Ultra‐fast, low‐cost, and green regeneration of graphite anode using flash joule heating method

Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly burned, which caused not only CO2 emission but also a waste of precious carbon resources. In this study, we regenerate graphite in lithium‐ion b...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 4; no. 5
Main Authors Dong, Shu, Song, Yali, Ye, Ke, Yan, Jun, Wang, Guiling, Zhu, Kai, Cao, Dianxue
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly burned, which caused not only CO2 emission but also a waste of precious carbon resources. In this study, we regenerate graphite in lithium‐ion batteries at the end of life with excellent electrochemical properties using the fast, efficient, and green Flash Joule Heating method (FJH). Through our own developed equipment, under constant pressure and air atmosphere, graphite is rapidly regenerated in 0.1 s without pollutants emission. We perform a detailed analysis of graphite material before and after recovery by multiple means of characterization and find that the regenerated graphite displays electrochemical properties nearly the same as new graphite. FJH provides a large current for defect repair and crystal structure reconstruction in graphite, as well as allowing the SEI coating to be removed during ultra‐fast annealing. The electric field guide the conductive agent and binder pyrolysis products to form conductive sheet graphene and curly graphene covering the graphite surface, making the recycled graphite even better than new commercial graphite in terms of electrical conductivity. Regenerated graphite has excellent multiplier performance and cycle performance (350 mAh g−1 at 1 C with a capacity retention of 99% after 500 cycles). At cost, we get recycled graphite that displays the same performance as new graphite, costing just 77 CNY per ton. This FJH method is not only universal for the regeneration of spent graphite generated by various devices but also enables multiple use‐failure‐regeneration steps of graphite, showing great potential for commercial applications. The regeneration of the spent graphite can be realized by FJH treatment, and the performance of the regenerate graphite can be comparable to the new commercial graphite, which realizes the rapid and environmental recycling of the spent anode, and greatly reduces the material cost.
AbstractList Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly burned, which caused not only CO 2 emission but also a waste of precious carbon resources. In this study, we regenerate graphite in lithium‐ion batteries at the end of life with excellent electrochemical properties using the fast, efficient, and green Flash Joule Heating method (FJH). Through our own developed equipment, under constant pressure and air atmosphere, graphite is rapidly regenerated in 0.1 s without pollutants emission. We perform a detailed analysis of graphite material before and after recovery by multiple means of characterization and find that the regenerated graphite displays electrochemical properties nearly the same as new graphite. FJH provides a large current for defect repair and crystal structure reconstruction in graphite, as well as allowing the SEI coating to be removed during ultra‐fast annealing. The electric field guide the conductive agent and binder pyrolysis products to form conductive sheet graphene and curly graphene covering the graphite surface, making the recycled graphite even better than new commercial graphite in terms of electrical conductivity. Regenerated graphite has excellent multiplier performance and cycle performance (350 mAh g −1 at 1 C with a capacity retention of 99% after 500 cycles). At cost, we get recycled graphite that displays the same performance as new graphite, costing just 77 CNY per ton. This FJH method is not only universal for the regeneration of spent graphite generated by various devices but also enables multiple use‐failure‐regeneration steps of graphite, showing great potential for commercial applications. image
Abstract Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly burned, which caused not only CO2 emission but also a waste of precious carbon resources. In this study, we regenerate graphite in lithium‐ion batteries at the end of life with excellent electrochemical properties using the fast, efficient, and green Flash Joule Heating method (FJH). Through our own developed equipment, under constant pressure and air atmosphere, graphite is rapidly regenerated in 0.1 s without pollutants emission. We perform a detailed analysis of graphite material before and after recovery by multiple means of characterization and find that the regenerated graphite displays electrochemical properties nearly the same as new graphite. FJH provides a large current for defect repair and crystal structure reconstruction in graphite, as well as allowing the SEI coating to be removed during ultra‐fast annealing. The electric field guide the conductive agent and binder pyrolysis products to form conductive sheet graphene and curly graphene covering the graphite surface, making the recycled graphite even better than new commercial graphite in terms of electrical conductivity. Regenerated graphite has excellent multiplier performance and cycle performance (350 mAh g−1 at 1 C with a capacity retention of 99% after 500 cycles). At cost, we get recycled graphite that displays the same performance as new graphite, costing just 77 CNY per ton. This FJH method is not only universal for the regeneration of spent graphite generated by various devices but also enables multiple use‐failure‐regeneration steps of graphite, showing great potential for commercial applications.
Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly burned, which caused not only CO2 emission but also a waste of precious carbon resources. In this study, we regenerate graphite in lithium‐ion batteries at the end of life with excellent electrochemical properties using the fast, efficient, and green Flash Joule Heating method (FJH). Through our own developed equipment, under constant pressure and air atmosphere, graphite is rapidly regenerated in 0.1 s without pollutants emission. We perform a detailed analysis of graphite material before and after recovery by multiple means of characterization and find that the regenerated graphite displays electrochemical properties nearly the same as new graphite. FJH provides a large current for defect repair and crystal structure reconstruction in graphite, as well as allowing the SEI coating to be removed during ultra‐fast annealing. The electric field guide the conductive agent and binder pyrolysis products to form conductive sheet graphene and curly graphene covering the graphite surface, making the recycled graphite even better than new commercial graphite in terms of electrical conductivity. Regenerated graphite has excellent multiplier performance and cycle performance (350 mAh g−1 at 1 C with a capacity retention of 99% after 500 cycles). At cost, we get recycled graphite that displays the same performance as new graphite, costing just 77 CNY per ton. This FJH method is not only universal for the regeneration of spent graphite generated by various devices but also enables multiple use‐failure‐regeneration steps of graphite, showing great potential for commercial applications. The regeneration of the spent graphite can be realized by FJH treatment, and the performance of the regenerate graphite can be comparable to the new commercial graphite, which realizes the rapid and environmental recycling of the spent anode, and greatly reduces the material cost.
Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly burned, which caused not only CO2 emission but also a waste of precious carbon resources. In this study, we regenerate graphite in lithium‐ion batteries at the end of life with excellent electrochemical properties using the fast, efficient, and green Flash Joule Heating method (FJH). Through our own developed equipment, under constant pressure and air atmosphere, graphite is rapidly regenerated in 0.1 s without pollutants emission. We perform a detailed analysis of graphite material before and after recovery by multiple means of characterization and find that the regenerated graphite displays electrochemical properties nearly the same as new graphite. FJH provides a large current for defect repair and crystal structure reconstruction in graphite, as well as allowing the SEI coating to be removed during ultra‐fast annealing. The electric field guide the conductive agent and binder pyrolysis products to form conductive sheet graphene and curly graphene covering the graphite surface, making the recycled graphite even better than new commercial graphite in terms of electrical conductivity. Regenerated graphite has excellent multiplier performance and cycle performance (350 mAh g−1 at 1 C with a capacity retention of 99% after 500 cycles). At cost, we get recycled graphite that displays the same performance as new graphite, costing just 77 CNY per ton. This FJH method is not only universal for the regeneration of spent graphite generated by various devices but also enables multiple use‐failure‐regeneration steps of graphite, showing great potential for commercial applications.
Author Dong, Shu
Wang, Guiling
Cao, Dianxue
Ye, Ke
Yan, Jun
Zhu, Kai
Song, Yali
Author_xml – sequence: 1
  givenname: Shu
  surname: Dong
  fullname: Dong, Shu
  organization: Harbin Engineering University
– sequence: 2
  givenname: Yali
  surname: Song
  fullname: Song, Yali
  organization: Harbin Engineering University
– sequence: 3
  givenname: Ke
  surname: Ye
  fullname: Ye, Ke
  organization: Harbin Engineering University
– sequence: 4
  givenname: Jun
  orcidid: 0000-0002-9967-3912
  surname: Yan
  fullname: Yan, Jun
  organization: Harbin Engineering University
– sequence: 5
  givenname: Guiling
  surname: Wang
  fullname: Wang, Guiling
  organization: Harbin Engineering University
– sequence: 6
  givenname: Kai
  orcidid: 0000-0002-9451-0890
  surname: Zhu
  fullname: Zhu, Kai
  email: kzhu@hrbeu.edu.cn
  organization: Harbin Engineering University
– sequence: 7
  givenname: Dianxue
  surname: Cao
  fullname: Cao, Dianxue
  email: caodianxue@hrbeu.edu.cn
  organization: Harbin Engineering University
BookMark eNp9kctKAzEYhYMoeN34BAPuxGquk2Yp4g0UN7oOmeRPmzKd1GSKuPMRfEafxLQjIiKucvj5zsmfnF202cUOEDok-JRgTM8gzukpoZTQDbRDRS1HjEi2-UNvo4OcZ7jAAnPKyQ6yT22fzMfbuze5P6na-FK0jSttOldNEkBXJZhAB8n0IXZV9GVqFtPQQ0Gig2qZQzepfGvytJrFZQvVFApbZnPop9Htoy1v2gwHX-ceerq6fLy4Gd09XN9enN-NLOeUjhyTVDIqsau9h7ED53zjSSNqJYhShmHsazsmgjA-Nk5ib6ziUijMVM0lsD10O-S6aGZ6kcLcpFcdTdDrQUwTbVIfbAuaKCpBWGCUOc6FahomZS0Z88obqZqSdTRkLVJ8XkLudXlZ6sr6mkpCa8FFPS7U8UDZFHNO4L9vJVivOtGrTvS6kwLjX7AN_fpPSwOh_dtCBstLaOH1n3B9-XBPB88nVSighA
CitedBy_id crossref_primary_10_26599_CF_2024_9200017
crossref_primary_10_1039_D4TA00668B
crossref_primary_10_1021_acsnano_4c12350
crossref_primary_10_1039_D2CS00322H
crossref_primary_10_1039_D4TC01736F
crossref_primary_10_1016_j_cej_2024_159132
crossref_primary_10_1016_j_renene_2023_01_024
crossref_primary_10_1016_j_jpowsour_2023_233170
crossref_primary_10_1039_D4TA07890J
crossref_primary_10_1002_cey2_395
crossref_primary_10_1007_s11356_023_29354_3
crossref_primary_10_1002_adfm_202302951
crossref_primary_10_1002_elan_202400318
crossref_primary_10_1039_D3CS00254C
crossref_primary_10_1038_s44172_023_00062_7
crossref_primary_10_1016_j_etran_2024_100320
crossref_primary_10_1016_S1003_6326_24_66679_3
crossref_primary_10_3390_ma16093601
crossref_primary_10_1021_acsami_3c02272
crossref_primary_10_1039_D4CC00076E
crossref_primary_10_1016_j_mtsust_2024_100957
crossref_primary_10_1002_eom2_12321
crossref_primary_10_1016_j_jcis_2024_04_058
crossref_primary_10_1002_adma_202207303
crossref_primary_10_1002_aenm_202404838
crossref_primary_10_1002_smll_202406033
crossref_primary_10_1021_acsnano_4c11628
crossref_primary_10_1016_j_jcis_2025_01_175
crossref_primary_10_1016_j_jiec_2024_10_059
crossref_primary_10_1038_s41467_024_50324_x
crossref_primary_10_1039_D3TA00655G
crossref_primary_10_1016_j_ensm_2024_103833
crossref_primary_10_1002_adma_202312548
crossref_primary_10_1016_j_seppur_2023_125289
crossref_primary_10_1016_j_fuproc_2023_107992
crossref_primary_10_1016_j_flatc_2024_100765
crossref_primary_10_1016_j_jpowsour_2023_232965
crossref_primary_10_1038_s44359_024_00002_4
crossref_primary_10_3390_molecules29133161
crossref_primary_10_1039_D4CS00362D
Cites_doi 10.1039/C9EE02759A
10.1038/s41565-018-0284-y
10.1002/sstr.202070001
10.1021/acssuschemeng.0c02321
10.1002/sus2.4
10.1002/aenm.202002238
10.1007/s10800-015-0914-0
10.1002/anie.202009738
10.1016/j.gee.2020.06.017
10.1038/s41586-020-1938-0
10.1002/aenm.202102693
10.1016/j.pecs.2019.01.001
10.1126/science.abg7217
10.1016/j.carbon.2021.02.094
10.1016/j.ensm.2020.12.027
10.1021/jp3118055
10.1039/C3EE42613K
10.1039/C7CS00180K
10.1038/nnano.2013.46
10.1002/adma.202106506
10.1021/acsnano.0c05900
10.1021/acs.chemrev.9b00535
10.1016/j.joule.2019.07.027
10.1021/acssuschemeng.1c05374
10.1149/1945-7111/abcc2f
10.1002/cssc.201601062
10.1002/adma.201806620
10.1021/acsnano.1c03536
10.1016/j.cej.2022.135011
10.1016/j.carbon.2021.12.053
10.1016/j.carbon.2021.03.020
10.1039/C8EE01419A
10.1080/10408347.2016.1157013
10.1016/j.jpowsour.2020.229163
ContentType Journal Article
Copyright 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.1002/eom2.12212
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
Materials Science Database
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID oai_doaj_org_article_1927e5ce323d4459bb3776733f9fa79b
10_1002_eom2_12212
EOM212212
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51702063; 51672056
– fundername: Natural Science Foundation of Heilongjiang Province
  funderid: LC2018004
– fundername: China Postdoctoral Science Foundation
  funderid: 2018M630340; 2019T120254
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c4422-d37273270d6ffe8deddfbf1b5695199a300f6c8151348ad70fac94759039647e3
IEDL.DBID BENPR
ISSN 2567-3173
IngestDate Wed Aug 27 01:13:26 EDT 2025
Sat Aug 23 14:40:06 EDT 2025
Tue Jul 01 02:50:12 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Wed Jan 22 16:22:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4422-d37273270d6ffe8deddfbf1b5695199a300f6c8151348ad70fac94759039647e3
Notes Funding information
China Postdoctoral Science Foundation, Grant/Award Numbers: 2018M630340, 2019T120254; National Natural Science Foundation of China, Grant/Award Numbers: 51702063, 51672056; Natural Science Foundation of Heilongjiang Province, Grant/Award Number: LC2018004
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9967-3912
0000-0002-9451-0890
OpenAccessLink https://www.proquest.com/docview/2712654568?pq-origsite=%requestingapplication%
PQID 2712654568
PQPubID 5066170
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_1927e5ce323d4459bb3776733f9fa79b
proquest_journals_2712654568
crossref_primary_10_1002_eom2_12212
crossref_citationtrail_10_1002_eom2_12212
wiley_primary_10_1002_eom2_12212_EOM212212
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Beijing
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 9
2021; 6
2019; 3
2019; 72
2019; 31
2020; 120
2019; 12
2019; 14
2020; 14
2021; 483
2020; 167
2020; 10
2021; 1
2013; 8
2022; 436
2018; 47
2021; 36
2015; 46
2020; 8
2022; 189
2021; 37
2021; 15
2021; 11
2020; 1
2013; 11
2021; 178
2022; 34
2020; 577
2018; 11
2021; 60
2014; 7
2016; 46
2016; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Zhao YM (e_1_2_7_24_1) 2021; 37
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 36
  start-page: 147
  year: 2021
  end-page: 170
  article-title: Graphite as anode materials: fundamental mechanism, recent progress, and advances
  publication-title: Energy Storage Mater
– volume: 3
  start-page: 2334
  issue: 10
  year: 2019
  end-page: 2363
  article-title: Alkali‐metal anodes: from lab to market
  publication-title: Joule
– volume: 34
  start-page: 2106506
  issue: 12
  year: 2022
  article-title: Machine learning guided synthesis of flash graphene
  publication-title: Adv Mater
– volume: 11
  start-page: 1257
  issue: 3
  year: 2013
  end-page: 1267
  article-title: Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy
  publication-title: J Phys Chem C
– volume: 1
  start-page: 38
  issue: 1
  year: 2021
  end-page: 50
  article-title: A perspective on sustainable energy materials for lithium batteries
  publication-title: SusMat
– volume: 8
  start-page: 235
  issue: 4
  year: 2013
  end-page: 246
  article-title: Raman spectroscopy as a versatile tool for studying the properties of graphene
  publication-title: Nat Nanotechnol
– volume: 9
  start-page: 3473
  issue: 24
  year: 2016
  end-page: 3484
  article-title: Graphite recycling from spent lithium‐ion batteries
  publication-title: ChemSusChem
– volume: 60
  start-page: 3402
  issue: 7
  year: 2021
  end-page: 3406
  article-title: Inhibiting solvent co‐intercalation in a graphite anode by a localized high‐concentration electrolyte in fast‐charging batteries
  publication-title: Angew Chem Int Ed
– volume: 1
  issue: 1
  year: 2020
  article-title: Rapid lithium diffusion in order@disorder pathways for fast‐charging graphite anodes
  publication-title: Small Struct
– volume: 120
  start-page: 7020
  issue: 14
  year: 2020
  end-page: 7063
  article-title: Sustainable recycling technology for Li‐ion batteries and beyond: challenges and future prospects
  publication-title: Chem Rev
– volume: 10
  issue: 37
  year: 2020
  article-title: An urgent call to spent lib recycling: whys and wherefores for graphite recovery
  publication-title: Adv Energy Mater
– volume: 189
  start-page: 493
  year: 2022
  end-page: 502
  article-title: Regenerating spent graphite from scrapped lithium‐ion battery by high‐temperature treatment
  publication-title: Carbon
– volume: 46
  start-page: 502
  issue: 6
  year: 2016
  end-page: 520
  article-title: FTIR spectroscopy for carbon family study
  publication-title: Crit Rev Anal Chem
– volume: 37
  year: 2021
  article-title: Composite anodes for lithium metal batteries
  publication-title: Acta Phys ‐Chim Sin
– volume: 11
  issue: 48
  year: 2021
  article-title: Strategies for the analysis of graphite electrode function
  publication-title: Adv Energy Mater
– volume: 178
  start-page: 649
  year: 2021
  end-page: 656
  article-title: Flash graphene from rubber waste
  publication-title: Carbon
– volume: 14
  start-page: 13691
  issue: 10
  year: 2020
  end-page: 13699
  article-title: Flash graphene morphologies
  publication-title: ACS Nano
– volume: 178
  start-page: 1
  year: 2021
  end-page: 9
  article-title: Microwave‐assisted synthesis of carbon dots modified graphene for full carbon‐based potassium ion capacitors
  publication-title: Carbon
– volume: 46
  start-page: 123
  issue: 2
  year: 2015
  end-page: 148
  article-title: Recycling of graphite anodes for the next generation of lithium ion batteries
  publication-title: J Appl Electrochem
– volume: 31
  issue: 28
  year: 2019
  article-title: Review of recent development of in situ/operando characterization techniques for lithium battery research
  publication-title: Adv Mater
– volume: 14
  start-page: 50
  issue: 1
  year: 2019
  end-page: 56
  article-title: In situ quantification of Interphasial chemistry in Li‐ion battery
  publication-title: Nat Nanotechnol
– volume: 436
  start-page: 135011
  year: 2022
  article-title: A novel approach to recovery of lithium element and production of holey graphene based on the lithiated graphite of spent lithium ion batteries
  publication-title: Chem Eng J
– volume: 7
  start-page: 14
  issue: 1
  year: 2014
  end-page: 18
  article-title: Electrochemical energy storage in a sustainable modern society
  publication-title: Energy Environ Sci
– volume: 11
  start-page: 2696
  issue: 10
  year: 2018
  end-page: 2767
  article-title: Review of electrical energy storage technologies, materials, and systems: challenges and prospects for large‐scale grid storage
  publication-title: Energy Environ Sci
– volume: 483
  start-page: 229163
  year: 2021
  article-title: An innovative approach to recover anode from spent lithium‐ion battery
  publication-title: J Power Sources
– volume: 15
  start-page: 11158
  issue: 7
  year: 2021
  end-page: 11167
  article-title: Ultrafast and controllable phase evolution by flash joule heating
  publication-title: ACS Nano
– volume: 47
  start-page: 736
  issue: 3
  year: 2018
  end-page: 851
  article-title: In situ analytical techniques for battery Interface analysis
  publication-title: Chem Soc Rev
– volume: 12
  start-page: 3575
  issue: 12
  year: 2019
  end-page: 3584
  article-title: Staging Na/K‐ion de‐/intercalation of graphite retrieved from spent Li‐ion batteries: in operando x‐ray diffraction studies and an advanced anode material for Na/K‐ion batteries
  publication-title: Energy Environ Sci
– volume: 167
  start-page: 160511
  issue: 16
  year: 2020
  article-title: Effective upcycling of graphite anode: healing and doping enabled direct regeneration
  publication-title: J Electrochem Soc
– volume: 72
  start-page: 1
  year: 2019
  end-page: 31
  article-title: Comparison of methodologies for the non‐invasive characterisation of commercial Li‐ion cells
  publication-title: Prog Energy Combust Sci
– volume: 9
  start-page: 16192
  issue: 48
  year: 2021
  end-page: 16202
  article-title: Epitaxial regeneration of spent graphite anode material by an eco‐friendly in‐depth purification route
  publication-title: ACS Sustain Chem Eng
– volume: 8
  start-page: 9447
  issue: 25
  year: 2020
  end-page: 9455
  article-title: Graphite recycling from the spent lithium‐ion batteries by sulfuric acid curing‐leaching combined with high‐temperature calcination
  publication-title: ACS Sustain Chem Eng
– volume: 6
  start-page: 725
  issue: 5
  year: 2021
  end-page: 733
  article-title: Effective regeneration of high‐performance anode material recycled from the whole electrodes in spent lithium‐ion batteries via a simplified approach
  publication-title: Green Energy Environ
– volume: 37
  start-page: 1494
  issue: 6562
  year: 2021
  end-page: 1499
  article-title: Carbon‐free high‐loading silicon anodes enabled by sulfide solid electrolytes
  publication-title: Science
– volume: 577
  start-page: 647
  issue: 7792
  year: 2020
  end-page: 651
  article-title: Gram‐scale bottom‐up flash graphene synthesis
  publication-title: Nature
– ident: e_1_2_7_20_1
  doi: 10.1039/C9EE02759A
– ident: e_1_2_7_28_1
  doi: 10.1038/s41565-018-0284-y
– volume: 37
  start-page: 2008090
  year: 2021
  ident: e_1_2_7_24_1
  article-title: Composite anodes for lithium metal batteries
  publication-title: Acta Phys ‐Chim Sin
– ident: e_1_2_7_9_1
  doi: 10.1002/sstr.202070001
– ident: e_1_2_7_37_1
  doi: 10.1021/acssuschemeng.0c02321
– ident: e_1_2_7_8_1
  doi: 10.1002/sus2.4
– ident: e_1_2_7_10_1
  doi: 10.1002/aenm.202002238
– ident: e_1_2_7_31_1
  doi: 10.1007/s10800-015-0914-0
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.202009738
– ident: e_1_2_7_32_1
  doi: 10.1016/j.gee.2020.06.017
– ident: e_1_2_7_11_1
– ident: e_1_2_7_14_1
  doi: 10.1038/s41586-020-1938-0
– ident: e_1_2_7_7_1
  doi: 10.1002/aenm.202102693
– ident: e_1_2_7_29_1
  doi: 10.1016/j.pecs.2019.01.001
– ident: e_1_2_7_12_1
  doi: 10.1126/science.abg7217
– ident: e_1_2_7_4_1
– ident: e_1_2_7_21_1
  doi: 10.1016/j.carbon.2021.02.094
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ensm.2020.12.027
– ident: e_1_2_7_23_1
  doi: 10.1021/jp3118055
– ident: e_1_2_7_2_1
  doi: 10.1039/C3EE42613K
– ident: e_1_2_7_25_1
  doi: 10.1039/C7CS00180K
– ident: e_1_2_7_22_1
  doi: 10.1038/nnano.2013.46
– ident: e_1_2_7_30_1
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.202106506
– ident: e_1_2_7_16_1
  doi: 10.1021/acsnano.0c05900
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.chemrev.9b00535
– ident: e_1_2_7_6_1
  doi: 10.1016/j.joule.2019.07.027
– ident: e_1_2_7_34_1
  doi: 10.1021/acssuschemeng.1c05374
– ident: e_1_2_7_35_1
  doi: 10.1149/1945-7111/abcc2f
– ident: e_1_2_7_33_1
  doi: 10.1002/cssc.201601062
– ident: e_1_2_7_18_1
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201806620
– ident: e_1_2_7_15_1
  doi: 10.1021/acsnano.1c03536
– ident: e_1_2_7_39_1
  doi: 10.1016/j.cej.2022.135011
– ident: e_1_2_7_38_1
  doi: 10.1016/j.carbon.2021.12.053
– ident: e_1_2_7_17_1
  doi: 10.1016/j.carbon.2021.03.020
– ident: e_1_2_7_3_1
  doi: 10.1039/C8EE01419A
– ident: e_1_2_7_26_1
  doi: 10.1080/10408347.2016.1157013
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jpowsour.2020.229163
SSID ssj0002504241
Score 2.4278286
Snippet Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly...
Abstract Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Carbon
Carbon dioxide
Carbon dioxide emissions
Crystal defects
Crystal structure
Decomposition
Displays
Electric fields
Electrical conductivity
Electrical resistivity
Electrochemical analysis
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Emission analysis
End of life
Energy
flash joule heating method
Graphene
Graphite
graphite regenerate
Heating
High temperature
Lithium
Lithium-ion batteries
lithium‐ion battery
low‐cost
Ohmic dissipation
Particle size
Pollutants
Pyrolysis
Pyrolysis products
Regeneration
Resistance heating
Spectrum analysis
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLgF4UV3fz2OweVSpFqF4s9BbyrIfalVrx6k_wN_pLzGS3pQXRi7cQ5jBMJvm-7E6-QeiEa5PzsIkSYThPGKMsKRj3iTIuT4XWAZHgg373Pu_02F2f9-dafUFNWC0PXAfuMjAQ4bhxlFDLGC-1piBAQ6kvvRKlhtM3YN7cZQrOYBDmCtg00yMll656JhcZIRlZQKAo1L_ALuc5agSZ23W01rBDfFV7tYGW3GgTrc5pBm4h0xtOxurr49Or18k5HlbvYWwqGKuRxQOoo8FjN4hy0hB1XHkcZakDuQwmlXUYit0H2Afi_IRDMg0dhiMZ5uqG0tuod9t-vOkkTaeExDAWbpOWAg0hIrW5966wzlqvfaZ5HghUWSqapj43RUB3ygplReqVKUHpL6XwEtXRHbQ8qkZuF-FUeB2AMysdSL2ZXHEB_3y9YdY4RkQLnU6jJ00jIw7dLIayFkAmEiItY6Rb6Hhm-1KLZ_xodQ2LMLMAwes4EdJANmkg_0qDFjqYLqFsduGrJCIjOVDEooXO4rL-4oZsP3RJHO39h0P7aIXAS4lYjnaAlifjN3cY-MtEH8VU_QbEE-yO
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6LXvQgPnF9EdCLYrWbR9OCFxVlEXwcXPAW8lwP61Z2V7z6E_yN_hIzabcqiOAthCmUmUzm63TmG4T2uDYZD06UCMN5whhlSc64T5RxWSq0DhEJEvrXN1m3x64e-EMLnUx7YSp-iCbhBp4R72twcKXHx1-koa58IkcdQmDE8Cz01kJBH2F3TYYFyLlIHF0Zwjok4wRt-EnJ8dfjPyJSJO7_gTa_Y9YYdC4X0UKNFvFpZd4l1HLDZTT_jUNwBZneYDJSH2_vXo0nh3hQvoa1KWGthhb3oa4Gj1w_0kuDFXDpcaSpDmAziJTWYSh-72MfgPQjDodr4DBc0bBXDZheRb3Li_vzblJPTkgMY-Hr0lKAJUSkNvPe5dZZ67XvaJ4FQFUUiqapz0weoj1lubIi9coUwPyXUuhMdXQNzQzLoVtHOBVeh0DaKRxQv5lMcQH_gL1h1jhGRBvtT7UnTU0rDtMtBrIiRCYSNC2jpttot5F9rsg0fpU6AyM0EkCAHTfKUV_W_iQDMBWOG0cJtYzxQmsKvESU-sIrUeg22pqaUNZeOZZEdEgGkDFvo4No1j9eQ17cXpO42viP8CaaI9AhEcvQttDMZPTitgNumeideDw_Abjn5vY
  priority: 102
  providerName: Wiley-Blackwell
Title Ultra‐fast, low‐cost, and green regeneration of graphite anode using flash joule heating method
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12212
https://www.proquest.com/docview/2712654568
https://doaj.org/article/1927e5ce323d4459bb3776733f9fa79b
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxEB616QUOCAqIlDayVC4glu76Z717qihKqCq1VIhIvVn-TQ9ptiRBXHkEnpEnweM4oZVQLyvLGq12x_bM5_H4G4A3wthaxEVUSCtEwTnjRcNFKLT1dSmNiR4JA_rnF_XpmJ9diasccFvktMq1TUyG2nUWY-RHVFa0RnffHN9-L7BqFJ6u5hIa27ATTXDT9GDnZHhx-XUTZUGCruijNryk9Mh3N_RDRWlF73miRNh_D2XexarJ2YyewpOMEsnH1bA-gy0_24XHd7gDn4MdT5dz_efX76AXy_dk2v2MbdthW88cmWA-DZn7SaKVRu2TLpBETx1_KIp0zhNMep-QEAH0NYmTauoJmmbsWxWWfgHj0fDbp9MiV0woLOdxV-kYwhEqS1eH4BvnnQsmVEbUEUi1rWZlGWrbRC_PeKOdLIO2LTL-lQxvpHr2EnqzbuZfASllMNGBVq1HyjdbayHx7DdY7qznVPbh7Vp7ymY6caxqMVUrImSqUNMqaboPhxvZ2xWJxn-lTnAQNhJIfJ06uvlE5XWkIiCVXljPKHOci9YYhnxEjIU2aNmaPuyvh1Dl1bhQ_-ZOH96lYX3gM9TwyzlNrb2H3_UaHlG8C5ESzvaht5z_8AcRoSzNALYpv4zPZvR5kKfkIO32_wItg-is
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYtoAl4AAiNPEjTg4I8eiypd1y6Uq9ufFrOWw37e6iqrf-BH4JP4pfgsdJllZCvfVmWZYVzcPf2Jn5BuCl0CYXwYkSaYRIOGc8KbjwSWVcnkqtAyLhg_5wLx-M-LcDcbACv7taGEyr7M7EeFDb2uAb-SaVGc0R7osPxycJdo3Cv6tdC43GLHbc2Wm4ss3fb38J-n1FaX9r__MgabsKJIbzcPOyDCGbytTm3rvCOmu99pkWeQg2yrJiaepzUwQkZLyorEx9ZUpkxUsZVm06Fva9ATc5C0iOlen9r8s3HaQDC4i4ZEGlm64-ou8ySjN6Cfdie4BLMe3FyDhCW_8e3G1jUvKxMaL7sOKmD-DOBabCh2BGk8Ws-nP-y1fzxVsyqU_D2NQ4rqaWjDF7h8zcOJJYo65J7Ukkww7iC0tq6wim2I-JD-H6DxJMeOIIAgHONW2sH8HoWiT5GFan9dQ9AZJKrwNcZ6VDgjmTV0Lin2ZvuDWOU9mD1530lGnJy7GHxkQ1tMtUoaRVlHQPXizXHjeUHf9d9QmVsFyBNNtxop6NVeu1KoS_0gnjGGWWc1FqzZD9iDFf-kqWugcbnQpV6_tz9c9Se_AmqvWKz1Bb34c0jtau3us53BrsD3fV7vbezjrcpliFEVPdNmB1MfvpnobYaKGfRYMkcHjdHvAXejwgOw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVEJwQPyKQAFLwAHEkl3_rHcPCFGaqKU0VIhIvZn1XziEbEmCKm48As_D4_AkeLy7oZVQb71Z1siyZsb-xvb4G4AnQptchEWUSCNEwjnjScGFTyrj8lRqHRAJL_QPxvnuhL87Ekcb8Lv7C4Npld2eGDdqWxu8Ix9QmdEc4b4Y-DYt4nBn9Pr4W4IVpPCltSun0bjIvvtxEo5vy1d7O8HWTykdDT-93U3aCgOJ4TycwixD-KYytbn3rrDOWq99pkUeAo-yrFia-twUARUZLyorU1-ZEhnyUoY_OB0L416CTYmnoh5sbg_Hhx_XNzxIDhbwcc2JSgeu_kpfZpRm9AwKxmIBZyLc03FyBLrRdbjWRqjkTeNSN2DDzW_C1VO8hbfATGarRfXn5y9fLVcvyKw-CW1TY7uaWzLFXB6ycNNIaY2WJ7UnkRo7KDCI1NYRTLifEh-C9y8kOPTMEYQF7GuKWt-GyYXo8g705vXc3QWSSq8DeGelQ7o5k1dC4ruzN9wax6nsw7NOe8q0VOZYUWOmGhJmqlDTKmq6D4_XsscNgcd_pbbRCGsJJN2OHfViqto1rEIwLJ0wjlFmORel1gy5kBjzpa9kqfuw1ZlQtTvBUv3z2z48j2Y9Zxpq-OGAxta988d6BJeD96v3e-P9-3CF4peMmPe2Bb3V4rt7EAKllX7YeiSBzxe9CP4CoF8lzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra%E2%80%90fast%2C+low%E2%80%90cost%2C+and+green+regeneration+of+graphite+anode+using+flash+joule+heating+method&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Dong%2C+Shu&rft.au=Song%2C+Yali&rft.au=Ye%2C+Ke&rft.au=Yan%2C+Jun&rft.date=2022-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2567-3173&rft.volume=4&rft.issue=5&rft_id=info:doi/10.1002%2Feom2.12212&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon