlvCINRQDYccqYn2K97s_W-oY-xj_3FRZPzsXC_EV0674Yl4uen5TFq9dfeKRA3P8i2nweswanM3pDXrfRIj1t4N0ka1BvkVfPOAS3ya9TWnlSSzsD-g0wlJ5NHZ1Mz2ltatw4FhZxGLmMWNDATo3GjaYXMbugX30rzLxhkP2-gJKaJTXB_tF2Ok4o7vxYPlIMbWnXLkCvp39-_r6lNlBzYqa9Q-5Gnybn46gdrBA5zhmPMOSBiluEIleGuyQpXSYhzUoFkpUiAatEAUmFz7gsoMCU0aQG7aZ0uWQmz96SQT2v4R2hRS5NJhQGfq7iTriiEkJWwhihfGYjh-Rj93O1a1nH_fCLmW74kpn2QOgAxJB86GUfGq6Nv0qdeYx6Cc-PHW7MF190q27acBASpFSYD3FjpVWJYgUuFj_GqTIbkr0OYd0q7VJjrizRXec8GZKjgPo_lqEvb0YsXO3-j_B7ssF8V0xo-N0jA4QY9jGsebQHYfc-AaGj8Lg
  priority: 102
  providerName: Wiley-Blackwell
Title A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li–S batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12214
https://www.proquest.com/docview/2547128640
https://doaj.org/article/a4e57e7796754ab7b90928867e84c9d3
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB2SzaU9lH7SbZNF0F5acNeWJUs6lXxtklKW0CaQm5BkOVnYeNPd9NBb6V_oP-wvyUjWbhMIuRhjC2P7jWfejIc3AO8LDHHGW5vVwjcZwxSiawKworRh2raULnZbjKvDU_bljJ-lgtsitVUufWJ01PXMhRr5EBMZgb60Yvnnqx9ZmBoV_q6mERrrsIEuWMoebOzsj4-_raosQaALI_hKl5QOETf6qaC0YHciURTsv8Myb3PVGGxGT-FJYolku4P1Gaz59jk8vqUd-AL-bJMmiFnaqSeXHin0dOLIyWSXtKZFg7F-PoyjlhEDElWp0amRYm9I98hFaIGZdcqxP-e-JmZBTPR7JE3FiUWdX4trgpSWLNsEyNfJv99_vxMbJTkxw34Jp6P9k93DLA1UyBxjlGVIdXzDLEJQKcNcnteuFL4oa-UFrXnureLS5w2eY0J6iamiKQz6S-EqQU1VvoJeO2v9ayCyEqbkCgmfa5jjTjaci4Ybw1XIaEQfPixfrnZJbTwMvZjqTieZ6gCEjkD04d1q7VWnsXHvqp2A0WpF0MWOB2bzc50-M22Y58ILoTAPYsYKq3KFdlEJfBin6rIPm0uEdfpYF_q_afXhY0T9gdvQR-MRjXtvHr7WW3hEQ_9LbO3dhB6C6reQwFzbAaxTdoxbOToYJIsdxGLADW5f8mU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF-xbQFLwAGksIljx_EBodJl2aXLXthKvbm248BK22y7W1T1VvEKvAcPxZMwdpKllVBvvUWJFTmeycw3zuT7AF4mmOK0MyYqhCsjhiVE3QRgRGq82nae29BtMc4Ge-zzPt9fg9_tvzC-rbKNiSFQF3Pr98i7WMgIjKUZi98fHUdeNcp_XW0lNGq32HVnp1iyLd8Ne2jfV5T2P052BlGjKhBZxiiLMN-7khmcRyY1s3Fc2FS4JC2kE7TgsTOS5y4u8RoTucuxXtKJxqAhbCaozlK87w24yVLM5P7P9P6n1Z6OpwNDvLBiQaVd9BL6NqE0YZfyXpAHuIRpLyLjkNr69-Bug0nJdu1E92HNVQ_gzgWmwofwc5uUnjrTzBw5dAjYZ1NLJtMdUukK3dO4RTcIO6PFSeDAxhBKkl6X9sh333Azr3lqfyxcQfSS6BBlSaPBE7aQzpYnBAE0aZsSyGj65_zXV2ICASjW849g71oW-jGsV_PKPQGSZ0KnXCK8tCWz3OYl56LkWnPp6yfRgdft4irbcJt7iY2ZqlmZqfKGUMEQHXixGntUM3r8d9QHb6PVCM_CHU7MF99U81IrzRwXTgiJVRfTRhgZS5rjZPFhrCzSDmy1FlZNaFiqf47cgTfB6ldMQw3HfRqONq6-13O4NZh8GanRcLy7Cbep77wJTcVbsI4Gdk8ROp2YZ8FfCRxc9wvyF8tUKeY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPgVWwpYAg4ghSSOHccHhNpuV11arSpopd5c23FgpW227Bah3hCvwNvwODwJYydZWgn11luUWJbjbzz-xpl8A_AyxS1OO2OiUrgqYhhCNEkARmTGV9suChuyLcb5ziH7cMSPVuB39y-MT6vsfGJw1OXM-jPyGAMZgb40Z0lctWkR-4Ph-9Ovka8g5b-0duU0GhPZdeffMXxbvBsNEOtXlA63D7Z2orbCQGQZoyzCvd9VzOCYcqmZTZLSZsKlWSmdoCVPnJG8cEmFz5goXIGxk041OhBhc0F1nmG_N2BV-KioB6ub2-P9j8sTHi8OhuxhqYlKY7QZ-jalNGWXdsFQLOASw73Ik8NGN7wLd1qGSjYak7oHK66-D7cv6BY-gJ8bpPJCmmbqyIlD-j6dWHIw2SK1rtFYjZvHocwz4k-CIjY6VJIOYjogX3z6zaxRrf02dyXRC6KDzyVtRZ5woHS-OCNIp0mXokD2Jn9-_PpETJADxej-IRxey1Q_gl49q91jIEUudMYlkk1bMcttUXEuKq41lz6aEn143U2usq3SuS-4MVWNRjNVHggVgOjDi2Xb00bf47-tNj1GyxZekzvcmM0_q3aJK80cF04IiTEY00YYmUha4GDxZawssz6sdwir1lEs1D-z7sObgPoVw1Cj8ZCGq7Wr-3oON3FxqL3RePcJ3KI-DSdkGK9DD_F1T5FHnZlnrcESOL7uNfIXn7EveA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+flexible+metallic+TiC+nanofiber%2Fvertical+graphene+1D%2F2D+heterostructured+as+active+electrocatalyst+for+advanced+Li%E2%80%93S+batteries&rft.jtitle=InfoMat&rft.au=Zhang%2C+Yongshang&rft.au=Zhang%2C+Peng&rft.au=Zhang%2C+Shijie&rft.au=Wang%2C+Zheng&rft.date=2021-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2567-3165&rft.volume=3&rft.issue=7&rft.spage=790&rft.epage=803&rft_id=info:doi/10.1002%2Finf2.12214&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon