Automated classification system for drowsiness detection using convolutional neural network and electroencephalogram

Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping at the wheel. A real‐time alert generation when the driver might possibly go into sleepy state is essential to safeguard any unwarranted incidents. We...

Full description

Saved in:
Bibliographic Details
Published inIET intelligent transport systems Vol. 15; no. 4; pp. 514 - 524
Main Authors Balam, Venkata Phanikrishna, Sameer, Venkata Udaya, Chinara, Suchismitha
Format Journal Article
LanguageEnglish
Published Wiley 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping at the wheel. A real‐time alert generation when the driver might possibly go into sleepy state is essential to safeguard any unwarranted incidents. Wearable sensors to monitor vehicle movement and camera‐based systems to monitor driver behaviour are commonly used to detect driver drowsiness. Due to the fact that electroencephalogram (EEG) signals have the ability to monitor the mood of humans and are easily obtainable, many different EEG‐based drowsiness detection systems have been proposed to date. In this study, a novel deep learning architecture based on a convolutional neural network (CNN) is proposed for automated drowsiness detection using a single‐channel EEG signal. To improve the generalization performance of the proposed method, subject‐wise, cross‐subject‐wise, and combined‐subjects‐wise validations have been employed. The whole of the work is carried over pre‐recorded sleep state EEG data obtained from benchmarked dataset. The experimental results show a superior detection capability compared to the existing state–of–the–art drowsiness detection methods using single‐channel EEG signals.
AbstractList Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping at the wheel. A real‐time alert generation when the driver might possibly go into sleepy state is essential to safeguard any unwarranted incidents. Wearable sensors to monitor vehicle movement and camera‐based systems to monitor driver behaviour are commonly used to detect driver drowsiness. Due to the fact that electroencephalogram (EEG) signals have the ability to monitor the mood of humans and are easily obtainable, many different EEG‐based drowsiness detection systems have been proposed to date. In this study, a novel deep learning architecture based on a convolutional neural network (CNN) is proposed for automated drowsiness detection using a single‐channel EEG signal. To improve the generalization performance of the proposed method, subject‐wise, cross‐subject‐wise, and combined‐subjects‐wise validations have been employed. The whole of the work is carried over pre‐recorded sleep state EEG data obtained from benchmarked dataset. The experimental results show a superior detection capability compared to the existing state–of–the–art drowsiness detection methods using single‐channel EEG signals.
Abstract Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping at the wheel. A real‐time alert generation when the driver might possibly go into sleepy state is essential to safeguard any unwarranted incidents. Wearable sensors to monitor vehicle movement and camera‐based systems to monitor driver behaviour are commonly used to detect driver drowsiness. Due to the fact that electroencephalogram (EEG) signals have the ability to monitor the mood of humans and are easily obtainable, many different EEG‐based drowsiness detection systems have been proposed to date. In this study, a novel deep learning architecture based on a convolutional neural network (CNN) is proposed for automated drowsiness detection using a single‐channel EEG signal. To improve the generalization performance of the proposed method, subject‐wise, cross‐subject‐wise, and combined‐subjects‐wise validations have been employed. The whole of the work is carried over pre‐recorded sleep state EEG data obtained from benchmarked dataset. The experimental results show a superior detection capability compared to the existing state–of–the–art drowsiness detection methods using single‐channel EEG signals.
Author Balam, Venkata Phanikrishna
Sameer, Venkata Udaya
Chinara, Suchismitha
Author_xml – sequence: 1
  givenname: Venkata Phanikrishna
  orcidid: 0000-0003-3384-7841
  surname: Balam
  fullname: Balam, Venkata Phanikrishna
  email: 515cs1007@nitrkl.ac.in, b.phanikrishna@gmail.com
  organization: National Institute of Technology Rourkela
– sequence: 2
  givenname: Venkata Udaya
  surname: Sameer
  fullname: Sameer, Venkata Udaya
  organization: National Institute of Technology Rourkela
– sequence: 3
  givenname: Suchismitha
  surname: Chinara
  fullname: Chinara, Suchismitha
  organization: National Institute of Technology Rourkela
BookMark eNp9kEtrWzEQhUVJobbbTX-B1gWnel5Ly2D6MAQCIYHshCyNHCXylZHkGP_7Xl-XLELIaoYz53wMZ4ou-twDQt8puaRE6J-xFXZJGRH0E5rQhaRzLRfq4nXvHr6gaa1PhMiOMTpB7Wrf8tY28NglW2sM0dkWc4_rsTbY4pAL9iUfauyhVuyhgRvv-0HZYJf7l5z2J8Um3MO-jKMdcnnGtvcY0uAvGXoHu0eb8qbY7Vf0OdhU4dv_OUP3v3_dLf_Or2_-rJZX13MnBKNzxxaCcy2kcJ6LBTgm6LrznlK55kEJpZlWiipmiVVOQCBKc-mV1R3jQWo-Q6sz12f7ZHYlbm05mmyjGYVcNsaWFl0CI6SjQ0oKoEEMMMUlWxMOrCN6HYY_ZujHmeVKrrVAeOVRYk7dm1P3Zux-MJM3ZhfbWGsrNqb3I_QcOcQExw_gZnV3y86ZfwEWmpU
CitedBy_id crossref_primary_10_1177_15485129231158580
crossref_primary_10_1016_j_bspc_2024_107262
crossref_primary_10_1016_j_heliyon_2024_e39592
crossref_primary_10_3390_app12126007
crossref_primary_10_1007_s11042_024_20428_z
crossref_primary_10_1007_s11042_023_15054_0
crossref_primary_10_3390_s21113786
crossref_primary_10_1109_TITS_2024_3442249
crossref_primary_10_1016_j_inffus_2021_11_006
crossref_primary_10_3390_info15010030
crossref_primary_10_1038_s41598_024_81271_8
crossref_primary_10_1155_2024_9898333
crossref_primary_10_1016_j_asej_2022_101895
crossref_primary_10_1007_s12046_024_02656_z
crossref_primary_10_1007_s11042_024_19890_6
crossref_primary_10_1016_j_bspc_2024_106881
crossref_primary_10_1016_j_neucom_2023_126709
crossref_primary_10_3390_app13031512
crossref_primary_10_1142_S0129065723500090
crossref_primary_10_3390_s23218741
crossref_primary_10_1016_j_compag_2024_109265
crossref_primary_10_1007_s11571_022_09898_9
crossref_primary_10_1142_S0129065724500035
crossref_primary_10_1109_LSENS_2024_3363735
crossref_primary_10_1109_ACCESS_2023_3288008
Cites_doi 10.3390/app7121239
10.1007/s00213-019-05424-8
10.1109/JSEN.2019.2917850
10.1016/j.eswa.2016.02.041
10.1016/j.medengphy.2013.07.011
10.1109/ACCESS.2019.2914373
10.1049/iet-its.2018.5290
10.3390/s150820873
10.1109/TBCAS.2010.2046415
10.1109/JSEN.2015.2473679
10.1016/j.bspc.2020.101865
10.1007/s11571-018-9496-y
10.1049/iet-its.2016.0183
10.1016/j.bbe.2015.08.001
10.1007/s13748-019-00203-0
10.1016/j.bspc.2019.101686
10.1109/ACCESS.2019.2951028
10.1046/j.1440-1819.2001.00810.x
10.1371/journal.pone.0216456
10.1016/j.eswa.2015.05.028
10.1016/j.ssci.2008.01.007
10.1007/978-3-319-93940-7_7
10.1016/j.bbe.2018.05.005
10.1007/s13534-016-0223-5
10.1016/j.neucli.2016.07.002
10.1109/ACCESS.2018.2811723
10.1016/j.jsr.2019.12.015
10.1016/j.inffus.2019.06.006
10.1049/iet-its.2017.0183
10.1016/j.apacoust.2020.107224
10.1016/j.cmpb.2019.105116
10.1049/iet-its.2012.0032
10.1016/j.micpro.2018.02.004
10.1109/SCEECS48394.2020.61
10.1016/j.patrec.2018.02.010
10.1016/j.aap.2018.01.012
10.1088/1741-2552/ab260c
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/itr2.12041
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9578
EndPage 524
ExternalDocumentID oai_doaj_org_article_45c162354e1f48c48352b03e2609bf74
10_1049_itr2_12041
ITR212041
Genre article
GroupedDBID .DC
0R~
1OC
24P
29I
29J
4.4
5GY
6IK
8FE
8FG
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
L6V
LAI
M43
M7S
MCNEO
O9-
OCL
OK1
P2P
P62
PTHSS
RIE
RIG
RNS
ROL
RUI
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
WIN
ID FETCH-LOGICAL-c4421-c274339454cd347ec241b6dd115b3f84892988182a0a8c4ef08935d8a9623f593
IEDL.DBID 24P
ISSN 1751-956X
IngestDate Wed Aug 27 01:10:22 EDT 2025
Tue Jul 01 05:20:34 EDT 2025
Thu Apr 24 22:52:00 EDT 2025
Wed Jan 22 16:58:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4421-c274339454cd347ec241b6dd115b3f84892988182a0a8c4ef08935d8a9623f593
ORCID 0000-0003-3384-7841
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12041
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_45c162354e1f48c48352b03e2609bf74
crossref_primary_10_1049_itr2_12041
crossref_citationtrail_10_1049_itr2_12041
wiley_primary_10_1049_itr2_12041_ITR212041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle IET intelligent transport systems
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2019; 7
2017; 7
2015; 15
2009; 47
2020; 184
2020; 163
2011
2010
2019; 14
2019; 16
2019; 19
2020; 58
2020; 56
2020; 10
2011; 4
2016; 36
2016; 55
2018; 6
2016; 6
2020; 5
2020; 53
2020; 74
2020; 72
2020
2015; 42
2017; 11
2018; 112
2017; 12
2020; 237
2019
2014; 36
2019; 119
2013
2018; 12
2001; 55
2014; 8
2010; 4
2018; 38
2016; 46
2018; 58
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
Khessiba S. (e_1_2_8_36_1) 2020; 10
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Parekh V. (e_1_2_8_2_1) 2020; 5
e_1_2_8_32_1
Punsawad Y. (e_1_2_8_33_1) 2011; 4
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 47
  start-page: 115
  issue: 1
  year: 2009
  end-page: 124
  article-title: Can SVM be used for automatic EEG detection of drowsiness during car driving
  publication-title: Saf. Sci.
– volume: 58
  start-page: 13
  issue: 2
  year: 2018
  end-page: 23
  article-title: Single‐channel‐based automatic drowsiness detection architecture with a reduced number of EEG features
  publication-title: Microprocess. Microsyst.
– volume: 58
  start-page: 101865
  issue: 2
  year: 2020
  end-page: 101874
  article-title: A new method for muscular visual fatigue detection using electrooculogram
  publication-title: Biomed. Signal Process. Control
– volume: 11
  start-page: 255
  issue: 5
  year: 2017
  end-page: 263
  article-title: Real‐time drowsiness detection using wearable, lightweight brain sensing headbands
  publication-title: IET Intel. Transport Syst.
– year: 2011
  article-title: Deep sparse rectifier neural networks
– volume: 7
  start-page: 167172
  issue: 1
  year: 2019
  end-page: 167186
  article-title: Drowsiness, fatigue and poor sleep's causes and detection: a comprehensive study
  publication-title: IEEE Access
– volume: 112
  start-page: 127
  issue: 1
  year: 2018
  end-page: 134
  article-title: Effects of the road environment on the development of driver sleepiness in young male drivers
  publication-title: Accid. Anal. Prev.
– volume: 74
  start-page: 85
  issue: 9
  year: 2020
  end-page: 112
  article-title: Convolutional neural network: a review of models, methodologies and applications to object detection
  publication-title: Progress in Artificial Intelligence
– volume: 15
  start-page: 7169
  issue: 12
  year: 2015
  end-page: 7180
  article-title: Smartwatch‐based wearable EEG system for driver drowsiness detection
  publication-title: IEEE Sens. J.
– volume: 6
  start-page: 22908
  issue: 2
  year: 2018
  end-page: 22919
  article-title: A review on EEG‐based automatic sleepiness detection systems for driver
  publication-title: IEEE Access
– volume: 184
  start-page: 105116
  issue: 2
  year: 2020
  end-page: 105129
  article-title: Eeg sleep stages identification based on weighted undirected complex networks
  publication-title: Comput. Methods Programs Biomed.
– volume: 10
  start-page: 1
  issue: 2
  year: 2020
  end-page: 17
  article-title: Innovative deep learning models for EEG‐based vigilance detection
  publication-title: Neural Comput. Appl.
– start-page: 157
  year: 2019
  end-page: 174
  article-title: Detection and analysis of drowsiness in human beings using multimodal signals
– volume: 38
  start-page: 890
  issue: 4
  year: 2018
  end-page: 902
  article-title: Use of features from RR‐time series and EEG signals for automated classification of sleep stages in deep neural network framework
  publication-title: Biocybernetics and Biomedical Engineering
– volume: 8
  start-page: 43
  issue: 1
  year: 2014
  end-page: 50
  article-title: Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel
  publication-title: IET Intel. Transport Syst.
– volume: 12
  start-page: 1322
  issue: 10
  year: 2018
  end-page: 1328
  article-title: Ensemble classifier for driver's fatigue detection based on a single EEG channel
  publication-title: IET Intel. Transport Syst.
– volume: 55
  start-page: 559
  issue: 1
  year: 2016
  end-page: 565
  article-title: Automated drowsiness detection through wavelet packet analysis of a single EEG channel
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 1239
  issue: 12
  year: 2017
  end-page: 1242
  article-title: Review and classification of emotion recognition based on EEG brain–computer interface system research: a systematic review
  publication-title: Appl. Sci.
– volume: 15
  start-page: 20873
  issue: 8
  year: 2015
  end-page: 20893
  article-title: A context‐aware EEG headset system for early detection of driver drowsiness
  publication-title: Sensors
– volume: 4
  start-page: 37
  issue: 1
  year: 2011
  article-title: Weighted‐frequency index for EEG‐based mental fatigue alarm system
  publication-title: International Journal of Applied Biomedical Engineering
– volume: 14
  start-page: 1
  issue: 5
  year: 2019
  end-page: 15
  article-title: SleepEEGNet: automated sleep stage scoring with sequence to sequence deep learning approach
  publication-title: PloS One
– volume: 119
  start-page: 3
  issue: 2
  year: 2019
  end-page: 11
  article-title: Deep learning for sensor‐based activity recognition: a survey
  publication-title: Pattern Recognit. Lett.
– volume: 55
  start-page: 305
  issue: 3
  year: 2001
  end-page: 310
  article-title: Proposed supplements and amendments to ‘a manual of standardized terminology, techniques and scoring system for sleep stages of human subjects’, the Rechtschaffen & Kales (1968) standard
  publication-title: Psychiatry and Clinical Neurosciences
– volume: 19
  start-page: 7624
  issue: 17
  year: 2019
  end-page: 7631
  article-title: An effective hybrid model for EEG‐based drowsiness detection
  publication-title: IEEE Sens. J.
– volume: 12
  start-page: 127
  issue: 2
  year: 2017
  end-page: 133
  article-title: Driver drowsiness detection using facial dynamic fusion information and a dbn
  publication-title: IET Intel. Transport Syst.
– volume: 46
  start-page: 287
  issue: 4
  year: 2016
  end-page: 305
  article-title: Methods for artifact detection and removal from scalp EEG: a review
  publication-title: Neurophysiologie Clinique/Clinical Neurophysiology
– year: 2020
  article-title: Time domain parameters as a feature for single‐channel EEG‐based drowsiness detection method
– volume: 163
  start-page: 107224
  issue: 3
  year: 2020
  end-page: 107229
  article-title: Feature extraction method for classification of alertness and drowsiness states EEG signals
  publication-title: Appl. Acoust.
– volume: 7
  start-page: 61904
  issue: 2
  year: 2019
  end-page: 61919
  article-title: A survey on state‐of‐the‐art drowsiness detection techniques
  publication-title: IEEE Access
– start-page: 1
  year: 2019
  end-page: 20
– volume: 36
  start-page: 244
  issue: 2
  year: 2014
  end-page: 249
  article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis
  publication-title: Med. Eng. Phys.
– volume: 5
  start-page: 1
  issue: 5
  year: 2020
  end-page: 17
  article-title: Fatigue detection using artificial intelligence framework
  publication-title: Augmented Human Research
– volume: 237
  start-page: 877
  issue: 3
  year: 2020
  end-page: 886
  article-title: Validating lane drifts as a predictive measure of drug or sleepiness induced driving impairment
  publication-title: Psychopharmacology
– volume: 36
  start-page: 276
  issue: 1
  year: 2016
  end-page: 284
  article-title: An application of wireless brain–computer interface for drowsiness detection
  publication-title: Biocybernetics and Biomedical Engineering
– volume: 12
  start-page: 597
  issue: 6
  year: 2018
  end-page: 606
  article-title: Eeg classification of driver mental states by deep learning
  publication-title: Cognitive Neurodynamics
– volume: 56
  start-page: 101686
  issue: 3
  year: 2020
  end-page: 101694
  article-title: Bayesian classifier with multivariate distribution based on d‐vine copula model for awake/drowsiness interpretation during power nap
  publication-title: Biomed. Signal Process. Control
– volume: 42
  start-page: 7344
  issue: 21
  year: 2015
  end-page: 7355
  article-title: Automatic detection of alertness/drowsiness from physiological signals using wavelet‐based nonlinear features and machine learning
  publication-title: Expert Syst. Appl.
– year: 2010
  article-title: An automatic detector of drowsiness based on spectral analysis and wavelet decomposition of EEG records
– volume: 6
  start-page: 196
  issue: 3
  year: 2016
  end-page: 204
  article-title: Assessment of recurrence quantification analysis (RQA) of EEG for development of a novel drowsiness detection system
  publication-title: Biomed. Eng. Lett.
– volume: 53
  start-page: 66
  issue: 1
  year: 2020
  end-page: 79
  article-title: On identification of driving‐induced stress using electroencephalogram signals: a framework based on wearable safety‐critical scheme and machine learning
  publication-title: Inf. Fusion
– volume: 4
  start-page: 214
  issue: 4
  year: 2010
  end-page: 222
  article-title: A real‐time wireless brain–computer interface system for drowsiness detection
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 72
  start-page: 173
  issue: 12
  year: 2020
  end-page: 187
  article-title: Detecting fatigue in car drivers and aircraft pilots by using non‐invasive measures: the value of differentiation of sleepiness and mental fatigue
  publication-title: J. Saf. Res.
– volume: 16
  start-page: 051001
  issue: 5
  year: 2019
  end-page: 051038
  article-title: Deep learning‐based electroencephalography analysis: a systematic review
  publication-title: J. Neural Eng.
– year: 2013
– ident: e_1_2_8_13_1
  doi: 10.3390/app7121239
– ident: e_1_2_8_4_1
  doi: 10.1007/s00213-019-05424-8
– ident: e_1_2_8_26_1
  doi: 10.1109/JSEN.2019.2917850
– ident: e_1_2_8_30_1
  doi: 10.1016/j.eswa.2016.02.041
– ident: e_1_2_8_32_1
  doi: 10.1016/j.medengphy.2013.07.011
– ident: e_1_2_8_6_1
  doi: 10.1109/ACCESS.2019.2914373
– ident: e_1_2_8_28_1
  doi: 10.1049/iet-its.2018.5290
– ident: e_1_2_8_19_1
  doi: 10.3390/s150820873
– ident: e_1_2_8_22_1
  doi: 10.1109/TBCAS.2010.2046415
– ident: e_1_2_8_45_1
  doi: 10.1109/JSEN.2015.2473679
– volume: 4
  start-page: 37
  issue: 1
  year: 2011
  ident: e_1_2_8_33_1
  article-title: Weighted‐frequency index for EEG‐based mental fatigue alarm system
  publication-title: International Journal of Applied Biomedical Engineering
– ident: e_1_2_8_10_1
  doi: 10.1016/j.bspc.2020.101865
– ident: e_1_2_8_37_1
  doi: 10.1007/s11571-018-9496-y
– ident: e_1_2_8_29_1
  doi: 10.1049/iet-its.2016.0183
– ident: e_1_2_8_31_1
  doi: 10.1016/j.bbe.2015.08.001
– ident: e_1_2_8_39_1
  doi: 10.1007/s13748-019-00203-0
– ident: e_1_2_8_8_1
  doi: 10.1016/j.bspc.2019.101686
– ident: e_1_2_8_15_1
  doi: 10.1109/ACCESS.2019.2951028
– ident: e_1_2_8_41_1
  doi: 10.1046/j.1440-1819.2001.00810.x
– ident: e_1_2_8_16_1
  doi: 10.1371/journal.pone.0216456
– ident: e_1_2_8_21_1
  doi: 10.1016/j.eswa.2015.05.028
– volume: 5
  start-page: 1
  issue: 5
  year: 2020
  ident: e_1_2_8_2_1
  article-title: Fatigue detection using artificial intelligence framework
  publication-title: Augmented Human Research
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ssci.2008.01.007
– ident: e_1_2_8_40_1
– ident: e_1_2_8_44_1
– ident: e_1_2_8_25_1
  doi: 10.1007/978-3-319-93940-7_7
– ident: e_1_2_8_35_1
  doi: 10.1016/j.bbe.2018.05.005
– ident: e_1_2_8_43_1
  doi: 10.1007/s13534-016-0223-5
– ident: e_1_2_8_42_1
  doi: 10.1016/j.neucli.2016.07.002
– ident: e_1_2_8_14_1
  doi: 10.1109/ACCESS.2018.2811723
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jsr.2019.12.015
– ident: e_1_2_8_9_1
  doi: 10.1016/j.inffus.2019.06.006
– ident: e_1_2_8_5_1
  doi: 10.1049/iet-its.2017.0183
– ident: e_1_2_8_24_1
  doi: 10.1016/j.apacoust.2020.107224
– ident: e_1_2_8_17_1
  doi: 10.1016/j.cmpb.2019.105116
– volume: 10
  start-page: 1
  issue: 2
  year: 2020
  ident: e_1_2_8_36_1
  article-title: Innovative deep learning models for EEG‐based vigilance detection
  publication-title: Neural Comput. Appl.
– ident: e_1_2_8_11_1
  doi: 10.1049/iet-its.2012.0032
– ident: e_1_2_8_38_1
– ident: e_1_2_8_27_1
  doi: 10.1016/j.micpro.2018.02.004
– ident: e_1_2_8_23_1
  doi: 10.1109/SCEECS48394.2020.61
– ident: e_1_2_8_18_1
  doi: 10.1016/j.patrec.2018.02.010
– ident: e_1_2_8_3_1
  doi: 10.1016/j.aap.2018.01.012
– ident: e_1_2_8_12_1
  doi: 10.1088/1741-2552/ab260c
– ident: e_1_2_8_34_1
SSID ssj0056221
Score 2.3754065
Snippet Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping at the...
Abstract Detecting drowsiness in drivers while driving is extremely important to avoid possible accidents and reduce the fatality rate due to drivers sleeping...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 514
SubjectTerms Bioelectric signals
Computer vision and image processing techniques
Digital signal processing
Electrical activity in neurophysiological processes
Signal processing and detection
Traffic engineering computing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFA3ikz6Inzi_COiLQl2bJmvyOMUxBX2QCXsr-aoK2o3R_X_vTTrZQPTFp5YSmnJz23PSnJxLyIV2ntkitYk3lcW_VSIBEKySnKXGeKWYLnA38uNTb_jCH8ZivFTqCzVh0R44Bq7Lhc0AogX3WcWlxbsxk-YeeLgyVRGcQAHzFpOp-A0GUI87rgosIi9644UxKVfd92bGrjOW8mwFioJj_ypDDRAz2CZbLTek_fhMO2TN17tkc8kxcI80_XkzAZLpHbXIe1HoE2JLoyUzBQ5KHUyto5ydOt8ErVVNUeD-SlFk3iYb9IRmluEQpOBU1462ZXHwfZ--6WBo_blPXgZ3o9th0hZOSCznLEssTDXzXHHBrct54S3AtOk5B-zP5JXkEjiRBKRmOtUQUl-lwFqEk1pBpCuh8gOyXk9qf0goT7UzVhqlDG4k0ZIpgasyaSZhlA3rkMtFDEvbuopjcYuPMqxuc1VivMsQ7w45_247jV4aP7a6waH4boH-1-ECZEXZZkX5V1Z0yFUYyF_6Ke9HzyycHf1Hj8dkg6HcJYh6Tsh6M5v7U-ArjTkLqfkFWj7mOQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Automated classification system for drowsiness detection using convolutional neural network and electroencephalogram
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12041
https://doaj.org/article/45c162354e1f48c48352b03e2609bf74
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9DX_RB_MT5MQL6olBt02RtwJcpjikoIhvsreSrU9BujO7_9y5tpwMRfGopKWlzudzvkrvfEXKurGMmCU3gdG5wt0oEYATzIGah1k5KphLMRn567g5G_HEsxi1y0-TCVPwQyw031Ay_XqOCK11VIQFQC0J8L-fsKmIhZq2vY24tMucz_tKsw2DYq6yrBAvJi-64ISfl8vr73RVz5Fn7V1GqNzP9bbJV40PaqwS6Q1qu2CWbP1gD90jZW5RTAJrOUoPYF4N9_PjSipaZAg6lFtzrKqSdWlf6eKuCYpD7hGKgeT3hoCcktPQXHw5OVWFpXRoHdX72pjyp9ec-GfXvh3eDoC6eEBjOWRQYcDfjWHLBjY154gyYat21FhCgjvOUp4CLUrDWTIUqNdzlISAXYVMlARDlQsYHZK2YFu6QUB4qq02qpdSYTKJSJgWezIRRCpLWrE0umjHMTM0sjgUuPjJ_ws1lhuOd-fFuk7Nl21nFp_Frq1sUxbIFcmD7B9P5JKtVKuPCRPCtgrso5_ALiCV1GDvw0KTOE94ml16Qf_STPQxfmb87-k_jY7LBMLTFB_CckLVyvnCngE1K3fFTsOM9-y8foODl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_UgPnF9BvSiUG3TybY5qijrE5EV9lbyqgralaX-f2fS7qoggqeWMiVtksl8Sb75wti-dl7YLLaRN6Wl1SoZYRAso1TExnilhM4oG_n2rtt7hKuBHLTcHMqFafQhJgtu5BlhvCYHpwXpZsIJJJL5Uo_EUSJiSlufga7IyC8F3I8HYozsTdpVRifJy-5grE4K6vjr3R_xKMj2_4SpIc5cLLKFFiDyk6ZFl9iUr5bZ_DfZwBVWn3zUQ0Sa3nFL4JfYPqGCeaPLzBGIcofz64bTzp2vA-Gq4sRyf-LENG97HJZEipbhEvjgXFeOt2fjkNO_P-ugav22yh4vzvtnvag9PSGyACKJLM4301SBBOtSyLzFWG26ziEENGmZQ47AKMdwLXSscwu-jBG6SJdrhYiolCpdY9PVsPLrjEOsnbG5UcpQNonOhZK0NRMnOTa1ER12MK7DwrbS4nTCxWsRtrhBFVTfRajvDtub2L43ghq_Wp1SU0wsSAQ7PBiOnorWpwqQNsFvleCTEvAXCEyaOPU4RVOmzKDDDkND_lFOcdl_EOFu4z_Gu2y217-9KW4u76432Zwgnktg82yx6Xr04bcRqNRmJ3THT_sQ41w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7iQPRBvOK8BvRFodqmydqAL_My5hURJ8OXkltV0G6M-v89J-2mggg-tZRT0p5czpfkO18I2VPWMZOEJnA6N7haJQIIgnkQs1BrJyVTCWYj39y2uj1-2Rf9KXI8zoWp9CEmC27YM_x4jR18aPNqvslRI_O1HLHDiIWYtd5AmTxo0432Y--pNx6JIbRXeVcJHiUvWv2xPCmXR19v_whIXrf_J071gaazQOZrhEjbVZUukilXLJG5b7qBy6Rsf5QDgJrOUoPoF-k-3sO0EmamgESphQl2RWqn1pWecVVQpLk_U6Sa100OSkJJS3_xhHCqCkvrw3Gw1w9flJe1fl8hvc75w2k3qI9PCAznLAoMTDjjWHLBjY154gwEa92yFjCgjvOUp4CMUojXTIUqNdzlIWAXYVMlARLlQsarZLoYFG6NUB4qq02qpdSYTqJSJgXuzYRRCnWtWZPsj32YmVpbHI-4eMv8HjeXGfo78_5ukt2J7bBS1PjV6gSrYmKBKtj-wWD0nNWdKuPCRPCtgrso5_ALiCZ1GDuYo0mdJ7xJDnxF_lFOdvFwz_zd-n-Md8jM3Vknu764vdogswx5Lp7Ns0mmy9GH2wKgUurtuj1-Agtm5FQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+classification+system+for+drowsiness+detection+using+convolutional+neural+network+and+electroencephalogram&rft.jtitle=IET+intelligent+transport+systems&rft.au=Balam%2C+Venkata+Phanikrishna&rft.au=Sameer%2C+Venkata+Udaya&rft.au=Chinara%2C+Suchismitha&rft.date=2021-04-01&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=15&rft.issue=4&rft.spage=514&rft.epage=524&rft_id=info:doi/10.1049%2Fitr2.12041&rft.externalDBID=10.1049%252Fitr2.12041&rft.externalDocID=ITR212041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon