Recent Advances in Effective Reduction of Graphene Oxide for Highly Improved Performance Toward Electrochemical Energy Storage
The demand for high‐quality graphene from various applications promotes the exploration of various synthesis methods such as chemical vapor deposition, chemical reduction of graphite oxide, liquid‐phase exfoliation, and electrochemical exfoliation. Among those, chemical treatments for the production...
Saved in:
Published in | Energy & environmental materials (Hoboken, N.J.) Vol. 1; no. 1; pp. 5 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The demand for high‐quality graphene from various applications promotes the exploration of various synthesis methods such as chemical vapor deposition, chemical reduction of graphite oxide, liquid‐phase exfoliation, and electrochemical exfoliation. Among those, chemical treatments for the production of reduced graphene oxide (RGO) dictate the current technologies for mass production of graphene powder. However, such conventional chemical reduction methods are rather ineffective in removing oxygen‐containing functional groups from graphene oxide (GO), with resultant RGO products containing high level of structural defects. This leads to significantly damaged crystallinity and drastically lowered electric and thermal conductivity, which is probably the main bottleneck to limit the performance of RGO‐based materials. Great efforts such as thermal reduction, microwave‐irradiation reduction, or other novel reduction methods (e.g., photoreduction) have been developed to repair defects in RGO materials. This perspective review is to outline the latest advances toward effective reduction of GO for significantly enhanced properties. We demonstrate that effectively repaired RGO with large specific surface area and highly improved crystallinity is key to highly improved electric and thermal conductivity, thus leading to significantly enhanced properties essential for chemical energy storage devices. |
---|---|
AbstractList | The demand for high‐quality graphene from various applications promotes the exploration of various synthesis methods such as chemical vapor deposition, chemical reduction of graphite oxide, liquid‐phase exfoliation, and electrochemical exfoliation. Among those, chemical treatments for the production of reduced graphene oxide (
RGO
) dictate the current technologies for mass production of graphene powder. However, such conventional chemical reduction methods are rather ineffective in removing oxygen‐containing functional groups from graphene oxide (
GO
), with resultant
RGO
products containing high level of structural defects. This leads to significantly damaged crystallinity and drastically lowered electric and thermal conductivity, which is probably the main bottleneck to limit the performance of
RGO
‐based materials. Great efforts such as thermal reduction, microwave‐irradiation reduction, or other novel reduction methods (e.g., photoreduction) have been developed to repair defects in
RGO
materials. This perspective review is to outline the latest advances toward effective reduction of
GO
for significantly enhanced properties. We demonstrate that effectively repaired
RGO
with large specific surface area and highly improved crystallinity is key to highly improved electric and thermal conductivity, thus leading to significantly enhanced properties essential for chemical energy storage devices. The demand for high‐quality graphene from various applications promotes the exploration of various synthesis methods such as chemical vapor deposition, chemical reduction of graphite oxide, liquid‐phase exfoliation, and electrochemical exfoliation. Among those, chemical treatments for the production of reduced graphene oxide (RGO) dictate the current technologies for mass production of graphene powder. However, such conventional chemical reduction methods are rather ineffective in removing oxygen‐containing functional groups from graphene oxide (GO), with resultant RGO products containing high level of structural defects. This leads to significantly damaged crystallinity and drastically lowered electric and thermal conductivity, which is probably the main bottleneck to limit the performance of RGO‐based materials. Great efforts such as thermal reduction, microwave‐irradiation reduction, or other novel reduction methods (e.g., photoreduction) have been developed to repair defects in RGO materials. This perspective review is to outline the latest advances toward effective reduction of GO for significantly enhanced properties. We demonstrate that effectively repaired RGO with large specific surface area and highly improved crystallinity is key to highly improved electric and thermal conductivity, thus leading to significantly enhanced properties essential for chemical energy storage devices. |
Author | Zhang, Shijie Li, Zhi Zhang, Peng Shao, Guosheng |
Author_xml | – sequence: 1 givenname: Peng surname: Zhang fullname: Zhang, Peng email: zhangp@zzu.edu.cn organization: Zhengzhou Materials Genome Institute, Zhongyuanzhigu – sequence: 2 givenname: Zhi surname: Li fullname: Li, Zhi organization: Zhengzhou Materials Genome Institute, Zhongyuanzhigu – sequence: 3 givenname: Shijie surname: Zhang fullname: Zhang, Shijie organization: Zhengzhou Materials Genome Institute, Zhongyuanzhigu – sequence: 4 givenname: Guosheng surname: Shao fullname: Shao, Guosheng email: gsshao@zzu.edu.cn organization: Zhengzhou Materials Genome Institute, Zhongyuanzhigu |
BookMark | eNp9kM1KAzEURoNUsFY3PkHAnVBNMulMs5Qy_kBFqXU9ZJKbNmUmqZlpdTY-u6l1ISKucgnn--7lHKOe8w4QOqPkkhLCrgBqdkkZIfQA9dkoGw1JMkp7P-YjdNo0KxJhQhNORR99zECBa_G13kqnoMHW4dwYUK3dAp6B3sTJO-wNvg1yvQQH-PHdasDGB3xnF8uqw_f1OvgtaPwEIX7XuyY8928yaJxXsSt4tYTaKlnh3EFYdPi59UEu4AQdGlk1cPr9DtDLTT6f3A2nj7f3k-vpUHHO6FAxJaTMJNOKldykImNCG8UZo2OR6UwDJdqINBkTPi55JlSZci1LUvLU8JFIBuh83xsPfd1A0xYrvwkuriyiHCHGLE1ZpC72lAq-aQKYYh1sLUNXUFLsFBc7xcWX4giTX7CyrdzJaoO01d8Ruo-82Qq6f8qLPH9g-8wnsIiQWA |
CitedBy_id | crossref_primary_10_1039_D1TC03217H crossref_primary_10_1016_j_fuel_2021_122724 crossref_primary_10_1016_j_surfin_2024_105388 crossref_primary_10_1002_smll_201905585 crossref_primary_10_1016_j_jtice_2021_03_019 crossref_primary_10_1002_eem2_12060 crossref_primary_10_1039_D1TA00302J crossref_primary_10_1002_inf2_12214 crossref_primary_10_1016_j_jechem_2024_08_019 crossref_primary_10_1093_ce_zkae068 crossref_primary_10_3390_ijms23020988 crossref_primary_10_3390_ma15134705 crossref_primary_10_1002_inf2_12294 crossref_primary_10_1007_s11051_018_4436_7 crossref_primary_10_1007_s12274_021_3319_x crossref_primary_10_1016_j_jechem_2020_01_033 crossref_primary_10_1002_anie_201913461 crossref_primary_10_1016_j_polymdegradstab_2022_110179 crossref_primary_10_1021_acs_analchem_1c02581 crossref_primary_10_1016_j_est_2022_105988 crossref_primary_10_1007_s10854_020_03738_4 crossref_primary_10_1002_smll_202007242 crossref_primary_10_1002_eem2_12451 crossref_primary_10_1002_celc_202200945 crossref_primary_10_1002_smll_202405644 crossref_primary_10_1016_j_ceramint_2021_10_138 crossref_primary_10_1016_j_carbon_2020_05_015 crossref_primary_10_1016_S1872_2067_21_63898_6 crossref_primary_10_1016_j_optmat_2024_115686 crossref_primary_10_1016_j_carbon_2019_04_025 crossref_primary_10_1016_j_diamond_2022_109066 crossref_primary_10_3390_nano12132278 crossref_primary_10_3390_nano12132310 crossref_primary_10_1002_advs_202103879 crossref_primary_10_1021_acs_iecr_1c03182 crossref_primary_10_1039_D0BM01286F crossref_primary_10_3390_nano11020382 crossref_primary_10_1016_j_mtcomm_2023_106577 crossref_primary_10_1021_acsanm_8b02346 crossref_primary_10_1016_j_flatc_2022_100437 crossref_primary_10_1007_s11664_024_11589_6 crossref_primary_10_1016_j_electacta_2024_145353 crossref_primary_10_1016_j_ijpharm_2020_119226 crossref_primary_10_3390_ma14154108 crossref_primary_10_1016_j_jcis_2023_01_019 crossref_primary_10_1016_j_microc_2023_108595 crossref_primary_10_1007_s10854_021_06979_z crossref_primary_10_1039_D0CC05310D crossref_primary_10_3390_polym14245437 crossref_primary_10_1002_eem2_12105 crossref_primary_10_1016_S1872_2067_22_64104_4 crossref_primary_10_1016_j_jelechem_2022_116438 crossref_primary_10_1016_j_jelechem_2021_115722 crossref_primary_10_1016_j_jechem_2020_10_033 crossref_primary_10_1016_j_cclet_2020_08_032 crossref_primary_10_1016_j_compscitech_2018_07_045 crossref_primary_10_1007_s11664_022_09702_8 crossref_primary_10_1021_acs_iecr_4c04367 crossref_primary_10_3390_nano10020239 crossref_primary_10_1016_j_materresbull_2020_111127 crossref_primary_10_1002_adfm_202211640 crossref_primary_10_1016_j_est_2023_110336 crossref_primary_10_1016_j_matchemphys_2020_123666 crossref_primary_10_3390_mi13010119 crossref_primary_10_1016_j_diamond_2022_109437 crossref_primary_10_1021_acsami_4c07894 crossref_primary_10_1002_pssb_202100304 crossref_primary_10_1002_ente_202100265 crossref_primary_10_3390_bios13030349 crossref_primary_10_1016_j_compositesb_2022_110150 crossref_primary_10_1021_acs_jpclett_2c00247 crossref_primary_10_1002_elan_202200548 crossref_primary_10_1002_eem2_12130 crossref_primary_10_1002_eem2_12373 crossref_primary_10_1039_D0NA00561D crossref_primary_10_1142_S0217979225501607 crossref_primary_10_1002_adfm_201808994 crossref_primary_10_1080_1536383X_2019_1686625 crossref_primary_10_3390_batteries8100191 crossref_primary_10_1016_j_jelechem_2018_11_053 crossref_primary_10_1021_acs_langmuir_4c01966 crossref_primary_10_1002_adem_202301920 crossref_primary_10_1016_j_cej_2022_135679 crossref_primary_10_1007_s10904_024_03154_9 crossref_primary_10_1016_j_apsusc_2024_160230 crossref_primary_10_1093_rb_rbab032 crossref_primary_10_1016_j_ensm_2020_01_029 crossref_primary_10_1002_ange_201913461 crossref_primary_10_1002_eem2_12007 crossref_primary_10_1016_j_ensm_2021_06_020 crossref_primary_10_1016_j_nanoms_2024_01_006 crossref_primary_10_1039_C8EN00468D crossref_primary_10_1016_j_mseb_2024_117947 crossref_primary_10_1021_acs_energyfuels_4c02924 crossref_primary_10_3390_ma16247658 crossref_primary_10_20964_2021_01_32 crossref_primary_10_1007_s40820_024_01410_8 crossref_primary_10_1039_D0PY00471E crossref_primary_10_1016_j_cej_2020_127018 crossref_primary_10_1016_j_ensm_2024_103191 crossref_primary_10_1002_smll_202100065 crossref_primary_10_1039_C8NR04109A crossref_primary_10_1002_adfm_202100801 crossref_primary_10_1002_aenm_202203805 crossref_primary_10_1016_j_pmatsci_2022_101041 crossref_primary_10_3390_nano14110980 crossref_primary_10_1002_mame_202000203 crossref_primary_10_1002_eem2_12160 crossref_primary_10_1002_app_51567 crossref_primary_10_1007_s10800_023_02036_1 crossref_primary_10_1016_j_envpol_2022_118836 crossref_primary_10_1149_2_0941914jes crossref_primary_10_1016_j_apsusc_2021_152325 crossref_primary_10_1016_j_est_2023_109525 crossref_primary_10_1016_j_jpowsour_2020_228040 crossref_primary_10_1016_j_apsusc_2019_06_108 crossref_primary_10_1016_j_carbon_2023_118380 crossref_primary_10_1021_acssuschemeng_2c02326 crossref_primary_10_1039_C9RA05529K crossref_primary_10_1002_eem2_12275 crossref_primary_10_1002_eem2_12431 crossref_primary_10_1039_D1BM01937F crossref_primary_10_1002_eem2_12399 crossref_primary_10_1016_j_tsf_2019_137422 crossref_primary_10_3390_inorganics10090142 crossref_primary_10_1002_eom2_12321 crossref_primary_10_1002_pts_2795 crossref_primary_10_1016_j_rser_2022_112836 crossref_primary_10_1063_5_0148376 crossref_primary_10_1016_j_cej_2021_131992 crossref_primary_10_1002_cey2_625 crossref_primary_10_1007_s10904_024_03385_w |
Cites_doi | 10.1021/nn900020u 10.1016/j.mattod.2015.06.009 10.1126/science.aah3398 10.1021/acsami.5b06590 10.1039/c0jm00168f 10.1021/acsami.5b02978 10.1021/jz1011143 10.1038/nature07719 10.1038/s41467-017-01823-7 10.1021/ja106162f 10.1016/j.ssi.2015.10.001 10.1039/C3RA43612H 10.1021/acsami.5b04652 10.1039/C0JM01007C 10.1021/nl0731872 10.1021/nn200493r 10.1039/C3CS60164A 10.1016/j.carbon.2011.11.010 10.1038/nnano.2009.279 10.1007/s12274-016-1171-1 10.1002/adma.201605958 10.1002/aenm.201600904 10.1021/nl9028736 10.1021/jp103704y 10.1126/science.1200770 10.1021/am4044147 10.1021/jp509783h 10.1016/j.susc.2008.08.037 10.1126/science.1102896 10.1016/0039-6028(92)90183-7 10.1039/c3cc46368k 10.1016/j.carbon.2011.09.042 10.1021/acsami.5b08274 10.1126/science.1246501 10.1021/ja01539a017 10.1021/cm0630800 10.1002/smtd.201700099 10.1021/nn700375n 10.1039/c2cc33979j 10.1016/j.nantod.2009.12.009 10.1021/nn303145j 10.1021/acs.nanolett.6b00743 10.1016/j.ceramint.2015.11.026 10.1002/adma.201500472 10.1016/j.cej.2013.07.123 10.1021/acsami.5b04336 10.1002/aenm.201700051 10.1016/j.carbon.2015.06.030 10.1126/science.1216744 10.1039/c0cs00079e 10.1021/nl072838r 10.1039/C5CS00021A 10.1021/jp060936f 10.1039/c1jm10768b 10.1021/acsami.7b07024 10.1016/j.carbon.2009.11.037 10.1002/adma.201301870 10.1038/nature11458 10.1002/anie.201003024 10.1007/s12274-011-0126-9 10.1021/ja907098f 10.1039/C5RA19268D 10.1038/ncomms4410 10.1166/mex.2011.1024 10.1039/C1CS15270J 10.1126/sciadv.aao7233 10.1007/s12274-013-0298-6 10.1016/j.elecom.2012.01.023 10.1039/c1cc13464g 10.1002/adma.201001068 10.1038/nnano.2008.215 10.1039/c1jm00049g 10.1038/nnano.2009.58 10.1016/j.carbon.2017.10.071 10.1039/C4CS00455H 10.1088/0957-4484/20/43/434007 10.1021/nn1014215 10.1021/ja5017156 10.1016/j.carbon.2015.08.067 10.1002/smll.201303202 10.1016/j.carbon.2011.12.005 10.1039/b906253j 10.1002/ange.201708714 10.1002/anie.201205354 10.1002/smll.201002009 10.1016/j.ceramint.2015.10.085 10.1002/macp.201100451 10.1021/acsami.7b09891 10.1002/adma.201502682 10.1039/c2jm34718k 10.1039/C6RA07626B 10.1016/j.ssc.2008.02.024 10.1016/j.jpowsour.2016.03.025 10.1038/nnano.2011.110 10.1002/adma.201202321 10.1021/cr5006217 10.1038/nphoton.2010.186 10.1016/j.jpowsour.2013.07.002 10.1021/nn1006368 10.1016/j.carbon.2010.05.031 10.1021/nl5020475 10.1021/nn505335u 10.1016/j.synthmet.2015.07.014 10.1126/science.1157996 10.1016/j.ijhydene.2013.12.144 10.1021/acs.nanolett.5b00112 10.1002/cplu.201200206 10.1039/C5CS00147A 10.1021/nn3052023 10.1021/ja902348k 10.1126/science.1125925 |
ContentType | Journal Article |
Copyright | 2018 Zhengzhou University |
Copyright_xml | – notice: 2018 Zhengzhou University |
DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
DOI | 10.1002/eem2.12001 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | 12 |
ExternalDocumentID | 10_1002_eem2_12001 EEM212001 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51502269; 51001091; 111174256; 91233101 – fundername: Program for Science & Technology Innovation Talents in Universities of Henan Province funderid: 18HASTIT009 – fundername: Outstanding Young Talent Research Fund of Zhengzhou University funderid: 1521320023 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
ID | FETCH-LOGICAL-c4421-c2c9aa7a2dc2b4f69729dfc4221897d7de10df9638048b479cb64dab0b46f4593 |
IEDL.DBID | 24P |
ISSN | 2575-0356 |
IngestDate | Mon Jun 30 12:01:02 EDT 2025 Tue Jul 01 01:03:04 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Wed Jan 22 16:27:23 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4421-c2c9aa7a2dc2b4f69729dfc4221897d7de10df9638048b479cb64dab0b46f4593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12001 |
PQID | 2579982662 |
PQPubID | 5251211 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2579982662 crossref_primary_10_1002_eem2_12001 crossref_citationtrail_10_1002_eem2_12001 wiley_primary_10_1002_eem2_12001_EEM212001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2017; 7 2017; 8 2017; 1 2013; 25 2017; 3 2015; 347 2018; 126 2008; 8 2012; 18 2008; 3 2008; 146 2013; 7 2008; 2 2013; 5 2013; 6 2017; 9 2014; 136 2010; 22 2010; 20 2014; 5 2013; 14 2014; 4 2010; 1 2010; 114 2015; 210 2015; 44 2012; 490 2013; 52 2016; 42 2013; 232 2016; 353 2014; 14 2011; 21 2016; 315 1958; 80 8 2012; 213 2012; 24 2009; 603 2012; 335 2009; 19 2010; 5 2010; 4 2012; 22 2014; 10 2014; 245 2017; 129 2014; 118 2015; 283 2007; 19 2015; 15 2015; 5 2015; 18 2013; 49 2009; 20 2011; 1 1992; 264 2015; 95 2015; 94 2011; 40 2006; 110 2017; 29 2009; 131 2008; 321 2011; 4 2004; 306 2016; 16 2011; 6 2015; 7 2011; 5 2011; 332 2011; 7 2009; 457 2006; 312 2014; 43 2012; 50 2016; 6 2010; 49 2015; 27 2010; 48 2015; 115 2013; 78 2010; 132 2009; 4 2014; 39 2011; 47 2012; 48 2012; 6 2009; 3 2016; 9 2012; 41 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 19 start-page: 4396 year: 2007 – volume: 18 start-page: 480 year: 2015 – volume: 321 start-page: 385 year: 2008 – volume: 14 start-page: 4821 year: 2014 – volume: 50 start-page: 3267 year: 2012 – volume: 7 start-page: 1700051 year: 2017 – volume: 21 start-page: 680 year: 2011 – volume: 10 start-page: 3480 year: 2014 – volume: 5 start-page: 3410 year: 2014 – volume: 19 start-page: 3832 year: 2009 – volume: 603 start-page: 1841 year: 2009 – volume: 1 start-page: 1700099 year: 2017 – volume: 3 start-page: eaao7233 year: 2017 – volume: 24 start-page: 4924 year: 2012 – volume: 5 start-page: 92940 year: 2015 – volume: 5 start-page: 12295 year: 2013 – volume: 4 start-page: 611 year: 2010 – volume: 7 start-page: 1437 year: 2013 – volume: 25 start-page: 4932 year: 2013 – volume: 118 start-page: 28502 year: 2014 – volume: 50 start-page: 835 year: 2012 – volume: 95 start-page: 843 year: 2015 – volume: 315 start-page: 9 year: 2016 – volume: 22 start-page: 20170 year: 2012 – volume: 6 start-page: 216 year: 2013 – volume: 29 start-page: 1605958 year: 2017 – volume: 131 start-page: 11027 year: 2009 – volume: 44 start-page: 5638 year: 2015 – volume: 8 start-page: 902 year: 2008 – volume: 114 start-page: 12800 year: 2010 – volume: 347 start-page: 1246501 year: 2015 – volume: 40 start-page: 2644 year: 2011 – volume: 49 start-page: 10676 year: 2013 – volume: 27 start-page: 5943 year: 2015 – volume: 7 start-page: 24895 year: 2015 – volume: 115 start-page: 5159 year: 2015 – volume: 5 start-page: 15 year: 2010 – volume: 126 start-page: 507 year: 2018 – volume: 5 start-page: 2475 year: 2011 – volume: 6 start-page: 7867 year: 2012 – volume: 48 start-page: 1146 year: 2010 – volume: 3 start-page: 563 year: 2008 – volume: 18 start-page: 12 year: 2012 – volume: 41 start-page: 2283 year: 2012 – volume: 14 start-page: 355 year: 2013 – volume: 15 start-page: 1796 year: 2015 – volume: 335 start-page: 1326 year: 2012 – volume: 7 start-page: 15042 year: 2015 – volume: 48 start-page: 8428 year: 2012 – volume: 4 start-page: 217 year: 2009 – volume: 4 start-page: 4806 year: 2010 – volume: 232 start-page: 346 year: 2013 – volume: 9 start-page: 34456 year: 2017 – volume: 21 start-page: 5430 year: 2011 – volume: 78 start-page: 227 year: 2013 – volume: 43 start-page: 58 year: 2014 – volume: 490 start-page: 192 year: 2012 – volume: 16 start-page: 3616 year: 2016 – volume: 44 start-page: 6230 year: 2015 – volume: 4 start-page: 612 year: 2009 – volume: 8 start-page: 323 year: 2008 – volume: 306 start-page: 666 year: 2004 – volume: 7 start-page: 12625 year: 2015 – volume: 210 start-page: 123 year: 2015 – volume: 132 start-page: 12556 year: 2010 – volume: 20 start-page: 4781 year: 2010 – volume: 7 start-page: 20957 year: 2015 – volume: 5 start-page: 3333 year: 2011 – volume: 8 start-page: 11013 – volume: 44 start-page: 5861 year: 2015 – volume: 22 start-page: 3906 year: 2010 – volume: 283 start-page: 145 year: 2015 – volume: 7 start-page: 1876 year: 2011 – volume: 312 start-page: 1191 year: 2006 – volume: 3 start-page: 411 year: 2009 – volume: 6 start-page: 1600904 year: 2016 – volume: 110 start-page: 8535 year: 2006 – volume: 39 start-page: 3799 year: 2014 – volume: 27 start-page: 4113 year: 2015 – volume: 146 start-page: 351 year: 2008 – volume: 6 start-page: 496 year: 2011 – volume: 48 start-page: 3382 year: 2010 – volume: 20 start-page: 434007 year: 2009 – volume: 4 start-page: 705 year: 2011 – volume: 213 start-page: 1146 year: 2012 – volume: 457 start-page: 706 year: 2009 – volume: 6 start-page: 64993 year: 2016 – volume: 9 start-page: 22628 year: 2017 – volume: 264 start-page: 261 year: 1992 – volume: 7 start-page: 18483 year: 2015 – volume: 49 start-page: 9336 year: 2010 – volume: 353 start-page: 1413 year: 2016 – volume: 2 start-page: 463 year: 2008 – volume: 50 start-page: 3210 year: 2012 – volume: 4 start-page: 587 year: 2014 – volume: 131 start-page: 15939 year: 2009 – volume: 245 start-page: 529 year: 2014 – volume: 47 start-page: 9438 year: 2011 – volume: 1 start-page: 252 year: 2011 – volume: 94 start-page: 224 year: 2015 – volume: 42 start-page: 3007 year: 2016 – volume: 21 start-page: 7376 year: 2011 – volume: 52 start-page: 392 year: 2013 – volume: 9 start-page: 2823 year: 2016 – volume: 10 start-page: 92 year: 2010 – volume: 80 start-page: 1339 year: 1958 – volume: 42 start-page: 3618 year: 2016 – volume: 1 start-page: 2804 year: 2010 – volume: 129 start-page: 15883 year: 2017 – volume: 136 start-page: 6083 year: 2014 – volume: 332 start-page: 1537 year: 2011 – volume: 8 start-page: 1561 year: 2017 – ident: e_1_2_8_64_1 doi: 10.1021/nn900020u – ident: e_1_2_8_12_1 doi: 10.1016/j.mattod.2015.06.009 – ident: e_1_2_8_52_1 doi: 10.1126/science.aah3398 – ident: e_1_2_8_81_1 doi: 10.1021/acsami.5b06590 – ident: e_1_2_8_45_1 doi: 10.1039/c0jm00168f – ident: e_1_2_8_84_1 doi: 10.1021/acsami.5b02978 – ident: e_1_2_8_111_1 doi: 10.1021/jz1011143 – ident: e_1_2_8_24_1 doi: 10.1038/nature07719 – ident: e_1_2_8_22_1 doi: 10.1038/s41467-017-01823-7 – ident: e_1_2_8_77_1 doi: 10.1021/ja106162f – ident: e_1_2_8_101_1 doi: 10.1016/j.ssi.2015.10.001 – ident: e_1_2_8_93_1 doi: 10.1039/C3RA43612H – ident: e_1_2_8_82_1 doi: 10.1021/acsami.5b04652 – ident: e_1_2_8_100_1 doi: 10.1039/C0JM01007C – ident: e_1_2_8_7_1 doi: 10.1021/nl0731872 – ident: e_1_2_8_102_1 doi: 10.1021/nn200493r – ident: e_1_2_8_94_1 doi: 10.1039/C3CS60164A – ident: e_1_2_8_43_1 doi: 10.1016/j.carbon.2011.11.010 – ident: e_1_2_8_34_1 doi: 10.1038/nnano.2009.279 – ident: e_1_2_8_19_1 doi: 10.1007/s12274-016-1171-1 – ident: e_1_2_8_48_1 doi: 10.1002/adma.201605958 – ident: e_1_2_8_76_1 doi: 10.1002/aenm.201600904 – ident: e_1_2_8_18_1 doi: 10.1021/nl9028736 – ident: e_1_2_8_39_1 doi: 10.1021/jp103704y – ident: e_1_2_8_57_1 doi: 10.1126/science.1200770 – ident: e_1_2_8_71_1 doi: 10.1021/am4044147 – ident: e_1_2_8_80_1 doi: 10.1021/jp509783h – ident: e_1_2_8_29_1 doi: 10.1016/j.susc.2008.08.037 – ident: e_1_2_8_1_1 doi: 10.1126/science.1102896 – ident: e_1_2_8_28_1 doi: 10.1016/0039-6028(92)90183-7 – ident: e_1_2_8_44_1 doi: 10.1039/c3cc46368k – ident: e_1_2_8_62_1 doi: 10.1016/j.carbon.2011.09.042 – ident: e_1_2_8_90_1 doi: 10.1021/acsami.5b08274 – ident: e_1_2_8_20_1 doi: 10.1126/science.1246501 – ident: e_1_2_8_38_1 doi: 10.1021/ja01539a017 – ident: e_1_2_8_69_1 doi: 10.1021/cm0630800 – ident: e_1_2_8_21_1 doi: 10.1002/smtd.201700099 – ident: e_1_2_8_60_1 doi: 10.1021/nn700375n – ident: e_1_2_8_91_1 doi: 10.1039/c2cc33979j – ident: e_1_2_8_106_1 doi: 10.1016/j.nantod.2009.12.009 – ident: e_1_2_8_58_1 doi: 10.1021/nn303145j – ident: e_1_2_8_55_1 doi: 10.1021/acs.nanolett.6b00743 – ident: e_1_2_8_78_1 doi: 10.1016/j.ceramint.2015.11.026 – ident: e_1_2_8_92_1 doi: 10.1002/adma.201500472 – ident: e_1_2_8_95_1 doi: 10.1016/j.cej.2013.07.123 – ident: e_1_2_8_103_1 doi: 10.1021/acsami.5b04336 – ident: e_1_2_8_47_1 doi: 10.1002/aenm.201700051 – ident: e_1_2_8_53_1 doi: 10.1016/j.carbon.2015.06.030 – ident: e_1_2_8_59_1 doi: 10.1126/science.1216744 – ident: e_1_2_8_14_1 doi: 10.1039/c0cs00079e – ident: e_1_2_8_61_1 doi: 10.1021/nl072838r – ident: e_1_2_8_9_1 doi: 10.1126/science.1246501 – ident: e_1_2_8_17_1 doi: 10.1039/C5CS00021A – ident: e_1_2_8_70_1 doi: 10.1021/jp060936f – ident: e_1_2_8_40_1 doi: 10.1039/c1jm10768b – ident: e_1_2_8_50_1 doi: 10.1021/acsami.7b07024 – ident: e_1_2_8_99_1 doi: 10.1016/j.carbon.2009.11.037 – ident: e_1_2_8_83_1 doi: 10.1002/adma.201301870 – ident: e_1_2_8_4_1 doi: 10.1038/nature11458 – ident: e_1_2_8_2_1 doi: 10.1002/anie.201003024 – ident: e_1_2_8_98_1 doi: 10.1007/s12274-011-0126-9 – ident: e_1_2_8_65_1 doi: 10.1021/ja907098f – ident: e_1_2_8_96_1 doi: 10.1039/C5RA19268D – ident: e_1_2_8_25_1 doi: 10.1038/ncomms4410 – ident: e_1_2_8_109_1 doi: 10.1166/mex.2011.1024 – ident: e_1_2_8_63_1 – ident: e_1_2_8_15_1 doi: 10.1039/C1CS15270J – ident: e_1_2_8_49_1 doi: 10.1126/sciadv.aao7233 – ident: e_1_2_8_46_1 doi: 10.1007/s12274-013-0298-6 – ident: e_1_2_8_86_1 doi: 10.1016/j.elecom.2012.01.023 – ident: e_1_2_8_88_1 doi: 10.1039/c1cc13464g – ident: e_1_2_8_35_1 doi: 10.1002/adma.201001068 – ident: e_1_2_8_30_1 doi: 10.1038/nnano.2008.215 – ident: e_1_2_8_67_1 doi: 10.1039/c1jm00049g – ident: e_1_2_8_36_1 doi: 10.1038/nnano.2009.58 – ident: e_1_2_8_31_1 doi: 10.1016/j.carbon.2017.10.071 – ident: e_1_2_8_16_1 doi: 10.1039/C4CS00455H – ident: e_1_2_8_68_1 doi: 10.1088/0957-4484/20/43/434007 – ident: e_1_2_8_113_1 doi: 10.1021/nn1014215 – ident: e_1_2_8_33_1 doi: 10.1021/ja5017156 – ident: e_1_2_8_73_1 doi: 10.1016/j.carbon.2015.08.067 – ident: e_1_2_8_23_1 doi: 10.1002/smll.201303202 – ident: e_1_2_8_51_1 doi: 10.1016/j.carbon.2011.12.005 – ident: e_1_2_8_97_1 doi: 10.1039/b906253j – ident: e_1_2_8_56_1 doi: 10.1002/ange.201708714 – ident: e_1_2_8_87_1 doi: 10.1002/anie.201205354 – ident: e_1_2_8_3_1 doi: 10.1002/smll.201002009 – ident: e_1_2_8_105_1 doi: 10.1016/j.ceramint.2015.10.085 – ident: e_1_2_8_110_1 doi: 10.1002/macp.201100451 – ident: e_1_2_8_32_1 doi: 10.1021/acsami.7b09891 – ident: e_1_2_8_26_1 doi: 10.1002/adma.201502682 – ident: e_1_2_8_85_1 doi: 10.1039/c2jm34718k – ident: e_1_2_8_54_1 doi: 10.1039/C6RA07626B – ident: e_1_2_8_8_1 doi: 10.1016/j.ssc.2008.02.024 – ident: e_1_2_8_79_1 doi: 10.1016/j.jpowsour.2016.03.025 – ident: e_1_2_8_107_1 doi: 10.1038/nnano.2011.110 – ident: e_1_2_8_6_1 doi: 10.1002/adma.201202321 – ident: e_1_2_8_5_1 doi: 10.1021/cr5006217 – ident: e_1_2_8_10_1 doi: 10.1038/nphoton.2010.186 – ident: e_1_2_8_41_1 doi: 10.1016/j.jpowsour.2013.07.002 – ident: e_1_2_8_37_1 doi: 10.1021/nn1006368 – ident: e_1_2_8_112_1 doi: 10.1016/j.carbon.2010.05.031 – ident: e_1_2_8_66_1 doi: 10.1021/nl5020475 – ident: e_1_2_8_74_1 doi: 10.1021/nn505335u – ident: e_1_2_8_42_1 doi: 10.1016/j.synthmet.2015.07.014 – ident: e_1_2_8_11_1 doi: 10.1126/science.1157996 – ident: e_1_2_8_72_1 doi: 10.1016/j.ijhydene.2013.12.144 – ident: e_1_2_8_89_1 doi: 10.1021/acs.nanolett.5b00112 – ident: e_1_2_8_104_1 doi: 10.1002/cplu.201200206 – ident: e_1_2_8_13_1 doi: 10.1039/C5CS00147A – ident: e_1_2_8_75_1 doi: 10.1021/nn3052023 – ident: e_1_2_8_108_1 doi: 10.1021/ja902348k – ident: e_1_2_8_27_1 doi: 10.1126/science.1125925 |
SSID | ssj0002013419 |
Score | 2.4466228 |
SecondaryResourceType | review_article |
Snippet | The demand for high‐quality graphene from various applications promotes the exploration of various synthesis methods such as chemical vapor deposition,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5 |
SubjectTerms | Chemical energy chemical energy storage Chemical reduction Chemical synthesis Chemical treatment Chemical vapor deposition Crystal defects Crystal structure Crystallinity defects in graphene Electrochemistry Energy storage Exfoliation Functional groups Graphene graphene oxide Heat conductivity Heat transfer Irradiation Mass production Photoreduction reduction of graphene oxide Thermal conductivity Thermal reduction |
Title | Recent Advances in Effective Reduction of Graphene Oxide for Highly Improved Performance Toward Electrochemical Energy Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12001 https://www.proquest.com/docview/2579982662 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwNBDB5qe_EiiorVWgJ6UVi7nU73AV6KbBVBLdpK8bLMEwq1FVtBL_52MzPbVkEEb3vI7iGZJN9kky-EHIdUcploExhbY2JCxgFPIluJa1EVChkq6dg-b6OrAbsetoclcr6YhfH8EMuCm_UMF6-tg3Mxa6xIQ7V-pmdN2xK0Rip2ttY29FHWW1ZYMLVZsjK7XQ4xSRC22tGSn5Q2Vq__zEgrmPkdrLps090kGwVMhI636xYp6ck2-USMhzkCOv6__QxGE_Dswxiy4N6SsFo1w9TApeWhxjAGd-8jpQGRKdiOjvEH-CqCVtBbjQxA3zXPQuZ34siCRAAyNxgID3gvx7CzQwbdrH9xFRT7EwLJGG0GksqU85hTJalgJkoRSCsjGcW0nsYqVroZKmM9EN1YsDiVImKKi1CwyLB22tol5cl0ovcIxLFOTcIj0eKMcY2wPEXjJyo1eN1RklfJyUKHuSzIxe2Oi3HuaZFpbvWdO31XydFS9sVTavwqVVuYIi_capajIfF6iJiCVsmpM88fX8iz7Ia6p_3_CB-QdTw5ie8zq5Hy_PVNHyLwmIu6O191Uuk8Dp4GXzOM1Vg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07SwNBEF58FNqIomI06oA2CqeXzeYeZZDT-BZNRGyOfUIgJmIiaONvd-b2TBREsLti2WKe387NfMPYbsi11Il1gaMak1A6DmQSUSWuzk2odGh0wfZ5FbU64uyh8VD25tAsjOeHGBfcyDOKeE0OTgXpwwlrqLVP_KBGPUHTbJZgDRr1bPO-89gZF1kwuxFfGS2YQ1gShPVGNKYo5YeTC34mpQnS_I5Xi4RzvMgWSqQITa_aJTZl-8vsA2Eepglo-l_3Q-j2wRMQY9SCW-JhJUnDwMEJUVFjJIPrt66xgOAUqKmj9w6-kGAN3EymBqBd9M9C5tfi6JJHALJiNhDu8GmOkWeFdY6z9lErKFcoBFoIXgs016mUseRGcyVclCKWNk4Ljpk9jU1sbC00jpwQPVmJONUqEkaqUInIiUZaX2Uz_UHfrjGIY5u6REaqLoWQFpF5ivpPTOrwxWO0rLC9LxnmuuQXpzUXvdwzI_Oc5J0X8q6wnfHZZ8-q8eup6pcq8tKzhjkqEl-ICCt4he0X6vnjhjzLLnnxtf6fw9tsrtW-vMgvTq_ON9g8WlHi286qbGb08mo3EYeM1FZpbZ8zztjV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwNBDA5aQbyIomJ9BvSisLqdTvcBXopufT9QK-JlmScUtC0-QC_-djM721ZBBG97CHNIJsmXbOYLwGbIlFCJsYF1PSYuVRyIJHKduDrToVShVgXb50V01OYn9437MdgbvIXx_BDDhpvzjCJeOwfva7s7Ig015ont1NxI0DhMNCgthRWYaN61H9rDHgslN0dX5vbLESoJwnojGjKUst3RAT9z0ghofoerRb5pzcB0CRSx6S07C2OmOwefhPIoS2DT_7l_wU4XPf8wBS28djSsTtHYs3jomKgpkOHle0cbJGyKbqbj8QN9H8FovBo9GsDbYnwWM78VR5U0ApgVTwPxhipzCjzz0G5lt_tHQblBIVCcs1qgmEqFiAXTikluo5SgtLaKM0rsaaxjbWqhts4HyZElj1MlI66FDCWPLG-k9QWodHtdswgYxya1iYhkXXAuDAHzlMyf6NRSwaOVqMLWQIe5KunF3ZaLx9wTI7Pc6Tsv9F2FjaFs35Nq_Cq1MjBFXjrWS06GpAKRUAWrwnZhnj9OyLPsnBVfS_8RXofJq4NWfnZ8cboMU3SJEj90tgKV1-c3s0oo5FWulZftC-aO1_U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Effective+Reduction+of+Graphene+Oxide+for+Highly+Improved+Performance+Toward+Electrochemical+Energy+Storage&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Zhang%2C+Peng&rft.au=Li%2C+Zhi&rft.au=Zhang%2C+Shijie&rft.au=Shao%2C+Guosheng&rft.date=2018-03-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=1&rft.issue=1&rft.spage=5&rft.epage=12&rft_id=info:doi/10.1002%2Feem2.12001&rft.externalDBID=10.1002%252Feem2.12001&rft.externalDocID=EEM212001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon |