Ultra‐fast, low‐cost, and green regeneration of graphite anode using flash joule heating method
Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly burned, which caused not only CO2 emission but also a waste of precious carbon resources. In this study, we regenerate graphite in lithium‐ion b...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 4; no. 5 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly burned, which caused not only CO2 emission but also a waste of precious carbon resources. In this study, we regenerate graphite in lithium‐ion batteries at the end of life with excellent electrochemical properties using the fast, efficient, and green Flash Joule Heating method (FJH). Through our own developed equipment, under constant pressure and air atmosphere, graphite is rapidly regenerated in 0.1 s without pollutants emission. We perform a detailed analysis of graphite material before and after recovery by multiple means of characterization and find that the regenerated graphite displays electrochemical properties nearly the same as new graphite. FJH provides a large current for defect repair and crystal structure reconstruction in graphite, as well as allowing the SEI coating to be removed during ultra‐fast annealing. The electric field guide the conductive agent and binder pyrolysis products to form conductive sheet graphene and curly graphene covering the graphite surface, making the recycled graphite even better than new commercial graphite in terms of electrical conductivity. Regenerated graphite has excellent multiplier performance and cycle performance (350 mAh g−1 at 1 C with a capacity retention of 99% after 500 cycles). At cost, we get recycled graphite that displays the same performance as new graphite, costing just 77 CNY per ton. This FJH method is not only universal for the regeneration of spent graphite generated by various devices but also enables multiple use‐failure‐regeneration steps of graphite, showing great potential for commercial applications.
The regeneration of the spent graphite can be realized by FJH treatment, and the performance of the regenerate graphite can be comparable to the new commercial graphite, which realizes the rapid and environmental recycling of the spent anode, and greatly reduces the material cost. |
---|---|
AbstractList | Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly burned, which caused not only CO
2
emission but also a waste of precious carbon resources. In this study, we regenerate graphite in lithium‐ion batteries at the end of life with excellent electrochemical properties using the fast, efficient, and green Flash Joule Heating method (FJH). Through our own developed equipment, under constant pressure and air atmosphere, graphite is rapidly regenerated in 0.1 s without pollutants emission. We perform a detailed analysis of graphite material before and after recovery by multiple means of characterization and find that the regenerated graphite displays electrochemical properties nearly the same as new graphite. FJH provides a large current for defect repair and crystal structure reconstruction in graphite, as well as allowing the SEI coating to be removed during ultra‐fast annealing. The electric field guide the conductive agent and binder pyrolysis products to form conductive sheet graphene and curly graphene covering the graphite surface, making the recycled graphite even better than new commercial graphite in terms of electrical conductivity. Regenerated graphite has excellent multiplier performance and cycle performance (350 mAh g
−1
at 1 C with a capacity retention of 99% after 500 cycles). At cost, we get recycled graphite that displays the same performance as new graphite, costing just 77 CNY per ton. This FJH method is not only universal for the regeneration of spent graphite generated by various devices but also enables multiple use‐failure‐regeneration steps of graphite, showing great potential for commercial applications.
image Abstract Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly burned, which caused not only CO2 emission but also a waste of precious carbon resources. In this study, we regenerate graphite in lithium‐ion batteries at the end of life with excellent electrochemical properties using the fast, efficient, and green Flash Joule Heating method (FJH). Through our own developed equipment, under constant pressure and air atmosphere, graphite is rapidly regenerated in 0.1 s without pollutants emission. We perform a detailed analysis of graphite material before and after recovery by multiple means of characterization and find that the regenerated graphite displays electrochemical properties nearly the same as new graphite. FJH provides a large current for defect repair and crystal structure reconstruction in graphite, as well as allowing the SEI coating to be removed during ultra‐fast annealing. The electric field guide the conductive agent and binder pyrolysis products to form conductive sheet graphene and curly graphene covering the graphite surface, making the recycled graphite even better than new commercial graphite in terms of electrical conductivity. Regenerated graphite has excellent multiplier performance and cycle performance (350 mAh g−1 at 1 C with a capacity retention of 99% after 500 cycles). At cost, we get recycled graphite that displays the same performance as new graphite, costing just 77 CNY per ton. This FJH method is not only universal for the regeneration of spent graphite generated by various devices but also enables multiple use‐failure‐regeneration steps of graphite, showing great potential for commercial applications. Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly burned, which caused not only CO2 emission but also a waste of precious carbon resources. In this study, we regenerate graphite in lithium‐ion batteries at the end of life with excellent electrochemical properties using the fast, efficient, and green Flash Joule Heating method (FJH). Through our own developed equipment, under constant pressure and air atmosphere, graphite is rapidly regenerated in 0.1 s without pollutants emission. We perform a detailed analysis of graphite material before and after recovery by multiple means of characterization and find that the regenerated graphite displays electrochemical properties nearly the same as new graphite. FJH provides a large current for defect repair and crystal structure reconstruction in graphite, as well as allowing the SEI coating to be removed during ultra‐fast annealing. The electric field guide the conductive agent and binder pyrolysis products to form conductive sheet graphene and curly graphene covering the graphite surface, making the recycled graphite even better than new commercial graphite in terms of electrical conductivity. Regenerated graphite has excellent multiplier performance and cycle performance (350 mAh g−1 at 1 C with a capacity retention of 99% after 500 cycles). At cost, we get recycled graphite that displays the same performance as new graphite, costing just 77 CNY per ton. This FJH method is not only universal for the regeneration of spent graphite generated by various devices but also enables multiple use‐failure‐regeneration steps of graphite, showing great potential for commercial applications. The regeneration of the spent graphite can be realized by FJH treatment, and the performance of the regenerate graphite can be comparable to the new commercial graphite, which realizes the rapid and environmental recycling of the spent anode, and greatly reduces the material cost. Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly burned, which caused not only CO2 emission but also a waste of precious carbon resources. In this study, we regenerate graphite in lithium‐ion batteries at the end of life with excellent electrochemical properties using the fast, efficient, and green Flash Joule Heating method (FJH). Through our own developed equipment, under constant pressure and air atmosphere, graphite is rapidly regenerated in 0.1 s without pollutants emission. We perform a detailed analysis of graphite material before and after recovery by multiple means of characterization and find that the regenerated graphite displays electrochemical properties nearly the same as new graphite. FJH provides a large current for defect repair and crystal structure reconstruction in graphite, as well as allowing the SEI coating to be removed during ultra‐fast annealing. The electric field guide the conductive agent and binder pyrolysis products to form conductive sheet graphene and curly graphene covering the graphite surface, making the recycled graphite even better than new commercial graphite in terms of electrical conductivity. Regenerated graphite has excellent multiplier performance and cycle performance (350 mAh g−1 at 1 C with a capacity retention of 99% after 500 cycles). At cost, we get recycled graphite that displays the same performance as new graphite, costing just 77 CNY per ton. This FJH method is not only universal for the regeneration of spent graphite generated by various devices but also enables multiple use‐failure‐regeneration steps of graphite, showing great potential for commercial applications. |
Author | Dong, Shu Wang, Guiling Cao, Dianxue Ye, Ke Yan, Jun Zhu, Kai Song, Yali |
Author_xml | – sequence: 1 givenname: Shu surname: Dong fullname: Dong, Shu organization: Harbin Engineering University – sequence: 2 givenname: Yali surname: Song fullname: Song, Yali organization: Harbin Engineering University – sequence: 3 givenname: Ke surname: Ye fullname: Ye, Ke organization: Harbin Engineering University – sequence: 4 givenname: Jun orcidid: 0000-0002-9967-3912 surname: Yan fullname: Yan, Jun organization: Harbin Engineering University – sequence: 5 givenname: Guiling surname: Wang fullname: Wang, Guiling organization: Harbin Engineering University – sequence: 6 givenname: Kai orcidid: 0000-0002-9451-0890 surname: Zhu fullname: Zhu, Kai email: kzhu@hrbeu.edu.cn organization: Harbin Engineering University – sequence: 7 givenname: Dianxue surname: Cao fullname: Cao, Dianxue email: caodianxue@hrbeu.edu.cn organization: Harbin Engineering University |
BookMark | eNp9kctKAzEYhYMoeN34BAPuxGquk2Yp4g0UN7oOmeRPmzKd1GSKuPMRfEafxLQjIiKucvj5zsmfnF202cUOEDok-JRgTM8gzukpoZTQDbRDRS1HjEi2-UNvo4OcZ7jAAnPKyQ6yT22fzMfbuze5P6na-FK0jSttOldNEkBXJZhAB8n0IXZV9GVqFtPQQ0Gig2qZQzepfGvytJrFZQvVFApbZnPop9Htoy1v2gwHX-ceerq6fLy4Gd09XN9enN-NLOeUjhyTVDIqsau9h7ED53zjSSNqJYhShmHsazsmgjA-Nk5ib6ziUijMVM0lsD10O-S6aGZ6kcLcpFcdTdDrQUwTbVIfbAuaKCpBWGCUOc6FahomZS0Z88obqZqSdTRkLVJ8XkLudXlZ6sr6mkpCa8FFPS7U8UDZFHNO4L9vJVivOtGrTvS6kwLjX7AN_fpPSwOh_dtCBstLaOH1n3B9-XBPB88nVSighA |
CitedBy_id | crossref_primary_10_26599_CF_2024_9200017 crossref_primary_10_1039_D4TA00668B crossref_primary_10_1021_acsnano_4c12350 crossref_primary_10_1039_D2CS00322H crossref_primary_10_1039_D4TC01736F crossref_primary_10_1016_j_cej_2024_159132 crossref_primary_10_1016_j_renene_2023_01_024 crossref_primary_10_1016_j_jpowsour_2023_233170 crossref_primary_10_1039_D4TA07890J crossref_primary_10_1002_cey2_395 crossref_primary_10_1007_s11356_023_29354_3 crossref_primary_10_1002_adfm_202302951 crossref_primary_10_1002_elan_202400318 crossref_primary_10_1039_D3CS00254C crossref_primary_10_1038_s44172_023_00062_7 crossref_primary_10_1016_j_etran_2024_100320 crossref_primary_10_1016_S1003_6326_24_66679_3 crossref_primary_10_3390_ma16093601 crossref_primary_10_1021_acsami_3c02272 crossref_primary_10_1039_D4CC00076E crossref_primary_10_1016_j_mtsust_2024_100957 crossref_primary_10_1002_eom2_12321 crossref_primary_10_1016_j_jcis_2024_04_058 crossref_primary_10_1002_adma_202207303 crossref_primary_10_1002_aenm_202404838 crossref_primary_10_1002_smll_202406033 crossref_primary_10_1021_acsnano_4c11628 crossref_primary_10_1016_j_jcis_2025_01_175 crossref_primary_10_1016_j_jiec_2024_10_059 crossref_primary_10_1038_s41467_024_50324_x crossref_primary_10_1039_D3TA00655G crossref_primary_10_1016_j_ensm_2024_103833 crossref_primary_10_1002_adma_202312548 crossref_primary_10_1016_j_seppur_2023_125289 crossref_primary_10_1016_j_fuproc_2023_107992 crossref_primary_10_1016_j_flatc_2024_100765 crossref_primary_10_1016_j_jpowsour_2023_232965 crossref_primary_10_1038_s44359_024_00002_4 crossref_primary_10_3390_molecules29133161 crossref_primary_10_1039_D4CS00362D |
Cites_doi | 10.1039/C9EE02759A 10.1038/s41565-018-0284-y 10.1002/sstr.202070001 10.1021/acssuschemeng.0c02321 10.1002/sus2.4 10.1002/aenm.202002238 10.1007/s10800-015-0914-0 10.1002/anie.202009738 10.1016/j.gee.2020.06.017 10.1038/s41586-020-1938-0 10.1002/aenm.202102693 10.1016/j.pecs.2019.01.001 10.1126/science.abg7217 10.1016/j.carbon.2021.02.094 10.1016/j.ensm.2020.12.027 10.1021/jp3118055 10.1039/C3EE42613K 10.1039/C7CS00180K 10.1038/nnano.2013.46 10.1002/adma.202106506 10.1021/acsnano.0c05900 10.1021/acs.chemrev.9b00535 10.1016/j.joule.2019.07.027 10.1021/acssuschemeng.1c05374 10.1149/1945-7111/abcc2f 10.1002/cssc.201601062 10.1002/adma.201806620 10.1021/acsnano.1c03536 10.1016/j.cej.2022.135011 10.1016/j.carbon.2021.12.053 10.1016/j.carbon.2021.03.020 10.1039/C8EE01419A 10.1080/10408347.2016.1157013 10.1016/j.jpowsour.2020.229163 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY DOA |
DOI | 10.1002/eom2.12212 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) Materials Science Database Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_1927e5ce323d4459bb3776733f9fa79b 10_1002_eom2_12212 EOM212212 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51702063; 51672056 – fundername: Natural Science Foundation of Heilongjiang Province funderid: LC2018004 – fundername: China Postdoctoral Science Foundation funderid: 2018M630340; 2019T120254 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION IEP PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c4422-d37273270d6ffe8deddfbf1b5695199a300f6c8151348ad70fac94759039647e3 |
IEDL.DBID | BENPR |
ISSN | 2567-3173 |
IngestDate | Wed Aug 27 01:13:26 EDT 2025 Sat Aug 23 14:40:06 EDT 2025 Tue Jul 01 02:50:12 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Wed Jan 22 16:22:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4422-d37273270d6ffe8deddfbf1b5695199a300f6c8151348ad70fac94759039647e3 |
Notes | Funding information China Postdoctoral Science Foundation, Grant/Award Numbers: 2018M630340, 2019T120254; National Natural Science Foundation of China, Grant/Award Numbers: 51702063, 51672056; Natural Science Foundation of Heilongjiang Province, Grant/Award Number: LC2018004 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9967-3912 0000-0002-9451-0890 |
OpenAccessLink | https://www.proquest.com/docview/2712654568?pq-origsite=%requestingapplication% |
PQID | 2712654568 |
PQPubID | 5066170 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1927e5ce323d4459bb3776733f9fa79b proquest_journals_2712654568 crossref_primary_10_1002_eom2_12212 crossref_citationtrail_10_1002_eom2_12212 wiley_primary_10_1002_eom2_12212_EOM212212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 20220901 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Beijing |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2021; 9 2021; 6 2019; 3 2019; 72 2019; 31 2020; 120 2019; 12 2019; 14 2020; 14 2021; 483 2020; 167 2020; 10 2021; 1 2013; 8 2022; 436 2018; 47 2021; 36 2015; 46 2020; 8 2022; 189 2021; 37 2021; 15 2021; 11 2020; 1 2013; 11 2021; 178 2022; 34 2020; 577 2018; 11 2021; 60 2014; 7 2016; 46 2016; 9 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Zhao YM (e_1_2_7_24_1) 2021; 37 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 36 start-page: 147 year: 2021 end-page: 170 article-title: Graphite as anode materials: fundamental mechanism, recent progress, and advances publication-title: Energy Storage Mater – volume: 3 start-page: 2334 issue: 10 year: 2019 end-page: 2363 article-title: Alkali‐metal anodes: from lab to market publication-title: Joule – volume: 34 start-page: 2106506 issue: 12 year: 2022 article-title: Machine learning guided synthesis of flash graphene publication-title: Adv Mater – volume: 11 start-page: 1257 issue: 3 year: 2013 end-page: 1267 article-title: Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy publication-title: J Phys Chem C – volume: 1 start-page: 38 issue: 1 year: 2021 end-page: 50 article-title: A perspective on sustainable energy materials for lithium batteries publication-title: SusMat – volume: 8 start-page: 235 issue: 4 year: 2013 end-page: 246 article-title: Raman spectroscopy as a versatile tool for studying the properties of graphene publication-title: Nat Nanotechnol – volume: 9 start-page: 3473 issue: 24 year: 2016 end-page: 3484 article-title: Graphite recycling from spent lithium‐ion batteries publication-title: ChemSusChem – volume: 60 start-page: 3402 issue: 7 year: 2021 end-page: 3406 article-title: Inhibiting solvent co‐intercalation in a graphite anode by a localized high‐concentration electrolyte in fast‐charging batteries publication-title: Angew Chem Int Ed – volume: 1 issue: 1 year: 2020 article-title: Rapid lithium diffusion in order@disorder pathways for fast‐charging graphite anodes publication-title: Small Struct – volume: 120 start-page: 7020 issue: 14 year: 2020 end-page: 7063 article-title: Sustainable recycling technology for Li‐ion batteries and beyond: challenges and future prospects publication-title: Chem Rev – volume: 10 issue: 37 year: 2020 article-title: An urgent call to spent lib recycling: whys and wherefores for graphite recovery publication-title: Adv Energy Mater – volume: 189 start-page: 493 year: 2022 end-page: 502 article-title: Regenerating spent graphite from scrapped lithium‐ion battery by high‐temperature treatment publication-title: Carbon – volume: 46 start-page: 502 issue: 6 year: 2016 end-page: 520 article-title: FTIR spectroscopy for carbon family study publication-title: Crit Rev Anal Chem – volume: 37 year: 2021 article-title: Composite anodes for lithium metal batteries publication-title: Acta Phys ‐Chim Sin – volume: 11 issue: 48 year: 2021 article-title: Strategies for the analysis of graphite electrode function publication-title: Adv Energy Mater – volume: 178 start-page: 649 year: 2021 end-page: 656 article-title: Flash graphene from rubber waste publication-title: Carbon – volume: 14 start-page: 13691 issue: 10 year: 2020 end-page: 13699 article-title: Flash graphene morphologies publication-title: ACS Nano – volume: 178 start-page: 1 year: 2021 end-page: 9 article-title: Microwave‐assisted synthesis of carbon dots modified graphene for full carbon‐based potassium ion capacitors publication-title: Carbon – volume: 46 start-page: 123 issue: 2 year: 2015 end-page: 148 article-title: Recycling of graphite anodes for the next generation of lithium ion batteries publication-title: J Appl Electrochem – volume: 31 issue: 28 year: 2019 article-title: Review of recent development of in situ/operando characterization techniques for lithium battery research publication-title: Adv Mater – volume: 14 start-page: 50 issue: 1 year: 2019 end-page: 56 article-title: In situ quantification of Interphasial chemistry in Li‐ion battery publication-title: Nat Nanotechnol – volume: 436 start-page: 135011 year: 2022 article-title: A novel approach to recovery of lithium element and production of holey graphene based on the lithiated graphite of spent lithium ion batteries publication-title: Chem Eng J – volume: 7 start-page: 14 issue: 1 year: 2014 end-page: 18 article-title: Electrochemical energy storage in a sustainable modern society publication-title: Energy Environ Sci – volume: 11 start-page: 2696 issue: 10 year: 2018 end-page: 2767 article-title: Review of electrical energy storage technologies, materials, and systems: challenges and prospects for large‐scale grid storage publication-title: Energy Environ Sci – volume: 483 start-page: 229163 year: 2021 article-title: An innovative approach to recover anode from spent lithium‐ion battery publication-title: J Power Sources – volume: 15 start-page: 11158 issue: 7 year: 2021 end-page: 11167 article-title: Ultrafast and controllable phase evolution by flash joule heating publication-title: ACS Nano – volume: 47 start-page: 736 issue: 3 year: 2018 end-page: 851 article-title: In situ analytical techniques for battery Interface analysis publication-title: Chem Soc Rev – volume: 12 start-page: 3575 issue: 12 year: 2019 end-page: 3584 article-title: Staging Na/K‐ion de‐/intercalation of graphite retrieved from spent Li‐ion batteries: in operando x‐ray diffraction studies and an advanced anode material for Na/K‐ion batteries publication-title: Energy Environ Sci – volume: 167 start-page: 160511 issue: 16 year: 2020 article-title: Effective upcycling of graphite anode: healing and doping enabled direct regeneration publication-title: J Electrochem Soc – volume: 72 start-page: 1 year: 2019 end-page: 31 article-title: Comparison of methodologies for the non‐invasive characterisation of commercial Li‐ion cells publication-title: Prog Energy Combust Sci – volume: 9 start-page: 16192 issue: 48 year: 2021 end-page: 16202 article-title: Epitaxial regeneration of spent graphite anode material by an eco‐friendly in‐depth purification route publication-title: ACS Sustain Chem Eng – volume: 8 start-page: 9447 issue: 25 year: 2020 end-page: 9455 article-title: Graphite recycling from the spent lithium‐ion batteries by sulfuric acid curing‐leaching combined with high‐temperature calcination publication-title: ACS Sustain Chem Eng – volume: 6 start-page: 725 issue: 5 year: 2021 end-page: 733 article-title: Effective regeneration of high‐performance anode material recycled from the whole electrodes in spent lithium‐ion batteries via a simplified approach publication-title: Green Energy Environ – volume: 37 start-page: 1494 issue: 6562 year: 2021 end-page: 1499 article-title: Carbon‐free high‐loading silicon anodes enabled by sulfide solid electrolytes publication-title: Science – volume: 577 start-page: 647 issue: 7792 year: 2020 end-page: 651 article-title: Gram‐scale bottom‐up flash graphene synthesis publication-title: Nature – ident: e_1_2_7_20_1 doi: 10.1039/C9EE02759A – ident: e_1_2_7_28_1 doi: 10.1038/s41565-018-0284-y – volume: 37 start-page: 2008090 year: 2021 ident: e_1_2_7_24_1 article-title: Composite anodes for lithium metal batteries publication-title: Acta Phys ‐Chim Sin – ident: e_1_2_7_9_1 doi: 10.1002/sstr.202070001 – ident: e_1_2_7_37_1 doi: 10.1021/acssuschemeng.0c02321 – ident: e_1_2_7_8_1 doi: 10.1002/sus2.4 – ident: e_1_2_7_10_1 doi: 10.1002/aenm.202002238 – ident: e_1_2_7_31_1 doi: 10.1007/s10800-015-0914-0 – ident: e_1_2_7_13_1 doi: 10.1002/anie.202009738 – ident: e_1_2_7_32_1 doi: 10.1016/j.gee.2020.06.017 – ident: e_1_2_7_11_1 – ident: e_1_2_7_14_1 doi: 10.1038/s41586-020-1938-0 – ident: e_1_2_7_7_1 doi: 10.1002/aenm.202102693 – ident: e_1_2_7_29_1 doi: 10.1016/j.pecs.2019.01.001 – ident: e_1_2_7_12_1 doi: 10.1126/science.abg7217 – ident: e_1_2_7_4_1 – ident: e_1_2_7_21_1 doi: 10.1016/j.carbon.2021.02.094 – ident: e_1_2_7_19_1 doi: 10.1016/j.ensm.2020.12.027 – ident: e_1_2_7_23_1 doi: 10.1021/jp3118055 – ident: e_1_2_7_2_1 doi: 10.1039/C3EE42613K – ident: e_1_2_7_25_1 doi: 10.1039/C7CS00180K – ident: e_1_2_7_22_1 doi: 10.1038/nnano.2013.46 – ident: e_1_2_7_30_1 – ident: e_1_2_7_40_1 doi: 10.1002/adma.202106506 – ident: e_1_2_7_16_1 doi: 10.1021/acsnano.0c05900 – ident: e_1_2_7_5_1 doi: 10.1021/acs.chemrev.9b00535 – ident: e_1_2_7_6_1 doi: 10.1016/j.joule.2019.07.027 – ident: e_1_2_7_34_1 doi: 10.1021/acssuschemeng.1c05374 – ident: e_1_2_7_35_1 doi: 10.1149/1945-7111/abcc2f – ident: e_1_2_7_33_1 doi: 10.1002/cssc.201601062 – ident: e_1_2_7_18_1 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201806620 – ident: e_1_2_7_15_1 doi: 10.1021/acsnano.1c03536 – ident: e_1_2_7_39_1 doi: 10.1016/j.cej.2022.135011 – ident: e_1_2_7_38_1 doi: 10.1016/j.carbon.2021.12.053 – ident: e_1_2_7_17_1 doi: 10.1016/j.carbon.2021.03.020 – ident: e_1_2_7_3_1 doi: 10.1039/C8EE01419A – ident: e_1_2_7_26_1 doi: 10.1080/10408347.2016.1157013 – ident: e_1_2_7_36_1 doi: 10.1016/j.jpowsour.2020.229163 |
SSID | ssj0002504241 |
Score | 2.4278286 |
Snippet | Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally directly... Abstract Graphite is the state‐of‐the‐art anode material for most commercial lithium‐ion batteries. Currently, graphite in the spent batteries is generally... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Carbon Carbon dioxide Carbon dioxide emissions Crystal defects Crystal structure Decomposition Displays Electric fields Electrical conductivity Electrical resistivity Electrochemical analysis Electrochemistry Electrode materials Electrodes Electrolytes Emission analysis End of life Energy flash joule heating method Graphene Graphite graphite regenerate Heating High temperature Lithium Lithium-ion batteries lithium‐ion battery low‐cost Ohmic dissipation Particle size Pollutants Pyrolysis Pyrolysis products Regeneration Resistance heating Spectrum analysis |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLgF4UV3fz2OweVSpFqF4s9BbyrIfalVrx6k_wN_pLzGS3pQXRi7cQ5jBMJvm-7E6-QeiEa5PzsIkSYThPGKMsKRj3iTIuT4XWAZHgg373Pu_02F2f9-dafUFNWC0PXAfuMjAQ4bhxlFDLGC-1piBAQ6kvvRKlhtM3YN7cZQrOYBDmCtg00yMll656JhcZIRlZQKAo1L_ALuc5agSZ23W01rBDfFV7tYGW3GgTrc5pBm4h0xtOxurr49Or18k5HlbvYWwqGKuRxQOoo8FjN4hy0hB1XHkcZakDuQwmlXUYit0H2Afi_IRDMg0dhiMZ5uqG0tuod9t-vOkkTaeExDAWbpOWAg0hIrW5966wzlqvfaZ5HghUWSqapj43RUB3ygplReqVKUHpL6XwEtXRHbQ8qkZuF-FUeB2AMysdSL2ZXHEB_3y9YdY4RkQLnU6jJ00jIw7dLIayFkAmEiItY6Rb6Hhm-1KLZ_xodQ2LMLMAwes4EdJANmkg_0qDFjqYLqFsduGrJCIjOVDEooXO4rL-4oZsP3RJHO39h0P7aIXAS4lYjnaAlifjN3cY-MtEH8VU_QbEE-yO priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6LXvQgPnF9EdCLYrWbR9OCFxVlEXwcXPAW8lwP61Z2V7z6E_yN_hIzabcqiOAthCmUmUzm63TmG4T2uDYZD06UCMN5whhlSc64T5RxWSq0DhEJEvrXN1m3x64e-EMLnUx7YSp-iCbhBp4R72twcKXHx1-koa58IkcdQmDE8Cz01kJBH2F3TYYFyLlIHF0Zwjok4wRt-EnJ8dfjPyJSJO7_gTa_Y9YYdC4X0UKNFvFpZd4l1HLDZTT_jUNwBZneYDJSH2_vXo0nh3hQvoa1KWGthhb3oa4Gj1w_0kuDFXDpcaSpDmAziJTWYSh-72MfgPQjDodr4DBc0bBXDZheRb3Li_vzblJPTkgMY-Hr0lKAJUSkNvPe5dZZ67XvaJ4FQFUUiqapz0weoj1lubIi9coUwPyXUuhMdXQNzQzLoVtHOBVeh0DaKRxQv5lMcQH_gL1h1jhGRBvtT7UnTU0rDtMtBrIiRCYSNC2jpttot5F9rsg0fpU6AyM0EkCAHTfKUV_W_iQDMBWOG0cJtYzxQmsKvESU-sIrUeg22pqaUNZeOZZEdEgGkDFvo4No1j9eQ17cXpO42viP8CaaI9AhEcvQttDMZPTitgNumeideDw_Abjn5vY priority: 102 providerName: Wiley-Blackwell |
Title | Ultra‐fast, low‐cost, and green regeneration of graphite anode using flash joule heating method |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12212 https://www.proquest.com/docview/2712654568 https://doaj.org/article/1927e5ce323d4459bb3776733f9fa79b |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxEB616QUOCAqIlDayVC4glu76Z717qihKqCq1VIhIvVn-TQ9ptiRBXHkEnpEnweM4oZVQLyvLGq12x_bM5_H4G4A3wthaxEVUSCtEwTnjRcNFKLT1dSmNiR4JA_rnF_XpmJ9diasccFvktMq1TUyG2nUWY-RHVFa0RnffHN9-L7BqFJ6u5hIa27ATTXDT9GDnZHhx-XUTZUGCruijNryk9Mh3N_RDRWlF73miRNh_D2XexarJ2YyewpOMEsnH1bA-gy0_24XHd7gDn4MdT5dz_efX76AXy_dk2v2MbdthW88cmWA-DZn7SaKVRu2TLpBETx1_KIp0zhNMep-QEAH0NYmTauoJmmbsWxWWfgHj0fDbp9MiV0woLOdxV-kYwhEqS1eH4BvnnQsmVEbUEUi1rWZlGWrbRC_PeKOdLIO2LTL-lQxvpHr2EnqzbuZfASllMNGBVq1HyjdbayHx7DdY7qznVPbh7Vp7ymY6caxqMVUrImSqUNMqaboPhxvZ2xWJxn-lTnAQNhJIfJ06uvlE5XWkIiCVXljPKHOci9YYhnxEjIU2aNmaPuyvh1Dl1bhQ_-ZOH96lYX3gM9TwyzlNrb2H3_UaHlG8C5ESzvaht5z_8AcRoSzNALYpv4zPZvR5kKfkIO32_wItg-is |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYtoAl4AAiNPEjTg4I8eiypd1y6Uq9ufFrOWw37e6iqrf-BH4JP4pfgsdJllZCvfVmWZYVzcPf2Jn5BuCl0CYXwYkSaYRIOGc8KbjwSWVcnkqtAyLhg_5wLx-M-LcDcbACv7taGEyr7M7EeFDb2uAb-SaVGc0R7osPxycJdo3Cv6tdC43GLHbc2Wm4ss3fb38J-n1FaX9r__MgabsKJIbzcPOyDCGbytTm3rvCOmu99pkWeQg2yrJiaepzUwQkZLyorEx9ZUpkxUsZVm06Fva9ATc5C0iOlen9r8s3HaQDC4i4ZEGlm64-ou8ySjN6Cfdie4BLMe3FyDhCW_8e3G1jUvKxMaL7sOKmD-DOBabCh2BGk8Ws-nP-y1fzxVsyqU_D2NQ4rqaWjDF7h8zcOJJYo65J7Ukkww7iC0tq6wim2I-JD-H6DxJMeOIIAgHONW2sH8HoWiT5GFan9dQ9AZJKrwNcZ6VDgjmTV0Lin2ZvuDWOU9mD1530lGnJy7GHxkQ1tMtUoaRVlHQPXizXHjeUHf9d9QmVsFyBNNtxop6NVeu1KoS_0gnjGGWWc1FqzZD9iDFf-kqWugcbnQpV6_tz9c9Se_AmqvWKz1Bb34c0jtau3us53BrsD3fV7vbezjrcpliFEVPdNmB1MfvpnobYaKGfRYMkcHjdHvAXejwgOw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVEJwQPyKQAFLwAHEkl3_rHcPCFGaqKU0VIhIvZn1XziEbEmCKm48As_D4_AkeLy7oZVQb71Z1siyZsb-xvb4G4AnQptchEWUSCNEwjnjScGFTyrj8lRqHRAJL_QPxvnuhL87Ekcb8Lv7C4Npld2eGDdqWxu8Ix9QmdEc4b4Y-DYt4nBn9Pr4W4IVpPCltSun0bjIvvtxEo5vy1d7O8HWTykdDT-93U3aCgOJ4TycwixD-KYytbn3rrDOWq99pkUeAo-yrFia-twUARUZLyorU1-ZEhnyUoY_OB0L416CTYmnoh5sbg_Hhx_XNzxIDhbwcc2JSgeu_kpfZpRm9AwKxmIBZyLc03FyBLrRdbjWRqjkTeNSN2DDzW_C1VO8hbfATGarRfXn5y9fLVcvyKw-CW1TY7uaWzLFXB6ycNNIaY2WJ7UnkRo7KDCI1NYRTLifEh-C9y8kOPTMEYQF7GuKWt-GyYXo8g705vXc3QWSSq8DeGelQ7o5k1dC4ruzN9wax6nsw7NOe8q0VOZYUWOmGhJmqlDTKmq6D4_XsscNgcd_pbbRCGsJJN2OHfViqto1rEIwLJ0wjlFmORel1gy5kBjzpa9kqfuw1ZlQtTvBUv3z2z48j2Y9Zxpq-OGAxta988d6BJeD96v3e-P9-3CF4peMmPe2Bb3V4rt7EAKllX7YeiSBzxe9CP4CoF8lzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra%E2%80%90fast%2C+low%E2%80%90cost%2C+and+green+regeneration+of+graphite+anode+using+flash+joule+heating+method&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Dong%2C+Shu&rft.au=Song%2C+Yali&rft.au=Ye%2C+Ke&rft.au=Yan%2C+Jun&rft.date=2022-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2567-3173&rft.volume=4&rft.issue=5&rft_id=info:doi/10.1002%2Feom2.12212&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |