Recent Advances in Effective Reduction of Graphene Oxide for Highly Improved Performance Toward Electrochemical Energy Storage

The demand for high‐quality graphene from various applications promotes the exploration of various synthesis methods such as chemical vapor deposition, chemical reduction of graphite oxide, liquid‐phase exfoliation, and electrochemical exfoliation. Among those, chemical treatments for the production...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 1; no. 1; pp. 5 - 12
Main Authors Zhang, Peng, Li, Zhi, Zhang, Shijie, Shao, Guosheng
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The demand for high‐quality graphene from various applications promotes the exploration of various synthesis methods such as chemical vapor deposition, chemical reduction of graphite oxide, liquid‐phase exfoliation, and electrochemical exfoliation. Among those, chemical treatments for the production of reduced graphene oxide (RGO) dictate the current technologies for mass production of graphene powder. However, such conventional chemical reduction methods are rather ineffective in removing oxygen‐containing functional groups from graphene oxide (GO), with resultant RGO products containing high level of structural defects. This leads to significantly damaged crystallinity and drastically lowered electric and thermal conductivity, which is probably the main bottleneck to limit the performance of RGO‐based materials. Great efforts such as thermal reduction, microwave‐irradiation reduction, or other novel reduction methods (e.g., photoreduction) have been developed to repair defects in RGO materials. This perspective review is to outline the latest advances toward effective reduction of GO for significantly enhanced properties. We demonstrate that effectively repaired RGO with large specific surface area and highly improved crystallinity is key to highly improved electric and thermal conductivity, thus leading to significantly enhanced properties essential for chemical energy storage devices.
AbstractList The demand for high‐quality graphene from various applications promotes the exploration of various synthesis methods such as chemical vapor deposition, chemical reduction of graphite oxide, liquid‐phase exfoliation, and electrochemical exfoliation. Among those, chemical treatments for the production of reduced graphene oxide ( RGO ) dictate the current technologies for mass production of graphene powder. However, such conventional chemical reduction methods are rather ineffective in removing oxygen‐containing functional groups from graphene oxide ( GO ), with resultant RGO products containing high level of structural defects. This leads to significantly damaged crystallinity and drastically lowered electric and thermal conductivity, which is probably the main bottleneck to limit the performance of RGO ‐based materials. Great efforts such as thermal reduction, microwave‐irradiation reduction, or other novel reduction methods (e.g., photoreduction) have been developed to repair defects in RGO materials. This perspective review is to outline the latest advances toward effective reduction of GO for significantly enhanced properties. We demonstrate that effectively repaired RGO with large specific surface area and highly improved crystallinity is key to highly improved electric and thermal conductivity, thus leading to significantly enhanced properties essential for chemical energy storage devices.
The demand for high‐quality graphene from various applications promotes the exploration of various synthesis methods such as chemical vapor deposition, chemical reduction of graphite oxide, liquid‐phase exfoliation, and electrochemical exfoliation. Among those, chemical treatments for the production of reduced graphene oxide (RGO) dictate the current technologies for mass production of graphene powder. However, such conventional chemical reduction methods are rather ineffective in removing oxygen‐containing functional groups from graphene oxide (GO), with resultant RGO products containing high level of structural defects. This leads to significantly damaged crystallinity and drastically lowered electric and thermal conductivity, which is probably the main bottleneck to limit the performance of RGO‐based materials. Great efforts such as thermal reduction, microwave‐irradiation reduction, or other novel reduction methods (e.g., photoreduction) have been developed to repair defects in RGO materials. This perspective review is to outline the latest advances toward effective reduction of GO for significantly enhanced properties. We demonstrate that effectively repaired RGO with large specific surface area and highly improved crystallinity is key to highly improved electric and thermal conductivity, thus leading to significantly enhanced properties essential for chemical energy storage devices.
Author Zhang, Shijie
Li, Zhi
Zhang, Peng
Shao, Guosheng
Author_xml – sequence: 1
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  email: zhangp@zzu.edu.cn
  organization: Zhengzhou Materials Genome Institute, Zhongyuanzhigu
– sequence: 2
  givenname: Zhi
  surname: Li
  fullname: Li, Zhi
  organization: Zhengzhou Materials Genome Institute, Zhongyuanzhigu
– sequence: 3
  givenname: Shijie
  surname: Zhang
  fullname: Zhang, Shijie
  organization: Zhengzhou Materials Genome Institute, Zhongyuanzhigu
– sequence: 4
  givenname: Guosheng
  surname: Shao
  fullname: Shao, Guosheng
  email: gsshao@zzu.edu.cn
  organization: Zhengzhou Materials Genome Institute, Zhongyuanzhigu
BookMark eNp9kM1KAzEURoNUsFY3PkHAnVBNMulMs5Qy_kBFqXU9ZJKbNmUmqZlpdTY-u6l1ISKucgnn--7lHKOe8w4QOqPkkhLCrgBqdkkZIfQA9dkoGw1JMkp7P-YjdNo0KxJhQhNORR99zECBa_G13kqnoMHW4dwYUK3dAp6B3sTJO-wNvg1yvQQH-PHdasDGB3xnF8uqw_f1OvgtaPwEIX7XuyY8928yaJxXsSt4tYTaKlnh3EFYdPi59UEu4AQdGlk1cPr9DtDLTT6f3A2nj7f3k-vpUHHO6FAxJaTMJNOKldykImNCG8UZo2OR6UwDJdqINBkTPi55JlSZci1LUvLU8JFIBuh83xsPfd1A0xYrvwkuriyiHCHGLE1ZpC72lAq-aQKYYh1sLUNXUFLsFBc7xcWX4giTX7CyrdzJaoO01d8Ruo-82Qq6f8qLPH9g-8wnsIiQWA
CitedBy_id crossref_primary_10_1039_D1TC03217H
crossref_primary_10_1016_j_fuel_2021_122724
crossref_primary_10_1016_j_surfin_2024_105388
crossref_primary_10_1002_smll_201905585
crossref_primary_10_1016_j_jtice_2021_03_019
crossref_primary_10_1002_eem2_12060
crossref_primary_10_1039_D1TA00302J
crossref_primary_10_1002_inf2_12214
crossref_primary_10_1016_j_jechem_2024_08_019
crossref_primary_10_1093_ce_zkae068
crossref_primary_10_3390_ijms23020988
crossref_primary_10_3390_ma15134705
crossref_primary_10_1002_inf2_12294
crossref_primary_10_1007_s11051_018_4436_7
crossref_primary_10_1007_s12274_021_3319_x
crossref_primary_10_1016_j_jechem_2020_01_033
crossref_primary_10_1002_anie_201913461
crossref_primary_10_1016_j_polymdegradstab_2022_110179
crossref_primary_10_1021_acs_analchem_1c02581
crossref_primary_10_1016_j_est_2022_105988
crossref_primary_10_1007_s10854_020_03738_4
crossref_primary_10_1002_smll_202007242
crossref_primary_10_1002_eem2_12451
crossref_primary_10_1002_celc_202200945
crossref_primary_10_1002_smll_202405644
crossref_primary_10_1016_j_ceramint_2021_10_138
crossref_primary_10_1016_j_carbon_2020_05_015
crossref_primary_10_1016_S1872_2067_21_63898_6
crossref_primary_10_1016_j_optmat_2024_115686
crossref_primary_10_1016_j_carbon_2019_04_025
crossref_primary_10_1016_j_diamond_2022_109066
crossref_primary_10_3390_nano12132278
crossref_primary_10_3390_nano12132310
crossref_primary_10_1002_advs_202103879
crossref_primary_10_1021_acs_iecr_1c03182
crossref_primary_10_1039_D0BM01286F
crossref_primary_10_3390_nano11020382
crossref_primary_10_1016_j_mtcomm_2023_106577
crossref_primary_10_1021_acsanm_8b02346
crossref_primary_10_1016_j_flatc_2022_100437
crossref_primary_10_1007_s11664_024_11589_6
crossref_primary_10_1016_j_electacta_2024_145353
crossref_primary_10_1016_j_ijpharm_2020_119226
crossref_primary_10_3390_ma14154108
crossref_primary_10_1016_j_jcis_2023_01_019
crossref_primary_10_1016_j_microc_2023_108595
crossref_primary_10_1007_s10854_021_06979_z
crossref_primary_10_1039_D0CC05310D
crossref_primary_10_3390_polym14245437
crossref_primary_10_1002_eem2_12105
crossref_primary_10_1016_S1872_2067_22_64104_4
crossref_primary_10_1016_j_jelechem_2022_116438
crossref_primary_10_1016_j_jelechem_2021_115722
crossref_primary_10_1016_j_jechem_2020_10_033
crossref_primary_10_1016_j_cclet_2020_08_032
crossref_primary_10_1016_j_compscitech_2018_07_045
crossref_primary_10_1007_s11664_022_09702_8
crossref_primary_10_1021_acs_iecr_4c04367
crossref_primary_10_3390_nano10020239
crossref_primary_10_1016_j_materresbull_2020_111127
crossref_primary_10_1002_adfm_202211640
crossref_primary_10_1016_j_est_2023_110336
crossref_primary_10_1016_j_matchemphys_2020_123666
crossref_primary_10_3390_mi13010119
crossref_primary_10_1016_j_diamond_2022_109437
crossref_primary_10_1021_acsami_4c07894
crossref_primary_10_1002_pssb_202100304
crossref_primary_10_1002_ente_202100265
crossref_primary_10_3390_bios13030349
crossref_primary_10_1016_j_compositesb_2022_110150
crossref_primary_10_1021_acs_jpclett_2c00247
crossref_primary_10_1002_elan_202200548
crossref_primary_10_1002_eem2_12130
crossref_primary_10_1002_eem2_12373
crossref_primary_10_1039_D0NA00561D
crossref_primary_10_1142_S0217979225501607
crossref_primary_10_1002_adfm_201808994
crossref_primary_10_1080_1536383X_2019_1686625
crossref_primary_10_3390_batteries8100191
crossref_primary_10_1016_j_jelechem_2018_11_053
crossref_primary_10_1021_acs_langmuir_4c01966
crossref_primary_10_1002_adem_202301920
crossref_primary_10_1016_j_cej_2022_135679
crossref_primary_10_1007_s10904_024_03154_9
crossref_primary_10_1016_j_apsusc_2024_160230
crossref_primary_10_1093_rb_rbab032
crossref_primary_10_1016_j_ensm_2020_01_029
crossref_primary_10_1002_ange_201913461
crossref_primary_10_1002_eem2_12007
crossref_primary_10_1016_j_ensm_2021_06_020
crossref_primary_10_1016_j_nanoms_2024_01_006
crossref_primary_10_1039_C8EN00468D
crossref_primary_10_1016_j_mseb_2024_117947
crossref_primary_10_1021_acs_energyfuels_4c02924
crossref_primary_10_3390_ma16247658
crossref_primary_10_20964_2021_01_32
crossref_primary_10_1007_s40820_024_01410_8
crossref_primary_10_1039_D0PY00471E
crossref_primary_10_1016_j_cej_2020_127018
crossref_primary_10_1016_j_ensm_2024_103191
crossref_primary_10_1002_smll_202100065
crossref_primary_10_1039_C8NR04109A
crossref_primary_10_1002_adfm_202100801
crossref_primary_10_1002_aenm_202203805
crossref_primary_10_1016_j_pmatsci_2022_101041
crossref_primary_10_3390_nano14110980
crossref_primary_10_1002_mame_202000203
crossref_primary_10_1002_eem2_12160
crossref_primary_10_1002_app_51567
crossref_primary_10_1007_s10800_023_02036_1
crossref_primary_10_1016_j_envpol_2022_118836
crossref_primary_10_1149_2_0941914jes
crossref_primary_10_1016_j_apsusc_2021_152325
crossref_primary_10_1016_j_est_2023_109525
crossref_primary_10_1016_j_jpowsour_2020_228040
crossref_primary_10_1016_j_apsusc_2019_06_108
crossref_primary_10_1016_j_carbon_2023_118380
crossref_primary_10_1021_acssuschemeng_2c02326
crossref_primary_10_1039_C9RA05529K
crossref_primary_10_1002_eem2_12275
crossref_primary_10_1002_eem2_12431
crossref_primary_10_1039_D1BM01937F
crossref_primary_10_1002_eem2_12399
crossref_primary_10_1016_j_tsf_2019_137422
crossref_primary_10_3390_inorganics10090142
crossref_primary_10_1002_eom2_12321
crossref_primary_10_1002_pts_2795
crossref_primary_10_1016_j_rser_2022_112836
crossref_primary_10_1063_5_0148376
crossref_primary_10_1016_j_cej_2021_131992
crossref_primary_10_1002_cey2_625
crossref_primary_10_1007_s10904_024_03385_w
Cites_doi 10.1021/nn900020u
10.1016/j.mattod.2015.06.009
10.1126/science.aah3398
10.1021/acsami.5b06590
10.1039/c0jm00168f
10.1021/acsami.5b02978
10.1021/jz1011143
10.1038/nature07719
10.1038/s41467-017-01823-7
10.1021/ja106162f
10.1016/j.ssi.2015.10.001
10.1039/C3RA43612H
10.1021/acsami.5b04652
10.1039/C0JM01007C
10.1021/nl0731872
10.1021/nn200493r
10.1039/C3CS60164A
10.1016/j.carbon.2011.11.010
10.1038/nnano.2009.279
10.1007/s12274-016-1171-1
10.1002/adma.201605958
10.1002/aenm.201600904
10.1021/nl9028736
10.1021/jp103704y
10.1126/science.1200770
10.1021/am4044147
10.1021/jp509783h
10.1016/j.susc.2008.08.037
10.1126/science.1102896
10.1016/0039-6028(92)90183-7
10.1039/c3cc46368k
10.1016/j.carbon.2011.09.042
10.1021/acsami.5b08274
10.1126/science.1246501
10.1021/ja01539a017
10.1021/cm0630800
10.1002/smtd.201700099
10.1021/nn700375n
10.1039/c2cc33979j
10.1016/j.nantod.2009.12.009
10.1021/nn303145j
10.1021/acs.nanolett.6b00743
10.1016/j.ceramint.2015.11.026
10.1002/adma.201500472
10.1016/j.cej.2013.07.123
10.1021/acsami.5b04336
10.1002/aenm.201700051
10.1016/j.carbon.2015.06.030
10.1126/science.1216744
10.1039/c0cs00079e
10.1021/nl072838r
10.1039/C5CS00021A
10.1021/jp060936f
10.1039/c1jm10768b
10.1021/acsami.7b07024
10.1016/j.carbon.2009.11.037
10.1002/adma.201301870
10.1038/nature11458
10.1002/anie.201003024
10.1007/s12274-011-0126-9
10.1021/ja907098f
10.1039/C5RA19268D
10.1038/ncomms4410
10.1166/mex.2011.1024
10.1039/C1CS15270J
10.1126/sciadv.aao7233
10.1007/s12274-013-0298-6
10.1016/j.elecom.2012.01.023
10.1039/c1cc13464g
10.1002/adma.201001068
10.1038/nnano.2008.215
10.1039/c1jm00049g
10.1038/nnano.2009.58
10.1016/j.carbon.2017.10.071
10.1039/C4CS00455H
10.1088/0957-4484/20/43/434007
10.1021/nn1014215
10.1021/ja5017156
10.1016/j.carbon.2015.08.067
10.1002/smll.201303202
10.1016/j.carbon.2011.12.005
10.1039/b906253j
10.1002/ange.201708714
10.1002/anie.201205354
10.1002/smll.201002009
10.1016/j.ceramint.2015.10.085
10.1002/macp.201100451
10.1021/acsami.7b09891
10.1002/adma.201502682
10.1039/c2jm34718k
10.1039/C6RA07626B
10.1016/j.ssc.2008.02.024
10.1016/j.jpowsour.2016.03.025
10.1038/nnano.2011.110
10.1002/adma.201202321
10.1021/cr5006217
10.1038/nphoton.2010.186
10.1016/j.jpowsour.2013.07.002
10.1021/nn1006368
10.1016/j.carbon.2010.05.031
10.1021/nl5020475
10.1021/nn505335u
10.1016/j.synthmet.2015.07.014
10.1126/science.1157996
10.1016/j.ijhydene.2013.12.144
10.1021/acs.nanolett.5b00112
10.1002/cplu.201200206
10.1039/C5CS00147A
10.1021/nn3052023
10.1021/ja902348k
10.1126/science.1125925
ContentType Journal Article
Copyright 2018 Zhengzhou University
Copyright_xml – notice: 2018 Zhengzhou University
DBID AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
DOI 10.1002/eem2.12001
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage 12
ExternalDocumentID 10_1002_eem2_12001
EEM212001
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51502269; 51001091; 111174256; 91233101
– fundername: Program for Science & Technology Innovation Talents in Universities of Henan Province
  funderid: 18HASTIT009
– fundername: Outstanding Young Talent Research Fund of Zhengzhou University
  funderid: 1521320023
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
ID FETCH-LOGICAL-c4421-c2c9aa7a2dc2b4f69729dfc4221897d7de10df9638048b479cb64dab0b46f4593
IEDL.DBID 24P
ISSN 2575-0356
IngestDate Mon Jun 30 12:01:02 EDT 2025
Tue Jul 01 01:03:04 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Wed Jan 22 16:27:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4421-c2c9aa7a2dc2b4f69729dfc4221897d7de10df9638048b479cb64dab0b46f4593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12001
PQID 2579982662
PQPubID 5251211
PageCount 8
ParticipantIDs proquest_journals_2579982662
crossref_primary_10_1002_eem2_12001
crossref_citationtrail_10_1002_eem2_12001
wiley_primary_10_1002_eem2_12001_EEM212001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2017; 7
2017; 8
2017; 1
2013; 25
2017; 3
2015; 347
2018; 126
2008; 8
2012; 18
2008; 3
2008; 146
2013; 7
2008; 2
2013; 5
2013; 6
2017; 9
2014; 136
2010; 22
2010; 20
2014; 5
2013; 14
2014; 4
2010; 1
2010; 114
2015; 210
2015; 44
2012; 490
2013; 52
2016; 42
2013; 232
2016; 353
2014; 14
2011; 21
2016; 315
1958; 80
8
2012; 213
2012; 24
2009; 603
2012; 335
2009; 19
2010; 5
2010; 4
2012; 22
2014; 10
2014; 245
2017; 129
2014; 118
2015; 283
2007; 19
2015; 15
2015; 5
2015; 18
2013; 49
2009; 20
2011; 1
1992; 264
2015; 95
2015; 94
2011; 40
2006; 110
2017; 29
2009; 131
2008; 321
2011; 4
2004; 306
2016; 16
2011; 6
2015; 7
2011; 5
2011; 332
2011; 7
2009; 457
2006; 312
2014; 43
2012; 50
2016; 6
2010; 49
2015; 27
2010; 48
2015; 115
2013; 78
2010; 132
2009; 4
2014; 39
2011; 47
2012; 48
2012; 6
2009; 3
2016; 9
2012; 41
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 19
  start-page: 4396
  year: 2007
– volume: 18
  start-page: 480
  year: 2015
– volume: 321
  start-page: 385
  year: 2008
– volume: 14
  start-page: 4821
  year: 2014
– volume: 50
  start-page: 3267
  year: 2012
– volume: 7
  start-page: 1700051
  year: 2017
– volume: 21
  start-page: 680
  year: 2011
– volume: 10
  start-page: 3480
  year: 2014
– volume: 5
  start-page: 3410
  year: 2014
– volume: 19
  start-page: 3832
  year: 2009
– volume: 603
  start-page: 1841
  year: 2009
– volume: 1
  start-page: 1700099
  year: 2017
– volume: 3
  start-page: eaao7233
  year: 2017
– volume: 24
  start-page: 4924
  year: 2012
– volume: 5
  start-page: 92940
  year: 2015
– volume: 5
  start-page: 12295
  year: 2013
– volume: 4
  start-page: 611
  year: 2010
– volume: 7
  start-page: 1437
  year: 2013
– volume: 25
  start-page: 4932
  year: 2013
– volume: 118
  start-page: 28502
  year: 2014
– volume: 50
  start-page: 835
  year: 2012
– volume: 95
  start-page: 843
  year: 2015
– volume: 315
  start-page: 9
  year: 2016
– volume: 22
  start-page: 20170
  year: 2012
– volume: 6
  start-page: 216
  year: 2013
– volume: 29
  start-page: 1605958
  year: 2017
– volume: 131
  start-page: 11027
  year: 2009
– volume: 44
  start-page: 5638
  year: 2015
– volume: 8
  start-page: 902
  year: 2008
– volume: 114
  start-page: 12800
  year: 2010
– volume: 347
  start-page: 1246501
  year: 2015
– volume: 40
  start-page: 2644
  year: 2011
– volume: 49
  start-page: 10676
  year: 2013
– volume: 27
  start-page: 5943
  year: 2015
– volume: 7
  start-page: 24895
  year: 2015
– volume: 115
  start-page: 5159
  year: 2015
– volume: 5
  start-page: 15
  year: 2010
– volume: 126
  start-page: 507
  year: 2018
– volume: 5
  start-page: 2475
  year: 2011
– volume: 6
  start-page: 7867
  year: 2012
– volume: 48
  start-page: 1146
  year: 2010
– volume: 3
  start-page: 563
  year: 2008
– volume: 18
  start-page: 12
  year: 2012
– volume: 41
  start-page: 2283
  year: 2012
– volume: 14
  start-page: 355
  year: 2013
– volume: 15
  start-page: 1796
  year: 2015
– volume: 335
  start-page: 1326
  year: 2012
– volume: 7
  start-page: 15042
  year: 2015
– volume: 48
  start-page: 8428
  year: 2012
– volume: 4
  start-page: 217
  year: 2009
– volume: 4
  start-page: 4806
  year: 2010
– volume: 232
  start-page: 346
  year: 2013
– volume: 9
  start-page: 34456
  year: 2017
– volume: 21
  start-page: 5430
  year: 2011
– volume: 78
  start-page: 227
  year: 2013
– volume: 43
  start-page: 58
  year: 2014
– volume: 490
  start-page: 192
  year: 2012
– volume: 16
  start-page: 3616
  year: 2016
– volume: 44
  start-page: 6230
  year: 2015
– volume: 4
  start-page: 612
  year: 2009
– volume: 8
  start-page: 323
  year: 2008
– volume: 306
  start-page: 666
  year: 2004
– volume: 7
  start-page: 12625
  year: 2015
– volume: 210
  start-page: 123
  year: 2015
– volume: 132
  start-page: 12556
  year: 2010
– volume: 20
  start-page: 4781
  year: 2010
– volume: 7
  start-page: 20957
  year: 2015
– volume: 5
  start-page: 3333
  year: 2011
– volume: 8
  start-page: 11013
– volume: 44
  start-page: 5861
  year: 2015
– volume: 22
  start-page: 3906
  year: 2010
– volume: 283
  start-page: 145
  year: 2015
– volume: 7
  start-page: 1876
  year: 2011
– volume: 312
  start-page: 1191
  year: 2006
– volume: 3
  start-page: 411
  year: 2009
– volume: 6
  start-page: 1600904
  year: 2016
– volume: 110
  start-page: 8535
  year: 2006
– volume: 39
  start-page: 3799
  year: 2014
– volume: 27
  start-page: 4113
  year: 2015
– volume: 146
  start-page: 351
  year: 2008
– volume: 6
  start-page: 496
  year: 2011
– volume: 48
  start-page: 3382
  year: 2010
– volume: 20
  start-page: 434007
  year: 2009
– volume: 4
  start-page: 705
  year: 2011
– volume: 213
  start-page: 1146
  year: 2012
– volume: 457
  start-page: 706
  year: 2009
– volume: 6
  start-page: 64993
  year: 2016
– volume: 9
  start-page: 22628
  year: 2017
– volume: 264
  start-page: 261
  year: 1992
– volume: 7
  start-page: 18483
  year: 2015
– volume: 49
  start-page: 9336
  year: 2010
– volume: 353
  start-page: 1413
  year: 2016
– volume: 2
  start-page: 463
  year: 2008
– volume: 50
  start-page: 3210
  year: 2012
– volume: 4
  start-page: 587
  year: 2014
– volume: 131
  start-page: 15939
  year: 2009
– volume: 245
  start-page: 529
  year: 2014
– volume: 47
  start-page: 9438
  year: 2011
– volume: 1
  start-page: 252
  year: 2011
– volume: 94
  start-page: 224
  year: 2015
– volume: 42
  start-page: 3007
  year: 2016
– volume: 21
  start-page: 7376
  year: 2011
– volume: 52
  start-page: 392
  year: 2013
– volume: 9
  start-page: 2823
  year: 2016
– volume: 10
  start-page: 92
  year: 2010
– volume: 80
  start-page: 1339
  year: 1958
– volume: 42
  start-page: 3618
  year: 2016
– volume: 1
  start-page: 2804
  year: 2010
– volume: 129
  start-page: 15883
  year: 2017
– volume: 136
  start-page: 6083
  year: 2014
– volume: 332
  start-page: 1537
  year: 2011
– volume: 8
  start-page: 1561
  year: 2017
– ident: e_1_2_8_64_1
  doi: 10.1021/nn900020u
– ident: e_1_2_8_12_1
  doi: 10.1016/j.mattod.2015.06.009
– ident: e_1_2_8_52_1
  doi: 10.1126/science.aah3398
– ident: e_1_2_8_81_1
  doi: 10.1021/acsami.5b06590
– ident: e_1_2_8_45_1
  doi: 10.1039/c0jm00168f
– ident: e_1_2_8_84_1
  doi: 10.1021/acsami.5b02978
– ident: e_1_2_8_111_1
  doi: 10.1021/jz1011143
– ident: e_1_2_8_24_1
  doi: 10.1038/nature07719
– ident: e_1_2_8_22_1
  doi: 10.1038/s41467-017-01823-7
– ident: e_1_2_8_77_1
  doi: 10.1021/ja106162f
– ident: e_1_2_8_101_1
  doi: 10.1016/j.ssi.2015.10.001
– ident: e_1_2_8_93_1
  doi: 10.1039/C3RA43612H
– ident: e_1_2_8_82_1
  doi: 10.1021/acsami.5b04652
– ident: e_1_2_8_100_1
  doi: 10.1039/C0JM01007C
– ident: e_1_2_8_7_1
  doi: 10.1021/nl0731872
– ident: e_1_2_8_102_1
  doi: 10.1021/nn200493r
– ident: e_1_2_8_94_1
  doi: 10.1039/C3CS60164A
– ident: e_1_2_8_43_1
  doi: 10.1016/j.carbon.2011.11.010
– ident: e_1_2_8_34_1
  doi: 10.1038/nnano.2009.279
– ident: e_1_2_8_19_1
  doi: 10.1007/s12274-016-1171-1
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.201605958
– ident: e_1_2_8_76_1
  doi: 10.1002/aenm.201600904
– ident: e_1_2_8_18_1
  doi: 10.1021/nl9028736
– ident: e_1_2_8_39_1
  doi: 10.1021/jp103704y
– ident: e_1_2_8_57_1
  doi: 10.1126/science.1200770
– ident: e_1_2_8_71_1
  doi: 10.1021/am4044147
– ident: e_1_2_8_80_1
  doi: 10.1021/jp509783h
– ident: e_1_2_8_29_1
  doi: 10.1016/j.susc.2008.08.037
– ident: e_1_2_8_1_1
  doi: 10.1126/science.1102896
– ident: e_1_2_8_28_1
  doi: 10.1016/0039-6028(92)90183-7
– ident: e_1_2_8_44_1
  doi: 10.1039/c3cc46368k
– ident: e_1_2_8_62_1
  doi: 10.1016/j.carbon.2011.09.042
– ident: e_1_2_8_90_1
  doi: 10.1021/acsami.5b08274
– ident: e_1_2_8_20_1
  doi: 10.1126/science.1246501
– ident: e_1_2_8_38_1
  doi: 10.1021/ja01539a017
– ident: e_1_2_8_69_1
  doi: 10.1021/cm0630800
– ident: e_1_2_8_21_1
  doi: 10.1002/smtd.201700099
– ident: e_1_2_8_60_1
  doi: 10.1021/nn700375n
– ident: e_1_2_8_91_1
  doi: 10.1039/c2cc33979j
– ident: e_1_2_8_106_1
  doi: 10.1016/j.nantod.2009.12.009
– ident: e_1_2_8_58_1
  doi: 10.1021/nn303145j
– ident: e_1_2_8_55_1
  doi: 10.1021/acs.nanolett.6b00743
– ident: e_1_2_8_78_1
  doi: 10.1016/j.ceramint.2015.11.026
– ident: e_1_2_8_92_1
  doi: 10.1002/adma.201500472
– ident: e_1_2_8_95_1
  doi: 10.1016/j.cej.2013.07.123
– ident: e_1_2_8_103_1
  doi: 10.1021/acsami.5b04336
– ident: e_1_2_8_47_1
  doi: 10.1002/aenm.201700051
– ident: e_1_2_8_53_1
  doi: 10.1016/j.carbon.2015.06.030
– ident: e_1_2_8_59_1
  doi: 10.1126/science.1216744
– ident: e_1_2_8_14_1
  doi: 10.1039/c0cs00079e
– ident: e_1_2_8_61_1
  doi: 10.1021/nl072838r
– ident: e_1_2_8_9_1
  doi: 10.1126/science.1246501
– ident: e_1_2_8_17_1
  doi: 10.1039/C5CS00021A
– ident: e_1_2_8_70_1
  doi: 10.1021/jp060936f
– ident: e_1_2_8_40_1
  doi: 10.1039/c1jm10768b
– ident: e_1_2_8_50_1
  doi: 10.1021/acsami.7b07024
– ident: e_1_2_8_99_1
  doi: 10.1016/j.carbon.2009.11.037
– ident: e_1_2_8_83_1
  doi: 10.1002/adma.201301870
– ident: e_1_2_8_4_1
  doi: 10.1038/nature11458
– ident: e_1_2_8_2_1
  doi: 10.1002/anie.201003024
– ident: e_1_2_8_98_1
  doi: 10.1007/s12274-011-0126-9
– ident: e_1_2_8_65_1
  doi: 10.1021/ja907098f
– ident: e_1_2_8_96_1
  doi: 10.1039/C5RA19268D
– ident: e_1_2_8_25_1
  doi: 10.1038/ncomms4410
– ident: e_1_2_8_109_1
  doi: 10.1166/mex.2011.1024
– ident: e_1_2_8_63_1
– ident: e_1_2_8_15_1
  doi: 10.1039/C1CS15270J
– ident: e_1_2_8_49_1
  doi: 10.1126/sciadv.aao7233
– ident: e_1_2_8_46_1
  doi: 10.1007/s12274-013-0298-6
– ident: e_1_2_8_86_1
  doi: 10.1016/j.elecom.2012.01.023
– ident: e_1_2_8_88_1
  doi: 10.1039/c1cc13464g
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201001068
– ident: e_1_2_8_30_1
  doi: 10.1038/nnano.2008.215
– ident: e_1_2_8_67_1
  doi: 10.1039/c1jm00049g
– ident: e_1_2_8_36_1
  doi: 10.1038/nnano.2009.58
– ident: e_1_2_8_31_1
  doi: 10.1016/j.carbon.2017.10.071
– ident: e_1_2_8_16_1
  doi: 10.1039/C4CS00455H
– ident: e_1_2_8_68_1
  doi: 10.1088/0957-4484/20/43/434007
– ident: e_1_2_8_113_1
  doi: 10.1021/nn1014215
– ident: e_1_2_8_33_1
  doi: 10.1021/ja5017156
– ident: e_1_2_8_73_1
  doi: 10.1016/j.carbon.2015.08.067
– ident: e_1_2_8_23_1
  doi: 10.1002/smll.201303202
– ident: e_1_2_8_51_1
  doi: 10.1016/j.carbon.2011.12.005
– ident: e_1_2_8_97_1
  doi: 10.1039/b906253j
– ident: e_1_2_8_56_1
  doi: 10.1002/ange.201708714
– ident: e_1_2_8_87_1
  doi: 10.1002/anie.201205354
– ident: e_1_2_8_3_1
  doi: 10.1002/smll.201002009
– ident: e_1_2_8_105_1
  doi: 10.1016/j.ceramint.2015.10.085
– ident: e_1_2_8_110_1
  doi: 10.1002/macp.201100451
– ident: e_1_2_8_32_1
  doi: 10.1021/acsami.7b09891
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.201502682
– ident: e_1_2_8_85_1
  doi: 10.1039/c2jm34718k
– ident: e_1_2_8_54_1
  doi: 10.1039/C6RA07626B
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ssc.2008.02.024
– ident: e_1_2_8_79_1
  doi: 10.1016/j.jpowsour.2016.03.025
– ident: e_1_2_8_107_1
  doi: 10.1038/nnano.2011.110
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.201202321
– ident: e_1_2_8_5_1
  doi: 10.1021/cr5006217
– ident: e_1_2_8_10_1
  doi: 10.1038/nphoton.2010.186
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jpowsour.2013.07.002
– ident: e_1_2_8_37_1
  doi: 10.1021/nn1006368
– ident: e_1_2_8_112_1
  doi: 10.1016/j.carbon.2010.05.031
– ident: e_1_2_8_66_1
  doi: 10.1021/nl5020475
– ident: e_1_2_8_74_1
  doi: 10.1021/nn505335u
– ident: e_1_2_8_42_1
  doi: 10.1016/j.synthmet.2015.07.014
– ident: e_1_2_8_11_1
  doi: 10.1126/science.1157996
– ident: e_1_2_8_72_1
  doi: 10.1016/j.ijhydene.2013.12.144
– ident: e_1_2_8_89_1
  doi: 10.1021/acs.nanolett.5b00112
– ident: e_1_2_8_104_1
  doi: 10.1002/cplu.201200206
– ident: e_1_2_8_13_1
  doi: 10.1039/C5CS00147A
– ident: e_1_2_8_75_1
  doi: 10.1021/nn3052023
– ident: e_1_2_8_108_1
  doi: 10.1021/ja902348k
– ident: e_1_2_8_27_1
  doi: 10.1126/science.1125925
SSID ssj0002013419
Score 2.4466228
SecondaryResourceType review_article
Snippet The demand for high‐quality graphene from various applications promotes the exploration of various synthesis methods such as chemical vapor deposition,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5
SubjectTerms Chemical energy
chemical energy storage
Chemical reduction
Chemical synthesis
Chemical treatment
Chemical vapor deposition
Crystal defects
Crystal structure
Crystallinity
defects in graphene
Electrochemistry
Energy storage
Exfoliation
Functional groups
Graphene
graphene oxide
Heat conductivity
Heat transfer
Irradiation
Mass production
Photoreduction
reduction of graphene oxide
Thermal conductivity
Thermal reduction
Title Recent Advances in Effective Reduction of Graphene Oxide for Highly Improved Performance Toward Electrochemical Energy Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12001
https://www.proquest.com/docview/2579982662
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwNBDB5qe_EiiorVWgJ6UVi7nU73AV6KbBVBLdpK8bLMEwq1FVtBL_52MzPbVkEEb3vI7iGZJN9kky-EHIdUcploExhbY2JCxgFPIluJa1EVChkq6dg-b6OrAbsetoclcr6YhfH8EMuCm_UMF6-tg3Mxa6xIQ7V-pmdN2xK0Rip2ttY29FHWW1ZYMLVZsjK7XQ4xSRC22tGSn5Q2Vq__zEgrmPkdrLps090kGwVMhI636xYp6ck2-USMhzkCOv6__QxGE_Dswxiy4N6SsFo1w9TApeWhxjAGd-8jpQGRKdiOjvEH-CqCVtBbjQxA3zXPQuZ34siCRAAyNxgID3gvx7CzQwbdrH9xFRT7EwLJGG0GksqU85hTJalgJkoRSCsjGcW0nsYqVroZKmM9EN1YsDiVImKKi1CwyLB22tol5cl0ovcIxLFOTcIj0eKMcY2wPEXjJyo1eN1RklfJyUKHuSzIxe2Oi3HuaZFpbvWdO31XydFS9sVTavwqVVuYIi_capajIfF6iJiCVsmpM88fX8iz7Ia6p_3_CB-QdTw5ie8zq5Hy_PVNHyLwmIu6O191Uuk8Dp4GXzOM1Vg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07SwNBEF58FNqIomI06oA2CqeXzeYeZZDT-BZNRGyOfUIgJmIiaONvd-b2TBREsLti2WKe387NfMPYbsi11Il1gaMak1A6DmQSUSWuzk2odGh0wfZ5FbU64uyh8VD25tAsjOeHGBfcyDOKeE0OTgXpwwlrqLVP_KBGPUHTbJZgDRr1bPO-89gZF1kwuxFfGS2YQ1gShPVGNKYo5YeTC34mpQnS_I5Xi4RzvMgWSqQITa_aJTZl-8vsA2Eepglo-l_3Q-j2wRMQY9SCW-JhJUnDwMEJUVFjJIPrt66xgOAUqKmj9w6-kGAN3EymBqBd9M9C5tfi6JJHALJiNhDu8GmOkWeFdY6z9lErKFcoBFoIXgs016mUseRGcyVclCKWNk4Ljpk9jU1sbC00jpwQPVmJONUqEkaqUInIiUZaX2Uz_UHfrjGIY5u6REaqLoWQFpF5ivpPTOrwxWO0rLC9LxnmuuQXpzUXvdwzI_Oc5J0X8q6wnfHZZ8-q8eup6pcq8tKzhjkqEl-ICCt4he0X6vnjhjzLLnnxtf6fw9tsrtW-vMgvTq_ON9g8WlHi286qbGb08mo3EYeM1FZpbZ8zztjV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwNBDA5aQbyIomJ9BvSisLqdTvcBXopufT9QK-JlmScUtC0-QC_-djM721ZBBG97CHNIJsmXbOYLwGbIlFCJsYF1PSYuVRyIJHKduDrToVShVgXb50V01OYn9437MdgbvIXx_BDDhpvzjCJeOwfva7s7Ig015ont1NxI0DhMNCgthRWYaN61H9rDHgslN0dX5vbLESoJwnojGjKUst3RAT9z0ghofoerRb5pzcB0CRSx6S07C2OmOwefhPIoS2DT_7l_wU4XPf8wBS28djSsTtHYs3jomKgpkOHle0cbJGyKbqbj8QN9H8FovBo9GsDbYnwWM78VR5U0ApgVTwPxhipzCjzz0G5lt_tHQblBIVCcs1qgmEqFiAXTikluo5SgtLaKM0rsaaxjbWqhts4HyZElj1MlI66FDCWPLG-k9QWodHtdswgYxya1iYhkXXAuDAHzlMyf6NRSwaOVqMLWQIe5KunF3ZaLx9wTI7Pc6Tsv9F2FjaFs35Nq_Cq1MjBFXjrWS06GpAKRUAWrwnZhnj9OyLPsnBVfS_8RXofJq4NWfnZ8cboMU3SJEj90tgKV1-c3s0oo5FWulZftC-aO1_U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Effective+Reduction+of+Graphene+Oxide+for+Highly+Improved+Performance+Toward+Electrochemical+Energy+Storage&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Zhang%2C+Peng&rft.au=Li%2C+Zhi&rft.au=Zhang%2C+Shijie&rft.au=Shao%2C+Guosheng&rft.date=2018-03-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=1&rft.issue=1&rft.spage=5&rft.epage=12&rft_id=info:doi/10.1002%2Feem2.12001&rft.externalDBID=10.1002%252Feem2.12001&rft.externalDocID=EEM212001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon