Automated classification system for drowsiness detection using convolutional neural network and electroencephalogram
Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping at the wheel. A real‐time alert generation when the driver might possibly go into sleepy state is essential to safeguard any unwarranted incidents. We...
Saved in:
Published in | IET intelligent transport systems Vol. 15; no. 4; pp. 514 - 524 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping at the wheel. A real‐time alert generation when the driver might possibly go into sleepy state is essential to safeguard any unwarranted incidents. Wearable sensors to monitor vehicle movement and camera‐based systems to monitor driver behaviour are commonly used to detect driver drowsiness. Due to the fact that electroencephalogram (EEG) signals have the ability to monitor the mood of humans and are easily obtainable, many different EEG‐based drowsiness detection systems have been proposed to date. In this study, a novel deep learning architecture based on a convolutional neural network (CNN) is proposed for automated drowsiness detection using a single‐channel EEG signal. To improve the generalization performance of the proposed method, subject‐wise, cross‐subject‐wise, and combined‐subjects‐wise validations have been employed. The whole of the work is carried over pre‐recorded sleep state EEG data obtained from benchmarked dataset. The experimental results show a superior detection capability compared to the existing state–of–the–art drowsiness detection methods using single‐channel EEG signals. |
---|---|
AbstractList | Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping at the wheel. A real‐time alert generation when the driver might possibly go into sleepy state is essential to safeguard any unwarranted incidents. Wearable sensors to monitor vehicle movement and camera‐based systems to monitor driver behaviour are commonly used to detect driver drowsiness. Due to the fact that electroencephalogram (EEG) signals have the ability to monitor the mood of humans and are easily obtainable, many different EEG‐based drowsiness detection systems have been proposed to date. In this study, a novel deep learning architecture based on a convolutional neural network (CNN) is proposed for automated drowsiness detection using a single‐channel EEG signal. To improve the generalization performance of the proposed method, subject‐wise, cross‐subject‐wise, and combined‐subjects‐wise validations have been employed. The whole of the work is carried over pre‐recorded sleep state EEG data obtained from benchmarked dataset. The experimental results show a superior detection capability compared to the existing state–of–the–art drowsiness detection methods using single‐channel EEG signals. Abstract Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping at the wheel. A real‐time alert generation when the driver might possibly go into sleepy state is essential to safeguard any unwarranted incidents. Wearable sensors to monitor vehicle movement and camera‐based systems to monitor driver behaviour are commonly used to detect driver drowsiness. Due to the fact that electroencephalogram (EEG) signals have the ability to monitor the mood of humans and are easily obtainable, many different EEG‐based drowsiness detection systems have been proposed to date. In this study, a novel deep learning architecture based on a convolutional neural network (CNN) is proposed for automated drowsiness detection using a single‐channel EEG signal. To improve the generalization performance of the proposed method, subject‐wise, cross‐subject‐wise, and combined‐subjects‐wise validations have been employed. The whole of the work is carried over pre‐recorded sleep state EEG data obtained from benchmarked dataset. The experimental results show a superior detection capability compared to the existing state–of–the–art drowsiness detection methods using single‐channel EEG signals. |
Author | Balam, Venkata Phanikrishna Sameer, Venkata Udaya Chinara, Suchismitha |
Author_xml | – sequence: 1 givenname: Venkata Phanikrishna orcidid: 0000-0003-3384-7841 surname: Balam fullname: Balam, Venkata Phanikrishna email: 515cs1007@nitrkl.ac.in, b.phanikrishna@gmail.com organization: National Institute of Technology Rourkela – sequence: 2 givenname: Venkata Udaya surname: Sameer fullname: Sameer, Venkata Udaya organization: National Institute of Technology Rourkela – sequence: 3 givenname: Suchismitha surname: Chinara fullname: Chinara, Suchismitha organization: National Institute of Technology Rourkela |
BookMark | eNp9kEtrWzEQhUVJobbbTX-B1gWnel5Ly2D6MAQCIYHshCyNHCXylZHkGP_7Xl-XLELIaoYz53wMZ4ou-twDQt8puaRE6J-xFXZJGRH0E5rQhaRzLRfq4nXvHr6gaa1PhMiOMTpB7Wrf8tY28NglW2sM0dkWc4_rsTbY4pAL9iUfauyhVuyhgRvv-0HZYJf7l5z2J8Um3MO-jKMdcnnGtvcY0uAvGXoHu0eb8qbY7Vf0OdhU4dv_OUP3v3_dLf_Or2_-rJZX13MnBKNzxxaCcy2kcJ6LBTgm6LrznlK55kEJpZlWiipmiVVOQCBKc-mV1R3jQWo-Q6sz12f7ZHYlbm05mmyjGYVcNsaWFl0CI6SjQ0oKoEEMMMUlWxMOrCN6HYY_ZujHmeVKrrVAeOVRYk7dm1P3Zux-MJM3ZhfbWGsrNqb3I_QcOcQExw_gZnV3y86ZfwEWmpU |
CitedBy_id | crossref_primary_10_1177_15485129231158580 crossref_primary_10_1016_j_bspc_2024_107262 crossref_primary_10_1016_j_heliyon_2024_e39592 crossref_primary_10_3390_app12126007 crossref_primary_10_1007_s11042_024_20428_z crossref_primary_10_1007_s11042_023_15054_0 crossref_primary_10_3390_s21113786 crossref_primary_10_1109_TITS_2024_3442249 crossref_primary_10_1016_j_inffus_2021_11_006 crossref_primary_10_3390_info15010030 crossref_primary_10_1038_s41598_024_81271_8 crossref_primary_10_1155_2024_9898333 crossref_primary_10_1016_j_asej_2022_101895 crossref_primary_10_1007_s12046_024_02656_z crossref_primary_10_1007_s11042_024_19890_6 crossref_primary_10_1016_j_bspc_2024_106881 crossref_primary_10_1016_j_neucom_2023_126709 crossref_primary_10_3390_app13031512 crossref_primary_10_1142_S0129065723500090 crossref_primary_10_3390_s23218741 crossref_primary_10_1016_j_compag_2024_109265 crossref_primary_10_1007_s11571_022_09898_9 crossref_primary_10_1142_S0129065724500035 crossref_primary_10_1109_LSENS_2024_3363735 crossref_primary_10_1109_ACCESS_2023_3288008 |
Cites_doi | 10.3390/app7121239 10.1007/s00213-019-05424-8 10.1109/JSEN.2019.2917850 10.1016/j.eswa.2016.02.041 10.1016/j.medengphy.2013.07.011 10.1109/ACCESS.2019.2914373 10.1049/iet-its.2018.5290 10.3390/s150820873 10.1109/TBCAS.2010.2046415 10.1109/JSEN.2015.2473679 10.1016/j.bspc.2020.101865 10.1007/s11571-018-9496-y 10.1049/iet-its.2016.0183 10.1016/j.bbe.2015.08.001 10.1007/s13748-019-00203-0 10.1016/j.bspc.2019.101686 10.1109/ACCESS.2019.2951028 10.1046/j.1440-1819.2001.00810.x 10.1371/journal.pone.0216456 10.1016/j.eswa.2015.05.028 10.1016/j.ssci.2008.01.007 10.1007/978-3-319-93940-7_7 10.1016/j.bbe.2018.05.005 10.1007/s13534-016-0223-5 10.1016/j.neucli.2016.07.002 10.1109/ACCESS.2018.2811723 10.1016/j.jsr.2019.12.015 10.1016/j.inffus.2019.06.006 10.1049/iet-its.2017.0183 10.1016/j.apacoust.2020.107224 10.1016/j.cmpb.2019.105116 10.1049/iet-its.2012.0032 10.1016/j.micpro.2018.02.004 10.1109/SCEECS48394.2020.61 10.1016/j.patrec.2018.02.010 10.1016/j.aap.2018.01.012 10.1088/1741-2552/ab260c |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/itr2.12041 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-9578 |
EndPage | 524 |
ExternalDocumentID | oai_doaj_org_article_45c162354e1f48c48352b03e2609bf74 10_1049_itr2_12041 ITR212041 |
Genre | article |
GroupedDBID | .DC 0R~ 1OC 24P 29I 29J 4.4 5GY 6IK 8FE 8FG AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFKRA AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF L6V LAI M43 M7S MCNEO O9- OCL OK1 P2P P62 PTHSS RIE RIG RNS ROL RUI AAYXX CITATION IDLOA PHGZM PHGZT WIN |
ID | FETCH-LOGICAL-c4421-c274339454cd347ec241b6dd115b3f84892988182a0a8c4ef08935d8a9623f593 |
IEDL.DBID | 24P |
ISSN | 1751-956X |
IngestDate | Wed Aug 27 01:10:22 EDT 2025 Tue Jul 01 05:20:34 EDT 2025 Thu Apr 24 22:52:00 EDT 2025 Wed Jan 22 16:58:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4421-c274339454cd347ec241b6dd115b3f84892988182a0a8c4ef08935d8a9623f593 |
ORCID | 0000-0003-3384-7841 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12041 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_45c162354e1f48c48352b03e2609bf74 crossref_primary_10_1049_itr2_12041 crossref_citationtrail_10_1049_itr2_12041 wiley_primary_10_1049_itr2_12041_ITR212041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | IET intelligent transport systems |
PublicationYear | 2021 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2019; 7 2017; 7 2015; 15 2009; 47 2020; 184 2020; 163 2011 2010 2019; 14 2019; 16 2019; 19 2020; 58 2020; 56 2020; 10 2011; 4 2016; 36 2016; 55 2018; 6 2016; 6 2020; 5 2020; 53 2020; 74 2020; 72 2020 2015; 42 2017; 11 2018; 112 2017; 12 2020; 237 2019 2014; 36 2019; 119 2013 2018; 12 2001; 55 2014; 8 2010; 4 2018; 38 2016; 46 2018; 58 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 Khessiba S. (e_1_2_8_36_1) 2020; 10 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Parekh V. (e_1_2_8_2_1) 2020; 5 e_1_2_8_32_1 Punsawad Y. (e_1_2_8_33_1) 2011; 4 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – volume: 47 start-page: 115 issue: 1 year: 2009 end-page: 124 article-title: Can SVM be used for automatic EEG detection of drowsiness during car driving publication-title: Saf. Sci. – volume: 58 start-page: 13 issue: 2 year: 2018 end-page: 23 article-title: Single‐channel‐based automatic drowsiness detection architecture with a reduced number of EEG features publication-title: Microprocess. Microsyst. – volume: 58 start-page: 101865 issue: 2 year: 2020 end-page: 101874 article-title: A new method for muscular visual fatigue detection using electrooculogram publication-title: Biomed. Signal Process. Control – volume: 11 start-page: 255 issue: 5 year: 2017 end-page: 263 article-title: Real‐time drowsiness detection using wearable, lightweight brain sensing headbands publication-title: IET Intel. Transport Syst. – year: 2011 article-title: Deep sparse rectifier neural networks – volume: 7 start-page: 167172 issue: 1 year: 2019 end-page: 167186 article-title: Drowsiness, fatigue and poor sleep's causes and detection: a comprehensive study publication-title: IEEE Access – volume: 112 start-page: 127 issue: 1 year: 2018 end-page: 134 article-title: Effects of the road environment on the development of driver sleepiness in young male drivers publication-title: Accid. Anal. Prev. – volume: 74 start-page: 85 issue: 9 year: 2020 end-page: 112 article-title: Convolutional neural network: a review of models, methodologies and applications to object detection publication-title: Progress in Artificial Intelligence – volume: 15 start-page: 7169 issue: 12 year: 2015 end-page: 7180 article-title: Smartwatch‐based wearable EEG system for driver drowsiness detection publication-title: IEEE Sens. J. – volume: 6 start-page: 22908 issue: 2 year: 2018 end-page: 22919 article-title: A review on EEG‐based automatic sleepiness detection systems for driver publication-title: IEEE Access – volume: 184 start-page: 105116 issue: 2 year: 2020 end-page: 105129 article-title: Eeg sleep stages identification based on weighted undirected complex networks publication-title: Comput. Methods Programs Biomed. – volume: 10 start-page: 1 issue: 2 year: 2020 end-page: 17 article-title: Innovative deep learning models for EEG‐based vigilance detection publication-title: Neural Comput. Appl. – start-page: 157 year: 2019 end-page: 174 article-title: Detection and analysis of drowsiness in human beings using multimodal signals – volume: 38 start-page: 890 issue: 4 year: 2018 end-page: 902 article-title: Use of features from RR‐time series and EEG signals for automated classification of sleep stages in deep neural network framework publication-title: Biocybernetics and Biomedical Engineering – volume: 8 start-page: 43 issue: 1 year: 2014 end-page: 50 article-title: Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel publication-title: IET Intel. Transport Syst. – volume: 12 start-page: 1322 issue: 10 year: 2018 end-page: 1328 article-title: Ensemble classifier for driver's fatigue detection based on a single EEG channel publication-title: IET Intel. Transport Syst. – volume: 55 start-page: 559 issue: 1 year: 2016 end-page: 565 article-title: Automated drowsiness detection through wavelet packet analysis of a single EEG channel publication-title: Expert Syst. Appl. – volume: 7 start-page: 1239 issue: 12 year: 2017 end-page: 1242 article-title: Review and classification of emotion recognition based on EEG brain–computer interface system research: a systematic review publication-title: Appl. Sci. – volume: 15 start-page: 20873 issue: 8 year: 2015 end-page: 20893 article-title: A context‐aware EEG headset system for early detection of driver drowsiness publication-title: Sensors – volume: 4 start-page: 37 issue: 1 year: 2011 article-title: Weighted‐frequency index for EEG‐based mental fatigue alarm system publication-title: International Journal of Applied Biomedical Engineering – volume: 14 start-page: 1 issue: 5 year: 2019 end-page: 15 article-title: SleepEEGNet: automated sleep stage scoring with sequence to sequence deep learning approach publication-title: PloS One – volume: 119 start-page: 3 issue: 2 year: 2019 end-page: 11 article-title: Deep learning for sensor‐based activity recognition: a survey publication-title: Pattern Recognit. Lett. – volume: 55 start-page: 305 issue: 3 year: 2001 end-page: 310 article-title: Proposed supplements and amendments to ‘a manual of standardized terminology, techniques and scoring system for sleep stages of human subjects’, the Rechtschaffen & Kales (1968) standard publication-title: Psychiatry and Clinical Neurosciences – volume: 19 start-page: 7624 issue: 17 year: 2019 end-page: 7631 article-title: An effective hybrid model for EEG‐based drowsiness detection publication-title: IEEE Sens. J. – volume: 12 start-page: 127 issue: 2 year: 2017 end-page: 133 article-title: Driver drowsiness detection using facial dynamic fusion information and a dbn publication-title: IET Intel. Transport Syst. – volume: 46 start-page: 287 issue: 4 year: 2016 end-page: 305 article-title: Methods for artifact detection and removal from scalp EEG: a review publication-title: Neurophysiologie Clinique/Clinical Neurophysiology – year: 2020 article-title: Time domain parameters as a feature for single‐channel EEG‐based drowsiness detection method – volume: 163 start-page: 107224 issue: 3 year: 2020 end-page: 107229 article-title: Feature extraction method for classification of alertness and drowsiness states EEG signals publication-title: Appl. Acoust. – volume: 7 start-page: 61904 issue: 2 year: 2019 end-page: 61919 article-title: A survey on state‐of‐the‐art drowsiness detection techniques publication-title: IEEE Access – start-page: 1 year: 2019 end-page: 20 – volume: 36 start-page: 244 issue: 2 year: 2014 end-page: 249 article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis publication-title: Med. Eng. Phys. – volume: 5 start-page: 1 issue: 5 year: 2020 end-page: 17 article-title: Fatigue detection using artificial intelligence framework publication-title: Augmented Human Research – volume: 237 start-page: 877 issue: 3 year: 2020 end-page: 886 article-title: Validating lane drifts as a predictive measure of drug or sleepiness induced driving impairment publication-title: Psychopharmacology – volume: 36 start-page: 276 issue: 1 year: 2016 end-page: 284 article-title: An application of wireless brain–computer interface for drowsiness detection publication-title: Biocybernetics and Biomedical Engineering – volume: 12 start-page: 597 issue: 6 year: 2018 end-page: 606 article-title: Eeg classification of driver mental states by deep learning publication-title: Cognitive Neurodynamics – volume: 56 start-page: 101686 issue: 3 year: 2020 end-page: 101694 article-title: Bayesian classifier with multivariate distribution based on d‐vine copula model for awake/drowsiness interpretation during power nap publication-title: Biomed. Signal Process. Control – volume: 42 start-page: 7344 issue: 21 year: 2015 end-page: 7355 article-title: Automatic detection of alertness/drowsiness from physiological signals using wavelet‐based nonlinear features and machine learning publication-title: Expert Syst. Appl. – year: 2010 article-title: An automatic detector of drowsiness based on spectral analysis and wavelet decomposition of EEG records – volume: 6 start-page: 196 issue: 3 year: 2016 end-page: 204 article-title: Assessment of recurrence quantification analysis (RQA) of EEG for development of a novel drowsiness detection system publication-title: Biomed. Eng. Lett. – volume: 53 start-page: 66 issue: 1 year: 2020 end-page: 79 article-title: On identification of driving‐induced stress using electroencephalogram signals: a framework based on wearable safety‐critical scheme and machine learning publication-title: Inf. Fusion – volume: 4 start-page: 214 issue: 4 year: 2010 end-page: 222 article-title: A real‐time wireless brain–computer interface system for drowsiness detection publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 72 start-page: 173 issue: 12 year: 2020 end-page: 187 article-title: Detecting fatigue in car drivers and aircraft pilots by using non‐invasive measures: the value of differentiation of sleepiness and mental fatigue publication-title: J. Saf. Res. – volume: 16 start-page: 051001 issue: 5 year: 2019 end-page: 051038 article-title: Deep learning‐based electroencephalography analysis: a systematic review publication-title: J. Neural Eng. – year: 2013 – ident: e_1_2_8_13_1 doi: 10.3390/app7121239 – ident: e_1_2_8_4_1 doi: 10.1007/s00213-019-05424-8 – ident: e_1_2_8_26_1 doi: 10.1109/JSEN.2019.2917850 – ident: e_1_2_8_30_1 doi: 10.1016/j.eswa.2016.02.041 – ident: e_1_2_8_32_1 doi: 10.1016/j.medengphy.2013.07.011 – ident: e_1_2_8_6_1 doi: 10.1109/ACCESS.2019.2914373 – ident: e_1_2_8_28_1 doi: 10.1049/iet-its.2018.5290 – ident: e_1_2_8_19_1 doi: 10.3390/s150820873 – ident: e_1_2_8_22_1 doi: 10.1109/TBCAS.2010.2046415 – ident: e_1_2_8_45_1 doi: 10.1109/JSEN.2015.2473679 – volume: 4 start-page: 37 issue: 1 year: 2011 ident: e_1_2_8_33_1 article-title: Weighted‐frequency index for EEG‐based mental fatigue alarm system publication-title: International Journal of Applied Biomedical Engineering – ident: e_1_2_8_10_1 doi: 10.1016/j.bspc.2020.101865 – ident: e_1_2_8_37_1 doi: 10.1007/s11571-018-9496-y – ident: e_1_2_8_29_1 doi: 10.1049/iet-its.2016.0183 – ident: e_1_2_8_31_1 doi: 10.1016/j.bbe.2015.08.001 – ident: e_1_2_8_39_1 doi: 10.1007/s13748-019-00203-0 – ident: e_1_2_8_8_1 doi: 10.1016/j.bspc.2019.101686 – ident: e_1_2_8_15_1 doi: 10.1109/ACCESS.2019.2951028 – ident: e_1_2_8_41_1 doi: 10.1046/j.1440-1819.2001.00810.x – ident: e_1_2_8_16_1 doi: 10.1371/journal.pone.0216456 – ident: e_1_2_8_21_1 doi: 10.1016/j.eswa.2015.05.028 – volume: 5 start-page: 1 issue: 5 year: 2020 ident: e_1_2_8_2_1 article-title: Fatigue detection using artificial intelligence framework publication-title: Augmented Human Research – ident: e_1_2_8_20_1 doi: 10.1016/j.ssci.2008.01.007 – ident: e_1_2_8_40_1 – ident: e_1_2_8_44_1 – ident: e_1_2_8_25_1 doi: 10.1007/978-3-319-93940-7_7 – ident: e_1_2_8_35_1 doi: 10.1016/j.bbe.2018.05.005 – ident: e_1_2_8_43_1 doi: 10.1007/s13534-016-0223-5 – ident: e_1_2_8_42_1 doi: 10.1016/j.neucli.2016.07.002 – ident: e_1_2_8_14_1 doi: 10.1109/ACCESS.2018.2811723 – ident: e_1_2_8_7_1 doi: 10.1016/j.jsr.2019.12.015 – ident: e_1_2_8_9_1 doi: 10.1016/j.inffus.2019.06.006 – ident: e_1_2_8_5_1 doi: 10.1049/iet-its.2017.0183 – ident: e_1_2_8_24_1 doi: 10.1016/j.apacoust.2020.107224 – ident: e_1_2_8_17_1 doi: 10.1016/j.cmpb.2019.105116 – volume: 10 start-page: 1 issue: 2 year: 2020 ident: e_1_2_8_36_1 article-title: Innovative deep learning models for EEG‐based vigilance detection publication-title: Neural Comput. Appl. – ident: e_1_2_8_11_1 doi: 10.1049/iet-its.2012.0032 – ident: e_1_2_8_38_1 – ident: e_1_2_8_27_1 doi: 10.1016/j.micpro.2018.02.004 – ident: e_1_2_8_23_1 doi: 10.1109/SCEECS48394.2020.61 – ident: e_1_2_8_18_1 doi: 10.1016/j.patrec.2018.02.010 – ident: e_1_2_8_3_1 doi: 10.1016/j.aap.2018.01.012 – ident: e_1_2_8_12_1 doi: 10.1088/1741-2552/ab260c – ident: e_1_2_8_34_1 |
SSID | ssj0056221 |
Score | 2.3754065 |
Snippet | Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping at the... Abstract Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 514 |
SubjectTerms | Bioelectric signals Computer vision and image processing techniques Digital signal processing Electrical activity in neurophysiological processes Signal processing and detection Traffic engineering computing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFA3ikz6Inzi_COiLQl2bJmvyOMUxBX2QCXsr-aoK2o3R_X_vTTrZQPTFp5YSmnJz23PSnJxLyIV2ntkitYk3lcW_VSIBEKySnKXGeKWYLnA38uNTb_jCH8ZivFTqCzVh0R44Bq7Lhc0AogX3WcWlxbsxk-YeeLgyVRGcQAHzFpOp-A0GUI87rgosIi9644UxKVfd92bGrjOW8mwFioJj_ypDDRAz2CZbLTek_fhMO2TN17tkc8kxcI80_XkzAZLpHbXIe1HoE2JLoyUzBQ5KHUyto5ydOt8ErVVNUeD-SlFk3iYb9IRmluEQpOBU1462ZXHwfZ--6WBo_blPXgZ3o9th0hZOSCznLEssTDXzXHHBrct54S3AtOk5B-zP5JXkEjiRBKRmOtUQUl-lwFqEk1pBpCuh8gOyXk9qf0goT7UzVhqlDG4k0ZIpgasyaSZhlA3rkMtFDEvbuopjcYuPMqxuc1VivMsQ7w45_247jV4aP7a6waH4boH-1-ECZEXZZkX5V1Z0yFUYyF_6Ke9HzyycHf1Hj8dkg6HcJYh6Tsh6M5v7U-ArjTkLqfkFWj7mOQ priority: 102 providerName: Directory of Open Access Journals |
Title | Automated classification system for drowsiness detection using convolutional neural network and electroencephalogram |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12041 https://doaj.org/article/45c162354e1f48c48352b03e2609bf74 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9DX_RB_MT5MQL6olBt02RtwJcpjikoIhvsreSrU9BujO7_9y5tpwMRfGopKWlzudzvkrvfEXKurGMmCU3gdG5wt0oEYATzIGah1k5KphLMRn567g5G_HEsxi1y0-TCVPwQyw031Ay_XqOCK11VIQFQC0J8L-fsKmIhZq2vY24tMucz_tKsw2DYq6yrBAvJi-64ISfl8vr73RVz5Fn7V1GqNzP9bbJV40PaqwS6Q1qu2CWbP1gD90jZW5RTAJrOUoPYF4N9_PjSipaZAg6lFtzrKqSdWlf6eKuCYpD7hGKgeT3hoCcktPQXHw5OVWFpXRoHdX72pjyp9ec-GfXvh3eDoC6eEBjOWRQYcDfjWHLBjY154gyYat21FhCgjvOUp4CLUrDWTIUqNdzlISAXYVMlARDlQsYHZK2YFu6QUB4qq02qpdSYTKJSJgWezIRRCpLWrE0umjHMTM0sjgUuPjJ_ws1lhuOd-fFuk7Nl21nFp_Frq1sUxbIFcmD7B9P5JKtVKuPCRPCtgrso5_ALiCV1GDvw0KTOE94ml16Qf_STPQxfmb87-k_jY7LBMLTFB_CckLVyvnCngE1K3fFTsOM9-y8foODl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_UgPnF9BvSiUG3TybY5qijrE5EV9lbyqgralaX-f2fS7qoggqeWMiVtksl8Sb75wti-dl7YLLaRN6Wl1SoZYRAso1TExnilhM4oG_n2rtt7hKuBHLTcHMqFafQhJgtu5BlhvCYHpwXpZsIJJJL5Uo_EUSJiSlufga7IyC8F3I8HYozsTdpVRifJy-5grE4K6vjr3R_xKMj2_4SpIc5cLLKFFiDyk6ZFl9iUr5bZ_DfZwBVWn3zUQ0Sa3nFL4JfYPqGCeaPLzBGIcofz64bTzp2vA-Gq4sRyf-LENG97HJZEipbhEvjgXFeOt2fjkNO_P-ugav22yh4vzvtnvag9PSGyACKJLM4301SBBOtSyLzFWG26ziEENGmZQ47AKMdwLXSscwu-jBG6SJdrhYiolCpdY9PVsPLrjEOsnbG5UcpQNonOhZK0NRMnOTa1ER12MK7DwrbS4nTCxWsRtrhBFVTfRajvDtub2L43ghq_Wp1SU0wsSAQ7PBiOnorWpwqQNsFvleCTEvAXCEyaOPU4RVOmzKDDDkND_lFOcdl_EOFu4z_Gu2y217-9KW4u76432Zwgnktg82yx6Xr04bcRqNRmJ3THT_sQ41w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7iQPRBvOK8BvRFodqmydqAL_My5hURJ8OXkltV0G6M-v89J-2mggg-tZRT0p5czpfkO18I2VPWMZOEJnA6N7haJQIIgnkQs1BrJyVTCWYj39y2uj1-2Rf9KXI8zoWp9CEmC27YM_x4jR18aPNqvslRI_O1HLHDiIWYtd5AmTxo0432Y--pNx6JIbRXeVcJHiUvWv2xPCmXR19v_whIXrf_J071gaazQOZrhEjbVZUukilXLJG5b7qBy6Rsf5QDgJrOUoPoF-k-3sO0EmamgESphQl2RWqn1pWecVVQpLk_U6Sa100OSkJJS3_xhHCqCkvrw3Gw1w9flJe1fl8hvc75w2k3qI9PCAznLAoMTDjjWHLBjY154gwEa92yFjCgjvOUp4CMUojXTIUqNdzlIWAXYVMlARLlQsarZLoYFG6NUB4qq02qpdSYTqJSJgXuzYRRCnWtWZPsj32YmVpbHI-4eMv8HjeXGfo78_5ukt2J7bBS1PjV6gSrYmKBKtj-wWD0nNWdKuPCRPCtgrso5_ALiCZ1GDuYo0mdJ7xJDnxF_lFOdvFwz_zd-n-Md8jM3Vknu764vdogswx5Lp7Ns0mmy9GH2wKgUurtuj1-Agtm5FQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+classification+system+for+drowsiness+detection+using+convolutional+neural+network+and+electroencephalogram&rft.jtitle=IET+intelligent+transport+systems&rft.au=Balam%2C+Venkata+Phanikrishna&rft.au=Sameer%2C+Venkata+Udaya&rft.au=Chinara%2C+Suchismitha&rft.date=2021-04-01&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=15&rft.issue=4&rft.spage=514&rft.epage=524&rft_id=info:doi/10.1049%2Fitr2.12041&rft.externalDBID=10.1049%252Fitr2.12041&rft.externalDocID=ITR212041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon |